WO2010097155A1 - Polymer mit aldehydgruppen, umsetzung sowie vernetzung dieses polymers, vernetztes polymer sowie elektrolumineszenzvorrichtung enthaltend dieses polymer - Google Patents

Polymer mit aldehydgruppen, umsetzung sowie vernetzung dieses polymers, vernetztes polymer sowie elektrolumineszenzvorrichtung enthaltend dieses polymer Download PDF

Info

Publication number
WO2010097155A1
WO2010097155A1 PCT/EP2010/000590 EP2010000590W WO2010097155A1 WO 2010097155 A1 WO2010097155 A1 WO 2010097155A1 EP 2010000590 W EP2010000590 W EP 2010000590W WO 2010097155 A1 WO2010097155 A1 WO 2010097155A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
formula
organic
structural unit
group
Prior art date
Application number
PCT/EP2010/000590
Other languages
English (en)
French (fr)
Inventor
Aurélie LUDEMANN
Rémi Manouk ANEMIAN
Alice Julliart
Original Assignee
Merck Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102009010713A external-priority patent/DE102009010713A1/de
Priority claimed from DE200910059985 external-priority patent/DE102009059985A1/de
Application filed by Merck Patent Gmbh filed Critical Merck Patent Gmbh
Priority to KR1020117022536A priority Critical patent/KR101732199B1/ko
Priority to JP2011551425A priority patent/JP5670353B2/ja
Priority to CN2010800096521A priority patent/CN102333809A/zh
Priority to US13/203,506 priority patent/US9156939B2/en
Priority to EP10703414.2A priority patent/EP2401316B1/de
Publication of WO2010097155A1 publication Critical patent/WO2010097155A1/de
Priority to US14/803,398 priority patent/US9728724B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2/00Addition polymers of aldehydes or cyclic oligomers thereof or of ketones; Addition copolymers thereof with less than 50 molar percent of other substances
    • C08G2/18Copolymerisation of aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2/00Addition polymers of aldehydes or cyclic oligomers thereof or of ketones; Addition copolymers thereof with less than 50 molar percent of other substances
    • C08G2/30Chemical modification by after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0666Polycondensates containing five-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0672Polycondensates containing five-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/148Side-chains having aromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/316Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain bridged by heteroatoms, e.g. N, P, Si or B
    • C08G2261/3162Arylamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/52Luminescence
    • C08G2261/522Luminescence fluorescent
    • C08G2261/5222Luminescence fluorescent electrofluorescent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1433Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1466Heterocyclic containing nitrogen as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a polymer which has at least one
  • the present invention also relates to a crosslinked polymer prepared by the process of the present invention, the use of this crosslinked polymer in electronic devices, particularly in organic electroluminescent devices, OLEDs (Organic Light Emitting Diodes), and organic electroluminescent devices containing this crosslinked polymer ,
  • the present invention also relates to the use of the aldehyde group-containing polymer of the invention for the preparation of a vinyl or alkenyl group-containing polymer or a crosslinked polymer.
  • Optoelectronic devices such as OLEDs, in particular PLEDs (Polymer Light Emitting Diodes), require components of different functionality.
  • PLEDs the different functionalities are usually present in different polymer layers.
  • multilayer OLED systems include, among others, charge transporting layers, such as electron and hole conductor layers, as well as layers containing light emitting components.
  • These multilayered OLED systems are typically made by sequentially layering polymer solutions having polymers with the various functionalities and crosslinking the particular polymer layer applied to render them insoluble before the next layer is applied. Such methods are described, for example, in EP 0 637 899 and WO 96/20253.
  • crosslinking group is bonded directly to a monomer, which then becomes a crosslinkable polymer by polymerization.
  • This production route for crosslinked polymers is described, for example, in WO 2006/043087, WO 2005/049689, WO 2005/052027 and US 2007/0228364.
  • the problem associated with the polymerization of monomers already bearing a crosslinkable group during polymerization is the unwanted crosslinking already in the preparation of the polymer.
  • it is therefore necessary that the crosslinkable group remains stable under the polymerization conditions and does not undergo any reactions in order to be able to subsequently contribute specifically to the crosslinking.
  • Ordinary polymerization conditions such as Stille, Suzuki or Yamamoto coupling, require higher temperatures than room temperature. At these temperatures, crosslinkable groups can already during the polymerization unwanted side reactions with other crosslinking monomers and / or possibly other available
  • the object according to the invention is achieved firstly by providing a polymer which itself does not carry any crosslinkable groups but has groups which can be converted easily and quantitatively into crosslinkable groups.
  • the present invention thus relates to a polymer which comprises at least one structural unit of the following formula (I):
  • Ar and Ar independently represent a substituted or unsubstituted, mono- or polycyclic, aromatic or heteroaromatic ring system
  • X represents a single covalent bond or a straight, branched or cyclic C M o-alkylene, alkenylene or Ci_io-Ci-io-alkynylene group, in which one or more H atoms may be replaced by F and wherein one or several
  • CH 2 groups may be replaced by O, NH or S;
  • n is 1, 2, 3 or 4, preferably 1 or 2 and more preferably 1;
  • structural unit is understood in the present invention to mean a monomer unit which has been incorporated into this polymer by reaction at two ends by linkage as part of the polymer backbone and is thus linked in the polymer produced as a repeating unit in the polymer.
  • polymer is to be understood as meaning both polymeric compounds, oligomeric compounds and dendrimers.
  • the polymeric compounds according to the invention preferably have 10 to 10,000, more preferably 20 to 5000 and in particular 50 to 2000 structural units.
  • the oligomeric compounds according to the invention preferably have 3 to 9 structural units.
  • the branching factor of the polymers is between 0 (linear polymer, without branching points) and 1 (fully branched dendrimer).
  • dendrimer in the present application is to be understood as meaning a highly branched compound which is composed of a multifunctional center (core) to which branched monomers are bonded in a regular structure, so that a tree-like structure is obtained. Both the center and the monomers can assume any branched structures consisting of purely organic units as well as organometallic compounds or coordination compounds.
  • core multifunctional center
  • dendrimer is to be understood as meaning e.g. by M. Fischer and F. Vögtle (Angew Chem, Int Ed., 1999, 38, 885).
  • aromatic ring system having preferably 6 to 60, more preferably 6 to 30, most preferably 6 to 14 and particularly preferably 6 to 10 aromatic ring atoms which does not necessarily contain only aromatic groups but in which also several aromatic units are represented by a short non-aromatic unit ( ⁇ 10% of the atoms other than H, preferably ⁇ 5% of the atoms other than H), such as sp 3 hybridized C atom or O or N atom, CO group, etc.
  • a short non-aromatic unit ⁇ 10% of the atoms other than H, preferably ⁇ 5% of the atoms other than H
  • systems such as 9,9'-spirobifluorene, 9,9-diaryl fluorene, etc., should also be understood as aromatic ring systems.
  • the aromatic ring systems may be monocyclic or polycyclic, ie they may have one ring (eg phenyl) or several rings which may also be condensed (eg naphthyl) or covalently linked (eg biphenyl), or a combination of fused and linked rings. However, particularly preferred are completely condensed systems.
  • Preferred aromatic ring systems are e.g. Phenyl, biphenyl, triphenyl, [1, r: 3 ', 1 "] terphenyl-2'-yl, naphthyl, anthracene, binaphthyl, phenanthrene, dihydrophenanthrene, pyrene, dihydropyrene, chrysene, perylene, tetracene, pentacene, benzpyrene, fluorene, Indene, indenofluorene and spirobifluorene.
  • substituted or unsubstituted, mono- or polycyclic, heteroaromatic ring system in the present invention, an aromatic ring system having preferably 5 to 60, more preferably 5 to 30, most preferably 5 to 20 and particularly preferably 5 to 9 aromatic ring atoms understood, wherein one or more of these atoms is / are a heteroatom.
  • substituted or unsubstituted mono- or polycyclic heteroaromatic ring system does not necessarily contain only aromatic groups but may also be represented by a short non-aromatic moiety ( ⁇ 10% of the atoms other than H, preferably ⁇ 5% of the atoms other than H), such as sp 3 -hybridized carbon atom or O or N atom, CO group, etc., be interrupted.
  • heteroaromatic ring systems may be monocyclic or polycyclic, ie they may have one or more rings, which may also be fused or covalently linked (eg pyridylphenyl), or a combination of fused and linked rings. Preference is given to fully conjugated heteroaryl groups. However, particularly preferred are completely condensed systems.
  • Preferred heteroaromatic ring systems are, for example, 5-membered rings such as pyrrole, pyrazole, imidazole, 1, 2,3-triazole, 1, 2,4-triazole, tetrazole, furan, thiophene, selenophen, oxazole, isoxazole, 1, 2-thiazole, 1, 3-thiazole, 1, 2,3-oxadiazole, 1, 2,4-oxadiazole, 1, 2,5-oxadiazole, 1, 3,4-oxadiazole, 1, 2,3-thiadiazole, 1, 2, 4-thiadiazole, 1, 2,5-thiadiazole, 1, 3,4-thiadiazole, 6-membered
  • 5-membered rings such as pyrrole, pyrazole, imidazole, 1, 2,3-triazole, 1, 2,4-triazole, tetrazole, furan, thiophene, selenophen, oxazole, isoxazole, 1, 2-thi
  • Rings such as pyridine, pyridazine, pyrimidine, pyrazine, 1, 3,5-triazine, 1, 2,4-triazine, 1, 2,3-triazine, 1, 2,4,5-tetrazine, 1, 2,3, 4-tetrazine, 1, 2,3,5-tetrazine, or condensed groups such as indole, isoindole, indolizine, indazole, benzimidazole, benzotriazole, purine, naphthimidazole, phenanthrimidazole, pyridimidazole, pyrazine imidazole, quinoxaline imidazole, benzoxazole, naphthoxazole, anthroxazole, Phenanthroxazole, isoxazole, benzothiazole, benzofuran, isobenzofuran, dibenzofuran, quinoline, isoquinoline, pteridine, benzo-5,6-quino
  • heteroaryl groups may also be substituted by alkyl, alkoxy, thioalkyl, fluorine, fluoroalkyl or other aryl or heteroaryl groups.
  • the substituted or unsubstituted mono- or polycyclic aromatic or heteroaromatic ring system optionally has one or more substituents, which are preferably selected from the group consisting of SiIyI, sulfo, sulfonyl, formyl, amine, imine, nitrile, mercapto, nitro, halogen, C - ⁇ .i 2 alkyl, C 6- i 2 aryl, Ci- 12 alkoxy, hydroxy, or combinations of these groups.
  • Preferred substituents are, for example, solubility-promoting
  • Groups such as alkyl or alkoxy, electron-withdrawing groups such as fluorine, nitro or nitrile, or substituents for increasing the glass transition temperature (Tg) in the polymer, in particular bulky groups such. t-butyl or optionally substituted aryl groups.
  • Alkoxycarbonyl Alkylcarbonyloxy or Alkoxycarbonyloxy having 1 to 22 C atoms, wherein one or more H atoms may optionally be replaced by F or Cl.
  • aromatic moiety is understood as meaning a linking moiety which as such forms an aromatic system which, by definition, is a cyclic conjugated system with (4n + 2) - ⁇ r electrons, where n is a represents integer.
  • a "straight-chain, branched or cyclic Ci-i O alkylene, alkenylene or Ci- 10 Ci.io-alkynylene group” refers to saturated or unsaturated aliphatic hydrocarbons, preferably having 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms in which also one or more Ch 1 groups may be replaced by NH, O or S and also one or more H atoms may be replaced by F.
  • linear saturated hydrocarbons having 1 to 6 carbon atoms include the following: methylene, ethylene, n-propylene, iso-propylene, n-butylene, iso-butylene, sec-butylene (1-methylpropylene), tert-butylene, iso-pentylene, n - pentylene, tert-pentylene (1, 1-dimethylpropyl), 1, 2-dimethylpropylene, 2,2-dimethylpropylene (neopentyl), 1-ethylpropylene, 2-methylbutylene, n-
  • Hexylene iso-hexylene, 1, 2-dimethylbutylene, 1-ethyl-1-methylpropylene, 1-ethyl-2-methylpropylene, 1, 1, 2-trimethylpropylene, 1, 2, 2-trimethylpropylene, 1-ethylbutylene, 1 Methylbutylene, 1,1-dimethylbutylene, 2,2-dimethylbutylene, 1,3-dimethylbutylene, 2,3-dimethylbutylene, 3,3-dimethylbutylene, 2-ethylbutylene, 1-methylpentylene, 2-methylpentylene, 3-methylpentylene, cyclopentylene, Cyclohexylene, cycloheptylene, cyclooctylene, 2-ethylhexylene, trifluoromethylene, pentafluoroethylene, 2,2,2-trifluoroethylene, ethenylene, propenylene, butenylene, pentenylene, cyclopentenylene,
  • the proportion of crosslinkable structural units of the formula (I) in the polymer is in the range of 0.01 to 95 mol%, preferably in the range of 0.1 to 70 mol%, particularly preferably in the range of 0.5 to 50 mol%, and especially preferred in the range of 1 to 30 mol%, based on 100 mol% of all copolymerized monomers contained in the polymer as structural units.
  • the polymer according to the invention in addition to one or more structural units of the formula (I), also contains at least one further structural unit which is different from the structural unit of the formula (I).
  • the further structural units can come, for example, from the following classes:
  • Group 1 units containing the hole injection and / or
  • Group 2 units containing the electron injection and / or
  • Group 3 units comprising combinations of Group 1 and Group 2 individual units
  • Group 4 units which change the emission characteristics to the extent that electrophosphorescence can be obtained instead of electrofluorescence;
  • Group 5 units which improve the transition from the so-called singlet to triplet state
  • Group 6 units which influence the emission color of the resulting polymers
  • Group 7 units typically used as backbone
  • Group 8 units containing the film morphology and / or the
  • Preferred polymers of the invention are those in which at least one structural unit has charge transport properties, d. H. contain the units from group 1 and / or 2.
  • these arylamines and heterocycles lead to a HOMO in the polymer of greater than -5.8 eV (at vacuum level), more preferably greater than -5.5 eV.
  • Group 2 structural units which have electron injection and / or electron transport properties are, for example, pyridine, pyrimidine, pyridazine, pyrazine, oxadiazole, quinoline, quinoxaline, anthracene, benzanthracene, pyrene, perylene, Benzimidazole, triazine,
  • Ketone, phosphine oxide and phenazine derivatives, but also triarylboranes and other O-, S- or N-containing heterocycles with low-lying LUMO (LUMO lowest unoccupied molecular orbital).
  • these units in the polymer result in a LUMO of less than -2.5 eV (vs. vacuum level), more preferably less than -2.7 eV.
  • the polymers according to the invention contain units from group 3 in which structures containing the Hole mobility and which increase the electron mobility (ie units of group 1 and 2), are directly bound together or contain structures that increase both hole mobility and electron mobility. Some of these units can serve as emitters and shift the emission color to green, yellow or red.
  • Group 4 structural units are those which can emit light from the triplet state at room temperature with high efficiency, ie exhibit electrophosphorescence instead of electrofluorescence, which frequently results in an increase in energy efficiency.
  • Compounds which contain heavy atoms with an atomic number of more than 36 are suitable for this purpose.
  • As structural units for the polymers according to the invention e.g. various complexes, such as e.g. in WO 02/068435 A1, WO 02/081488 A1, EP 1239526 A2 and WO 2004/026886 A2.
  • Corresponding monomers are used in the
  • Group 5 structural units are those which improve the singlet to triplet state transition and which, assisting with the Group 4 structural elements, improve the phosphorescence properties of these structural elements.
  • Carbazole and bridged carbazole dimer units are particularly suitable for this purpose, as are described, for example, in US Pat. in WO 2004/070772 A2 and WO 2004/113468 A1.
  • Also suitable for this purpose are ketones, phosphine oxides, sulfoxides, sulfones, silane derivatives and similar compounds, as described, for example, in US Pat. in WO 2005/040302 A1.
  • Structural units of group 6 are, in addition to those mentioned above, those which have at least one further aromatic or another conjugated structure which does not fall under the abovementioned groups, ie Carrier mobilities, which are not organometallic complexes or have no influence on the singlet-triplet transition, have very little influence. Such structural elements can influence the emission color of the resulting polymers. Depending on the unit, they can therefore also be used as emitters.
  • Aromatic structures having from 6 to 40 carbon atoms or else toluenes, stilbene or bisstyrylarylene derivatives which may each be substituted by one or more radicals R are preferred.
  • Particularly preferred is the incorporation of 1, 4-phenylene, 1, 4-naphthylene, 1, 4 or 9,10-anthrylene, 1, 6, 2,7- or 4,9-pyrenylene, 3,9- or 3,10-perylenylene, 4,4'-biphenylylene, 4,4 "-terpenylylene, 4,4'-bi-1, 1'-naphthylylene, 4,4'-tolanylene, 4,4'-stilbenylene, 4,4 "-bityrylarylene, benzothiadiazole and corresponding oxygen derivatives, quinoxaline, phenothiazine, phenoxazine, dihydrophenazine, bis (thiophenyl) arylene, oligo (thiophenylene), phenazine, Rubrene, pentacene or Perylene derivatives, which are preferably substituted, or preferably conjugated push-pull systems (systems substituted with donor and acceptor substituents) or systems such as
  • Group 7 structural units are units containing aromatic structures having from 6 to 40 carbon atoms, which are typically used as a backbone polymer. These are, for example, 4,5-dihydropyrene derivatives, 4,5,9,10-tetrahydropyrene derivatives, fluorene derivatives, 9,9'-spirobifluorene derivatives, phenanthrene derivatives, 9,10-dihydrophenanthrene derivatives, 5,7-dihydrodibenzooxepine derivatives and cis- and trans-indenofluorene derivatives.
  • Group 8 structural units are those which influence the film morphology and / or the rheological properties of the polymers, e.g. Siloxanes, long alkyl chains or fluorinated groups, but also particularly rigid or flexible units, such as e.g. liquid crystal forming units or crosslinkable groups.
  • Structural units of the formula (I) additionally contain one or more units selected from groups 1 to 8. It can too be preferred if at the same time there is more than one further structural unit from a group.
  • Polymers of the invention which contain, besides at least one structural unit C of formula (I) units from the group 7 are preferred, particularly preferably at least 50 mol% of these units, based on the total number of structural units in the polymer.
  • the polymers according to the invention contain units which improve the charge transport or the charge injection 10, that is to say units from group 1 and / or 2; particularly preferred is a proportion of 0.5 to 30 mol% of these units; very particular preference is given to a proportion of 1 to 10 mol% of these units.
  • the polymers according to the invention contain structural units from group 7 and units from the group 5 and / or 2, in particular at least 50 mol%
  • the polymers according to the invention are either homopolymers of structural units of the formula (I) or copolymers.
  • the polymers of the invention may be linear or branched, preferably linear.
  • copolymers according to the invention can potentially have one or more further structures from the abovementioned groups 1 to 8.
  • copolymers according to the invention may have random, alternating or block-like structures or alternatively have several of these structures in turn.
  • the copolymers according to the invention particularly preferably have random or alternating structures. More preferably, the copolymers are random or alternating copolymers. How to obtain copolymers with block-like structures
  • Ar 'of formula (I) is preferably a substituted or unsubstituted moiety selected from the group consisting of
  • X in the structural unit of formula (I) is a single covalent bond.
  • Another embodiment of the present invention is also a polymer comprising at least one structural unit of the following formula (II):
  • Ar 1 to Ar 6 are the same or different and independently represent a substituted or unsubstituted, mono- or polycyclic, aromatic or heteroaromatic
  • n 0 or 1
  • n 0, 1 or 2;
  • the two structural elements contained in the corresponding square bracket can either be arranged in series, resulting in a linear structural unit of the formula (II), or arranged in parallel (ie both at Ar 2 or Ar 4 ), resulting in a branched structural unit of formula (II).
  • Ar 1 to Ar 6 independently of one another, are identically or differently selected from the group consisting of: phenylene, biphenylene, triphenylene, [1, 1 ': 3', 1 "] Terphenyl-2'-ylene, c naphthylene, anthracene, binaphthylene, phenanthrene, dihydrophenanthrene,
  • Ar of the formula (I) or Ar 1 , Ar 2 , Ar 4 and Ar 5 of the formula (II) is a substituted or unsubstituted moiety selected from the group is, which consists of the following:
  • the polymer of the present invention comprises, as a further structural unit, a structural unit of the formula (I) and / or (II) which, however, has no aldehyde group.
  • the structural unit of the formula (II) of the polymer according to the invention preferably has an aldehyde group on the radical Ar 3 and / or Ar 6 and the structural unit Ar 'of the formula (I) of the polymer according to the invention has an aldehyde group.
  • the groups Ar 3 , Ar 6 and Ar ' preferably represent a phenyl group which may have an aldehyde group.
  • the aldehyde group may be ortho, meta or para to the phenyl group.
  • the aldehyde group is preferably in the para position.
  • the polymer according to the invention comprises at least one of the following structural units:
  • the polymer preferably comprises one or more of the following structural units:
  • the polymers according to the invention containing structural units of the formula (I) and / or (II) which contain one or more aldehyde groups are generally prepared by polymerization of one or more types of monomer, of which at least one monomer in the polymer to form structural units of the formula (I ) and / or (II).
  • Suitable polymerization reactions are known in the art and in the Literature described.
  • Particularly suitable and preferred polymerization reactions which lead to C-C or C-N bonds are the following:
  • the C-C linkages are preferably selected from the groups of SUZUKI coupling, YAMAMOTO coupling and STILLE coupling; the C-N linkage is preferably a HARTWIG-BUCHWALD coupling.
  • the present invention thus also provides a process for the preparation of the polymers according to the invention, which is characterized in that they are prepared by polymerization according to SUZUKI, polymerization according to YAMAMOTO, polymerization according to SILENCE or polymerization according to HARTWIG-BUCHWALD.
  • Monomers which can be reacted by polymerization to give the polymers according to the invention are monomers which at two ends each contain a group independently of one another selected from the group consisting of halogen, preferably Br and I, O-tosylate, O-triflate, 0-SO 2 R 1 , B (OR 1 ) 2 and Sn (R 1 ) 3 consists.
  • R 1 is preferably independently selected at each occurrence from the group consisting of hydrogen, an aliphatic hydrocarbon radical having 1 to 20 C atoms and an aromatic mono- or polycyclic ring system having 6 to 20 ring atoms, wherein two or more radicals R 1 can form a ring system with each other.
  • aliphatic hydrocarbons having 1 to 20 carbon atoms are linear, branched or cyclic alkyl groups, alkenyl groups, alkynyl groups in which one or more carbon atoms may be replaced by O, N or S.
  • one or more hydrogen atoms may be replaced by fluorine.
  • Examples of the aliphatic hydrocarbons having 1 to 20 carbon atoms include the following: methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl (1-methylpropyl), tert-butyl, iso-pentyl , n-pentyl, tert-pentyl (1, 1-dimethylpropyl), 1, 2-dimethylpropyl, 2,2-dimethylpropyl (neopentyl), 1-ethylpropyl, 2-methylbutyl, n-hexyl, iso-hexyl, 1, 2 Dimethylbutyl, 1-ethyl-1-methylpropyl, 1-ethyl-2-methylpropyl, 1, 1, 2-trimethylpropyl, 1, 2,2-trimethylpropyl, 1-ethylbutyl, 1-methylbutyl, 1, 1-dimethylbutyl, 2 , 2-
  • mono- or polycyclic aromatic ring system having 6 to 20 ring atoms with respect to R 1 is intended to have the same meaning as defined above, with fused aromatic systems also preferred Preferred aromatic ring systems are naphthyl and phenyl, with phenyl being particularly preferred.
  • these two linked radicals R 1 preferably represent a bivalent aliphatic group having 2 to 8 carbon atoms. Examples thereof are compounds of the following formula -CH 2 (CH 2 ) ⁇ CH 2 - where n is 0, 1, 2, 3, 4, 5 or 6, preferably 0, 1, 2 or 3. In the case where more than two radicals R 1 form a ring system with one another, these radicals R 1 together represent a branched tri-, tetra-, penta- or polyvalent aliphatic group having 6 to 20 carbon atoms.
  • Groups of monomers independently selected from Br, I and B (OR 1 ) 2 .
  • the dendrimers according to the invention can be prepared according to methods known to the person skilled in the art or in analogy thereto. Suitable methods are described in the literature, e.g. in Frechet, Jean M. J .; Hawker, Craig J., "Hyperbranched polyphenylenes and hyperbranched polyesters: new soluble, three-dimensional, reactive polymers", Reactive & Functional Polymers (1995), 26 (1-3), 127-36; Janssen, H.M .; Meijer, E.W., "The synthesis and characterization of dendritic molecules", Materials Science and Technology (1999), 20 (Synthesis of Polymers), 403-458; Tomalia, Donald A., "Dendrimer molecules", Scientific American (1995), 272 (5), 62-6, WO 02/067343 A1 and WO 2005/026144 A1.
  • Another object of the present invention is the use of a polymer having structural units of the formula (I) and / or (II) which have one or more aldehyde groups, for the preparation of a crosslinkable polymer.
  • the crosslinkable group is a vinyl group or alkenyl group.
  • the aldehyde groups of the polymer are converted by WITTIG reaction or a WITTIG-analogous reaction into vinyl groups or alkenyl groups, preferably propenyl groups.
  • the polymers according to the invention can be used as pure substance, but also as a mixture together with further any desired polymeric, oligomeric, dendritic or low molecular weight substances.
  • a low molecular weight substance is understood as meaning compounds having a molecular weight in the range from 100 to 3000 g / mol, preferably 200 to 2000 g / mol. These other substances may e.g. improve the electronic properties or self-emit.
  • one or more polymer layers consisting of a mixture (blend) of one or more polymers according to the invention having a structural unit of the formula (I) and / or (II) and optionally one or more further polymers having one or more low molecular weight substances can be prepared ,
  • Another object of the present invention is thus a polymer blend comprising one or more polymers of the invention, and one or more further polymeric, oligomeric, dendritic and / or low molecular weight substances.
  • the invention further provides solutions and formulations of one or more polymers according to the invention or mixtures in one or more solvents. How such solutions can be prepared is known to the person skilled in the art and described, for example, in WO 02/072714 A1, WO 03/019694 A2 and the literature cited therein. These solutions can be used to prepare thin polymer layers, for example, by area coating methods (eg, spin-coating) or by printing methods (eg, inkjet printing).
  • area coating methods eg, spin-coating
  • printing methods eg, inkjet printing
  • Polymers containing structural units of the formula (I) and / or (II) which contain one or more aldehyde groups are, after reaction of the aldehyde groups to alkenyl, preferably vinyl groups, especially for the production of films or coatings, in particular for the production of structured coatings , eg by thermal or photoinduced in situ polymerization and in situ crosslinking, such as in situ UV photopolymerization or photopatterning.
  • both corresponding polymers can be used in pure substance, but it is also possible to use formulations or mixtures of these polymers as described above. These can be used with or without the addition of solvents and / or binders. Suitable materials, methods and devices for the methods described above are e.g. in WO 2005/083812 A2.
  • Possible binders are, for example, polystyrene, polycarbonate, poly (meth) acrylates, polyacrylates, polyvinyl butyral and similar, optoelectronically neutral polymers.
  • Suitable and preferred solvents are, for example, toluene, anisole, xylene, methyl benzoate, dimethylanisole, mesitylene, tetralin, veratrol, tetrahydrofuran and chlorobenzene, and mixtures thereof.
  • Another object of the present invention is the use of a polymer containing structural units of the formula (I) and / or (II) which have one or more aldehyde groups, for the preparation of a crosslinked polymer.
  • the aldehyde group of this polymer is either linked directly to a compound that either already binds to another polymer or can be bound in a similar or similar manner to another polymer, or is converted into a crosslinkable group which is subsequently crosslinked with other Groups react, creating a cross-linked polymer.
  • the crosslinkable group is preferably a vinyl group or alkenyl group and is preferably prepared by the WITTIG reaction or a WITTIG reaction. analogous reaction incorporated into the polymer.
  • the crosslinking can take place by free-radical or ionic polymerization, which can be induced thermally or by radiation.
  • free radical polymerization which is thermally induced is preferably included
  • an additional styrenic monomer is added during the crosslinking process to achieve a higher degree of crosslinking.
  • the proportion of the styrenic monomer added is in the range of 0.01 to 50 mol%, particularly preferably 0.1 to 30 mol%, based on 100 mol% of all the copolymerized monomers contained in the polymer as structural units.
  • the present invention thus also provides a process for producing a crosslinked polymer which comprises the following steps:
  • (C) radical or ionic crosslinking preferably free-radical crosslinking, which can be induced both thermally and by radiation, preferably thermally.
  • Polymers are insoluble in all common solvents. In this way, defined layer thicknesses can be produced which are not loosened or dissolved again by the application of subsequent layers.
  • the present invention thus also relates to a crosslinked polymer obtainable by the aforementioned method.
  • the crosslinked polymer is - as described above - preferably in the form of a crosslink Polymer layer produced.
  • another layer of a polymer of the invention containing a structural unit of formula (I) and / or (II) may be applied from a solvent by the techniques described above ,
  • the present invention also includes a so-called hybrid device in which one or more polymer layers and layers produced by vapor deposition of low molecular weight substances may occur.
  • the crosslinked polymer according to the invention can be used in electronic or optoelectronic devices or for their production.
  • a further subject of the present invention is therefore the use of the crosslinked polymer according to the invention in electronic or optoelectronic devices, preferably in organic or polymeric organic electroluminescent devices (OLED, PLED), organic field effect transistors (OFETs), organic integrated circuits (O). ICs), organic thin film transistors (TFTs), organic solar cells (O-SCs), organic laser diodes (O-lasers), organic photovoltaic (OPV) elements or devices or organic photoreceptors (OPCs), particularly preferably in organic or polymeric organic electroluminescent devices ( OLED, PLED), in particular in polymeric organic electroluminescent devices (PLED).
  • OLED organic or polymeric organic electroluminescent devices
  • OFETs organic field effect transistors
  • O organic integrated circuits
  • ICs organic thin film transistors
  • TFTs organic solar cells
  • O-SCs organic laser diodes
  • O-lasers organic photovoltaic elements or devices or organic photoreceptors
  • OLED organic or
  • OLEDs or PLEDs can be produced is known to the person skilled in the art and is described in detail as a general method, for example WO 2004/070772 A2, which is to be adapted accordingly for the individual case.
  • the polymers according to the invention are very particularly suitable as electroluminescent materials in such a way
  • electroluminescent materials in the context of the present invention are materials that can be used as the active layer.
  • Active layer means that the layer is able to emit light upon application of an electric field (light-emitting layer) and / or that it improves the injection and / or transport of the positive and / or negative charges (charge injection or charge transport layer).
  • a preferred subject of the present invention is therefore also the use of the crosslinked polymer according to the invention in a PLED, in particular as electroluminescent material.
  • the present invention furthermore relates to electronic or optoelectronic components, preferably organic or polymeric organic electroluminescent devices (OLED, PLED), organic field-effect transistors (OFETs), organic integrated circuits (O-ICs), organic thin-film transistors (TFTs), organic Solar cells (O-SCs), organic laser diodes (O-lasers), organic photovoltaic (OPV) elements or devices and organic photoreceptors (OPCs), particularly preferred organic polymer electroluminescent devices, in particular polymeric organic electroluminescent devices, with one or more active layers wherein at least one of these active layers contains one or more polymers according to the invention.
  • the active layer may, for example, be a light-emitting layer, a charge-transport layer and / or a charge-injection layer.
  • the solid is filtered and the solution is treated with water and dichloromethane.
  • the phases are separated.
  • the organic phase is washed three times with water and dried over Na 2 SO 4 , then filtered and concentrated by rotary evaporation.
  • the product is recrystallized several times in heptane / toluene.
  • N- (4-formylphenyl) carbazole (18.1 mmol) are dissolved in 270 ml of dried THF and cooled to 0 0 C.
  • 6.4 g of N-bromosuccinimide (36.1 mmol) are added as a solid successively and the solution is allowed to stir at 0 ° C. for 4 hours.
  • the solid is filtered and the solution is treated with water and dichloromethane.
  • the phases are separated.
  • the organic phase is washed three times with water and dried over Na 2 SO 4 , then filtered and concentrated by rotary evaporation.
  • the product is recrystallized several times in ethyl acetate.
  • the polymers P1 and P2 according to the invention are prepared by SUZUKI coupling according to the method described in WO 03/048225 from the three different structural units shown below.
  • P2a 10% 50% 40% P2b 20% 50% 30% P2c 30% 50% 20%
  • the polymers P1a ' ⁇ P1 b "and P1c' and also P2a ', P2b' and P2c 'with crosslinkable groups are prepared from the polymers Pi a, P1b and P1c prepared according to Example 3a and P2a, P2b and P2c by Wittig reaction according to the following reaction schemes : Wittig reaction of P1:
  • the polymer Pia (1 g) is dissolved in 20 ml of dried THF at 50 ° C. under argon and then cooled to room temperature. 2.86 g (8 mmol) of methyltriphenylphosphonium bromide are dissolved in 20 ml of dried THF under argon at 0 ° C. and 0.90 g (8 mmol) of potassium tert-butylate are added in portions at 0 ° C. Subsequently, the polymer solution is added slowly at 2 ° C with a syringe and allowed to stir overnight at room temperature. The solution is extracted three times with water and the organic phase is precipitated in methanol.
  • Comparative polymer V1 was prepared by spin coating on previously PEDOT-coated ITO substrate (PEDOT is a polythiophene derivative (Baytron P, from HC Starck, Goslar)). The coated substrate is baked for 10 minutes at 180 0 C. The layer thickness of the interlayer thus obtained is 20 nm. Then 80 nm of an emitting layer consisting of a polymer matrix V2 and a green-phosphorescent triplet emitter T1 (about 20 mol%) are applied by spin coating. Thereafter, a Ba / Al cathode (Aldrich metals) is evaporated, the PLED encapsulated and electro-optically characterized. Table 1 shows the results obtained.
  • PEDOT is a polythiophene derivative (Baytron P, from HC Starck, Goslar)
  • Example 5 The preparation is carried out as described in Example 5, wherein instead of the comparative polymer V1, the polymer Pi a 'and instead of the
  • Comparative Polymers V2 the polymers P2a ', P2b' and P2c 'are used. After the spin-coating one hour at 180 0 C in the case of PV and P2 'still baked to crosslink the polymers.
  • the layer thickness of the interlayer of the polymer Pia ' is 20 nm and the layer thickness of the emitting layer of the polymers V2, P2a', P2b 'and P2c' is in each case 80 nm.
  • the electro-optical characterization of the PLEDs takes place as in Example 5 and is described below described. The results are summarized in Table 1.
  • the PLEDs produced in Examples 5 and 6 are clamped in holders specially made for the substrate size and contacted by means of spring contacts.
  • a photodiode with eye-tracking filter can be placed directly on the measuring holder in order to exclude the influence of extraneous light.
  • the voltages are from 0 to max. 20 V in 0.2 V increments and lowered again. For each measurement point, the current through the PLED and the resulting photocurrent are measured by the photodiode. In this way you get the IVL data of the test
  • Table 1 Results of the electro-optical characterization of the green-emitting PLEDs.
  • the efficiency of the PLEDs with crosslinked interlayer and / or matrix polymers Pi a 'and P2a-c' is comparable to the efficiency of the PLED with non-crosslinked comparison polymers V1 and V2. Voltage and color coordinates are also comparable. This shows that the cross-linking has no negative effects on efficiency, voltage and color coordinates.
  • a great advantage, however, is that the crosslinking of the polymers according to the invention makes it possible to selectively vary the layer thickness and to precisely control it, since the crosslinked layer can no longer be dissolved and washed off, which is explained in more detail in Example 8.
  • a multilayer structure is realized in a PLED, in which all layers are processed from solution and have a defined layer thickness. In the present case it is z. B.
  • the preparation is carried out analogously to Example 5 and 6.
  • the thickness of the polymer layer is 20 nm in each case.
  • a 65 nm thick layer of a blue-emitting polymer B1 is applied by spin coating.
  • the polymers V1, V2, Pia ', P1 b', P1c ', P2a', P2b 'and P2c' are spin-coated on the glass carrier with layer thicknesses as described in Table 2.
  • the layer thickness is measured by scratching the polymer layer with a needle, the scratch except for the

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Polymer, das mindestens eine Struktureinheit umfasst, die mindestens eine Aldehydgruppe aufweist, und ein Verfahren zur Herstellung eines vernetzbaren bzw. vernetzten Polymers unter Einbeziehung eines Polymers, das Aldehydgruppen aufweist. Somit betrifft die vorliegende Erfindung auch ein vernetzbares sowie ein vernetztes Polymer, das durch das erfindungsgemäße Verfahren hergestellt wird, sowie die Verwendung dieses vernetzten Polymers in elektronischen Vorrichtungen, insbesondere in organischen Elektrolumineszenzvorrichtungen, sogenannten OLEDs (OLED = Organic Light Emitting Devices).

Description

Polymer mit Aldehydgruppen, Umsetzung sowie Vernetzung dieses
Polymers, vernetztes Polymer sowie Elektrolumineszenzvorrichtungen enthaltend dieses Polymer
Die vorliegende Erfindung betrifft ein Polymer, das mindestens eine
Struktureinheit umfasst, die mindestens eine Aldehydgruppe aufweist, und ein Verfahren zur Herstellung eines vernetzbaren und/oder vernetzten Polymers unter Einbeziehung eines Polymers das Aldehydgruppen aufweist. Das erfindungsgemäße Verfahren zur Herstellung eines vernetzten Polymers unter Einbeziehung eines aldehydgruppenhaltigen Polymers führt zu Polymeren mit einem hervorragenden Vernetzungsgrad. Somit betrifft die vorliegende Erfindung auch ein vernetztes Polymer, das durch das erfindungsgemäße Verfahren hergestellt wird, die Verwendung dieses vernetzten Polymers in elektronischen Vorrichtungen, insbesondere in organischen Elektrolumineszenzvorrichtungen, sogenannten OLEDs (OLED = Organic Light Emitting Diodes), sowie organische Elektrolumineszenzvorrichtungen enthaltend dieses vernetzte Polymer. Die vorliegende Erfindung betrifft auch die Verwendung des erfindungsgemäßen aldehydgruppenhaltigen Polymers zur Herstellung eines vinyl- oder alkenylgruppenhaltigen Polymers oder eines vernetzten Polymers.
In optoelektronischen Vorrichtungen, wie OLEDs, insbesondere PLEDs (Polymerie Light Emitting Diodes), werden Komponenten verschiedener Funktionalität benötigt. In PLEDs liegen die verschiedenen Funktionalitäten normalerweise in verschiedenen Polymer-Schichten vor. In diesem Fall spricht man von mehrschichtigen OLED-Systemen. Diese mehrschichtigen OLED-Systeme weisen - unter anderem - ladungstransportierende Schichten, wie Elektronen- und Lochleiterschichten, sowie Schichten auf, die lichtemittierende Komponenten beinhalten. Diese mehrschichtigen OLED-Systeme werden in der Regel durch das aufeinanderfolgende schichtweise Aufbringen von Polymerlösungen, die Polymere mit den verschiedenen Funktionalitäten aufweisen, und das Vernetzen der jeweils aufgebrachten Polymerschicht, um sie unlöslich zu machen bevor die nächste Schicht aufgebracht wird, hergestellt. Solche Verfahren werden z.B. in der EP 0 637 899 und der WO 96/20253 beschrieben. In der Mehrzahl der Fälle wird die vernetzende Gruppe direkt an ein Monomer gebunden, das dann durch Polymerisation Bestandteil eines vernetzbaren Polymers wird. Diese Herstellungsroute für vernetzte Polymere wird z.B. in der WO 2006/043087, der WO 2005/049689, der WO 2005/052027 und der US 2007/0228364 beschrieben. Das Problem, das mit der Polymerisation von Monomeren, die bereits während der Polymerisation eine vernetzbare Gruppe tragen, einhergeht, ist die unerwünschte Vernetzung schon bei der Herstellung des Polymers. Um diese Nachteile zu vermeiden, ist es demnach notwendig, dass die vernetzbare Gruppe unter den Polymerisationsbedingungen stabil bleibt und keine Reaktionen eingeht, um erst anschließend gezielt zur Vernetzung beitragen zu können. Gewöhnliche Polymerisationsbedingungen, wie z.B. bei der Stille-, Suzuki- oder Yamamoto-Kupplung, erfordern höhere Temperaturen als Raumtemperatur. Bei diesen Temperaturen können vernetzbare Gruppen schon während der Polymerisation unerwünschte Nebenreaktionen mit weiteren Vernetzungsmonomeren und/oder eventuell vorhandenen weiteren
Comonomeren eingehen. Dies kann die Verarbeitbarkeit des Polymeren einschränken, zu Materialdefekten führen sowie die Leistungsfähigkeit und/oder Kapazität der resultierenden Vorrichtungen erniedrigen. Diese Probleme werden von den im Stand der Technik verwendeten Verfahren nicht zufriedenstellend gelöst.
Es war demnach eine Aufgabe der vorliegenden Erfindung, eine Möglichkeit zu finden, wie Nebenreaktionen der vernetzbaren Gruppe bei der Polymerisation von Monomeren vermieden werden können, so dass die Polymerisation ungestört abläuft, und das erhaltene Polymer die gewünschte Anzahl von vernetzbaren Gruppen aufweist.
Die erfindungsgemäße Aufgabe wird zum einen durch das Bereitstellen eines Polymers gelöst, das selbst noch keine vernetzbaren Gruppen trägt, aber Gruppen aufweist, die leicht und quantitativ in vernetzbare Gruppen überführt werden können.
Gegenstand der vorliegenden Erfindung ist somit ein Polymer, das mindestens eine Struktureinheit der folgenden Formel (I) umfasst:
Figure imgf000004_0001
Formel (I)
die dadurch gekennzeichnet ist, dass zumindest ein Vertreter aus Ar und Ar', vorzugsweise Ar', eine Aldehydgruppe aufweist,
wobei die verwendeten Symbole und Indices die folgenden Bedeutungen haben:
Ar und Ar' stellen unabhängig voneinander ein substituiertes oder unsubstituiertes, mono- oder polycyclisches, aromatisches oder heteroaromatisches Ringsystem dar;
X stellt eine kovalente Einfachbindung oder eine geradkettige, verzweigte oder cyclische C-Mo-Alkylen-, Ci_io-Alkenylen- oder Ci-io-Alkinylengruppe dar, in der ein oder mehrere H-Atome durch F ersetzt sein können und in der eine oder mehrere
CH2-Gruppen durch O, NH oder S ersetzt sein können; und
n ist 1 , 2, 3 oder 4, vorzugsweise 1 oder 2 und besonders bevorzugt 1 ; und
die gestrichelten Linien stellen Bindungen zur nächsten Struktureinheit des
Polymers dar.
Unter dem Begriff „Struktureinheit" versteht man in der vorliegenden Erfindung eine Monomereinheit, die durch Reaktion an zwei Enden durch Verbindungsknüpfung als ein Teil des Polymergrundgerüstes in dieses eingebaut wurde, und damit im hergestellten Polymer als Wiederholungseinheit im Polymer verknüpft vorliegt. - A -
In der vorliegenden Anmeldung sind unter dem Begriff Polymer sowohl polymere Verbindungen, oligomere Verbindungen, sowie Dendrimere zu verstehen. Die erfindungsgemäßen polymeren Verbindungen weisen vorzugsweise 10 bis 10000, besonders bevorzugt 20 bis 5000 und insbesondere 50 bis 2000 Struktureinheiten auf. Die erfindungsgemäßen oligomeren Verbindungen weisen vorzugsweise 3 bis 9 Struktureinheiten auf. Der Verzweigungs-Faktor der Polymere liegt dabei zwischen 0 (lineares Polymer, ohne Verzweigungsstellen) und 1 (vollständig verzweigtes Dendrimer).
Unter dem Begriff "Dendrimer" soll in der vorliegenden Anmeldung eine hochverzweigte Verbindung verstanden werden, die aus einem multifunktionellen Zentrum (core) aufgebaut ist, an das in einem regelmäßigen Aufbau verzweigte Monomere gebunden werden, so dass eine baumartige Struktur erhalten wird. Dabei können sowohl das Zentrum als auch die Monomere beliebige verzweigte Strukturen annehmen, die sowohl aus rein organischen Einheiten als auch Organometallverbindungen oder Koordinationsverbindungen bestehen. "Dendrimer" soll hier allgemein so verstanden werden, wie dies z.B. von M. Fischer und F. Vögtle (Angew. Chem., Int. Ed. 1999, 38, 885) beschrieben ist.
Unter „substituiertes oder unsubstituiert.es, mono- oder polycyclisches, aromatisches Ringsystem" wird in der vorliegenden Erfindung ein aromatisches Ringsystem mit vorzugsweise 6 bis 60, besonders bevorzugt 6 bis 30, ganz besonders bevorzugt 6 bis 14 und insbesonders bevorzugt 6 bis 10 aromatischen Ringatomen verstanden, das nicht notwendigerweise nur aromatische Gruppen enthält, sondern in dem auch mehrere aromatische Einheiten durch eine kurze nicht-aromatische Einheit (< 10 % der von H verschiedenen Atome, vorzugsweise < 5 % der von H verschiedenen Atome), wie beispielsweise sp3-hybridisiertes C-Atom bzw. O- oder N-Atom, CO-Gruppe etc., unterbrochen sein können. So sollen beispielsweise auch Systeme wie 9,9'-Spirobifluoren, 9,9-Diarylfluoren, etc. als aromatische Ringsysteme verstanden werden. Die aromatische Ringsysteme können monocyclisch oder polycyclisch sein, d.h. sie können einen Ring (z.B. Phenyl) oder mehrere Ringe aufweisen, welche auch kondensiert (z.B. Naphthyl) oder kovalent verknüpft sein können (z.B. Biphenyl), oder eine Kombination von kondensierten und verknüpften Ringen beinhalten. Besonders bevorzugt sind jedoch vollständig kondensierte Systeme.
Bevorzugte aromatische Ringsysteme sind z.B. Phenyl, Biphenyl, Triphenyl, [1 ,r:3',1"]Terphenyl-2'-yl, Naphthyl, Anthracen, Binaphthyl, Phenanthren, Dihydrophenanthren, Pyren, Dihydropyren, Chrysen, Perylen, Tetracen, Pentacen, Benzpyren, Fluoren, Inden, Indenofluoren und Spirobifluoren.
Unter dem Begriff „substituiertes oder unsubstituiertes, mono- oder polycyclisches, heteroaromatisches Ringsystem" wird in der vorliegenden Erfindung ein aromatisches Ringsystem mit vorzugsweise 5 bis 60, besonders bevorzugt 5 bis 30, ganz besonders bevorzugt 5 bis 20 und insbesonders bevorzugt 5 bis 9 aromatischen Ringatomen verstanden, wobei ein oder mehrere dieser Atome ein Heteroatom ist/sind.
Das „substituierte oder unsubstituierte, mono- oder polycyclische, heteroaromatische Ringsystem" enthält nicht notwendigerweise nur aromatische Gruppen, sondern kann auch durch eine kurze nichtaromatische Einheit (< 10 % der von H verschiedenen Atome, vorzugsweise < 5 % der von H verschiedenen Atome), wie beispielsweise sp3-hybridisiertes C-Atom bzw. O- oder N-Atom, CO-Gruppe etc., unterbrochen sein.
Die heteroaromatischen Ringsysteme können monocyclisch oder polycyclisch sein, d.h. sie können einen Ring oder mehrere Ringe aufweisen, welche auch kondensiert oder kovalent verknüpft sein können (z.B. Pyridylphenyl), oder eine Kombination von kondensierten und verknüpften Ringen beinhalten. Bevorzugt sind vollständig konjugierte Heteroarylgruppen. Besonders bevorzugt sind jedoch vollständig kondensierte Systeme. Bevorzugte heteroaromatische Ringsysteme sind z.B. 5-gliedrige Ringe wie Pyrrol, Pyrazol, Imidazol, 1 ,2,3-Triazol, 1 ,2,4-Triazol, Tetrazol, Furan, Thiophen, Selenophen, Oxazol, Isoxazol, 1 ,2-Thiazol, 1 ,3-Thiazol, 1 ,2,3- Oxadiazol, 1 ,2,4-Oxadiazol, 1 ,2,5-Oxadiazol, 1 ,3,4-Oxadiazol, 1 ,2,3- Thiadiazol, 1 ,2,4-Thiadiazol, 1 ,2,5-Thiadiazol, 1 ,3,4-Thiadiazol, 6-gliedrige
Ringe wie Pyridin, Pyridazin, Pyrimidin, Pyrazin, 1 ,3,5-Triazin, 1 ,2,4-Triazin, 1 ,2,3-Triazin, 1 ,2,4,5-Tetrazin, 1 ,2,3,4-Tetrazin, 1 ,2,3,5-Tetrazin, oder kondensierte Gruppen wie Indol, Isoindol, Indolizin, Indazol, Benzimidazol, Benzotriazol, Purin, Naphthimidazol, Phenanthrimidazol, Pyridimidazol, Pyrazinimidazol, Chinoxalinimidazol, Benzoxazol, Naphthoxazol, Anthroxa- zol, Phenanthroxazol, Isoxazol, Benzothiazol, Benzofuran, Isobenzofuran, Dibenzofuran, Chinolin, Isochinolin, Pteridin, Benzo-5,6-chinolin, Benzo- 6,7-chinolin, Benzo-7,8-chinolin, Benzoisochinolin, Acridin, Phenothiazin, Phenoxazin, Benzopyridazin, Benzopyrimidin, Chinoxalin, Phenazin, Naphthyridin, Azacarbazol, Benzocarbolin, Phenanthridin, Phenanthrolin, Thieno[2,3b]thiophen, Thieno[3,2b]thiophen, Dithienothiophen, Isobenzothiophen, Dibenzothiophen, Benzothiadiazothiophen oder
Kombinationen dieser Gruppen. Die Heteroarylgruppen können auch mit Alkyl, Alkoxy, Thioalkyl, Fluor, Fluoralkyl oder weiteren Aryl- oder Heteroarylgruppen substituiert sein.
Das substituierte oder unsubstituierte mono- oder polycyclische aromatische oder heteroaromatische Ringsystem weist gegebenenfalls einen oder mehrere Substituenten auf, welche vorzugsweise ausgewählt sind aus der Gruppe bestehend aus SiIyI, Sulfo, Sulfonyl, Formyl, Amin, Imin, Nitril, Mercapto, Nitro, Halogen, C-ι.i2-Alkyl, C6-i2-Aryl, Ci-12-Alkoxy, Hydroxy oder Kombinationen dieser Gruppen.
Bevorzugte Substituenten sind beispielsweise löslichkeitsfördernde
Gruppen wie Alkyl oder Alkoxy, elektronenziehende Gruppen wie Fluor, Nitro oder Nitril, oder Substituenten zur Erhöhung der Glastemperatur (Tg) im Polymer, insbesondere voluminöse Gruppen, wie z.B. t-Butyl oder gegebenenfalls substituierte Arylgruppen.
Besonders bevorzugte Substituenten sind z.B. F, Cl, Br, I, -CN, -NO2, -NCO, -NCS, -OCN, -SCN, -C(=O)N(R)2, -C(=O)Y1, -C(=O)R und -N(R)2, worin R unabhängig voneinander H, ein aliphatischer oder aromatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen ist und Y1 Halogen bedeutet, optional substituiertes SiIyI, Aryl mit 4 bis 40, vorzugsweise 6 bis 20 C- Atomen, und geradkettiges oder verzweigtes Alkyl, Alkoxy, Alkylcarbonyl,
Alkoxycarbonyl, Alkylcarbonyloxy oder Alkoxycarbonyloxy mit 1 bis 22 C- Atomen, worin ein oder mehrere H-Atome gegebenenfalls durch F oder Cl ersetzt sein können.
Unter dem Begriff „aromatische Einheit" versteht man im Sinne der vorliegenden Erfindung eine Verbindungseinheit, die als solches ein aromatisches System bildet, das gemäß der Definition nach HÜCKEL ein cyclisch konjugiertes System mit (4n+2)-τr-Elektronen ist, wobei n eine ganze Zahl darstellt.
Unter einer „geradkettigen, verzweigten oder cyclischen Ci-iO-Alkylen-, Ci- 10-Alkenylen- oder Ci.io-Alkinylengruppe" versteht man gesättigte oder ungesättigte aliphatische Kohlenwasserstoffe, die vorzugsweise 1 bis 10 Kohlenstoffatome, besonders bevorzugt 1 bis 6 Kohlenstoffatome enthalten, wobei auch eine oder mehrere Ch^-Gruppen durch NH, O oder S ersetzt sein können, und auch ein oder mehrere H-Atome durch F ersetzt sein können. Insbesonders bevorzugt sind hierbei lineare gesättigte Kohlenwasserstoffe mit 1 bis 6 Kohlenstoffatomen. Beispiele der aliphatischen Kohlenwasserstoffe mit 1 bis 10 Kohlenstoffatomen schließen die folgenden ein: Methylen, Ethylen, n-Propylen, iso-Propylen, n-Butylen, iso-Butylen, sec-Butylen (1-Methylpropylen), tert-Butylen, iso-Pentylen, n- Pentylen, tert-Pentylen (1 ,1- Dimethylpropyl), 1 ,2-Dimethylpropylen, 2,2- Dimethylpropylen (Neopentyl), 1-Ethylpropylen, 2-Methylbutylen, n-
Hexylen, iso-Hexylen, 1 ,2-Dimethylbutylen, 1-Ethyl-1-methylpropylen, 1- Ethyl-2-methylpropylen , 1 ,1 ,2-Trimethylpropylen , 1 ,2 ,2-Trimethylpropylen , 1-Ethylbutylen, 1-Methylbutylen, 1 ,1-Dimethylbutylen, 2,2-Dimethylbutylen, 1 ,3-Dimethylbutylen, 2,3-Dimethylbutylen, 3,3-Dimethylbutylen, 2- Ethylbutylen, 1-Methylpentylen, 2-Methylpentylen, 3-Methylpentylen, Cyclopentylen, Cyclohexylen, Cycloheptylen, Cyclooctylen, 2-Ethylhexylen, Trifluormethylen, Pentafluorethylen, 2,2,2-Trifluorethylen, Ethenylen, Propenylen, Butenylen, Pentenylen, Cyclopentenylen, Hexenylen, Cyclohexenylen, Heptenylen, Cycloheptenylen, Octenylen, Cyclooctenylen, Ethinylen, Propinylen, Butinylen, Pentinylen, Hexinylen und Octinylen.
Der Anteil vernetzbarer Struktureinheiten gemäß Formel (I) liegt im Polymer im Bereich von 0,01 bis 95 mol%, vorzugsweise im Bereich von 0,1 bis 70 mol%, besonders bevorzugt im Bereich von 0,5 bis 50 mol% und insbesonders bevorzugt im Bereich von 1 bis 30 mol%, bezogen auf 100 mol% aller copolymerisierten Monomere, die im Polymer als Struktureinheiten enthalten sind.
In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung enthält das erfindungsgemäße Polymer neben einer oder mehrerer Struktureinheiten der Formel (I) noch mindestens eine weitere Struktureinheit, die von der Struktureinheit der Formel (I) verschieden ist. Dies sind unter anderem solche, wie sie in der WO 02/077060 A1 und in der WO 2005/014689 A2 offenbart und umfangreich aufgelistet sind. Diese werden via Zitat als Bestandteil der vorliegenden Erfindung betrachtet. Die weiteren Struktureinheiten können beispielsweise aus den folgenden Klassen stammen:
Gruppe 1 : Einheiten, welche die Lochinjektions- und/oder
Lochtransporteigenschaften der Polymere erhöhen;
Gruppe 2: Einheiten, welche die Elektroneninjektions- und/oder
Elektronentransporteigenschaften der Polymere erhöhen;
Gruppe 3: Einheiten, die Kombinationen von Einzeleinheiten der Gruppe 1 und Gruppe 2 aufweisen;
Gruppe 4: Einheiten, welche die Emissionscharakteristik insoweit verändern, dass Elektrophosphoreszenz statt Elektrofluoreszenz erhalten werden kann;
Gruppe 5: Einheiten, welche den Übergang vom so genannten Singulett- zum Triplettzustand verbessern; Gruppe 6: Einheiten, welche die Emissionsfarbe der resultierenden Polymere beeinflussen;
Gruppe 7: Einheiten, welche typischerweise als Backbone verwendet werden;
Gruppe 8: Einheiten, welche die Filmmorphologie und/oder die
Theologischen Eigenschaften der resultierenden Polymere beeinflussen.
Bevorzugte erfindungsgemäße Polymere sind solche, bei denen mindestens eine Struktureinheit Ladungstransporteigenschaften aufweist, d. h. die Einheiten aus der Gruppe 1 und/oder 2 enthalten.
Struktureinheiten aus der Gruppe 1 , die Lochinjektions- und/oder Lochtransporteigenschaften aufweisen, sind beispielsweise Triarylamin-, Benzidin-, Tetraaryl-para-phenylendiamin-, Triarylphosphin-, Phenothiazin-, Phenoxazin-, Dihydrophenazin-, Thianthren-, Dibenzo-para-dioxin-, Phenoxathiin-, Carbazol-, Azulen-, Thiophen-, Pyrrol- und Furanderivate und weitere O-, S- oder N-haltige Heterocyclen mit hoch liegendem HOMO (HOMO = höchstes besetztes Molekülorbital). Vorzugsweise führen diese Arylamine und Heterocyclen zu einem HOMO im Polymer von mehr als -5,8 eV (gegen Vakuumlevel), besonders bevorzugt von mehr als -5,5 eV.
Struktureinheiten aus der Gruppe 2, die Elektroneninjektions- und/oder Elektronentransporteigenschaften aufweisen, sind beispielsweise Pyridin-, Pyrimidin-, Pyridazin-, Pyrazin-, Oxadiazol-, Chinolin-, Chinoxalin-, Anthracen-, Benzanthracen-, Pyren-, Perylen-, Benzimidazol-, Triazin-,
Keton-, Phosphinoxid- und Phenazinderivate, aber auch Triarylborane und weitere O-, S- oder N-haltige Heterocyclen mit niedrig liegendem LUMO (LUMO = niedrigstes unbesetztes Molekülorbital). Vorzugsweise führen diese Einheiten im Polymer zu einem LUMO von weniger als -2,5 eV (gegen Vakuumlevel), besonders bevorzugt von weniger als -2,7 eV.
Es kann bevorzugt sein, wenn in den erfindungsgemäßen Polymeren Einheiten aus der Gruppe 3 enthalten sind, in denen Strukturen, welche die Lochmobilität und welche die Elektronenmobilität erhöhen (also Einheiten aus Gruppe 1 und 2), direkt aneinander gebunden sind oder Strukturen enthalten sind, die sowohl die Lochmobilität als auch die Elektronenmobilität erhöhen. Einige dieser Einheiten können als Emitter dienen und verschieben die Emissionsfarbe ins Grüne, Gelbe oder Rote.
Ihre Verwendung eignet sich also beispielsweise für die Erzeugung anderer Emissionsfarben aus ursprünglich blau emittierenden Polymeren.
Struktureinheiten der Gruppe 4 sind solche, welche auch bei Raumtemperatur mit hoher Effizienz aus dem Triplettzustand Licht emittieren können, also Elektrophosphoreszenz statt Elektrofluoreszenz zeigen, was häufig eine Steigerung der Energieeffizienz bewirkt. Hierfür eignen sich zunächst Verbindungen, welche Schweratome mit einer Ordnungszahl von mehr als 36 enthalten. Bevorzugt sind Verbindungen, welche d- oder f-Übergangsmetalle enthalten, die die o. g. Bedingung erfüllen. Besonders bevorzugt sind hier entsprechende Struktureinheiten, welche Elemente der Gruppe 8 bis 10 (Ru, Os, Rh, Ir, Pd, Pt) enthalten. Als Struktureinheiten für die erfindungsgemäßen Polymere kommen hier z.B. verschiedene Komplexe in Frage, wie sie z.B. in der WO 02/068435 A1 , der WO 02/081488 A1 , der EP 1239526 A2 und der WO 2004/026886 A2 beschrieben werden. Entsprechende Monomere werden in der
WO 02/068435 A1 und in der WO 2005/042548 A1 beschrieben.
Struktureinheiten der Gruppe 5 sind solche, welche den Übergang vom Singulett- zum Triplettzustand verbessern und welche, unterstützend zu den Strukturelementen der Gruppe 4 eingesetzt, die Phosphoreszenzeigenschaften dieser Strukturelemente verbessern. Hierfür kommen insbesondere Carbazol- und überbrückte Carbazoldimereinheiten in Frage, wie sie z.B. in der WO 2004/070772 A2 und der WO 2004/113468 A1 beschrieben werden. Weiterhin kommen hierfür Ketone, Phosphinoxide, Sulfoxide, Sulfone, Silan-Derivate und ähnliche Verbindungen in Frage, wie sie z.B. in der WO 2005/040302 A1 beschrieben werden.
Struktureinheiten der Gruppe 6 sind neben den oben genannten solche, die mindestens noch eine weitere aromatische oder eine andere konjugierte Struktur aufweisen, welche nicht unter die o. g. Gruppen fallen, d. h. die die Ladungsträgermobilitäten nur wenig beeinflussen, die keine metallorganischen Komplexe sind oder die keinen Einfluss auf den Singulett-Triplett-Übergang haben. Derartige Strukturelemente können die Emissionsfarbe der resultierenden Polymere beeinflussen. Je nach Einheit können sie daher auch als Emitter eingesetzt werden. Bevorzugt sind dabei aromatische Strukturen mit 6 bis 40 C-Atomen oder auch Tolan-, Stilbenoder Bisstyrylarylenderivate, die jeweils mit einem oder mehreren Resten R substituiert sein können. Besonders bevorzugt ist dabei der Einbau von 1 ,4- Phenylen-, 1 ,4-Naphthylen-, 1 ,4- oder 9,10-Anthrylen-, 1 ,6-, 2,7- oder 4,9- Pyrenylen-, 3,9- oder 3, 10-Perylenylen-, 4,4'-Biphenylylen-, 4,4"- Terphenylylen, 4,4'-Bi-1 ,1'-naphthylylen-, 4,4'-Tolanylen-, 4,4'-Stilbenylen-, 4,4"-Bisstyrylarylen-, Benzothiadiazol- und entsprechenden Sauerstoffderivaten, Chinoxalin-, Phenothiazin-, Phenoxazin-, Dihydrophenazin-, Bis(thiophenyl)arylen-, Oligo(thiophenylen)-, Phenazin-, Rubren-, Pentacen- oder Perylenderivaten, die vorzugsweise substituiert sind, oder vorzugsweise konjugierte Push-Pull-Systeme (Systeme, die mit Donor- und Akzeptorsubstituenten substituiert sind) oder Systeme wie Squarine oder Chinacridone, die vorzugsweise substituiert sind.
Struktureinheiten der Gruppe 7 sind Einheiten, die aromatische Strukturen mit 6 bis 40 C-Atomen beinhalten, welche typischerweise als Polymergrundgerüst (Backbone) verwendet werden. Dies sind beispielsweise 4,5- Dihydropyrenderivate, 4,5,9, 10-Tetrahydropyrenderivate, Fluorenderivate, 9,9'-Spirobifluorenderivate, Phenanthrenderivate, 9,10- Dihydrophenanthrenderivate, 5,7-Dihydrodibenzooxepinderivate und cis- und trans-lndenofluorenderivate.
Struktureinheiten der Gruppe 8 sind solche, die die Filmmorphologie und/oder die rheologischen Eigenschaften der Polymere beeinflussen, wie z.B. Siloxane, lange Alkylketten oder fluorierte Gruppen, aber auch besonders steife oder flexible Einheiten, wie z.B. flüssigkristallbildende Einheiten oder vernetzbare Gruppen.
Bevorzugt sind erfindungsgemäße Polymere, die gleichzeitig neben
Struktureinheiten der Formel (I) zusätzlich noch ein oder mehrere Einheiten ausgewählt aus den Gruppen 1 bis 8 enthalten. Es kann ebenfalls bevorzugt sein, wenn gleichzeitig mehr als eine weitere Struktureinheit aus einer Gruppe vorliegt.
Bevorzugt sind dabei erfindungsgemäße Polymere, die neben mindestens c einer Struktureinheit der Formel (I) noch Einheiten aus der Gruppe 7 enthalten, besonders bevorzugt mindestens 50 mol% dieser Einheiten, bezogen auf die Gesamtzahl der Struktureinheiten im Polymer.
Ebenfalls bevorzugt ist es, wenn die erfindungsgemäßen Polymere Einheiten enthalten, die den Ladungstransport oder die Ladungsinjektion 10 verbessern, also Einheiten aus der Gruppe 1 und/oder 2; besonders bevorzugt ist ein Anteil von 0,5 bis 30 mol% dieser Einheiten; ganz besonders bevorzugt ist ein Anteil von 1 bis 10 mol% dieser Einheiten.
Besonders bevorzugt ist es weiterhin, wenn die erfindungsgemäßen Polymere Struktureinheiten aus der Gruppe 7 und Einheiten aus der ^ 5 Gruppe 1 und/oder 2 enthalten, insbesondere mindestens 50 mol%
Einheiten aus der Gruppe 7 und 0,5 bis 30 mol% Einheiten aus der Gruppe 1 und/oder 2.
Die erfindungsgemäßen Polymere sind entweder Homopolymere aus Struktureinheiten der Formel (I) oder Copolymere. Die erfindungsgemäßen Polymere können linear oder verzweigt sein, vorzugsweise linear. Erfindungsgemäße Copolymere können dabei neben einer oder mehreren Struktureinheiten der Formel (I) potentiell eine oder mehrere weitere Strukturen aus den oben aufgeführten Gruppen 1 bis 8 besitzen.
25 Die erfindungsgemäßen Copolymere können statistische, alternierende oder blockartige Strukturen aufweisen oder auch mehrere dieser Strukturen abwechselnd besitzen. Besonders bevorzugt weisen die erfindungsgemäßen Copolymere statistische oder alternierende Strukturen auf. Besonders bevorzugt sind die Copolymere statistische oder alternierende Copolymere. Wie Copolymere mit blockartigen Strukturen erhalten werden
30 können und welche weiteren Strukturelemente dafür besonders bevorzugt sind, ist beispielsweise ausführlich in der WO 2005/014688 A2 beschrieben. Diese ist via Zitat Bestandteil der vorliegenden Anmeldung. Ebenso sei an dieser Stelle nochmals hervorgehoben, dass das Polymer auch dendritische Strukturen haben kann.
In einer weiteren Ausführungsform ist Ar' der Formel (I) vorzugsweise eine substituierte oder unsubstituierte Einheit, die aus der Gruppe ausgewählt ist, die aus folgendem besteht:
Phenylen, Biphenylen, Triphenylen, [1 ,1l:3l,1 "]Terphenyl-2'-ylen, Naphthylen, Anthracen, Binaphthylen, Phenanthren, Dihydrophenanthren, Pyren, Dihydropyren, Chrysen, Perylen, Tetracen, Pentacen, Benzo[a]pyren, Fluoren, Inden, Indenofluoren, Spirobifluoren, Pyrrol,
Pyrazol, Imidazol, 1 ,2,3-Triazol, 1 ,2,4-Triazol, Tetrazol, Furan, Thiophen, Selenophen, Oxazol, Isoxazol, 1 ,2-Thiazol, 1 ,3-Thiazol, 1 ,2,3-Oxadiazol, 1 ,2,4-Oxadiazol, 1 ,2,5-Oxadiazol, 1 ,3,4-Oxadiazol, 1 ,2,3-Thiadiazol, 1 ,2,4- Thiadiazol, 1 ,2,5-Thiadiazol, 1 ,3,4-Thiadiazol, Pyridin, Pyridazin, Pyrimidin, Pyrazin, 1 ,3,5-Triazin, 1 ,2,4-Triazin, 1 ,2,3-Triazin, 1 ,2,4,5-Tetrazin, 1 ,2,3,4- Tetrazin, 1 ,2,3,5-Tetrazin, Indol, Isoindol, Indolizin, Indazol, Benzimidazol, Benzotriazol, Purin, Naphthimidazol, Phenanthrimidazol, Pyridimidazol, Pyrazinimidazol, Chinoxalinimidazol, Benzoxazol, Naphthoxazol, Anthroxa- zol, Phenanthroxazol, Isoxazol, Benzothiazol, Benzofuran, Isobenzofuran, Dibenzofuran, Chinolin, Isochinolin, Pteridin, Benzo-5,6-chinolin, Benzo-
6,7-chinolin, Benzo-7,8-chinolin, Benzoisochinolin, Acridin, Phenothiazin,
Phenoxazin, Benzopyridazin, Benzopyrimidin, Chinoxalin, Phenazin,
Naphthyridin, Azacarbazol, Benzocarbolin, Phenanthridin, Phenanthrolin, Thieno[2,3b]thiophen, Thieno[3,2b]thiophen, Dithienothiophen, Isobenzothiophen, Dibenzothiophen und Benzothiadiazothiophen, wobei die optionalen Substituenten die sind, die oben für die aromatischen und heteroaromatischen Ringsysteme beschrieben sind. Besonders bevorzugt sind Naphtylen und Phenylen, wobei Phenylen insbesonders bevorzugt ist.
In einer noch weiteren Ausführungsform ist es bevorzugt, dass X in der Struktureinheit der Formel (I) eine kovalente Einfachbindung ist.
Eine weitere Ausführungsform der vorliegenden Erfindung ist auch ein Polymer, das mindestens eine Struktureinheit der folgenden Formel (II) umfasst:
Figure imgf000015_0001
Formel (II)
die dadurch gekennzeichnet ist, dass zumindest ein Ar der Einheiten Ar1 bis Ar6 eine Aldehydgruppe aufweist,
wobei die verwendeten Symbole und Indices die folgenden Bedeutungen haben:
Ar1 bis Ar6 sind gleich oder verschieden und stellen unabhängig voneinander ein substituiertes oder unsubstituiertes, mono- oder polycyclisches, aromatisches oder heteroaromatisches
Ringsystem mit 5 bis 25 Ringatomen dar;
m ist 0 oder 1 ;
n ist 0, 1 oder 2;
die gestrichelten Linien stellen Bindungen zur nächsten Struktureinheit des Polymers dar;
mit der Maßgabe, dass, wenn n = 1 ist, die beiden N-Atome an verschiedene C-Atome des gleichen aromatischen Ringsystems binden.
Im Fall von n = 2, können die beiden in der entsprechenden eckigen Klammer enthaltenen Strukturelemente entweder in Reihe angeordnet sein, was zu einer linearen Struktureinheit der Formel (II) führt, oder parallel (d.h. beide an Ar2 bzw Ar4) angeordnet sein, was zu einer verzweigten Strukureinheit der Formel (II) führt. In einer weiteren Ausführungsform der vorliegenden Erfindung ist es bevorzugt, dass Ar1 bis Ar6, unabhängig voneinander, gleich oder verschieden ausgewählt sind aus der Gruppe bestehend aus: Phenylen, Biphenylen, Triphenylen, [1 ,1':3',1"]Terphenyl-2'-ylen, c Naphthylen, Anthracen, Binaphthylen, Phenanthren, Dihydrophenanthren,
Pyren, Dihydropyren, Chrysen, Perylen, Tetracen, Pentacen, Benzo[a]pyren, Fluoren, Inden, Indenofluoren, Spirobifluoren, Pyrrol, Pyrazol, Imidazol, 1 ,2,3-Triazol, 1 ,2,4-Triazol, Tetrazol, Furan, Thiophen, Selenophen, Oxazol, Isoxazol, 1 ,2-Thiazol, 1 ,3-Thiazol, 1 ,2,3-Oxadiazol, 1 ,2,4-Oxadiazol, 1 ,2,5-Oxadiazol, 1 ,3,4-Oxadiazol, 1 ,2,3-Thiadiazol, 1 ,2,4-
10 Thiadiazol, 1 ,2,5-Thiadiazol, 1 ,3,4-Thiadiazol, Pyridin, Pyridazin, Pyrimidin, Pyrazin, 1 ,3,5-Thazin, 1 ,2,4-Triazin, 1 ,2,3-Triazin, 1 ,2,4,5-Tetrazin, 1 ,2,3,4- Tetrazin, 1 ,2,3,5-Tetrazin, Indol, Isoindol, Indolizin, Indazol, Benzimidazol, Benzotriazol, Purin, Naphthimidazol, Phenanthrimidazol, Pyridimidazol, Pyrazinimidazol, Chinoxalinimidazol, Benzoxazol, Naphthoxazol, Anthroxa- zol, Phenanthroxazol, Isoxazol, Benzothiazol, Benzofuran, Isobenzofuran,
15 Dibenzofuran, Chinolin, Isochinolin, Pteridin, Benzo-5,6-chinolin, Benzo- 6,7-chinolin, Benzo-7,8-chinolin, Benzoisochinolin, Acridin, Phenothiazin, Phenoxazin, Benzopyridazin, Benzopyrimidin, Chinoxalin, Phenazin, Naphthyridin, Azacarbazol, Benzocarbolin, Phenanthridin, Phenanthrolin, Thieno[2,3b]thiophen, Thieno[3,2b]thiophen, Dithienothiophen, Isobenzothiophen, Dibenzothiophen und Benzothiadiazothiophen, wobei die optionalen Substituenten die sind, die oben für die aromatischen und heteroaromatischen Ringsysteme beschrieben sind. Besonders bevorzugt sind Naphtylen und Phenylen, wobei Phenylen insbesonders bevorzugt ist.
In einer weiteren Ausführungsform der vorliegenden Erfindung ist es c besonders bevorzugt, dass Ar der Formel (I) bzw. Ar1, Ar2, Ar4 und Ar5 der Formel (II) eine substituierte oder unsubstituierte Einheit ist, die aus der Gruppe ausgewählt ist, die aus folgendem besteht:
4,5-Dihydropyren, 4,5,9, 10-Tetrahydrofluoren, 9,9'-Spirobifluoren, Fluoren, Phenanthren, 9,10-Dihydrophenanthren, 5,7-Dihydrodibenzooxepin, cis- 0 Indenofluoren, trans-lndenofluoren, Phenylen, Thiophen, Benzanthracen, Carbazol, Benzimidazol, Oxepin und Triazin. Zudem ist es bevorzugt, dass das Polymer der vorliegenden Erfindung als weitere Struktureinheit eine Struktureinheit der Formel (I) und/oder (II) umfasst, die jedoch keine Aldehydgruppe aufweist.
Des Weiteren weist die Struktureinheit der Formel (II) des erfindungsgemäßen Polymers vorzugsweise eine Aldehydgruppe an dem Rest Ar3 und/oder Ar6 und die Struktureinheit Ar' der Formel (I) des erfindungsgemäßen Polymers eine Aldehydgruppe auf. Die Gruppen Ar3, Ar6 und Ar' stellen vorzugsweise eine Phenylgruppe dar, die eine Aldehydgruppe aufweisen können. Die Aldehydgruppe kann sich in ortho-, meta- oder para-Stellung an der Phenylgruppe befinden. Bevorzugt befindet sich die Aldehydgruppe in para-Stellung.
In einer weiteren Ausführungsform der vorliegenden Erfindung ist es bevorzugt, dass, wenn m und n in Formel (II) gleich null sind, einer der Reste Ar1, Ar2 und Ar3 verschieden von Phenyl ist. In diesem Fall ist es bevorzugt, dass Ar1 und/oder Ar2 verschieden von Phenyl ist.
In einer besonders bevorzugten Ausführungsform umfasst das erfindungsgemäße Polymer mindestens eine der folgenden Struktureinheiten:
Figure imgf000017_0001
CHO
In einer weiteren Ausführungsform der vorliegenden Erfindung umfasst das Polymer vorzugsweise eine oder mehrere der folgenden Struktureinheiten:
Figure imgf000018_0001
30
Figure imgf000019_0001
25
30
Figure imgf000020_0001
Figure imgf000021_0001
Figure imgf000022_0001
30
Figure imgf000023_0001
wobei die gestrichelten Linien eine Bindung zu einer weiteren Struktureinheit im Polymer darstellen. Die aromatischen Gruppen können darüber hinaus mit einem oder mehreren Substituenten susbstituiert sein.
Die erfindungsgemäßen Polymere enthaltend Struktureinheiten der Formel (I) und/oder (II), welche eine oder mehrere Aldehydgruppen enthalten, werden in der Regel durch Polymerisation von einer oder mehreren Monomersorten hergestellt, von denen mindestens ein Monomer im Polymer zu Struktureinheiten der Formel (I) und/oder (II) führt. Geeignete Polymerisationsreaktionen sind dem Fachmann bekannt und in der Literatur beschrieben. Besonders geeignete und bevorzugte Polymerisationsreaktionen, die zu C-C- bzw. C-N-Verknüpfungen führen, sind folgende:
(A) SUZUKI-Polymerisation;
(B) YAMAMOTO-Polymerisation;
(C) STILLE-Polymerisation;
(D) HECK-Polymerisation;
(E) NEGISHI-Polymerisation;
(F) SONOGASHIRA-Polymerisation; (G) HIYAMA-Polymerisation; und
(H) HARTWIG-BUCHWALD-Polymerisation.
Wie die Polymerisation nach diesen Methoden durchgeführt werden kann und wie die Polymere dann vom Reaktionsmedium abgetrennt und aufgereinigt werden können, ist dem Fachmann bekannt und in der Literatur, beispielsweise in der WO 03/048225 A2, der WO 2004/037887 A2 und der WO 2004/037887 A2 im Detail beschrieben.
Die C-C-Verknüpfungen sind vorzugsweise ausgewählt aus den Gruppen der SUZUKI-Kupplung, der YAMAMOTO-Kupplung und der STILLE- Kupplung; die C-N-Verknüpfung ist vorzugsweise eine Kupplung gemäß HARTWIG-BUCHWALD.
Gegenstand der vorliegenden Erfindung ist somit auch ein Verfahren zur Herstellung der erfindungsgemäßen Polymere, das dadurch gekennzeichnet ist, dass sie durch Polymerisation gemäß SUZUKI, Polymerisation gemäß YAMAMOTO, Polymerisation gemäß STILLE oder Polymerisation gemäß HARTWIG-BUCHWALD hergestellt werden.
Monomere, die durch Polymerisation zu den erfindungsgemäßen Polymeren umgesetzt werden können, sind Monomere die an zwei Enden jeweils eine Gruppe enthalten, die unabhängig voneinander aus der Gruppe ausgewählt sind, die aus Halogen, vorzugsweise Br und I, O- Tosylat, O-Triflat, 0-SO2R1, B(OR1)2 und Sn(R1)3 besteht. R1 ist vorzugsweise bei jedem Auftreten unabhängig voneinander aus der Gruppe ausgewählt, die aus Wasserstoff, einem aliphatischen Kohlenwasserstoffrest mit 1 bis 20 C-Atomen und einem aromatischen mono- oder polycyclischen Ringsystem mit 6 bis 20 Ringatomen besteht, wobei zwei oder mehrere Reste R1 miteinander ein Ringsystem bilden können. Hierbei sind aliphatische Kohlenwasserstoffe mit 1 bis 20 Kohlenstoffatomen lineare, verzweigte oder cyclische Alkylgruppen, Alkenylgruppen, Alkinylgruppen, bei denen ein oder mehr Kohlenstoffatome durch O, N oder S ersetzt sein können. Zudem kann ein oder mehrere Wasserstoffatome durch Fluor ersetzt sein. Beispiele der aliphatischen Kohlenwasserstoffe mit 1 bis 20 Kohlenstoffatomen schließen die folgenden ein: Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec- Butyl (1-Methylpropyl), tert-Butyl, iso-Pentyl, n-Pentyl, tert-Pentyl (1 ,1- Dimethylpropyl), 1 ,2-Dimethylpropyl, 2,2-Dimethylpropyl (Neopentyl), 1- Ethylpropyl, 2-Methylbutyl, n-Hexyl, iso-Hexyl, 1 ,2-Dimethylbutyl, 1-Ethyl-1- methylpropyl, 1-Ethyl-2-methylpropyl, 1 ,1 ,2-Trimethylpropyl, 1 ,2,2- Trimethylpropyl, 1-Ethylbutyl, 1-Methylbutyl, 1 ,1-Dimethylbutyl, 2,2-
Dimethylbutyl, 1 ,3-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 2- Ethylbutyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclooctyl, 2-Ethylhexyl, Trifluormethyl, Pentafluorethyl, 2,2,2-Trifluorethyl, Ethenyl, Propenyl, Butenyl, Pentenyl, Cyclopentenyl, Hexenyl, Cyclohexenyl, Heptenyl, Cycloheptenyl, Octenyl, Cyclooctenyl, Ethinyl, Propinyl, Butinyl, Pentinyl, Hexinyl und Octinyl.
Der Begriff „mono- oder polycylisches aromatisches Ringsystem mit 6 bis 20 Ringatomen" bezüglich R1 soll die gleiche Bedeutung haben wie oben definiert, wobei kondensierte aromatische Systeme auch hier bevorzugt sind. Bevorzugte aromatische Ringsysteme sind Naphtyl und Phenyl, wobei Phenyl insbesonders bevorzugt ist.
In dem Fall, dass zwei Reste R1 ein Ringsystem bilden, stellen diese zwei verknüpften Reste R1 vorzugsweise eine bivalente aliphatische Gruppe mit 2 bis 8 Kohlenstoffatomen dar. Beispiele hierfür sind Verbindungen der folgenden Formel -CH2(CH2)πCH2-, wobei n = 0, 1 , 2, 3, 4, 5 oder 6, vorzugsweise 0, 1 , 2 oder 3, ist. In dem Fall, dass mehr als zwei Reste R1 miteinander ein Ringsystem bilden, stellen diese Reste R1 miteinander eine verzweigte tri-, tetra-, penta- oder mehrvalente aliphatische Gruppe mit 6 bis 20 Kohlenstoffatomen dar.
In einer besonders bevorzugten Ausführungsform sind die terminierenden
Gruppen der Monomere unabhängig voneinander ausgewählt aus Br, I und B(OR1)2.
Die erfindungsgemäßen Dendrimere können gemäß dem Fachmann bekannten Verfahren oder in Analogie dazu hergestellt werden. Geeignete Verfahren sind in der Literatur beschrieben, wie z.B. in Frechet, Jean M. J.; Hawker, Craig J., "Hyperbranched polyphenylene and hyperbranched polyesters: new soluble, three-dimensional, reactive polymers", Reactive & Functional Polymers (1995), 26(1-3), 127-36; Janssen, H. M.; Meijer, E. W., "The synthesis and characterization of dendritic molecules", Materials Science and Technology (1999), 20 (Synthesis of Polymers), 403-458; Tomalia, Donald A., "Dendrimer molecules", Scientific American (1995), 272(5), 62-6, WO 02/067343 A1 und WO 2005/026144 A1.
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung eines Polymers mit Struktureinheiten der Formel (I) und/oder (II), die eine oder mehrere Aldehydgruppen aufweisen, zur Herstellung eines vernetzbaren Polymers. Vorzugsweise ist die vernetzbare Gruppe eine Vinylgruppe oder Alkenylgruppe. Hierbei werden die Aldehydgruppen des Polymers durch WITTIG-Reaktion oder eine WITTIG-analoge Reaktion in Vinylgruppen oder Alkenylgruppen, vorzugsweise Propenylgruppen, umgewandelt.
Gegenstand der vorliegenden Erfindung ist somit auch ein Verfahren, das folgende Schritte umfasst:
(a) Bereitstellen von Polymeren, die Struktureinheiten der Formel (I) und/oder (II) enthalten, die eine oder mehrere Aldehydgruppen aufweisen; und
(b) Umwandlung der Aldehydgruppen in Vinylgruppen oder Alkenylgruppen. In dem genannten erfindungsgemäßen Verfahren findet die chemische Umwandlung der Aldehydgruppen in Vinylgruppen oder Alkenylgruppen vorzugsweise durch die WITTIG-Reaktion, eine WITTIG-analoge Reaktion, die Emmons-Horner-Reaktion, die Peterson Reaktion oder die Tebbe
Methylen ierung statt.
Die erfindungsgemäßen Polymere können, unabhängig davon, ob sie noch Aldehydgruppen oder bereits Vinyl- oder Alkenylgruppen enthalten, als Reinsubstanz, aber auch als Mischung zusammen mit weiteren beliebigen polymeren, oligomeren, dendritischen oder niedermolekularen Substanzen verwendet werden. Als niedermolekulare Substanz versteht man in der vorliegenden Erfindung Verbindungen mit einem Molekulargewicht im Bereich von 100 bis 3000 g/mol, vorzugsweise 200 bis 2000 g/mol. Diese weiteren Substanzen können z.B. die elektronischen Eigenschaften verbessern oder selbst emittieren. Als Mischung wird vor- und nachstehend eine Mischung enthaltend mindestens eine polymere Komponente bezeichnet. Auf diese Art können eine oder mehrere Polymerschichten bestehend aus einer Mischung (Blend) aus einem oder mehreren erfindungsgemäßen Polymeren mit einer Struktureinheit der Formel (I) und/oder (II) und optional einem oder mehreren weiteren Polymeren mit einer oder mehreren niedermolekularen Substanzen hergestellt werden.
Ein weiterer Gegenstand der vorliegenden Erfindung ist somit ein Polymer Blend enthaltend ein oder mehrere erfindungsgemäße Polymere, sowie eine oder mehrere weitere polymere, oligomere, dendritische und/oder niedermolekulare Substanzen.
Gegenstand der Erfindung sind weiterhin Lösungen und Formulierungen aus einem oder mehreren erfindungsgemäßen Polymeren oder Mischungen in einem oder mehreren Lösungsmitteln. Wie solche Lösungen hergestellt werden können, ist dem Fachmann bekannt und beispielsweise in der WO 02/072714 A1 , der WO 03/019694 A2 und der darin zitierten Literatur beschrieben. Diese Lösungen können verwendet werden, um dünne Polymerschichten herzustellen, zum Beispiel durch Flächenbeschichtungsverfahren (z.B. Spin-coating) oder durch Druckverfahren (z.B. InkJet Printing).
Polymere enthaltend Struktureinheiten der Formel (I) und/oder (II), welche eine oder mehrere Aldehydgruppen enthalten, eignen sich, nach Umsetzung der Aldehydgruppen zu Alkenyl-, vorzugsweise Vinylgruppen, besonders zur Herstellung von Filmen oder Beschichtungen, insbesondere zur Herstellung von strukturierten Beschichtungen, z.B. durch thermische oder lichtinduzierte in-situ-Polymerisation und in-situ-Vernetzung, wie beispielsweise in-situ-UV-Photopolymerisation oder Photopatterning. Dabei können sowohl entsprechende Polymere in Reinsubstanz verwendet werden, es können aber auch Formulierungen oder Mischungen dieser Polymere wie oben beschrieben verwendet werden. Diese können mit oder ohne Zusatz von Lösungsmitteln und/oder Bindemitteln verwendet werden. Geeignete Materialien, Verfahren und Vorrichtungen für die oben beschriebenen Methoden sind z.B. in der WO 2005/083812 A2 beschrieben. Mögliche Bindemittel sind beispielsweise Polystyrol, Polycarbonat, Poly(meth)acrylate, Polyacrylate, Polyvinylbutyral und ähnliche, optoelektronisch neutrale Polymere.
Geeignete und bevorzugte Lösungsmittel sind beispielsweise Toluol, Anisol, XyIoI, Methylbenzoat, Dimethylanisol, Mesitylen, Tetralin, Veratrol, Tetrahydrofuran und Chlorbenzol sowie Gemische derselben.
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung eines Polymers, das Struktureinheiten der Formel (I) und/oder (II) enthält, die eine oder mehrere Aldehydgruppen aufweisen, zur Herstellung eines vernetzten Polymers. Mit anderen Worten wird die Aldehydgruppe dieses Polymers entweder direkt mit einer Verbindung verknüpft, die entweder schon an ein anderes Polymer bindet oder auf gleiche oder ähnliche Weise an ein weiteres Polymer gebunden werden kann, oder wird in eine vernetzbare Gruppe umgewandelt, die anschließend mit weiteren vemetzbaren Gruppen reagiert, wobei ein vernetztes Polymer entsteht. Die vernetzbare Gruppe ist vorzugsweise eine Vinylgruppe oder Alkenylgruppe und wird vorzugsweise durch die WITTIG-Reaktion oder eine WITTIG- analoge Reaktion in das Polymer eingebaut. Ist die vernetzbare Gruppe eine Vinylgruppe oder Alkenylgruppe, so kann die Vernetzung durch radikalische oder ionische Polymerisation stattfinden, wobei diese thermisch oder durch Strahlung induziert werden kann. Bevorzugt ist die radikalische Polymerisation, die thermisch induziert wird, vorzugsweise bei
Temperaturen von weniger als 2500C, besonders bevorzugt bei Temperaturen von weniger als 2000C.
Wahlweise wird während des Vernetzungsverfahrens ein zusätzliches Styrol-Monomer zugesetzt, um einen höheren Grad der Vernetzung zu erzielen. Vorzugsweise ist der Anteil des zugesetzten Styrol-Monomers im Bereich von 0,01 bis 50 mol%, besonders bevorzugt 0,1 bis 30 mol%, bezogen auf 100 mol% aller copolymerisierten Monomere, die im Polymer als Struktureinheiten enthalten sind.
Gegenstand der vorliegenden Erfindung ist somit auch ein Verfahren zur Herstellung eines vernetzten Polymers, das folgende Schritte umfasst:
(a) Bereitstellen von Polymeren, die Struktureinheiten der Formel (I) und/oder (II) enthalten, die eine oder mehrere Aldehydgruppen aufweisen;
(b) Umwandlung der Aldehydgruppen in Vinylgruppen oder Alkenylgruppen; und
(c) Radikalische oder ionische Vernetzung, vorzugsweise radikalische Vernetzung, die sowohl thermisch als auch durch Strahlung, vorzugsweise thermisch, induziert werden kann.
Die durch das erfindungsgemäße Verfahren hergestellten vernetzten
Polymere sind in allen gängigen Lösungsmitteln unlöslich. Auf diese Weise lassen sich definierte Schichtdicken herstellen, die auch durch das Aufbringen nachfolgender Schichten nicht wieder gelöst bzw. angelöst werden.
Die vorliegende Erfindung betrifft somit auch ein vernetztes Polymer, das durch das zuvor genannte Verfahren erhältlich ist. Das vernetzte Polymer wird - wie vorstehend beschrieben - vorzugsweise in Form einer vernetzen Polymerschicht hergestellt. Auf die Oberfläche einer solchen vernetzten Polymerschicht kann aufgrund der Unlöslichkeit des vernetzten Polymers in sämtlichen Lösungsmitteln eine weitere Schicht eines erfindungsgemäßen Polymers, das eine Struktureinheit der Formel (I) und/oder (II) enthält, aus einem Lösungsmittel mit den oben beschriebenen Techniken aufgebracht werden.
Die vorliegende Erfindung umfasst auch eine sogenannte Hybridvorrichtung, in der eine oder mehrere Polymerschichten und Schichten, die durch Aufdampfen von niedermolekularen Substanzen hergestellt werden, vorkommen können.
Das erfindungsgemäße vernetzte Polymer kann in elektronischen oder optoelektronischen Vorrichtungen bzw. zu deren Herstellung verwendet werden.
Ein weiterer Gegenstand der vorliegenden Erfindung ist somit die Verwendung des erfindungsgemäßen vernetzten Polymers in elektronischen oder optoelektronischen Vorrichtungen, vorzugsweise in organischen bzw. polymeren organischen Elektrolumineszenzvorrichtungen (OLED, PLED), organischen Feld-Effekt-Transistoren (OFETs), organischen integrierten Schaltungen (O-ICs), organischen Dünnfilmtransistoren (TFTs), organischen Solarzellen (O-SCs), organischen Laserdioden (O-Laser), organischen photovoltaischen (OPV) Elementen oder Vorrichtungen oder organischen Photorezeptoren (OPCs), besonders bevorzugt in organischen bzw. polymeren organischen Elektrolumineszenzvorrichtungen (OLED, PLED), insbesondere in polymeren organischen Elektrolumineszenzvorrichtungen (PLED).
Im Fall der zuvor genannten Hybridvorrichtung spricht man in Verbindung mit organischen Elektrolumineszenzvorrichtungen von kombinierten PLED/SMOLED (Small Molecule Organic Light Emitting Diode) Systemen.
Wie OLEDs bzw. PLEDs hergestellt werden können, ist dem Fachmann bekannt und wird beispielsweise als allgemeines Verfahren ausführlich in der WO 2004/070772 A2 beschrieben, das entsprechend für den Einzelfall anzupassen ist.
Wie oben beschrieben, eignen sich die erfindungsgemäßen Polymeren ganz besonders als Elektrolumineszenzmaterialien in derart hergestellten
PLEDs oder Displays.
Als Elektrolumineszenzmaterialien im Sinne der vorliegenden Erfindung gelten Materialien, die als aktive Schicht Verwendung finden können. Aktive Schicht bedeutet, dass die Schicht befähigt ist, bei Anlegen eines elektrischen Feldes Licht abzustrahlen (lichtemittierende Schicht) und/oder dass sie die Injektion und/oder den Transport der positiven und/oder negativen Ladungen verbessert (Ladungsinjektions- oder Ladungstransportschicht).
Ein bevorzugter Gegenstand der vorliegenden Erfindung ist daher auch die Verwendung des erfindungsgemäßen vernetzten Polymers in einer PLED, insbesondere als Elektrolumineszenzmaterial.
Gegenstand der vorliegenden Erfindung sind ferner elektronische oder optoelektronische Bauteile, vorzugsweise organische bzw. polymere organische Elektrolumineszenzvorrichtungen (OLED, PLED), organische Feld-Effekt-Transistoren (OFETs), organische integrierte Schaltungen (O- ICs), organische Dünnfilmtransistoren (TFTs), organische Solarzellen (O- SCs), organische Laserdioden (O-Laser), organische photovoltaische (OPV) Elemente oder Vorrichtungen und organische Photorezeptoren (OPCs), besonders bevorzugt organische bzw. polymere organische Elektrolumineszenzvorrichtungen, insbesondere polymere organische Elektrolumineszenzvorrichtungen, mit einer oder mehreren aktiven Schichten, wobei mindestens eine dieser aktiven Schichten ein oder mehrere erfindungsgemäße Polymere enthält. Die aktive Schicht kann beispielsweise eine lichtemittierende Schicht, eine Ladungstransportschicht und/oder eine Ladungsinjektionsschicht sein.
Im vorliegenden Anmeldungstext und auch in den im Weiteren folgenden Beispielen wird hauptsächlich auf die Verwendung der erfindungsgemäßen Polymeren in Bezug auf PLEDs und entsprechende Displays abgezielt. Trotz dieser Beschränkung der Beschreibung ist es für den Fachmann ohne weiteres erfinderisches Zutun möglich, die erfindungsgemäßen Polymere als Halbleiter auch für die weiteren, oben beschriebenen Verwendungen in anderen elektronischen Vorrichtungen zu benutzen.
Die folgenden Beispiele sollen die Erfindung erläutern, ohne sie einzuschränken. Insbesondere sind die darin beschriebenen Merkmale, Eigenschaften und Vorteile der dem betreffenden Beispiel zu Grunde liegenden definierten Verbindungen auch auf andere, nicht im Detail aufgeführte, aber unter den Schutzbereich der Ansprüche fallende
Verbindungen anwendbar, sofern an anderer Stelle nichts Gegenteiliges gesagt wird.
Beispiele:
Beispiel 1 :
Herstellung eines Monomers, das zur Herstellung eines erfindungsgemäßen Interlayer Polymers verwendet wird.
Figure imgf000033_0001
5 g 4-(N,N-Diphenylamino)benzaldehyd (18,3 mmol) werden in 270 ml getrocknetem THF gelöst und auf 00C abgekühlt. 6,5 g N-Bromsuccinimid (36,6 mmol) werden als Feststoff sukzessive zugegeben und die Lösung bei 00C 4 Stunden rühren gelassen.
Der Feststoff wird filtriert und die Lösung mit Wasser und Dichlormethan versetzt. Die Phasen werden getrennt. Die organische Phase wird dreimal mit Wasser gewaschen und über Na2SO4 getrocknet, dann filtriert und einrotiert. Das Produkt wird mehrmals in Heptan/Toluol umkristallisiert.
1H NMR (CDCI3, δ (ppm), J (Hz)): 7,02 (d, 4H, J = 8,8), 7,04 (d, 2H, J = 8,8), 7,44 (d, 4H, J = 8,9), 7,71 (d, 2H, J = 8,8), 9,84 (s, 1 H)
Beispiel 2:
Herstellung eines Monomers, das zur Herstellung eines erfindungsgemäßen Matrix Polymers verwendet wird.
Figure imgf000034_0001
4,9 g N-(4-Formylphenyl)carbazol (18,1 mmol) werden in 270 ml getrocknetem THF gelöst und auf 00C abgekühlt. 6,4 g N-Bromsuccinimid (36,1 mmol) werden als Feststoff sukzessive zugegeben und die Lösung bei 00C 4 Stunden rühren gelassen.
Der Feststoff wird filtriert und die Lösung mit Wasser und Dichlormethan versetzt. Die Phasen werden getrennt. Die organische Phase wird dreimal mit Wasser gewaschen und über Na2SO4 getrocknet, dann filtriert und einrotiert. Das Produkt wird mehrmals in Ethylacetat umkristallisiert.
1H NMR (C2D2CI4, δ (ppm), J (Hz)): 7,34 (d, 2H, J = 8,6), 7,55 (d, 2H, J = 8,8), 7,71 (d, 2H, J = 8,3), 8,13 (d, 2H, J = 8,6), 8,21 (s, 2H), 10,10 (s, 1 H)
Beispiel 3a:
Herstellung der erfindungsgemäßen Polymere Pia, P1 b und P1c sowie P2a, P2b und P2c unter Verwendung der in den Beispielen 1 und 2 hergestellten Monomere.
Die erfindungsgemäßen Polymere P1 und P2 werden durch SUZUKI- Kupplung gemäß dem in der WO 03/048225 beschriebenen Verfahren aus den drei nachstehend gezeigten, verschiedenen Struktureinheiten hergestellt. Die auf diese Weise hergestellten Polymere Pi a, P1 b und P1c sowie P2a, P2b und P2c enthalten die drei Struktureinheiten nach Abspaltung der Abgangsgruppen in den angegebenen prozentualen Anteilen (Prozentangaben = mol%).
Pi a 10% 50% 40% P1 b 20% 50% 30% P1 c 30% 50% 20%
Figure imgf000035_0002
P2a 10% 50% 40% P2b 20% 50% 30% P2c 30% 50% 20%
Beispiel 3b:
Herstellung von Vergleichspolymeren V1 und V2 nach dem gleichen Verfahren wie in Beispiel 3a beschrieben, das die nachstehend gezeigten beiden Struktureinheiten nach Abspaltung der Abgangsgruppen in den angegebenen prozentualen Anteilen enthält (Prozentangaben = mol%):
Figure imgf000036_0001
50% V1 50%
Figure imgf000036_0002
50% V2 50%
Beispiel 4:
Einfügen der vernetzbaren Gruppen in die gemäß Beispiel 3a hergestellten Polymere P1 und P2.
Die Polymere P1a'τ P1 b" und P1c' sowie P2a', P2b' und P2c' mit vernetzbaren Gruppen werden aus den gemäß Beispiel 3a hergestellten Polymeren Pi a, P1b und P1c sowie P2a, P2b und P2c durch Wittigreaktion gemäß den folgenden Reaktionsschemata hergestellt: Wittigreaktion von P1 :
Figure imgf000037_0001
Wittigreaktion von P2:
Figure imgf000037_0002
Dazu wird das Polymer Pia (1 g) in 20 ml getrocknetem THF bei 500C unter Argon aufgelöst und anschließend auf Raumtemperatur abgekühlt. 2,86 g (8 mmol) Methyltriphenylphosphoniumbromid werden in 20 ml getrocknetem THF unter Argon bei 00C gelöst und 0,90 g (8 mmol) Kalium- tert-butylat portionsweise bei 00C zugegeben. Anschließend wird die Polymerlösung bei 2°C mit einer Spritze langsam zugegeben und über Nacht bei Raumtemperatur rühren gelassen. Die Lösung wird dreimal mit Wasser extrahiert und die organische Phase in Methanol gefällt.
Analog werden die Polymere P1b und P1c sowie P2a, P2b und P2c umgesetzt.
Beispiel 5:
Herstellung einer grün emittierenden PLED mit den Vergleichspolymeren V1 und V2 aus Beispiel 3b.
Die Herstellung einer polymeren Leuchtdiode wird in der Patentliteratur bereits vielfach beschrieben (siehe z.B. WO 2004/037887). Um die vorliegende Erfindung beispielhaft zu erläutern, wird eine PLED gemäß dem in der WO 2004/037887 beschriebenen Verfahren mit dem
Vergleichspolymer V1 durch Spincoating auf zuvor mit PEDOT beschichtetem ITO-Substrat hergestellt.(PEDOT ist ein Polythiophen- Derivat (Baytron P, von H. C. Starck, Goslar)). Das beschichtete Substrat wird 10 Minuten bei 1800C ausgeheizt. Die Schichtdicke der so erhaltenen Interlayer beträgt 20 nm. Dann werden 80 nm einer emittierenden Schicht bestehend aus einer Polymermatrix V2 und einem grün phosphoreszierenden Triplett-Emitter T1 (ca. 20 mol%) durch Spincoating aufgebracht. Danach wird eine Ba/Al-Kathode (Metalle von Aldrich) aufgedampft, die PLED verkapselt und elektrooptisch charakterisiert. Tabelle 1 zeigt die erhaltenen Ergebnisse.
Figure imgf000039_0001
Beispiel 6:
Herstellung verschiedener grün emittierender PLEDs mit vernetzten Polymerschichten unter Verwendung der Polymere Pia' sowie P2a', P2b' und P2c' aus Beispiel 3a.
Die Herstellung erfolgt wie in Beispiel 5 beschrieben, wobei anstatt des Vergleichspolymers V1 das Polymere Pi a' und anstatt des
Vergleichspolymers V2 die Polymere P2a', P2b' und P2c' verwendet werden. Nach dem Spincoating wird im Fall von PV und P2' noch jeweils eine Stunde bei 1800C ausgeheizt, um die Polymere zu vernetzen. Die Schichtdicke der Interlayer aus dem Polymer Pia' beträgt 20 nm und die Schichtdicke der emittierenden Schicht aus den Polymeren V2, P2a', P2b' und P2c' beträgt jeweils 80 nm. Die elektrooptische Charakterisierung der PLEDs erfolgt wie in Beispiel 5 und ist im Folgenden beschrieben. Die Ergebnisse sind in Tabelle 1 zusammengefasst.
Elektrooptische Charakterisierung:
Für die elektrooptische Charakterisierung werden die in den Beispielen 5 und 6 hergestellten PLEDs in für die Substratgröße eigens angefertigte Halter eingespannt und mittels Federkontakten kontaktiert. Eine Photodiode mit Augenverlaufsfilter kann direkt auf den Messhalter aufgesetzt werden, um Einflüsse von Fremdlicht auszuschließen.
Typischerweise werden die Spannungen von 0 bis max. 20 V in 0,2 V- Schritten erhöht und wieder erniedrigt. Für jeden Messpunkt wird der Strom durch die PLED sowie der erhaltene Photostrom von der Photodiode gemessen. Auf diese Art und Weise erhält man die IVL-Daten der Test-
PLED. Wichtige Kenngrößen sind die gemessene maximale Effizienz („Eff." in cd/A) und die für 100 cd/m2 benötigte Spannung Uioo- Um außerdem die Farbe und das genaue Elektrolumineszenzspektrum der Test-PLED zu kennen, wird nach der ersten Messung nochmals die für 100 cd/m2 benötigte Spannung angelegt und die Photodiode durch einen Spektrum-Messkopf ersetzt. Dieser ist durch eine Lichtleitfaser mit einem Spektrometer (Ocean Optics) verbunden. Aus dem gemessenen Spektrum können die Farbkoordinaten (CIE: Commission International de l'eclairage, Normalbetrachter von 1931) abgeleitet werden.
Tabelle 1: Ergebnisse der elektrooptischen Charakterisierung der grün emittierenden PLEDs.
Figure imgf000040_0001
Die Effizienz der PLEDs mit vernetzten Interlayer- und/oder Matrix- Polymeren Pi a' und P2a-c' ist vergleichbar mit der Effizienz der PLED mit nicht vernetzten Vergleichspolymeren V1 und V2. Spannung und Farbkoordinaten sind ebenfalls vergleichbar. Dies zeigt, dass die Vernetzung keine negativen Auswirkungen auf Effizienz, Spannung und Farbkoordinaten hat. Ein großer Vorteil ist jedoch, dass die Vernetzung der erfindungsgemäßen Polymeren es erlaubt, die Schichtdicke gezielt zu variieren und genau zu kontrollieren, da die vernetzte Schicht nicht mehr angelöst und abgewaschen werden kann, was in Beispiel 8 genauer erläutert wird. So wird ein Mehrschichtaufbau in einer PLED realisiert, bei dem alle Schichten aus Lösung prozessiert werden und eine definierte Schichtdicke aufweisen. Im vorliegenden Fall ist es z. B. auch möglich auf die vernetzte grün emittierende Schicht (P2' mit 20 mol% T1) noch eine dritte Schicht definierter Schichtdicke aufzubringen bevor die Kathode aufgedampft und die PLED verkapselt wird. Ist die dritte Schicht ebenfalls vernetzbar, kann eine vierte Schicht definierter Schichtdicke aufgebracht werden. Beispiel 7:
Herstellung verschiedener blau emittierender PLEDs unter Verwendung der Polymeren Pi a', P1b' und P1c' und deren Vernetzung.
Die Herstellung erfolgt anaolg zu Beispiel 5 und 6. Die Polymere V1 , Pia', P1 b' und P1 c' werden durch Spincoating auf zuvor mit PEDOT beschichtete ITO-Substrate aufgebracht. Anschließend werden die mit Pia', P1 b' und P1c' beschichteten Substrate jeweils eine Stunde bei 1800C ausgeheizt, um die Polymere zu vernetzen. Die Dicke der Polymerschicht beträgt jeweils 20 nm. Dann wird eine 65 nm dicke Schicht eines blauemittierenden Polymeren B1 durch Spincoating aufgebracht. (Die Herstellung von B1 erfolgt analog Beispiel 3. B1 enthält die nachstehend gezeigten Struktureinheiten nach Abspaltung der Abgangsgruppen in den angegebenen prozentualen Anteilen (Prozentangaben = mol%))
Figure imgf000041_0001
B1: 50% 46% 2% 2%
Anschließend wird eine Ba/Al-Kathode aufgedampft und die PLED verkapselt. Die elektrooptische Charakterisierung der PLED erfolgt wie in Beispiel 6 beschrieben. Die Ergebnisse sind in Tabelle 2 zusammengefasst.
Tabelle 2: Ergebnisse der elektrooptischen Charakterisierung der blau emittierenden PLEDs.
Figure imgf000041_0002
Die Effizienz der PLEDs mit vernetzten Polymeren Pi a', P1 b' und P1c' ist vergleichbar mit der des nicht vernetzten Vergleichspolymers V1. Spannung und Farbkoordinaten sind ebenfalls vergleichbar. Dies zeigt, dass die Vernetzung der Interlayer keine negativen Auswirkungen auf
Effizienz, Spannung und Farbkoordinaten der PLED hat. Ein großer Vorteil ist jedoch, dass die Vernetzung der erfindungsgemäßen Polymeren es erlaubt, die Schichtdicke gezielt zu variieren und genau zu kontrollieren, da die vernetzte Schicht nicht mehr angelöst und abgewaschen werden kann, was in Beispiel 8 genauer erläutert wird. So wird ein Mehrschichtaufbau aus mindestens zwei Schichten in einer aus Lösung prozessierten PLED realisiert, bei dem die Schichten eine definierte Schichtdicke aufweisen.
Beispiel 8:
Kontrolle der Schichtdicken
Die Polymere V1 , V2, Pia', P1 b', P1c', P2a', P2b' und P2c' werden durch Spincoating mit Schichtdicken wie in Tabelle 2 beschrieben auf Glasträger aufgeschleudert. Die Schichtdicke wird gemessen, indem man die Polymerschicht mit einer Nadel ankratzt, wobei der Kratzer bis auf das
Glassubstrat hinunter geht. Anschließend wird die Tiefe des Kratzers und damit die Polymerschichtdicke an mindestens zwei Stellen je zweimal mit
Hilfe einer AFM-Nadel (Atomic Force Microscopy) gemessen und der Mittelwert gebildet (Tabelle 3). Im Fall der erfindungsgemäßen Polymere P1 ' und P2' wird der Polymerfilm eine Stunde bei 1800C ausgeheizt, um zu vernetzen. Im Fall des Vergleichspolymeren V1 und V2 wird der Polymerfilm 10 Minuten bei 1800C ausgeheizt. Dann werden alle
Polymerfilme eine Minute mit Toluol auf dem Spincoater gewaschen (Umdrehungsgeschwindigkeit 1000 U/min) und der Film noch einmal 10 Minuten bei 18O0C ausgeheizt, um das Lösungsmittel zu entfernen. Anschließend wird die Schichtdicke noch einmal wie oben beschrieben gemessen, um zu überprüfen, ob sich die Schichtdicke verändert hat (Tabelle 3). Verringert sich die Schichtdicke nicht, so ist das Polymer unlöslich und somit die Vernetzung ausreichend. Tabelle 3: Schichtdickenmessungen an vernetzten und unvernetzten Pol meren vor und nach Waschen mit Toluol.
Figure imgf000043_0001
* Vernetzung nur bei P1 a-c' und P2a-c'
Die Ergebnisse zeigen, dass das Vernetzen der erfindungsgemäßen Polymere nahezu quantitativ ist. Je höher der Anteil der Vernetzungsgruppen ist, desto unlöslicher das Polymer nach der Vernetzung. Bei geringer Schichtdicke von 20 nm sind bereits 10% vernetzbarer Monomeranteil im Polymer ausreichend, damit die Schicht ausreichend vernetzt und nicht heruntergewaschen wird. Es verbleiben 95% der ursprünglich aufgebrachten Schichtdicke (P11) im Vergleich zu 20% mit einem nicht vernetzbaren Polymer (V1). Bei Schichtdicken von 80 nm zeigt ein Anteil von 10% vernetzbaren Monomereinheiten im Polymer bereits eine deutliche Verbesserung. Es verbleiben nach dem Waschen ca. 88% der Schichtdicke des vernetzten Polymers (P2a') statt 6% bei dem entsprechenden nicht vernetzbaren Polymer (V2). Mit > 20% vernetzbarer Monomereinheit im Polymer verbleiben > 90% der ursprünglich aufgebrachten Schichtdicke (P2b', P2c'). Mit den erfindungsgemäßen, vernetzbaren Polymeren ist es also möglich, die Schichtdicke zu kontrollieren.

Claims

Patentansprüche
1. Polymer, das mindestens eine Struktureinheit der folgenden Formel (I) umfasst:
Figure imgf000044_0001
10
Formel (I)
dadurch gekennzeichnet, dass zumindest ein Vertreter aus Ar und Ar' eine Aldehydgruppe aufweist,
15 wobei die verwendeten Symbole und Indices die folgenden
Bedeutungen haben:
Ar und Ar' stellen unabhängig voneinander ein substituiertes oder unsubstituiertes, mono- oder polycyclisches, aromatisches oder heteroaromatisches Ringsystem dar; 20
X stellt eine kovalente Einfachbindung oder eine geradkettige, verzweigte oder cyclische Ci.-io-Alkylen-, Ci- 10-Alkenylen- oder Ci.io-Alkinylengruppe dar, in der ein oder mehrere H-Atome durch F ersetzt sein können und in der eine oder mehrere CH2-Gruppen durch O, NH oder S
25 ersetzt sein können; und
n ist 1 , 2, 3 oder 4; und
die gestrichelten Linien stellen Bindungen zur nächsten „n Struktureinheit des Polymers dar.
2. Polymer nach Anspruch 1 , dadurch gekennzeichnet, dass Ar' eine substituierte oder unsubstituierte Einheit ist, die aus der Gruppe ausgewählt ist, die aus folgendem besteht:
Phenylen, Biphenylen, Triphenylen, [i .i'^'J'yTerphenyl^'-ylen, Naphthylen, Anthracen, Binaphthylen, Phenanthren, Dihydrophenanthren, Pyren, Dihydropyren, Chrysen, Perylen, Tetracen, Pentacen, Benzo[a]pyren, Fluoren, Inden, Indenofluoren, Spirobifluoren, Pyrrol, Pyrazol, Imidazol, 1 ,2,3-Triazol, 1 ,2,4-Triazol, Tetrazol, Furan, Thiophen, Selenophen, Oxazol, Isoxazol, 1 ,2-Thiazol, 1 ,3-Thiazol, 1 ,2,3-Oxadiazol, 1 ,2,4-Oxadiazol, 1 ,2,5-Oxadiazol, 1 ,3,4-
Oxadiazol, 1 ,2,3-Thiadiazol, 1 ,2,4-Thiadiazol, 1 ,2,5-Thiadiazol, 1 ,3,4- Thiadiazol, Pyridin, Pyridazin, Pyrimidin, Pyrazin, 1 ,3,5-Triazin, 1 ,2,4- Triazin, 1 ,2,3-Triazin, 1 ,2,4,5-Tetrazin, 1 ,2,3,4-Tetrazin, 1 ,2,3,5- Tetrazin, Indol, Isoindol, Indolizin, Indazol, Benzimidazol, Benzotriazol, Purin, Naphthimidazol, Phenanthrimidazol, Pyridimidazol, Pyrazin- imidazol, Chinoxalinimidazol, Benzoxazol, Naphthoxazol, Anthroxazol,
Phenanthroxazol, Isoxazol, Benzothiazol, Benzofuran, Isobenzofuran, Dibenzofuran, Chinolin, Isochinolin, Pteridin, Benzo-5,6-chinolin, Benzo-6,7-chinolin, Benzo-7,8-chinolin, Benzoisochinolin, Acridin, Phenothiazin, Phenoxazin, Benzopyridazin, Benzopyrimidin, Chinoxalin, Phenazin, Naphthyridin, Azacarbazol, Benzocarbolin, Phenanthridin, Phenanthrolin, Thieno[2,3b]thiophen,
Thieno[3,2b]thiophen, Dithienothiophen, Isobenzothiophen, Dibenzo- thiophen und Benzothiadiazothiophen.
3. Polymer nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die
Struktureinheit der Formel (I) eine Struktureinheit der folgenden
Formel (II) ist:
Figure imgf000045_0001
Formel (II) dadurch gekennzeichnet, dass zumindest ein Ar der Einheiten Ar1 bis Ar6 eine Aldehydgruppe aufweist,
wobei die verwendeten Symbole und Indices die folgenden Bedeutungen haben:
Ar1 bis Ar6 sind gleich oder verschieden und stellen unabhängig voneinander ein substituiertes oder unsubstituiertes, mono- oder polycyclisches, aromatisches oder heteroaromatisches Ringsystem mit 5 bis 25 Ringatomen dar;
m ist 0 oder 1 ;
n ist 0, 1 oder 2;
die gestrichelten Linien stellen Bindungen zur nächsten Struktureinheit des Polymers dar;
mit der Maßgabe, dass, wenn n = 1 ist, die beiden N-Atome an verschiedene C-Atome des gleichen aromatischen Ringsystems binden.
4. Polymer nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass Ar der Formel (I) bzw. Ar1, Ar2, Ar4 und Ar5 der Formel (II) eine substituierte oder unsubstituierte Einheit ist, die aus der Gruppe ausgewählt ist, die aus folgendem besteht:
4,5-Dihydropyren, 4,5,9,10-Tetrahydrofluoren, 9,9'-Spirobifluoren,
Fluoren, Phenanthren, 9,10-Dihydrophenanthren, 5,7- Dihydrodibenzooxepin, cis-lndenofluoren, trans-lndenofluoren, Phenylen, Thiophen, Benzanthracen, Carbazol, Benzimidazol, Oxepin und Triazin.
5. Polymer nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass es eine weitere Struktureinheit umfasst, die von der Struktureinheit der Formel (I) und/oder (II) verschieden ist.
6. Polymer nach Anspruch 5, dadurch gekennzeichnet, dass die weitere Struktureinheit eine Struktureinheit der Formel (I) und/oder (II) ist, die keine Aldehydgruppe aufweist.
7. Polymer nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass Ar' in Formel (I) bzw. Ar3 und/oder Ar6 in Formel (II) eine Aldehydgruppe aufweist.
8. Polymer nach einem oder mehreren der Ansprüche 3 bis 7, dadurch gekennzeichnet, dass die Struktureinheit der Formel (II) ausgewählt ist aus den folgenden Struktureinheiten:
Figure imgf000047_0001
CHO
9. Mischung aus einem oder mehreren Polymer(en) nach einem oder mehreren der Ansprüche 1 bis 8 mit weiteren polymeren, oligomeren, dendritischen und/oder niedermolekularen Substanzen.
10. Formulierung aus einem oder mehreren Polymer(en) nach einem oder mehreren der Ansprüche 1 bis 8 oder aus einer Mischung nach Anspruch 9 in einem oder mehreren Lösungsmitteln.
11. Verwendung eines Polymers nach einem oder mehreren der
Ansprüche 1 bis 8, zur Herstellung eines vernetzbaren und/oder eines vernetzten Polymers.
c 12. Verfahren zur Herstellung eines vernetzten Polymers, dadurch gekennzeichnet, dass es die folgenden Schritte umfasst:
(a) Bereitstellen von Polymeren nach einem oder mehreren der Ansprüche 1 bis 8, die Aldehydgruppen aufweisen;
(b) Umwandlung der Aldehydgruppen in Vinylgruppen oder 10 Alkenylgruppen, und
(c) Vernetzen der Polymere.
13. Vernetztes Polymer, dadurch gekennzeichnet, dass es durch ein Verfahren nach Anspruch 12 erhältlich ist.
15 14. Verwendung eines vernetzten Polymers nach Anspruch 13 in elektronischen Vorrichtungen.
15. Organische elektronische Vorrichtung, dadurch gekennzeichnet, dass sie ein vernetztes Polymer nach Anspruch 13 enthält.
20
16. Organische elektronische Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, dass es sich um organische bzw. polymere organische Elektrolumineszenzvorrichtungen (OLED, PLED), organische integrierte Schaltungen (O-IC), organische Feld-Effekt- Transistoren (OFET), organische Dünnfilmtransistoren (OTFT), 25 organische Solarzellen (O-SC), organische Laserdioden (O-Laser), organische photo-voltaische (OPV) Elemente oder Vorrichtungen oder organische Photorezeptoren (OPCs) handelt.
30
PCT/EP2010/000590 2009-02-27 2010-02-01 Polymer mit aldehydgruppen, umsetzung sowie vernetzung dieses polymers, vernetztes polymer sowie elektrolumineszenzvorrichtung enthaltend dieses polymer WO2010097155A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020117022536A KR101732199B1 (ko) 2009-02-27 2010-02-01 알데히드기를 포함하는 중합체, 상기 중합체의 변환 및 가교, 가교된 중합체, 및 상기 중합체를 함유하는 전계발광 소자
JP2011551425A JP5670353B2 (ja) 2009-02-27 2010-02-01 アルデヒド基を含むポリマー、このポリマーの反応および架橋、架橋ポリマー、このポリマー含むエレクトロルミネッセンスデバイス
CN2010800096521A CN102333809A (zh) 2009-02-27 2010-02-01 具有醛基的聚合物、所述聚合物的转化和交联、交联的聚合物以及包含所述聚合物的电致发光器件
US13/203,506 US9156939B2 (en) 2009-02-27 2010-02-01 Polymer containing aldehyde groups, reaction and crosslinking of this polymer, crosslinked polymer, and electroluminescent device comprising this polymer
EP10703414.2A EP2401316B1 (de) 2009-02-27 2010-02-01 Polymer mit aldehydgruppen, umsetzung sowie vernetzung dieses polymers, vernetztes polymer sowie elektrolumineszenzvorrichtung enthaltend dieses polymer
US14/803,398 US9728724B2 (en) 2009-02-27 2015-07-20 Polymer containing aldehyde groups, reaction and crosslinking of this polymer, crosslinked polymer, and electroluminescent device comprising this polymer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102009010713A DE102009010713A1 (de) 2009-02-27 2009-02-27 Polymer mit Aldehydgruppen, Umsetzung sowie Vernetzung dieses Polymers, vernetztes Polymer sowie Elektrolumineszenzvorrichtung enthaltend dieses Polymer
DE102009010713.4 2009-02-27
DE200910059985 DE102009059985A1 (de) 2009-12-22 2009-12-22 Polymer mit Aldehydgruppen, Umsetzung sowie Vernetzung dieses Polymers, vernetztes Polymer sowie Elektrolumineszenzvorrichtung enthaltend dieses Polymer
DE102009059985.1 2009-12-22

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/203,506 A-371-Of-International US9156939B2 (en) 2009-02-27 2010-02-01 Polymer containing aldehyde groups, reaction and crosslinking of this polymer, crosslinked polymer, and electroluminescent device comprising this polymer
US14/803,398 Division US9728724B2 (en) 2009-02-27 2015-07-20 Polymer containing aldehyde groups, reaction and crosslinking of this polymer, crosslinked polymer, and electroluminescent device comprising this polymer

Publications (1)

Publication Number Publication Date
WO2010097155A1 true WO2010097155A1 (de) 2010-09-02

Family

ID=42016981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/000590 WO2010097155A1 (de) 2009-02-27 2010-02-01 Polymer mit aldehydgruppen, umsetzung sowie vernetzung dieses polymers, vernetztes polymer sowie elektrolumineszenzvorrichtung enthaltend dieses polymer

Country Status (7)

Country Link
US (2) US9156939B2 (de)
EP (1) EP2401316B1 (de)
JP (1) JP5670353B2 (de)
KR (1) KR101732199B1 (de)
CN (2) CN106084187A (de)
TW (1) TWI534172B (de)
WO (1) WO2010097155A1 (de)

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013007348A1 (de) 2011-07-11 2013-01-17 Merck Patent Gmbh Verbindungen für organische elektrolumineszenzvorrichtungen
WO2013156130A1 (de) 2012-04-17 2013-10-24 Merck Patent Gmbh Polymere enthaltend substituierte triarylamin-einheiten sowie elektrolumineszenzvorrichtungen enthaltend diese polymere
WO2015135625A1 (de) 2014-03-13 2015-09-17 Merck Patent Gmbh Formulierungen lumineszierender verbindungen
WO2015192941A1 (de) 2014-06-18 2015-12-23 Merck Patent Gmbh Zusammensetzungen für elektronische vorrichtungen
EP3026093A1 (de) 2014-11-28 2016-06-01 Basf Se Neuartige Materialien für Schalter der thermischen und fotochemischen Löslichkeit von konjugierten Polymeren zur Anwendung in der organischen Elektronik
EP3026094A1 (de) 2014-11-28 2016-06-01 Basf Se Neuartige Materialien zur Photovernetzung von konjugierten Polymeren zur Anwendung in organischer Optoelektronik
WO2016091353A1 (de) 2014-12-12 2016-06-16 Merck Patent Gmbh Organische verbindungen mit löslichen gruppen
WO2016184540A1 (en) 2015-05-18 2016-11-24 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2016188609A1 (en) 2015-05-22 2016-12-01 Merck Patent Gmbh Formulation containing an organic semiconductor and a metal complex
JP2017160449A (ja) * 2011-03-28 2017-09-14 ヒタチ ケミカル リサーチ センター インコーポレイテッド 溶解性を向上させたネットワーク共役ポリマー
WO2018007421A1 (en) 2016-07-08 2018-01-11 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2018054798A1 (de) 2016-09-21 2018-03-29 Merck Patent Gmbh Binukleare metallkomplexe für den einsatz als emitter in organischen elektrolumineszenzvorrichtungen
WO2018065357A1 (en) 2016-10-06 2018-04-12 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2018069196A1 (de) 2016-10-12 2018-04-19 Merck Patent Gmbh Binukleare metallkomplexe sowie elektronische vorrichtungen, insbesondere organische elektrolumineszenzvorrichtungen, enthaltend diese metallkomplexe
WO2018069197A1 (de) 2016-10-12 2018-04-19 Merck Patent Gmbh Metallkomplexe
WO2018069273A1 (de) 2016-10-13 2018-04-19 Merck Patent Gmbh Metallkomplexe
WO2018095888A1 (en) 2016-11-25 2018-05-31 Merck Patent Gmbh Bisbenzofuran-fused 2,8-diaminoindeno[1,2-b]fluorene derivatives and related compounds as materials for organic electroluminescent devices (oled)
WO2018095940A1 (en) 2016-11-25 2018-05-31 Merck Patent Gmbh Bisbenzofuran-fused indeno[1,2-b]fluorene derivatives and related compounds as materials for organic electroluminescent devices (oled)
WO2018099847A1 (de) 2016-11-30 2018-06-07 Merck Patent Gmbh Polymere mit asymmetrischen wiederholungseinheiten
WO2018114883A1 (de) 2016-12-22 2018-06-28 Merck Patent Gmbh Mischungen umfassend mindestens zwei organisch funktionelle verbindungen
WO2018114882A1 (de) 2016-12-22 2018-06-28 Merck Patent Gmbh Materialien für elektronische vorrichtungen
JP2018117127A (ja) * 2015-10-06 2018-07-26 住友化学株式会社 発光素子
WO2018134392A1 (en) 2017-01-23 2018-07-26 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2018234220A1 (de) 2017-06-21 2018-12-27 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2019007825A1 (en) 2017-07-03 2019-01-10 Merck Patent Gmbh ORGANIC ELECTROLUMINESCENCE DEVICE
WO2019076789A1 (en) 2017-10-17 2019-04-25 Merck Patent Gmbh MATERIALS FOR ORGANIC ELECTROLUMINESCENT DEVICES
WO2019101835A1 (en) 2017-11-24 2019-05-31 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2019101833A1 (en) 2017-11-24 2019-05-31 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2019170572A1 (en) 2018-03-06 2019-09-12 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2019170578A1 (en) 2018-03-06 2019-09-12 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2019224182A1 (en) 2018-05-24 2019-11-28 Merck Patent Gmbh Formulation comprising particles, a polymer and an organic solvent
WO2019224134A1 (en) 2018-05-23 2019-11-28 Merck Patent Gmbh Semiconducting nanoparticle
WO2020011701A1 (de) 2018-07-11 2020-01-16 Merck Patent Gmbh Formulierung enthaltend ein hochverzweigtes polymer, hochverzweigtes polymer sowie elektrooptische vorrichtung enthaltend dieses hochverzweigte polymer
WO2020043646A1 (en) 2018-08-28 2020-03-05 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2020043657A1 (en) 2018-08-28 2020-03-05 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2020043640A1 (en) 2018-08-28 2020-03-05 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2020078843A1 (en) 2018-10-15 2020-04-23 Merck Patent Gmbh Nanoparticle
WO2020094537A1 (de) 2018-11-07 2020-05-14 Merck Patent Gmbh Polymere mit amingruppenhaltigen wiederholungseinheiten
WO2020094539A1 (de) 2018-11-05 2020-05-14 Merck Patent Gmbh In einer organischen elektronischen vorrichtung einsetzbare verbindungen
WO2020099284A1 (en) 2018-11-14 2020-05-22 Merck Patent Gmbh Nanoparticle
WO2020127188A1 (en) 2018-12-20 2020-06-25 Merck Patent Gmbh Surface modified semiconducting light emitting nanoparticles and process for preparing such
WO2020148303A1 (de) 2019-01-17 2020-07-23 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2020156969A1 (en) 2019-01-29 2020-08-06 Merck Patent Gmbh Composition
WO2020178230A1 (en) 2019-03-04 2020-09-10 Merck Patent Gmbh Ligands for nano-sized materials
WO2020212295A1 (en) 2019-04-16 2020-10-22 Merck Patent Gmbh Formulation containing a crosslinkable polymer
WO2020216813A1 (en) 2019-04-26 2020-10-29 Merck Patent Gmbh Nanoparticle
US10862038B2 (en) 2014-12-30 2020-12-08 Merck Patent Gmbh Compositions comprising at least one polymer and at least one salt, and electroluminescent devices containing said compositions
WO2021122535A1 (de) 2019-12-17 2021-06-24 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2021191183A1 (de) 2020-03-26 2021-09-30 Merck Patent Gmbh Cyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2021204646A1 (de) 2020-04-06 2021-10-14 Merck Patent Gmbh Polycyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2022002771A1 (de) 2020-06-29 2022-01-06 Merck Patent Gmbh Heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2022002772A1 (de) 2020-06-29 2022-01-06 Merck Patent Gmbh Heteroaromatische verbindungen für organische elektrolumineszenzvorrichtungen
WO2022017997A1 (en) 2020-07-22 2022-01-27 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2022079067A1 (de) 2020-10-16 2022-04-21 Merck Patent Gmbh Verbindungen mit heteroatomen für organische elektrolumineszenzvorrichtungen
WO2022079068A1 (de) 2020-10-16 2022-04-21 Merck Patent Gmbh Heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2022129114A1 (de) 2020-12-18 2022-06-23 Merck Patent Gmbh Stickstoffhaltige verbindungen für organische elektrolumineszenzvorrichtungen
WO2022129113A1 (de) 2020-12-18 2022-06-23 Merck Patent Gmbh Stickstoffhaltige heteroaromaten für organische elektrolumineszenzvorrichtungen
WO2022214506A1 (en) 2021-04-09 2022-10-13 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2023117835A1 (en) 2021-12-21 2023-06-29 Merck Patent Gmbh Electronic devices
WO2023117836A1 (en) 2021-12-21 2023-06-29 Merck Patent Gmbh Electronic devices
WO2023139034A1 (en) 2022-01-20 2023-07-27 Merck Patent Gmbh Organic electric element with mixed host system
WO2023161167A1 (de) 2022-02-23 2023-08-31 Merck Patent Gmbh Stickstoffhaltige heterocyclen für organische elektrolumineszenzvorrichtungen
WO2023161168A1 (de) 2022-02-23 2023-08-31 Merck Patent Gmbh Aromatische heterocyclen für organische elektrolumineszenzvorrichtungen
WO2023213759A1 (de) 2022-05-04 2023-11-09 Merck Patent Gmbh Polymere enthaltend speziell substituierte triarylamin-einheiten sowie elektrolumineszenzvorrichtungen enthaltend diese polymere
WO2024115426A1 (de) 2022-12-01 2024-06-06 Merck Patent Gmbh Polymere enthaltend spirotruxenderivate als wiederholungseinheit sowie elektrolumineszenzvorrichtungen enthaltend diese polymere

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201223369D0 (en) * 2012-12-24 2013-02-06 Cambridge Display Tech Ltd Polymer and device
CN104447566A (zh) * 2013-09-13 2015-03-25 沈阳工业大学 N1联苯相联的菲并咪唑化合物及其制备方法与应用
US10651388B2 (en) 2014-12-30 2020-05-12 Merck Patent Gmbh Compositions comprising at least one polymer and at least one metal complex and to electroluminescent devices containing said compositions
JP6596918B2 (ja) * 2015-05-19 2019-10-30 住友化学株式会社 発光素子
FR3041350B1 (fr) * 2015-09-21 2019-05-10 Commissariat A L'energie Atomique Et Aux Energies Alternatives Electrolyte solide pour generateur electrochimique
JP6783121B2 (ja) * 2015-12-24 2020-11-11 群栄化学工業株式会社 アリル基含有樹脂、その製造方法、樹脂ワニスおよび積層板の製造方法
CN108084407B (zh) * 2017-12-13 2019-12-03 华南协同创新研究院 含9,9,10,10-四氧-噻蒽七元稠环单元的聚合物及其制备方法与应用
JP6866333B2 (ja) 2018-08-16 2021-04-28 エルジー・ケム・リミテッド 4又は5位に芳香族アミノ基が置換したフルオレン誘導体を繰り返し単位として主鎖に含むポリマー、その正孔輸送材料としての使用、並びにそれを含む有機電子デバイス
GB201815338D0 (en) * 2018-09-20 2018-11-07 Sumitomo Chemical Co Light-emitting particle
JP7330018B2 (ja) * 2018-12-06 2023-08-21 住友化学株式会社 高分子化合物の製造方法
US11370879B2 (en) 2018-12-14 2022-06-28 International Business Machines Corporation Solution-processable indenofluorenes and methods to generate solution-processable indenofluorenes
CN111875551B (zh) * 2019-09-02 2022-04-15 广东聚华印刷显示技术有限公司 有机化合物、电子器件及相应的制备方法
CN112851895B (zh) * 2021-01-06 2022-03-15 上海交通大学 一种基于薁的二维共价有机框架的合成方法及其在电化学二氧化氮传感器中的应用
CN112679685B (zh) * 2021-01-06 2021-09-28 上海交通大学 一种基于蒽单元的共轭有机框架材料cof-ta及其制备方法

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0637899A1 (de) 1993-08-02 1995-02-08 BASF Aktiengesellschaft Elektrolumineszierende Anordnung
WO1996020253A1 (en) 1994-12-28 1996-07-04 Cambridge Display Technology Ltd. Polymers for use in optical devices
WO2002067343A1 (en) 2001-02-20 2002-08-29 Isis Innovation Limited Aryl-aryl dendrimers
WO2002068435A1 (de) 2001-02-24 2002-09-06 Covion Organic Semiconductors Gmbh Rhodium- und iridium-komplexe
EP1239526A2 (de) 2001-03-08 2002-09-11 Canon Kabushiki Kaisha Metallkomplex, lumineszierende Anordnung und Anzeigevorrichtung
WO2002072714A1 (de) 2001-03-10 2002-09-19 Covion Organic Semiconductors Gmbh Lösung und dispersionen organischer halbleiter
WO2002077060A1 (de) 2001-03-24 2002-10-03 Covion Organic Semiconductors Gmbh Konjugierte polymere enthaltend spirobifluoren-einheiten und fluoren-einheiten und deren verwendung
WO2002081488A1 (de) 2001-04-05 2002-10-17 Covion Organic Semiconductors Gmbh Rhodium-und iridium-komplexe
WO2003019694A2 (de) 2001-08-24 2003-03-06 Covion Organic Semiconductors Gmbh Lösungen polymerer halbleiter
WO2003048225A2 (de) 2001-12-06 2003-06-12 Covion Organic Semiconductors Gmbh Prozess zur herstellung von aryl-aryl gekoppelten verbindungen
WO2003057762A1 (fr) * 2001-12-28 2003-07-17 Sumitomo Chemical Company, Limited Procede de production de composes de poids moleculaire eleve
WO2004026886A2 (de) 2002-08-24 2004-04-01 Covion Organic Semiconductors Gmbh Rhodium-und iridium-komplexe
WO2004037887A2 (de) 2002-10-25 2004-05-06 Covion Organic Semiconductors Gmbh Arylamin-einheiten enthaltende konjugierte polymere, deren darstellung und verwendung
WO2004070772A2 (de) 2003-02-06 2004-08-19 Covion Organic Semiconductors Gmbh Carbazol-enthaltende konjugierte polymere und blends, deren darstellung und verwendung
WO2004113468A1 (de) 2003-06-26 2004-12-29 Covion Organic Semiconductors Gmbh Neue materialien für die elektrolumineszenz
WO2005014689A2 (de) 2003-08-12 2005-02-17 Covion Organic Semiconductors Gmbh Konjugierte polymere enthaltend dihydrophenanthren-einheiten und deren verwendung
WO2005026144A1 (ja) 2003-09-12 2005-03-24 Sumitomo Chemical Company, Limited デンドリマー化合物及びそれを用いた有機発光素子
WO2005040302A1 (de) 2003-10-22 2005-05-06 Merck Patent Gmbh Neue materialien für die elektrolumineszenz und deren verwendung
WO2005042548A1 (de) 2003-10-30 2005-05-12 Merck Patent Gmbh Verfahren zur herstellung von heteroleptischer, ortho-metallierter organometall-verbindungen
WO2005049689A2 (en) 2003-11-17 2005-06-02 Sumitomo Chemical Company, Limited Crosslinkable substituted fluorene compounds and conjugated oligomers or polymers based thereon
WO2005052027A1 (en) 2003-11-17 2005-06-09 Sumitomo Chemical Company, Limited Crosslinkable arylamine compounds and conjugated oligomers of polymers based thereon
WO2005083812A2 (de) 2004-02-26 2005-09-09 Merck Patent Gmbh Verfahren zur vernetzung organischer halbleiter
WO2006043087A1 (en) 2004-10-22 2006-04-27 Cambridge Display Technology Limited Monomer for making a crosslinked polymer
US20070228364A1 (en) 2005-12-27 2007-10-04 Radu Nora S Compositions comprising novel copolymers and electronic devices made with such compositions

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9000101A (nl) 1990-01-16 1991-08-16 Dmv Campina Bv Werkwijze voor bereiden van ijs-produkten.
JP4218340B2 (ja) * 2001-12-28 2009-02-04 住友化学株式会社 高分子化合物の製造方法
US6982179B2 (en) 2002-11-15 2006-01-03 University Display Corporation Structure and method of fabricating organic devices
DE10337077A1 (de) 2003-08-12 2005-03-10 Covion Organic Semiconductors Konjugierte Copolymere, deren Darstellung und Verwendung
EP1778695B1 (de) * 2004-08-21 2012-03-21 Merck Patent GmbH POLYMERE VON THIENO[2,3-b]THIOPHEN
JP2006152014A (ja) 2004-11-25 2006-06-15 Sumitomo Chemical Co Ltd 高分子錯体化合物およびそれを用いた高分子発光素子
US8242223B2 (en) 2006-08-24 2012-08-14 E I Du Pont De Nemours And Company Hole transport polymers
JP5625272B2 (ja) 2008-07-29 2014-11-19 住友化学株式会社 1,3−ジエンを含む化合物及びその製造方法
WO2010065178A1 (en) * 2008-12-05 2010-06-10 General Electric Company Functionalized polyfluorenes for use in optoelectronic devices
US8512879B2 (en) * 2009-11-10 2013-08-20 General Electric Company Polymer for optoelectronic device

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0637899A1 (de) 1993-08-02 1995-02-08 BASF Aktiengesellschaft Elektrolumineszierende Anordnung
WO1996020253A1 (en) 1994-12-28 1996-07-04 Cambridge Display Technology Ltd. Polymers for use in optical devices
WO2002067343A1 (en) 2001-02-20 2002-08-29 Isis Innovation Limited Aryl-aryl dendrimers
WO2002068435A1 (de) 2001-02-24 2002-09-06 Covion Organic Semiconductors Gmbh Rhodium- und iridium-komplexe
EP1239526A2 (de) 2001-03-08 2002-09-11 Canon Kabushiki Kaisha Metallkomplex, lumineszierende Anordnung und Anzeigevorrichtung
WO2002072714A1 (de) 2001-03-10 2002-09-19 Covion Organic Semiconductors Gmbh Lösung und dispersionen organischer halbleiter
WO2002077060A1 (de) 2001-03-24 2002-10-03 Covion Organic Semiconductors Gmbh Konjugierte polymere enthaltend spirobifluoren-einheiten und fluoren-einheiten und deren verwendung
WO2002081488A1 (de) 2001-04-05 2002-10-17 Covion Organic Semiconductors Gmbh Rhodium-und iridium-komplexe
WO2003019694A2 (de) 2001-08-24 2003-03-06 Covion Organic Semiconductors Gmbh Lösungen polymerer halbleiter
WO2003048225A2 (de) 2001-12-06 2003-06-12 Covion Organic Semiconductors Gmbh Prozess zur herstellung von aryl-aryl gekoppelten verbindungen
WO2003057762A1 (fr) * 2001-12-28 2003-07-17 Sumitomo Chemical Company, Limited Procede de production de composes de poids moleculaire eleve
WO2004026886A2 (de) 2002-08-24 2004-04-01 Covion Organic Semiconductors Gmbh Rhodium-und iridium-komplexe
WO2004037887A2 (de) 2002-10-25 2004-05-06 Covion Organic Semiconductors Gmbh Arylamin-einheiten enthaltende konjugierte polymere, deren darstellung und verwendung
WO2004070772A2 (de) 2003-02-06 2004-08-19 Covion Organic Semiconductors Gmbh Carbazol-enthaltende konjugierte polymere und blends, deren darstellung und verwendung
WO2004113468A1 (de) 2003-06-26 2004-12-29 Covion Organic Semiconductors Gmbh Neue materialien für die elektrolumineszenz
WO2005014689A2 (de) 2003-08-12 2005-02-17 Covion Organic Semiconductors Gmbh Konjugierte polymere enthaltend dihydrophenanthren-einheiten und deren verwendung
WO2005026144A1 (ja) 2003-09-12 2005-03-24 Sumitomo Chemical Company, Limited デンドリマー化合物及びそれを用いた有機発光素子
WO2005040302A1 (de) 2003-10-22 2005-05-06 Merck Patent Gmbh Neue materialien für die elektrolumineszenz und deren verwendung
WO2005042548A1 (de) 2003-10-30 2005-05-12 Merck Patent Gmbh Verfahren zur herstellung von heteroleptischer, ortho-metallierter organometall-verbindungen
WO2005049689A2 (en) 2003-11-17 2005-06-02 Sumitomo Chemical Company, Limited Crosslinkable substituted fluorene compounds and conjugated oligomers or polymers based thereon
WO2005052027A1 (en) 2003-11-17 2005-06-09 Sumitomo Chemical Company, Limited Crosslinkable arylamine compounds and conjugated oligomers of polymers based thereon
WO2005083812A2 (de) 2004-02-26 2005-09-09 Merck Patent Gmbh Verfahren zur vernetzung organischer halbleiter
WO2006043087A1 (en) 2004-10-22 2006-04-27 Cambridge Display Technology Limited Monomer for making a crosslinked polymer
US20070228364A1 (en) 2005-12-27 2007-10-04 Radu Nora S Compositions comprising novel copolymers and electronic devices made with such compositions

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DATABASE CA [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 18 July 2003 (2003-07-18), NOGUCHI, TAKANOBU ET AL: "Process for production of high-molecular compounds useful for polymer LED or the like", XP002574884, retrieved from STN Database accession no. 2003:551570 *
FRECHET; JEAN M. J.; HAWKER; CRAIG J.: "Hyperbranched polyphenylene and hyperbranched polyesters: new soluble, three-dimensional, reactive polymers", REACTIVE & FUNCTIONAL POLYMERS, vol. 26, no. 1-3, 1995, pages 127 - 36
JANSSEN, H. M.; MEIJER, E. W.: "The synthesis and characterization of dendritic molecules", MATERIALS SCIENCE AND TECHNOLOGY, vol. 20, 1999, pages 403 - 458
QIANG FANG; TAKAKAZU YAMAMOTO: "New Alternative Copolymer Constituted of Fluorene and Triphenylamine Units with a Tunable -CHO Group in the Side Chain. Quantitative Transformation of the -CHO Group to -CH=CHAr Groups and Optical and Electrochemical Properties of the Polymers", MACROMOLECULES, vol. 37, 3 July 2004 (2004-07-03), pages 5894 - 5899, XP002574885 *
TOMALIA, DONALD A.: "Dendrimer molecules", SCIENTIFIC AMERICAN, vol. 272, no. 5, 1995, pages 62 - 6
XIA H ET AL: "A facile convergent procedure for the preparation of triphenylamine-based dendrimers with truxene cores", TETRAHEDRON, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 64, no. 24, 9 June 2008 (2008-06-09), pages 5736 - 5742, XP022658984, ISSN: 0040-4020, [retrieved on 20080409] *

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017160449A (ja) * 2011-03-28 2017-09-14 ヒタチ ケミカル リサーチ センター インコーポレイテッド 溶解性を向上させたネットワーク共役ポリマー
WO2013007348A1 (de) 2011-07-11 2013-01-17 Merck Patent Gmbh Verbindungen für organische elektrolumineszenzvorrichtungen
WO2013156130A1 (de) 2012-04-17 2013-10-24 Merck Patent Gmbh Polymere enthaltend substituierte triarylamin-einheiten sowie elektrolumineszenzvorrichtungen enthaltend diese polymere
WO2013156129A1 (de) 2012-04-17 2013-10-24 Merck Patent Gmbh Polymere enthaltend substituierte oligo-triarylamin-einheiten sowie elektrolumineszenzvorrichtungen enthaltend diese polymere
WO2013156125A1 (de) 2012-04-17 2013-10-24 Merck Patent Gmbh Vernetzbare sowie vernetzte polymere, verfahren zu deren herstellung sowie deren verwendung
WO2015135625A1 (de) 2014-03-13 2015-09-17 Merck Patent Gmbh Formulierungen lumineszierender verbindungen
DE102014008722B4 (de) 2014-06-18 2024-08-22 Merck Patent Gmbh Zusammensetzungen für elektronische Vorrichtungen, Formulierung diese enthaltend, Verwendung der Zusammensetzung, Verwendung der Formulierung sowie organische elektronische Vorrichtung enthaltend die Zusammensetzung
WO2015192941A1 (de) 2014-06-18 2015-12-23 Merck Patent Gmbh Zusammensetzungen für elektronische vorrichtungen
EP3026093A1 (de) 2014-11-28 2016-06-01 Basf Se Neuartige Materialien für Schalter der thermischen und fotochemischen Löslichkeit von konjugierten Polymeren zur Anwendung in der organischen Elektronik
EP3026094A1 (de) 2014-11-28 2016-06-01 Basf Se Neuartige Materialien zur Photovernetzung von konjugierten Polymeren zur Anwendung in organischer Optoelektronik
WO2016091353A1 (de) 2014-12-12 2016-06-16 Merck Patent Gmbh Organische verbindungen mit löslichen gruppen
US10862038B2 (en) 2014-12-30 2020-12-08 Merck Patent Gmbh Compositions comprising at least one polymer and at least one salt, and electroluminescent devices containing said compositions
WO2016184540A1 (en) 2015-05-18 2016-11-24 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2016188609A1 (en) 2015-05-22 2016-12-01 Merck Patent Gmbh Formulation containing an organic semiconductor and a metal complex
JP2018117127A (ja) * 2015-10-06 2018-07-26 住友化学株式会社 発光素子
WO2018007421A1 (en) 2016-07-08 2018-01-11 Merck Patent Gmbh Materials for organic electroluminescent devices
EP3792235A1 (de) 2016-07-08 2021-03-17 Merck Patent GmbH Materialien für organische elektrolumineszente vorrichtungen
WO2018054798A1 (de) 2016-09-21 2018-03-29 Merck Patent Gmbh Binukleare metallkomplexe für den einsatz als emitter in organischen elektrolumineszenzvorrichtungen
WO2018065357A1 (en) 2016-10-06 2018-04-12 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2018069196A1 (de) 2016-10-12 2018-04-19 Merck Patent Gmbh Binukleare metallkomplexe sowie elektronische vorrichtungen, insbesondere organische elektrolumineszenzvorrichtungen, enthaltend diese metallkomplexe
WO2018069197A1 (de) 2016-10-12 2018-04-19 Merck Patent Gmbh Metallkomplexe
WO2018069273A1 (de) 2016-10-13 2018-04-19 Merck Patent Gmbh Metallkomplexe
WO2018095888A1 (en) 2016-11-25 2018-05-31 Merck Patent Gmbh Bisbenzofuran-fused 2,8-diaminoindeno[1,2-b]fluorene derivatives and related compounds as materials for organic electroluminescent devices (oled)
WO2018095940A1 (en) 2016-11-25 2018-05-31 Merck Patent Gmbh Bisbenzofuran-fused indeno[1,2-b]fluorene derivatives and related compounds as materials for organic electroluminescent devices (oled)
WO2018099847A1 (de) 2016-11-30 2018-06-07 Merck Patent Gmbh Polymere mit asymmetrischen wiederholungseinheiten
WO2018114883A1 (de) 2016-12-22 2018-06-28 Merck Patent Gmbh Mischungen umfassend mindestens zwei organisch funktionelle verbindungen
WO2018114882A1 (de) 2016-12-22 2018-06-28 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2018134392A1 (en) 2017-01-23 2018-07-26 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2018234220A1 (de) 2017-06-21 2018-12-27 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2019007825A1 (en) 2017-07-03 2019-01-10 Merck Patent Gmbh ORGANIC ELECTROLUMINESCENCE DEVICE
US11578063B2 (en) 2017-10-17 2023-02-14 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2019076789A1 (en) 2017-10-17 2019-04-25 Merck Patent Gmbh MATERIALS FOR ORGANIC ELECTROLUMINESCENT DEVICES
WO2019101833A1 (en) 2017-11-24 2019-05-31 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2019101835A1 (en) 2017-11-24 2019-05-31 Merck Patent Gmbh Materials for organic electroluminescent devices
US11639339B2 (en) 2017-11-24 2023-05-02 Merck Patent Gmbh Materials for organic electroluminescent devices
US11939339B2 (en) 2017-11-24 2024-03-26 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2019170572A1 (en) 2018-03-06 2019-09-12 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2019170578A1 (en) 2018-03-06 2019-09-12 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2019224134A1 (en) 2018-05-23 2019-11-28 Merck Patent Gmbh Semiconducting nanoparticle
WO2019224182A1 (en) 2018-05-24 2019-11-28 Merck Patent Gmbh Formulation comprising particles, a polymer and an organic solvent
WO2020011701A1 (de) 2018-07-11 2020-01-16 Merck Patent Gmbh Formulierung enthaltend ein hochverzweigtes polymer, hochverzweigtes polymer sowie elektrooptische vorrichtung enthaltend dieses hochverzweigte polymer
WO2020043646A1 (en) 2018-08-28 2020-03-05 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2020043640A1 (en) 2018-08-28 2020-03-05 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2020043657A1 (en) 2018-08-28 2020-03-05 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2020078843A1 (en) 2018-10-15 2020-04-23 Merck Patent Gmbh Nanoparticle
WO2020094539A1 (de) 2018-11-05 2020-05-14 Merck Patent Gmbh In einer organischen elektronischen vorrichtung einsetzbare verbindungen
WO2020094537A1 (de) 2018-11-07 2020-05-14 Merck Patent Gmbh Polymere mit amingruppenhaltigen wiederholungseinheiten
WO2020099284A1 (en) 2018-11-14 2020-05-22 Merck Patent Gmbh Nanoparticle
WO2020127188A1 (en) 2018-12-20 2020-06-25 Merck Patent Gmbh Surface modified semiconducting light emitting nanoparticles and process for preparing such
WO2020148303A1 (de) 2019-01-17 2020-07-23 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2020156969A1 (en) 2019-01-29 2020-08-06 Merck Patent Gmbh Composition
WO2020178230A1 (en) 2019-03-04 2020-09-10 Merck Patent Gmbh Ligands for nano-sized materials
WO2020212295A1 (en) 2019-04-16 2020-10-22 Merck Patent Gmbh Formulation containing a crosslinkable polymer
WO2020216813A1 (en) 2019-04-26 2020-10-29 Merck Patent Gmbh Nanoparticle
WO2021122535A1 (de) 2019-12-17 2021-06-24 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2021191183A1 (de) 2020-03-26 2021-09-30 Merck Patent Gmbh Cyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2021204646A1 (de) 2020-04-06 2021-10-14 Merck Patent Gmbh Polycyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2022002772A1 (de) 2020-06-29 2022-01-06 Merck Patent Gmbh Heteroaromatische verbindungen für organische elektrolumineszenzvorrichtungen
WO2022002771A1 (de) 2020-06-29 2022-01-06 Merck Patent Gmbh Heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2022017997A1 (en) 2020-07-22 2022-01-27 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2022079067A1 (de) 2020-10-16 2022-04-21 Merck Patent Gmbh Verbindungen mit heteroatomen für organische elektrolumineszenzvorrichtungen
WO2022079068A1 (de) 2020-10-16 2022-04-21 Merck Patent Gmbh Heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2022129113A1 (de) 2020-12-18 2022-06-23 Merck Patent Gmbh Stickstoffhaltige heteroaromaten für organische elektrolumineszenzvorrichtungen
WO2022129114A1 (de) 2020-12-18 2022-06-23 Merck Patent Gmbh Stickstoffhaltige verbindungen für organische elektrolumineszenzvorrichtungen
WO2022214506A1 (en) 2021-04-09 2022-10-13 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2023117835A1 (en) 2021-12-21 2023-06-29 Merck Patent Gmbh Electronic devices
WO2023117836A1 (en) 2021-12-21 2023-06-29 Merck Patent Gmbh Electronic devices
WO2023139034A1 (en) 2022-01-20 2023-07-27 Merck Patent Gmbh Organic electric element with mixed host system
WO2023161167A1 (de) 2022-02-23 2023-08-31 Merck Patent Gmbh Stickstoffhaltige heterocyclen für organische elektrolumineszenzvorrichtungen
WO2023161168A1 (de) 2022-02-23 2023-08-31 Merck Patent Gmbh Aromatische heterocyclen für organische elektrolumineszenzvorrichtungen
WO2023213759A1 (de) 2022-05-04 2023-11-09 Merck Patent Gmbh Polymere enthaltend speziell substituierte triarylamin-einheiten sowie elektrolumineszenzvorrichtungen enthaltend diese polymere
WO2024115426A1 (de) 2022-12-01 2024-06-06 Merck Patent Gmbh Polymere enthaltend spirotruxenderivate als wiederholungseinheit sowie elektrolumineszenzvorrichtungen enthaltend diese polymere

Also Published As

Publication number Publication date
CN106084187A (zh) 2016-11-09
US20110303876A1 (en) 2011-12-15
US9728724B2 (en) 2017-08-08
EP2401316A1 (de) 2012-01-04
JP2012519214A (ja) 2012-08-23
US9156939B2 (en) 2015-10-13
US20150325793A1 (en) 2015-11-12
KR20110137325A (ko) 2011-12-22
EP2401316B1 (de) 2017-05-24
TWI534172B (zh) 2016-05-21
JP5670353B2 (ja) 2015-02-18
TW201100459A (en) 2011-01-01
CN102333809A (zh) 2012-01-25
KR101732199B1 (ko) 2017-05-02

Similar Documents

Publication Publication Date Title
EP2401316B1 (de) Polymer mit aldehydgruppen, umsetzung sowie vernetzung dieses polymers, vernetztes polymer sowie elektrolumineszenzvorrichtung enthaltend dieses polymer
EP2315792B1 (de) Elektrolumineszierende polymere, verfahren zu ihrer herstellung sowie ihre verwendung
WO2010136110A2 (de) Polymere, die substituierte indenofluorenderivate als struktureinheit enthalten, verfahren zu deren herstellung sowie deren verwendung
WO2011098205A1 (de) Elektrolumineszierende polymere, verfahren zu ihrer herstellung sowie ihre verwendung
DE102006038683A1 (de) Konjugierte Polymere, deren Darstellung und Verwendung
DE102005060473A1 (de) Konjugierte Polymere, deren Darstellung und Verwendung
EP2046785B1 (de) 1,4-bis(2-thienylvinyl)benzolderivate und ihre verwendung
EP2867329A1 (de) Polymere enthaltend 2,7-pyren-struktureinheiten
WO2012034626A1 (de) Materialien für organische elektrolumineszenzvorrichtungen
WO2012013310A1 (de) Polymere enthaltend substituierte benzodithiopheneinheiten, blends enthaltend diese polymere sowie vorrichtungen enthaltend diese polymere oder blends
EP2601237B1 (de) Polymere mit struktureinheiten, die elektronen-transport-eigenschaften aufweisen
JP5710484B2 (ja) 低い多分散度を有する新規ポリマー
WO2012007102A1 (de) Polymere materialien für organische elektrolumineszenzvorrichtungen
WO2013124029A2 (de) Polymere enthaltend dibenzocycloheptan-struktureinheiten
WO2011009522A2 (de) Materialien für elektronische vorrichtungen
DE102009010713A1 (de) Polymer mit Aldehydgruppen, Umsetzung sowie Vernetzung dieses Polymers, vernetztes Polymer sowie Elektrolumineszenzvorrichtung enthaltend dieses Polymer
DE102009059985A1 (de) Polymer mit Aldehydgruppen, Umsetzung sowie Vernetzung dieses Polymers, vernetztes Polymer sowie Elektrolumineszenzvorrichtung enthaltend dieses Polymer

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080009652.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10703414

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010703414

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010703414

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13203506

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011551425

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117022536

Country of ref document: KR

Kind code of ref document: A