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Abstract

One consequence of the recent coronavirus pandemic is increased demand and
use of online services around the globe. At the same time, performance require-
ments for modern technologies are becoming more stringent as users become
accustomed to higher standards. These increased performance and availability
requirements, coupled with the unpredictable usage growth, are driving an
increasing proportion of applications to run on public cloud platforms as they
promise better scalability and reliability.

With data centers already responsible for about one percent of the world’s
power consumption, optimizing resource usage is of paramount importance. Si-
multaneously, meeting the increasing and changing resource and performance
requirements is only possible by optimizing resource management without in-
troducing additional overhead. This requires the research and development of
new modeling approaches to understand the behavior of running applications
with minimal information.

However, the emergence of modern software paradigms makes it increasingly
difficult to derive such models and renders previous performance modeling
techniques infeasible. Modern cloud applications are often deployed as a col-
lection of fine-grained and interconnected components called microservices.
Microservice architectures offer massive benefits but also have broad implica-
tions for the performance characteristics of the respective systems. In addition,
the microservices paradigm is typically paired with a DevOps culture, resulting
in frequent application and deployment changes. Such applications are often
referred to as cloud-native applications. In summary, the increasing use of
ever-changing cloud-hosted microservice applications introduces a number of
unique challenges for modeling the performance of modern applications. These
include the amount, type, and structure of monitoring data, frequent behavioral
changes, or infrastructure variabilities. This violates common assumptions of
the state of the art and opens a research gap for our work.

In this thesis, we present five techniques for automated learning of perfor-
mance models for cloud-native software systems. We achieve this by combining
machine learning with traditional performance modeling techniques. Unlike
previous work, our focus is on cloud-hosted and continuously evolving mi-
croservice architectures, so-called cloud-native applications. Therefore, our
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contributions aim to solve the above challenges to deliver automated perfor-
mance models with minimal computational overhead and no manual inter-
vention. Depending on the cloud computing model, privacy agreements, or
monitoring capabilities of each platform, we identify different scenarios where
performance modeling, prediction, and optimization techniques can provide
great benefits. Specifically, the contributions of this thesis are as follows:

e Monitorless: Application-agnostic prediction of performance degradations. To
manage application performance with only platform-level monitoring,
we propose Monitorless, the first truly application-independent approach
to detecting performance degradation. We use machine learning to bridge
the gap between platform-level monitoring and application-specific mea-
surements, eliminating the need for application-level monitoring. Moni-
torless creates a single and holistic resource saturation model that can be
used for heterogeneous and untrained applications.

Results show that Monitorless infers resource-based performance degrada-
tion with 97% accuracy. Moreover, it can achieve similar performance to
typical autoscaling solutions, despite using less monitoring information.

o SuanMing: Predicting performance degradation using tracing. We introduce
SuanMing to mitigate performance issues before they impact the user expe-
rience. This contribution is applied in scenarios where tracing tools enable
application-level monitoring. SuanMing predicts explainable causes of
expected performance degradations and prevents performance degrada-
tions before they occur.

Evaluation results show that SuanMing can predict and pinpoint future
performance degradations with an accuracy of over 90%.

e SARDE: Continuous and autonomous estimation of resource demands. We
present SARDE to learn application models for highly variable applica-
tion deployments. This contribution focuses on the continuous estimation
of application resource demands, a key parameter of performance models.
SARDE represents an autonomous ensemble estimation technique. It dy-
namically and continuously optimizes, selects, and executes an ensemble
of approaches to estimate resource demands in response to changes in
the application or its environment.

Through continuous online adaptation, SARDE efficiently achieves an
average resource demand estimation error of 15.96% in our evaluation.

o DepIC: Learning parametric dependencies from monitoring data. DepIC utilizes
feature selection techniques in combination with an ensemble regression
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approach to automatically identify and characterize parametric depen-
dencies. Although parametric dependencies can massively improve the
accuracy of performance models, DepIC is the first approach to automati-
cally learn such parametric dependencies from passive monitoring data
streams.

Our evaluation shows that DepIC achieves 91.7% precision in identifying
dependencies and reduces the characterization prediction error by 30%
compared to the best individual approach.

e Baloo: Modeling the configuration space of databases. To study the impact of
different configurations within distributed |[Database Management Sys+
ftems (DBMSs )| we introduce Baloo. Our last contribution models the
configuration space of databases considering measurement variabilities
in the cloud. More specifically, Baloo dynamically estimates the required
benchmarking measurements and automatically builds a configuration

space model of a given[DBMS

Our evaluation of Baloo on a dataset consisting of 900 configuration points
shows that the framework achieves a prediction error of less than 11%
while saving up to 80% of the measurement effort.

Although the contributions themselves are orthogonally aligned, taken to-
gether they provide a holistic approach to performance management of modern
cloud-native microservice applications. Our contributions are a significant step
forward as they specifically target novel and cloud-native software develop-
ment and operation paradigms, surpassing the capabilities and limitations of
previous approaches. In addition, the research presented in this paper also has
a significant impact on the industry, as the contributions were developed in
collaboration with research teams from Nokia Bell Labs, Huawei, and Google.
Opverall, our solutions open up new possibilities for managing and optimizing
cloud applications and improve cost and energy efficiency.






Zusammenfassung

Eine der Folgen der weltweiten Coronavirus-Pandemie ist die erhhte Nach-
frage und Nutzung von Onlinediensten in der gesamten Welt. Gleichzeit-
ig werden die Performanceanforderungen an moderne Technologien immer
strenger, da die Benutzer an hohere Standards gewohnt sind. Diese gestiege-
nen Performance- und Verfiigbarkeitsanforderungen, gepaart mit dem un-
vorhersehbaren Nutzerwachstum, fithren dazu, dass ein zunehmender Anteil
der Anwendungen auf Public-Cloud-Plattformen lduft, da diese eine bessere
Skalierbarkeit und Zuverladssigkeit versprechen.

Da Rechenzentren bereits heute fiir etwa ein Prozent des weltweiten Stromver-
brauchs verantwortlich sind, ist es von grofiter Bedeutung, den Ressourcenein-
satz zu optimieren. Die gleichzeitige Erfiillung der steigenden und variierenden
Ressourcen- und Performanceanforderungen ist nur durch eine Optimierung
des Ressourcenmanagements moglich, ohne gleichzeitig zusitzlichen Over-
head einzufiihren. Dies erfordert die Erforschung und Entwicklung neuer
Modellierungsansitze, um das Verhalten der laufenden Anwendungen mit
moglichst wenigen Informationen zu verstehen.

Das Aufkommen moderner Softwareparadigmen macht es jedoch zunehm-
end schwieriger, solche Modelle zu lernen und macht bisherige Modellierung-
stechniken unbrauchbar. Moderne Cloud-Anwendungen werden oft als eine
Sammlung von feingranularen, miteinander verbundenen Komponenten, soge-
nannten Microservices, bereitgestellt. Microservicearchitekturen bieten massive
Vorteile, haben aber auch weitreichende Auswirkungen auf die Performance der
jeweiligen Systeme. Dariiber hinaus wird das Microserviceparadigma héufig in
Verbindung mit einer DevOps-Kultur eingesetzt, was zu haufigen Anderungen
am Deployment oder der Anwendung selbst fiihrt. Solche Anwendungen wer-
den auch als cloud-native Anwendungen bezeichnet. Zusammenfassend lasst
sich sagen, dass der zunehmende Einsatz von sich stdndig d&ndernden und in
der Cloud gehosteten Microservice-Anwendungen eine Reihe von besonderen
Herausforderungen fiir die Modellierung der Performance von modernen An-
wendungen mit sich bringt. Darunter sind die Menge, Art und Struktur der
Monitoringdaten, hdufige Anderungen am Verhalten oder Verdnderungen der
zugrundeliegenden Infrastruktur. Das verstofst gegen gangige Annahmen des
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aktuellen Stands der Technik und erdffnet eine Forschungsliicke fiir unsere
Arbeit.

In der vorliegenden Arbeit stellen wir fiinf Techniken zum automatisierten
Lernen von Performancemodellen fiir cloud-native Softwaresysteme vor. Wir
erreichen dies durch die Kombination von maschinellem Lernen mit tradi-
tionellen Performance-Modellierungstechniken. Im Gegensatz zu fritheren
Arbeiten liegt unser Fokus auf in der Cloud gehosteten und sich standig weit-
erentwickelnden Microservice-Architekturen, sogenannten cloud-nativen An-
wendungen. Daher zielen unsere Beitrdge darauf ab, die oben genannten Her-
ausforderungen zu 16sen, um automatisierte Performancemodelle mit mini-
malem Rechenaufwand und ohne manuellen Aufwand zu erzeugen. Abhéingig
vom jeweiligen Cloudmodell, eventuellen Datenschutzvereinbarungen oder
den Moglichkeiten des Monitoringsframworks der jeweiligen Plattform, iden-
tifizieren wir verschiedene Anwendungsszenarien, in denen Techniken zur
Modellierung, Vorhersage und Optimierung der Performance grofie Vorteile
bieten konnen. Im Einzelnen sind die Beitrdge dieser Arbeit wie folgt:

e Monitorless: Anwendungsagnostische Vorhersage von Performanceverschlecht-
erung. Um die Performance einer Anwendung ausschliesslich mittels
Monitoring auf Plattformebene zu verwalten, schlagen wir Monitorless
vor, den ersten wirklich anwendungsunabhédngigen Ansatz zur Erken-
nung von Performanceverschlechterungen. Wir verwenden maschinelles
Lernen, um die Liicke zwischen Monitoring auf Plattformebene und an-
wendungsspezifischen Messungen zu schlieffen, wodurch das Monitoring
auf Anwendungsebene tiberfliissig wird. Monitorless erstellt ein einziges
und ganzheitliches Modell der Ressourcenséttigung, das auch fiir hetero-
gene und nicht im Training enthaltene Anwendungen verwendet werden
kann.

Die Ergebnisse zeigen, dass Monitorless ressourcenbasierte Performancev-
erschlechterungen mit einer Genauigkeit von 97% erkennt. Dariiber hin-
aus zeigt es dhnliche Leistungen wie typische Autoscalinglésungen, ob-
wohl es weniger Monitoringinformationen verwendet.

o SuanMing: Vorhersage von Performanceverschlechterung mithilfe von Trac-
ing. Wir fiihren SuanMing ein, um Performanceprobleme zu entschérfen,
bevor sie sich auf das Benutzererlebnis auswirken. Dieser Beitrag wird
in Szenarien angewendet, in denen Tracing-Tools das Monitoring auf
Anwendungsebene ermoglichen. SuanMing sagt erklarbare Ursachen fiir
erwartete Performanceeinbufien voraus und verhindert diese, bevor sie
auftreten.
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Evaluationsergebnisse zeigen, dass SuanMing zukiinftige Performanceein-
buflen mit einer Genauigkeit von tiber 90% vorhersagen und lokalisieren
kann.

SARDE: Kontinuierliche und autonome Schitzung des Ressourcenbedarfs. Wir
stellen SARDE vor, um Performancemodelle fiir hochvariable Anwendun-
gen zu lernen. Dieser Beitrag konzentriert sich auf die kontinuierliche
Schédtzung des Ressourcenbedarfs von Anwendungen, einem wichtigen
Parameter in Performancemodellen. SARDE ist ein autonomes Ensem-
bleverfahren zum Schitzen. Es wahlt dynamisch und kontinuierlich aus
einem Ensemble von Ansédtzen, optimiiert diese, und fiihrt sie aus, um
den Ressourcenbedarf als Reaktion auf Anderungen in der Anwendung
oder ihrer Umgebung zu schétzen.

Durch kontinuierliche Online-Anpassung erreicht SARDE in unserer Eval-
uation effizient einen durchschnittlichen Fehler bei der Schiatzung des
Ressourcenbedarfs von 15,96%.

DepIC: Lernen parametrischer Abhingigkeiten aus Monitoringdaten. DepIC
nutzt Techniken zu Featureauswahl in Kombination mit einem Ensemble-
Regressionsansatz, um parametrische Abhingigkeiten automatisch zu
identifizieren und zu charakterisieren. Obwohl parametrische Abhing-
igkeiten die Genauigkeit von Performancemodellen deutlich verbessern
konnen, ist DepIC der erste Ansatz, der solche parametrischen Abhingig-
keiten automatisch aus passiven Monitoringdatenstromen lernt.

Unsere Evaluation zeigt, dass DepIC eine Genauigkeit von 91,7% bei
der Identifizierung von Abhéngigkeiten erreicht und den Fehler bei der
Charakterisierungsvorhersage um 30% im Vergleich zum besten indi-
viduellen Ansatz reduziert.

Baloo: Modellierung des Konfigurationsraums von Datenbanken. Um die Aus-
wirkungen verschiedener Konfigurationseinstellungen in verteilten Da-
tenbankmanagementsystemen zu untersuchen, fithren wir Baloo ein. Un-
ser letzter Beitrag modelliert den Konfigurationsraum von Datenbanken
unter Berticksichtigung der Messungsvariabilitdten der Cloud. Genauer
gesagt, schitzt Baloo dynamisch die erforderliche Anzahl der Bench-
markmessungen und baut automatisch ein Konfigurationsraummodell
eines gegebenen Datenbankmanagementsystems auf.

Unsere Evaluation von Baloo auf einem aus 900 Konfigurationspunkten
bestehenden Datensatz zeigt, dass das Framework einen Vorhersage-
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fehler von weniger als 11% erreicht und gleichzeitig bis zu 80% des Mes-
saufwands einspart.

Obwohl die Beitrdge an sich orthogonal zueinander ausgerichtet sind, bilden
sie zusammengenommen einen ganzheitlichen Ansatz fiir das Performancem-
anagement von modernen cloud-nativen Microservice-Anwendungen. Unsere
Beitrdge sind ein bedeutender Schritt, da sie speziell auf neuartige und cloud-
native Paradigmen fiir Softwareentwicklung und Betrieb abzielen, sowie die
Fahigkeiten bisheriger Ansatze tibertreffen. Dariiber hinaus hat die in dieser Ar-
beit vorgestellte Forschung auch einen bedeutenden Einfluss auf die Industrie,
da die Beitrdge in Zusammenarbeit mit Forschungsteams von Nokia Bell Labs,
Huawei und Google entwickelt wurden. Insgesamt eroéffnen unsere Losungen
neue Moglichkeiten fiir die Verwaltung und Optimierung von Cloudanwen-
dungen und verbessern so die Kosten- und Energieeffizienz.
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Chapter 1
Introduction

The recent coronavirus pandemic impacted the lives of billions of people around
the world. Due to travel restrictions and lockdowns, many conferences, classes,
meetings, and conversations were online. Therefore, the demand for video
conferencing services, such as Zoom, spiked from 10 to over 300 million daily
meeting participants during early 2020 [Iqb20} Z0020; Hof20]]. Similarly, we
saw an increase in other application usages. For example, the streaming ser-
vice Netflix attracted nearly 16 million additional subscribers during the first
quarter of 2020, marking the largest three-month increase in the company’s
history so far [[Aro20]], reaching a total of over 200 million subscribers by the
end of that year [Sta21b]]. Additionally, Amazon.com, the largest online mar-
ketplace, has increased its revenue by 38% during 2020, reaching a total of
$386 billion [[Koh21]] with the online retail sector accounting for $197 billion in
2020 [[Sta21a}|Ama21b]].

At the same time, the performance requirements for modern technology
are becoming increasingly important, as users are accustomed to improved
standards [[DB13} Ein19;/Gaj+20]]. For example, Zoom attributes its success over
other video conferencing solutions to its improved user experience, especially
its latency requirement of fewer than 150 ms [[Pie20; Iqb20; Hof20]]. For Netflix,
studies also show that the bit rate and the buffering time have a high impact
on user engagement for the delivered streaming content [[Gov14; Dob+13]|.
Furthermore, it is reported that a response time increase of only 100 ms costs
around 1% in lost sales for Amazon.com [[Elal8;Ein19]], and a page slowdown
of one second could amount to $1.6 billion lost sales a year [Eat12]].

These increased performance and availability requirements, paired with the
discussed unprecedented user growth, are only possible if the applications
rely on public cloud platforms, as these promise higher scalability and reliabil-
ity [Jud16; Fle20;|Gar20]]. For example, Zoom migrated to using both[Amazon|
[Web Services (AWS)|and the Oracle cloud platforms [Jud20a; Jud20b; Hof20]],
while both Amazon.com and Netflix rely on the cloud [Jud16;/Amal7;
Ama2la]]. Consequentially, is one of the strongest-growing business seg-
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ments of Amazon [Sta21a} Koh21]]. An industry survey by Flexera shows that
59% of respondents expect their cloud use to exceed their plans due to the
pandemic [Fle20]]. Similarly, Gartner, Inc. projects the worldwide spending on
public cloud services to grow to over $362 billion until 2022 in response to the
pandemic [Gar20]]. It is furthermore expected that by 2025, 80% of production
applications will run in the cloud [[Lot17]].

Cloud computing is already a significant contributor to climate change, as
data centers are responsible for about one percent of the world’s electricity
consumption [Mas+20; Jon18|], which is expected to grow to eight percent
by 2030 [[AE15} Jon18]]. The continuing growth of cloud services implies in-
creasing energy consumption and, therefore, calls for raising the efficiency
of systems [Ber+11; Mas+20]. It is estimated that currently, roughly 30% of
cloud spending is wasted, making optimizing usage and cost the top cloud
initiative of many companies [[Fle20]]. This resource waste is also exacerbated by
the above discussed rising demands for performance and availability, usually
negotiated via[Service Level Agreements (SLAs)| as these are usually met by
provisioning more resources [[Her18; JS14; DB13]].

Itis, therefore, of paramount importance to optimize the resource usage while
fulfilling the increased user demands and performance requirements [Ber+11;
Fer+12b]]. This helps to save both operating costs and energy consumption
as well as to minimize the carbon footprint of the global cloud infrastructure.
These optimizations can only be achieved by closely monitoring and modeling
the applications in order to understand their behavior [JS14]].

1.1 Problem Statement

Modern cloud applications often employ microservice architectures [[San16;
Kwil9; Gaj+20]]. Microservice architectures are based on a collection of fine-
grained and interconnected services that should focus on a single responsibil-
ity [Dra+17; Gan+19bj LF14]]. Developing microservice applications offers
huge advantages to developers [Lin16; (Gan+19b; Jam+18; [LF14; Faz+16]],
which is why it is expected to become the de-facto standard for software devel-
opment [Gaj+20]]. The global microservice cloud market is projected to reach
over $3 billion by 2026, growing at a compound annual growth rate of over
21% [[Ver21]]. Both Netflix and Amazon are early adopters and strong advocates
of microservice architectures [[Cocl6}|[Full5].

However, despite the advantages, microservice architectures represent a
significant departure from the way cloud applications are traditionally de-
signed and therefore have broad implications on their performance properties,
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rendering many previous approaches for performance management infeasi-
ble [Gan-+19b; Fow15} Eis+20al]. The number of services in complex appli-
cations can easily reach several hundred services (e.g., Netflix: 700, Spotify:
810, Uber: 500) [Kwil9 |Rud19]], which complicates the process of finding and
fixing performance problems. While production monitoring tools are usually
capable of capturing enough data points, the amount of gathered information
is too large to oversee manually. For example, Netflix collects over 1.2 billion
measurements per minute [[HR14]].

In addition, the microservice paradigm is usually paired with DevOps cul-
ture adopting a |Continuous Integration and Continuous Deployment (CI/CD)|
pipeline, which leads to frequent code and deployment changes as applications
are constantly under development [|Gaj+20; Coc16; Rud19}; BHJ16; Eis+20al].
Most companies deploy new code weekly, daily, or even hourly [Nov16]. Large
companies like Amazon and Netflix deploy code thousands of times per day,
which renders manual tracking of performance changes infeasible [Nul21}
Nov16].

To summarize, we observe that modern software applications are often mi-
croservice applications developed based on the DevOps paradigm and operated
in cloud environments. These applications are sometimes also referred to as
cloud-native applications [Red18]]. Cloud providers aim to optimize their re-
source usage in order to save costs and conserve energy. These trends pose a
set of distinct challenges for the modeling and performance analysis of modern
applications:

e We are able to collect vast amounts of monitoring data from different
services, possibly spread over different data centers; however, the analysis
of this data is becoming increasingly complex.

e The deployment, as well as the monitored applications themselves, are
subject to continuous changes due to frequent|Cl/CD|cycles.

e Even for static applications, the performance of the underlying infras-
tructure may be constantly changing as cloud infrastructures generally
experience higher degrees of performance variabilities.

e In addition, cloud providers usually have no prior knowledge about
the running applications and must infer all information from generic
monitoring tools.

e Finally, as monitoring information is gathered from production systems,
ensuring a low overhead of the monitoring tools is imperative.
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In this thesis, we present different techniques for the automated performance
model learning and performance prediction of modern software systems. In
contrast to previous work, our focus is on cloud-hosted and continuously evolv-
ing microservice architectures. Therefore, our contributions aim at solving the
above-mentioned challenges in order to deliver automated software perfor-
mance models using minimal computational overhead and fully avoiding the
need for manual interference.

1.2 Shortcomings of the State of the Art

Depending on the cloud computing model, privacy agreements, or monitoring
capabilities of the respective platform, we see four main application scenarios
where performance modeling, prediction, and optimization techniques can
provide major benefits. In this section, we identify the key scenarios towards
this task and outline the shortcomings of current state-of-the-art approaches.
While there exist several related approaches in the literature, most of them are
not applicable in the defined scenarios.

The first scenario is when a cloud provider only has black-box and platform-
level information. For example, the platform itself can be instrumented via
monitoring tools by the cloud provider, but the hosted applications (usually
deployed within containers on that platform), as well as any monitoring within
these applications, stays opaque for the cloud provider. This can be due to
privacy and data protection concerns of customers, but also due to the over-
head of application-level monitoring tools or the lack of a proper monitoring
interface. This black-box view and the lack of any application-level information
necessitate application-agnostic approaches that solely rely on platform-level
data. While previous works attempted to enable performance predictions based
on platform-level monitoring [[HT11} Yan+15b}|Yan+15a}|Coh+04; Ngu+13;
KKR10; Kun+12; Eme+10; Eme+12; Woo+07; [Woo+09; (Cor+17; Bia+20],
no approach currently exists that provides a single holistic and application-
agnostic model.

The second scenario is the opposite case, where application-level monitoring
is available via application-level tracing tools (see Section on page|[19)),
but actual platform-level monitoring (including deployment or utilization
metrics) is unavailable. As before, approaches need to be applicable without
prior knowledge or tuning to the specific application and must not rely on any
platform-level information as the underlying infrastructure is abstracted away
or is subject to continuous variabilities or redeployments. The state of the art
in this scenario [JPG19} [LCZ18; Wan+18; Wu+20bj [Zho+18; |SP19; Lou+18;
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Sha+13; vOI19; LLG18; Cor+17; Bia+20; Gan+19a] is usually not capable of
providing actionable performance predictions, that is, predictions that are: (i)
explainable and (ii) reasonably far in the future. Both properties are required
in order to be able to mitigate a performance issue before it affects the user
experience.

In some scenarios, it is possible to combine both monitoring types from the
previous two scenarios. We have, on the one hand, platform-level monitoring
of all resources and deployments; on the other hand, application-level tracing
of the different application microservices. This scenario corresponds to the
most developed area of related work, as it has a strong overlap with classical
(component-based) performance engineering scenarios. Hence, classical per-
formance modeling techniques [[Hub+17;[Hoo14; BKR09]| are also applicable
in this context. However, the advent of DevOps practices, pipelines,
and opaque cloud platforms renders the common assumption of a static ap-
plication model with fixed parameters, resources, and deployments infeasi-
ble [Bez+19]]. Therefore, previous approaches [[Wal+17; Hri+99; [Isr+05; MF11;}
BKK09; BHK11; BVK13} [Wil+15a; SWK16} [Spi+19] are not able to continuously
keep the model parameters updated. In addition, no approach to automatically
identify the impact of input parameters on these model parameters has been
proposed.

Finally, almost all cloud-native applications still rely on backend services
treated as black-box components. For example, databases still play a huge
role in microservice applications, as each service usually needs to maintain its
data [Rud19 LF14]]. The respective, possibly distributed, cannot be
modeled by classical (i.e., white-box) modeling approaches and furthermore
offer only limited monitoring information. In addition, distributed
offer a large set of configuration parameters that also massively impact the
performance as well as the occupied resources and operating costs of the re-
spective system. Previous approaches for modeling the configuration spaces of
DBMSs| [DTB09; YNM16} [Van+17; Mah+17; [Far+18}; [DCS17; Zhe+19] do not
consider the measurement variabilities in the cloud or do not cover distributed
setups.

The described scenarios were identified in cooperation with our industrial
partners (see Section [.4). Chapter 3] on page [35 provides a more detailed
overview of the state of the art and the individual shortcomings of respective
approaches.
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1.3 Goals and Research Questions

In the previous section, we introduce the four main scenarios of interest for
this thesis and the problem with the current state of the art with regard to our
problem statement. We identify a set of research gaps that arise due to the way
modern software systems are designed and operated. This thesis aims to close
these gaps. In the following, we present the four main goals of this thesis. Each
goal is designed in a way that closes the described research gap and therefore
advances the field with its respective contribution. In addition, we list a set of
IResearch Questions (RQs)|that will be answered during the pursuance of each
goal.

Goal I: Design an application-agnostic approach for the detection of resource
saturation based on platform-level monitoring data.

e RQ L.1: How can platform-level measurements be utilized to detect resource
saturation?

e RQ 1.2: How can we generalize the results to create a generic and holistic
prediction model?

This first goal mainly addresses the first scenario, that is, the question of
how we can infer information about the running applications without explicitly
monitoring them. As discussed in the previous sections, this would only be
possible by generating a generic and holistic prediction model that is capable
of detecting application-agnostic performance problems based on monitoring
resource saturation. Hence, the secondaddresses the issue of generalization.

Goal II: Develop an approach for the prediction of performance degradation using
application-level tracing.

e RQIL.1: How can tracing data be utilized to predict the future performance of
a system?

e RQIIL2: How can we pinpoint the root cause service of a performance problem?

The second goal is geared towards the second application scenario. As
application-level tracing contains more detailed information, our goal in this
scenario is to not only detect performance problems but also to develop an
approach for predicting and mitigating performance problems before they
occur in the system. In order to do so, we require predictions of the future
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state of the system and a way to identify the root cause of the anticipated
performance problem. Therefore, RQ[II.1]and RQ[II.2]target these properties,
respectively.

Goal III: Enable the continuous estimation and improvement of performance model
parameters using production monitoring data.

e RQIIL1: How can we combine different estimation approaches to efficiently
produce continuous resource demand estimations?

e RQIIL.2: How can the impact of parameters on resource demands be identified
and characterized?

As the third scenario allows for the application of several proven techniques,
we do not aim at developing similar or competing approaches to the already
established techniques. Instead, the third goal identifies two specific research
gaps in the area of architectural modeling and respective addressing these
gaps. First, resource demands are central parameters of architectural perfor-
mance models and, therefore, need to be measured and updated continuously
in order to maintain an accurate performance model. Second, parametric de-
pendencies describing the relation between input parameters and the resource
demand specifications need to be integrated into performance models, as they
improve the models” expressiveness and their variability in changing situations.
Nevertheless, there currently exist no approaches addressing these issues while
relying solely on monitoring data.

Goal IV: Develop a workflow for modeling configurable, cloud-based, and dis-
tributed DBMSs.

e RQIV.1: How can the influence of performance variabilities during benchmark
measurements be mitigated?

e RQIV.2: How can we analyze a configuration space that is too large to measure
exhaustively?

As already introduced, the fourth scenario presents an orthogonal challenge
to the three other scenarios. As modern software architectures still increasingly
rely on cloud-hosted data storage, modeling, configuring, and optimizing the
underlying distributed is still a primary concern. Since previous work
does not exhaustively cover the topic, the fourth goal targets two additional
that address two major challenges when modeling the configuration space
of these systems.
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1.4 Contribution Summary

In accordance with the scenarios identified in Section [1.2] and the research
goals defined in Section [I.3] we now present a summary of the five individual
contributions of this thesis.

Contribution 1: Monitorless: Detection of resource saturation using platform-
level metrics Our first contribution was conducted during a research visit at
the cloud research lab of Nokia Bell Labs in Dublin, Ireland. Software operation
usually relies on application [Key Performance Indicators (KPIs)|for sizing and
orchestrating cloud resources dynamically. In this work, we leverage machine
learning to bridge the gap between platform-level monitoring and application-
specific Inspired by the way the Serverless Computing paradigm delegates
the entire management of the execution environment to the cloud provider,
we propose a Monitorless approach to application performance management.
We show that training a machine learning model with platform-level data
collected from the execution of representative containerized services allows
inferring application degradation at runtime. This is an opportunity to
simplify operations as engineers can rely solely on platform metrics while
still fulfilling application removing the need for all application-level
monitoring. This contribution shows that one generic resource saturation
model can be used to detect performance degradation of several complex
applications, even when such applications are unknown to the trained model.
We note that this represents a significant divergence between Monitorless and
other solutions based on [KPIs|as we propose a generic approach with a single
resource saturation model employed for a heterogeneous set of applications.

We evaluate Monitorless using three different scenarios. A multitier web ser-
vice application and two representative microservice applications that are not
included in the training phase. Results show that Monitorless infers degra-
dation with an accuracy of 97%. Furthermore, we use the inferred degrada-
tions as a basis for a simple autoscaling mechanism which, notably, can achieve
similar performance like typical autoscaling solutions, even though it uses less
monitoring information. This contribution was published at the 20th ACM/IFIP
International Middleware Conference (MIDDLEWARE 2019) [[Gro+19¢]| and
addresses Goal [l

Contribution 2: SuanMing: Prediction of performance degradations using
application-level tracing This contribution was made in the context of a
research project with the Huawei Research Center in Tel Aviv, Israel. In this
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work, we focus on [Application Performance Monitoring (APM)| or tracing
tools. is normally purely reactive; that is, it can only report current
or past performance degradations. Although some approaches capable of
predictive application monitoring have been proposed, they can only report
a predicted degradation but cannot explain its root cause, making it hard to
prevent the expected degradation. In order to mitigate this issue, we present
SuanMing, a framework for predicting performance degradation of microservice
applications running in cloud environments. SuanMing is able to predict future
root causes for anticipated performance degradations and therefore aims at
preventing performance degradations before they actually occur.

We evaluate SuanMing on two realistic microservice applications, and we
show that our approach predicts and pinpoints performance degradations
with an accuracy of over 90%. This contribution addresses Goal [l and was
published at the 12th ACM/SPEC International Conference on Performance
Engineering (ICPE 2021) [Gro+21d].

Contribution 3: SARDE: Continuous and self-adaptive resource demand
estimation In this contribution, we focus on the estimation of application
resource demands. Resource demands are crucial parameters for modeling
and predicting the performance of software systems. Currently, resource de-
mand estimators are usually executed in an offline scenario for system analysis.
However, the monitored system, as well as the resource demands themselves,
are subject to constant changes, as discussed in the previous sections. These
changes impact the applicability, the required parameterization, as well as the
resulting accuracy of available estimation approaches. Over time, this leads to
invalid or outdated performance models. To address this issue, we propose
SARDE, a framework for Self-Adaptive Resource Demand Estimation. SARDE
dynamically and continuously optimizes, selects, and executes an ensemble
of resource demand estimation approaches to adapt to changes in the envi-
ronment. This creates an autonomous and unsupervised ensemble estimation
technique, providing reliable resource demand estimations in dynamic environ-
ments. The research towards this topic was awarded a Google Faculty Research
Award, demonstrating its significance to the industry.

We evaluate SARDE using two realistic datasets. One set of different micro-
benchmarks reflecting different possible system states and one dataset con-
sisting of a continuously running microservice in a changing environment.
Our results show that by continuously applying online optimization, selection,
and estimation, SARDE efficiently adapts to the online trace and achieves an
average estimation error of 15.96% using the resulting ensemble technique.
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This contribution addresses RQ of Goal [[llland was published in ACM
Transactions on Autonomous and Adaptive Systems (ACM TAAS) [Gro+21b]].

Contribution 4: DeplC: Learning parametric dependencies from monitor-
ing data Our fourth contribution addresses RQ of Goal[III} Parametric
dependencies describe the relationship between the input parameters of a
component and its performance properties. Therefore, they significantly in-
crease the prediction accuracy of architectural performance models. However,
manually modeling parametric dependencies is time-intensive and requires
expert knowledge, while existing automated extraction approaches require
source code or dedicated performance tests. Therefore, in collaboration with re-
searchers from the Karlsruhe Institute of Technology in Karlsruhe, Germany, we
propose DeplC, a new approach to derive parametric dependencies solely from
monitoring data available at run-time. The DepIC approach for Dependency
Identification and Characterization works by utilizing feature selection tech-
niques for identification combined with an ensemble regression approach for
the characterization of dependencies.

Our evaluation shows that DepIC achieves an identification precision of 91.7%
on a microservice application. In addition, a proposed meta-selector reduces the
prediction error of the characterization compared to the best individual machine
learning approach by 30%. The contribution in this area was published at the
27th IEEE International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS 2019) [[Gro+19b].
This contribution addresses RQ and, taken together with the previous
contribution, completes Goal [ITI}

Contribution 5: Baloo: Measuring and modeling performance configura-
tions of distributed As already discussed in Section[1.2} the modeling
and optimization of distributed is still a vital part of tuning modern
cloud-native applications. Correctly configuring a distributed deployed
in a cloud environment for maximizing performance poses many challenges
to operators. Even if the entire configuration spectrum could be measured
directly, which is often infeasible due to the multitude of parameters, single
cloud measurements are subject to random variations and need to be repeated
multiple times. Therefore, it is not trivial to decide how many repetitions need
to be done for each measurement. Our fifth contribution addresses these issues
by proposing Baloo, a framework for systematically measuring and modeling
different performance-relevant configurations of distributed in cloud
environments. Baloo dynamically estimates the required number of measure-
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ment configurations, as well as the number of required measurement repetitions
per configuration based on the desired target accuracy.

We evaluate Baloo based on a dataset consisting of 900 configuration
points, measured together with a research group from the University of Ulm,
Germany. Our evaluation shows that the framework achieves a prediction
error of under 11% while saving up to 80% of the measurement effort. This
contribution addresses Goal IV|and was published at the 28th IEEE Interna-
tional Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS 2020) [Gro+20Db]].

Summary The presented contributions are aligned with the four scenarios
and research goals that we introduced in Sections(1.2|and Taken together,
they represent a significant step forward compared to the state of the art in the
respective fields. Our collaborations with the research teams of Nokia Bell Labs
and Huawei allowed us to identify open research challenges in the industry
and helped to increase the research impact of our contributions. In addition, we
collaborated with researchers from the Karlsruhe Institute of Technology while
working on the third scenario and proposed Baloo together with colleagues
from the University of Ulm.

These collaborations allowed us to present different solutions tailored specif-
ically to the different scenarios that cloud providers nowadays typically find
themselves in. As such, although the contributions themselves are orthogonally
aligned, taken together, they provide a holistic approach for the performance
management of modern microservice applications in the cloud. Overall, our
framework helps to overcome the limitations of existing approaches to perfor-
mance management of microservice applications in cloud environments and
provides a solution to solve the critical issues of usage growth and resource
waste described previously.

1.5 Thesis Outline

In the following, we describe the remaining structure of this thesis. Part /[l
introduces the fundamental notions and concepts and gives a broad overview
of the current state of the art. In Chapter[2on page[15, we give quick definitions
of various important terms from the areas of software engineering, performance
analysis, and machine learning. Furthermore, we survey the related work on
the targeted goals in order to point out shortcomings and differences in relation
to the contributions of this thesis in Chapter 3|on page

11
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Following, Part|[I| presents the main contributions of this thesis. Chapter 4]
on page [53| describes the Monitorless approach for the application-agnostic
detection of performance degradation (Goal[l), while Chapter [5|on page
delineates the automatic prediction of performance problems (Goal [IT) with
SuanMing. SARDE, our approach for continuous estimation of resource de-
mands (Goal[II)), is introduced in Chapter[6|on page 91} followed by Chapter|[7]
on page focusing on learning parametric dependencies with DepIC. Our
fifth contribution, Baloo (Goal[[V]), is described in Chapter [8|on page

Part|[[I]] then continues to evaluate the proposed solutions by following the
same structure in Chapters[9|to[13] Chapter[9Jon page[151]shows our evaluation
of Monitorless using three different applications. Second, Chapter[I0jon page[17]]
analyses the performance of SuanMing in two different evaluation scenarios.
Chapter[11]on page [187focuses on SARDE and its results for the estimation of
resource demands. Then, we evaluate DepIC and its capabilities to identify and
characterize parametric dependencies in Chapter|12|on page In the last
chapter of Part[[Il, Chapter [13|on page[227]evaluates Baloo in terms of modeling
accuracy and measurement cost. In addition, all evaluation chapters of Part
further contain a discussion on the threats to the validity of the evaluation as
well as the conceptual assumptions and limitations of each approach.

Finally, Part[[V]concludes this thesis by summarizing our achievements in
Chapter 14 on page[241] We give an outlook and describe the possibilities for
future work in Chapter[15/on page
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Chapter 2

Fundamentals

In this section, we quickly outline the fundamental concepts that lay the founda-
tion for our research. In Section 2.1} we quickly define notions and paradigms
that we utilize throughout this work. Section 2.2|focuses on different types and
levels of performance evaluation of software systems. Finally, we introduce the
most relevant machine learning concepts for this work in Section 2.3}

2.1 Current Paradigms for Software Development and
Operation

First, we outline recent trends in software engineering and operation as these
paradigms strongly influence the problem statement and the environment for
our solutions. Therefore, we aim at explaining and defining the most relevant
concepts to contextualize them for the scope of this work.

2.1.1 Microservice Applications

The microservice architecture can be seen as a specific variant of traditional
service-oriented architecture [[LF14]]. The idea of microservice architecture
is to develop an application out of a set of fine-grained, self-contained, inde-
pendent, and loosely coupled smaller application components, the so-called
microservices [[Coc16;Eis+20al]. These components can be independently archi-
tected, developed, and deployed. Communication is handled via lightweight
messaging protocols, e.g., via[Hypertext Transter Protocol (HT'IP)|and [Rep4
[resentational State Transfer (REST)| [LF14; Faz+16} Kis+18]]. Well-known
pioneers of this paradigm were, among others, Amazon and Netflix with their
large-scale cloud applications [Rud19; Coc16; Full5; LF14]]. Depending on
the size and the business case of the application, microservice architectures
can consist of several hundred different microservices (e.g., Netflix: 700, Spo-
tify: 810, Uber: 500) [Kwil9; Rud19]. In practice, microservice application
development is often paired with DevOps processes, and containerized
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deployment [LF14; Coc16; [Full5; BHJ16; Gaj+20; Eis+20al] in order to develop
so-called cloud-native applications [Red18; BHJ16|]. In addition, the server-

less paradigm has also attracted a lot of interest for operating microservice
applications [[Gaj+20; Red18; Gan+19b]].

2.1.2 DevOps

The DevOps paradigm is an ongoing development towards tighter integration
between the development (Dev) and the operation (Ops) of an application as
well as the respective responsible teams [[Bru+15;Bez+19]]. The idea behind
this is to enable the teams to react more flexibly to changes in requirements or
the environment, which also integrates well with modern agile development
techniques [BHJ16]]. In conjunction with microservice architectures, this often
means that the same team is responsible for developing, running, and main-
taining one specific microservice, following Amazon’s principle of “you build,
you run it” [[LF14;|OHa06; BHJ16]]. One key goal of the DevOps movement is
to allow for shorter development cycles, enabling to roll out new features and
bug fixes more quickly and generally achieving a faster time to market while
maintaining the overall software quality [[Bru+15; BHJ16; Nul21]]. Therefore,
large companies nowadays deploy new code weekly, daily, or even hourly, while
high-performing organizations report 30 times more deployments with 200
times shorter lead times [Nov16]]. For example, Amazon deploys code every
11.7 seconds, on average [Nul21; Nov16].

2.1.3 Continuous Integration and Continuous Deployment

Tightly coupled with the concepts of DevOps is the implementation of contin-
uous integration, delivery, or deployment pipelines [Bru+15}|Red18; BHJ16;
Eis+20a]]. These pipelines automate the processes of building, testing, deploy-
ing, and sometimes also monitoring the developed code. The acronym CD
is sometimes used to denote continuous delivery, as opposed to continuous
deployment. The difference between the two is that continuous delivery pro-
duces deployable products, while continuous deployment goes one step further
and automatically deploys the built products [Bru+15]. In this work, we de-
fine as the whole process of [Continuous Integration and Continuous|

as it is increasingly becoming the norm [[Full5};/Coc16; Nul21]].
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2.1.4 Virtualization

In today’s data centers, virtualization is the de-facto standard method to deploy
and run applications, as already around 80% of x86 server workloads in data
centers are virtualized [Spil7; BDW16]]. Although there exist different related
concepts, like network virtualization [[RK13]| or desktop virtualization [MP07],
we only refer to server virtualization in this work. Virtualization enables the
dynamic allocation of hardware resources to different|Virtual Machines (VMs)|
or containers. This is done by using a host|Operating System (OS)|or a hypervi-
sor, which controls the actual hardware resources and dynamically manages
the access of the deployed virtualized guest instances to those resources [Spil7;
Faz+16]. Currently, server virtualization technology comes in two flavors:
[VMbased and container-based. While[VMlbased virtualization starts new [OSs]
and hosts them as independent entities, container-based virtualization uses the
same [OS| kernel for all running containers [Faz+16]. The advantage of this is
that containers are more lightweight and flexible than[VMs] while[VMs|offer bet-
ter resource isolation and are less dependent on the host|OS|[[Faz+16; Nad+16].
It is not uncommon to combine both approaches by hosting containers inside
[Eis+20a;/Nad+16]]. However, the flexibility and size of containers lend
themselves nicely for the fine-granular deployments of microservice applica-
tions, which is why container-based virtualization is the preferred flavor in that
context [Fle20; Gan+19b; Nad+16]].

2.1.5 Docker

One popular way to organize and manage container virtualization is using
Dockelﬂ containers [[Fle20; Faz+16; Eis+20a]]. Docker images are packaged
container snapshots that bundle the required software together with all of
its dependencies and requirements [Nad+16]]. This massively improves the
portability of containerized applications and also simplifies scaling or migrating
containers. Furthermore, Docker enables sharing these images using registries.
Currently, the most popular container registry is Dockerhubﬂ with 6 million
repositories and 8 billion monthly image pulls [New21} Kre20]]. Due to these
simplifications, Docker images are a popular product of[CI/CD|pipelines, where
each microservice can be bundled in its own image, pushed to a public or
private registry, and then deployed as one or many service instances [Nad+16}
Gan+19b; BHJ16} [Eis+20al].

"https://docker.com
“https://hub.docker.com
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2.1.6 Container Orchestration

As manually overseeing applications consisting of hundreds or thousands of
container instances is infeasible, container orchestration tools can take care
of managing containerized applications. The most common representative
container orchestration tool is Kuberneteﬂ [[Gaj+20; Nad+16;|New21; Eis+20a]].
Container orchestration tools are capable of automatic deployment, scaling,
and management of containerized applications, including service discovery,
load balancing, and storage management. Therefore, there exist many cloud
offerings with already integrated container orchestration [New21; [Fle20]].

2.1.7 Cloud-native

Another popular paradigm is the concept of cloud-native applications [Red18]].
Cloud-native application development is focused on building and running
software that takes full advantage of the offered cloud computing capabilities.
This usually includes the use of DevOps and [CI/CD|processes, container-based
infrastructure, as well as|Application Programming Intertace (API)}driven and
service-based application architectures, like the microservice paradigm [Red18;
BHJ16]]. Therefore, many cloud-native applications utilize microservice archi-
tectures and follow the techniques we introduced in this section [[BHJ16]].

2.1.8 Serverless Computing

The term Serverless Computing refers to a cloud computing paradigm that ab-
stracts most operational infrastructure concerns away from the customer, en-
ables granular billing and event-driven interactions [[Eyk+17} Eis+21b; Eis+21c].
One type of serverless offerings are so-called [Function-as-a-Service (FaaS)|plat-
forms, capable of managing resources, lifecycle, communication, and execution
of single-responsibility, stateless, and on-demand services [[Eyk+19; Eyk+18b]].
Note that serverless only refers to the view of the cloud customer, where the
actual server and hardware resources are no longer observable [Eis+21a]|.
However, in the end, computations are still executed on regular cloud server
infrastructure [Eyk+19]. As cloud functions hosted by [FaaS|platforms are con-
ceptually not different from a microservice with a single endpoint [Eyk+18a;
Eyk+19]], the serverless paradigm is also a popular deployment option for
microservice or cloud-native applications [|Gaj+20; Red18}|Gan+19b]].

*https://kubernetes.io
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2.2 Performance Analysis of Software Systems

There exist several ways of evaluating the performance of a system or an appli-
cation. In this work, we are focusing on the two main areas of (i) monitoring the
actual system under study in Section[2.2.Tand (ii) analyzing the performance
of a system using a model representation in Section[2.2.2l While monitoring has
the advantage that it delivers more accurate results than analyzing a model, it
requires, relies on, and possibly disturbs the actual system under study [[Hoo14;
Wal19; Wal+18]]. Furthermore, monitoring can only record events that hap-
pened on the system and is therefore not suited for hypothetical scenarios or
forecasting [Koz08; Hub+17]]. Recent approaches also aim at combining both
techniques [[WHK17;[Wal19; [Wal+18]].

2.2.1 Monitoring

There exist several different ways to measure the performance of a system or an
application. Note that other notions refer to as Application Performance
Management [Men02b; Hoo14]]. While this definition includes both monitoring
and management, we define the acronym solely as|[Application Performance]
Monitoring| (APM]). We restrict ourselves to the monitoring aspect for now, as
application management and the insights gained from the monitoring data are
the focus of later sections.

2.2.1.1 Measurement Strategies

We distinguish four different ways of obtaining a metric of interest from a
running application, following the definitions of Lilja [[Lil00]] and Kounev et
al. [KLK20]:

e Event-driven measurements are obtained and stored only when specific
events of interest occur, where an event is a change in the system state.
Therefore, the respective measurement overhead is dependent on the
frequency of the observed events.

e Tracing is similar to event-driven monitoring. However, while event-
driven measurements rely on simple counting, tracing records further
information about each event. Depending on the amount of additional
stored information, the overhead is significantly higher than with count-
ing.

e Sampling records system state in equidistant time intervals. Sampling
does not observe every event occurrence and only reports on statistical
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summaries of the system behavior. Therefore, the introduced overhead is
only dependent on the configured sampling frequency.

o Indirect measurement can be used when the metric of interest cannot be
measured directly by observing certain events or introduces too much
overhead. In such cases, the metric of interest is derived based on other
metrics that can be measured directly. For example, the estimation of
resource demands presented in Chapter [f] on page 01]is exactly such
a case, where the metric of interest, the resource demand, is indirectly
measured through other metrics, for example, the response time or the
resource utilization. As indirect measurement does not require additional
information (in addition to the already observed metrics), the overhead
is usually the smallest.

One important type of tracing is the so-called call path tracing. Call path
tracing is a type of application-level tracing where the hierarchy of method
calls or requests is stored in order to be able to reconstruct the call path or the
call chain. We utilize call path tracing in Chapters[5and [7jon page[73]and on
page respectively. In Chapter 7, we additionally store the parameter types
and values of each call.

2.2.1.2 Measurement Levels

In addition to the different strategies, we also distinguish between different
levels of system monitoring in this thesis. We introduce the following terminol-

ogy:

e System-level monitoring is the measurement of hardware metrics, like
Central Processing Unit (CPU)| [Random Access Memory (RAM)| or
Input-Output (I/O)|usage, usually done from the perspective of the
The majority of metrics are usually captured using sampling or event-
driven counts. Therefore, depending on the sampling rate and the number
of required metrics, the overhead of system-level monitoring is usually
comparatively small.

e Platform-level monitoring is similar to system-level monitoring, but
also virtualization layers. For example, in addition to the total
utilization of the host system, a hypervisor can report on the distribution
of usage between the different[VMs| Similarly, the control groups
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(cgroupsﬂ) feature on Linux can be utilized to account for the usages of
many container virtualization techniques.

e Application-level monitoring is only concerned with measurements and
logs produced by the running software application. In contrast to the
previous levels, application-level monitoring is, therefore, less generic,
and generated logs are usually specific to the respective application. Con-
sequentially, several solutions have been proposed that tackle this
issue in order to define and maintain unified interfaces. In addition,
application-level monitoring tools usually employ significantly more
tracing strategies to capture relevant information about the application
behavior.

All three introduced monitoring types can be applied on single hosts or
distributed systems. Collecting, aggregating, and compiling the respective
monitoring data is the task of the applied monitoring tool.

2.2.1.3 Monitoring tools

Several different tools for have been developed both in industry and
academia. Most of them specialize in application-level monitoring, but some in-
clude the means for platform- or system-level monitoring as well. Commercial
representatives are, for example, Dynatraceﬂ New Relicﬂ or AppDynamic
Open-source solutions include for example, inspectIT Ocelotﬂ Zipkinﬂ Jaege
Pinpoint!!] or Kiekef 2 [HWH12]]. One example of a platform-level monitor-
ing tool is[Performance Co-Pilot (PCP)[°l Although it is also able to connect
application-specific monitoring agents, the default capabilities are limited to a
platform-level view. A general overview of the[APM|landscape can be found at
the OpenAPM websitﬂ

*https://kernel.org/doc/Documentation/cgroup-vi/cgroups.txt
®https://dynatrace.com
®https://newrelic.com
"https://appdynamics.com
Shttps://inspectit.rocks
‘https://zipkin.io
Ohttps://jaegertracing.io
"https://pinpoint-apm.github.io/pinpoint
https://kieker-monitoring.net
Bhttps://pcp.io
14https://openapm.io/landscape
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2.2.2 Modeling

Next to measuring the performance of an application, one can also evaluate the
performance of a system using a model representation of the system itself. The
main advantage of model-based predictions is that they allow for exploration
of different implementations, deployments, architectures, or configurations
without the need for having a potentially costly live system [[Eis+18;[Wal19]].
Therefore, model predictions are usually faster and more convenient compared
to measurements, given that the accuracy of the respective predictions is suf-
ficient [Wal19; WHK17]]. There exist multiple approaches for modeling and
predicting the performance of a software system. We distinguish between
predictive (or analytic) and descriptive (or architecture-level) models [KBH14;
Hoo14]]; however, models can also be both at the same time [Kou+17; Hoo14]].

2.2.2.1 Predictive Models

Predictive performance models usually focus on producing the actual perfor-
mance prediction. These models are usually highly abstract, treat the services
as black-box, and make strong assumptions. Such models include different vari-
ants from queueing theory, for example, Queueing Networks (QNs)| [MGO00;
VSS512]], [Layered Queueing Networks (LQONs)| [Li+09;[Wo021]], [Queueing Petril
Nets (QPNs)|[[Kou06]], as well as statistical regression models [[EFH04; ZCS07;
Eis+19] or other machine learning techniques [Kun+12; (Cor+17; [Bia+20;
Gro+19c]. As each of those approaches has its own benefits and drawbacks, var-
ious approaches have been developed to enable dynamically switching between
different methods [[EFH04; [ Hub+17; WHK17; RKT15]], or alternatively altering
the prediction model itself [[GEK1S;[Eis+19]]. These approaches accomplish
this by working with a descriptive or architecture-level performance model
that focuses on describing the system and its performance properties [[KBH14;
Koz10].

2.2.2.2 Descriptive Models

Next to dynamically selecting or tailoring the actual prediction model, descrip-
tive performance modeling approaches generally have the advantage that they
decouple the description from the prediction and analysis process. This has
several advantages, including improved readability and reusability [Koz10;
KBH14; Hub+17]]. One representative of such a modeling formalism is the
[Descartes Modeling Language| (DML)) [Kou+16; KBH14].

The |Descartes Modeling Language (DML )|is a descriptive, architecture-level
performance modeling formalism that is specifically targeted at online perfor-
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mance and resource management of applications running in data centers. The
performance prediction itself is done using specialized model-to-model trans-
formations into predictive models, such as[QNs| [LONs| or [QPNs| [Hub+17]].

Central parameters of and other architectural modeling formalisms
are service demands or resource demands [Spi+15; Spi+19; Wal+17]]. Resource
demands are the average time a unit of work (e.g., request or transaction) spends
obtaining service from a resource (e.g.,[CPU| [Hard Disk Drive (HDD)) or[Solid|
[State Drive (SSD)J) in a system, aggregating all visits but excluding any waiting
times [Laz+84; MDAO4]. Hence, the correct configuration of resource demands
is a crucial factor for an accurate performance prediction of a system [Spil7;
Bau+18].

Additionally, puts an explicit focus on parametric dependencies of model
variables [[Eis+18; KBH14|]. Parametric dependencies describe the relationship
between model parameters, such as resource demands or loop counts, with in-
put parameters [Koz08; Hub+17]]. Hence, including and modeling parametric
dependencies increases the accuracy and the predictive power of performance
models [Koz10; Koz08; Eis+18]].

Other architectural performance modeling formalisms that are used include
ROBOCOP [Bon+04], KLAPER [[GMS07]], SLAstic [Hoo14], and the
[Component Model (PCM)|[[BKR09]]. An extended list and comparison of dif-
ferent approaches are given in the survey by Koziolek [Koz10]]. However, none
of these architectural approaches is currently widely used in industry [[Koz10;
Bez+19]. Hence, there is a need for automated approaches in order to foster
adoption in the industry.

2.3 Machine Learning

Throughout this thesis, we utilize several techniques from the area of machine
learning. In this section, we quickly introduce the basic concepts as well as
the most important algorithms we utilize in this thesis. Machine Learning
is generally defined as using computers to solve problems without explicitly
programming them. Instead, example data or past experience is used to train
the system [[Alp20]]. The field is traditionally classified into the three areas
of supervised, unsupervised, and reinforcement learning, based on the type
of feedback from the training system [[RN20]]. As most of this work utilizes
supervised learning techniques, we mainly focus on this area.

The task of supervised machine learning can be defined as follows [RN20]].
A set of labeled training data 7" = {(x1,41), . . ., (Zn, Yn)} containing n training
examples (z;,y;) fori € 1,...,nis given. Each sample assigns a (potentially
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multidimensional) feature vector z; € R to a (potentially multidimensional)
label y; € R™. The dimensionality of the input space [ is also referred to as the
number of features. The distinction of the concrete task can be made depending
on the properties of the labels ;.

If the set of possible target values is finite, we speak of a classification problem
and refer to the possible target values as classes. We further distinguish between
binary classification and multi-class classification depending on whether there
are two or more classes [RN20]. If, instead, the target variables are continuous,
we speak of a regression problem. If the target values are multi-dimensional, that
is, if m > 1, we speak of a multi-label classification or multi-target regression
problem [[Pic12]]. In this work, we concentrate on single-target learning. That
is, we assume m = 1.

The machine learning task is to find a function h : Rl + {1,2,... ¢} for
classification or & : R! — R for regression, mapping from ; to y;. This function
h is sometimes also called a machine learning model [Pic12; RN20]. The model
h can then be used to predict the label y; for new and unseen samples of z;
with j > n. For simplicity, we assume all features to be from the domain of R
in this work.

2.3.1 Algorithms

In the following, we quickly introduce the machine learning algorithms that
we use throughout this work.

2.3.1.1 k-Nearest Neighbors

The [k-Nearest Neighbors| (kNN)) algorithm [[AIt92] is a non-parametric ap-
proach that can be used for regression and classification tasks. For classification,
the sample vector is assigned to the class that occurs most frequently among its
k closest neighbors. Similarly, for regression, a weighted average of the target
values of the nearest neighbors is returned. As the name suggests,
INeighbors (kNN)|can be parameterized by defining the number of neighbors
k to be considered [|Alp20]].

2.3.1.2 Linear Modeling

An intuitive variant of regression modeling is|Linear Regression| (LR)) [[Alp20;
DS98]]. [Linear Regression (LR)|models are functions that describe the value of a
target variable using a linear combination of the feature values. Common ways
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to find such functions are using the [Least Squares (LSQ)|or [Least Absolute De}
viation (LAD))criterion [[DS98]]. A (binary) [Logistic Regression] (Logit]) model
is a linear model that enables binary classification by assigning probabilities
to each class [[Cox58|]. The multinomial[Logistic Regression (Logit)|model is a
generalization of this approach, allowing for more than two classes [The92]|.

One approach aiming to provide robust regression and hence a model
that is less susceptible to outliers in the training data is [Huber Regression|
(HR)) [Hub64]. As the name suggests,[Huber Regression (HR)|relies on the Hu-
ber loss function, a combination of L; and L loss functions (see Section[2.3.2.7]
on page[28)).

Further improvements to the generated models can be achieved using model
reqularization. Regularization modifies the used loss functions to penalize
the size of the coefficients, that is, the model complexity [[RN20]]. For exam-
ple, [Ridge Regression| (Ridge]) is an|[LR|technique that minimizes the
ISquared Errors (SSE)| penalized with the squared L, norm, that is, the sum of
the squared feature weights [[HK70b; [HK70a]]. Similarly, the Least Absolute
Shrinkage and Selection Operator (LASSO) regression penalizes the [SSE| with
the L; norm, that is, the sum of the absolute weights [Tib96]|.
lgression| ([ElasticNet]) combines and LASSO as it uses both regularization
terms [[ZHO05]].

2.3.1.3 Bayesian Ridge Regression

[Bayesian Ridge Regression (BRR)|is another variant of linear regression. In con-
trast to the previous approaches, Bayesian models estimate probability distribu-
tions for the model parameters instead of giving single-point estimates [Mac92]].
This is done by starting with prior distributions based on experience or best
guesses about the model parameters and updating these distributions using
the available training examples. The posterior distributions become increas-
ingly precise with increasing amounts of available measurement data. isa
Bayesian linear regression that additionally penalizes the model complexity
with a regularization term, similar to the procedure of the|Ridge Regression|

introduced above [Mac92].

2.3.1.4 Support Vector Machines

This technique works on binary classification problems by searching for a
hyperplane in the I-dimensional feature space separating the two classes with
maximal margin to each of the two classes [[CV95]. A new data point is then
assigned to the class depending on which side of the hyperplane they lie. If

25



Chapter 2: Fundamentals

there is no linear separation between the two groups, a kernel function can be
utilized to transform the feature space into a higher dimensional space [BGV92]].
Classification using [Support Vector Machines (S5VMs)|is also referred to as
[Support Vector Classification| (SVC]), where a multiclass classification problem
can be broken into multiple binary classifications [[DKO05]]. [SVMs| can also
be adapted to support regression problems via [Support Vector Regression|

(SVR) [Dru+96].

2.3.1.5 Decision Tree Learning

Decision trees group training samples into several so-called leaf nodes. Starting
from the root of the tree, the data is split into two or more groups based on the
value of certain features [RN20]. This is recursively repeated until a stopping
criterion is reached, creating a leaf node with all data samples of the respective
group. For classification, each leaf node is associated with a prediction class.
For regression, the value of each leaf node is a combination of all samples of
the respective node.

The goal of the learning algorithm is to minimize the classification error,
which can be achieved by maximizing the homogeneity in each leaf node.
Popular algorithms for decision tree learning include |Classification and Re{
[gression Trees| (CART]) by Breiman et al. [[Bre+84]], Iterative Dichotomiser 3
(ID3) [[Qui86]], or C4.5 [[Qui93]]. An extension to[Classification and Regression|
is the[M5 model tree (M5)|algorithm [Qui92]]. also builds
models based on decision trees; however, in contrast to where a con-
stant value is returned for every leaf node, builds @ models at each leaf
node [Qui92|]. Therefore, is specifically targeted at regression problems
but can also be adapted for classification problems [[Fra+98]].

2.3.1.6 Boosting

There exist several techniques for improving the performance of single esti-
mators, based on combining the predictions of multiple ones [[Alp20]]. One of
these ensemble techniques is Boosting [Sch90]], where weak estimators are itera-
tively combined to form a strong estimator. The weights of the weak estimators
are determined with respect to their individual learning accuracy. Popular
approaches include [Adaptive Boosting (AdaBoost)| [FS97; [Has+09], [Gradi]
ent Boosted Decision Trees (GBDT)|[[Fri01]], and [eXtreme Gradient Boosting]

(XGBoost)| [[CG16].
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2.3.1.7 Bagging

Bootstrap Aggregating or Bagging is another ensemble technique that works by
combining the individual model predictions of various estimators trained on
different subsets of the training data [[Bre96]]. A popular representative is the
[Random Forest] algorithm [[Ho95; Bre01]]. Random Forest (RF)|learns by
combining multiple decision trees and randomly selecting a different feature
subset for each tree. Both Bagging and Boosting techniques can also be applied
to other (non-decision-tree-based) approaches [RN20; |Alp20]].

2.3.1.8 Neural Networks

[Neural Networks| (NNs)) are a class of machine learning algorithms inspired
by the functionality of biological brains [MP43]]. A[Neural Network (NN)|is a
network of neurons connected through edges, which transfer signals (usually
in the form of real-valued numbers) from one neuron to another [[Gur97]].
Furthermore, each neuron is associated with an activation function, controlling
the output of each neuron. One central part of the training process of
is the configuration of edge weights, that is, the weighting functions for each
incoming edge of a neuron. Usually, neurons are grouped into layers. We
denominate the first layer as the input layer, the last layer as the output layer,
and all other layers as hidden layers [|[Gur97]).

Due to the general applicability, there exist various architectures for the
application of [NNs| [[RN20]]. In this work, we focus on feed-forward networks.
Feed-forward [NNs| only allow links in one direction and therefore form a
directed and acyclic graph [|[Gur97]]. A neuron can only have input links from
the previous layer and output links to the succeeding one. If every node
from one layer has edges to every node of the following layer, we refer to the
respective layers as fully connected. can be used for classification and
regression tasks [RN20]].

2.3.2 Model Evaluation

There exist multiple ways to analyze the accuracy of a given machine learning
model i [[Bot19;[RN20; Alp20]]. Generally speaking, we can judge the accuracy
of h by comparing the prediction ; = h(z;) with the real label y; fori € 1,...,n.
During model learning, most algorithms repeatedly judge the accuracy of the
current predictions on the set of training samples 7" via some error function
(or loss function) in order to find h [RN20]]. However, note that an evaluation
should always utilize testing samples from a test set (x;, y;) ¢ T, which are not
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contained in the training set. This way, it is possible to evaluate the achieved
abstraction and generalization of the machine learning model [[Alp20; RN20]].

Therefore, the training set refers to the training samples T, that are available
during model training. A validation set is a sub-set of T', that can be used for
tuning the accuracy and the generalization of h, for example, by tuning its
hyperparameters. We discuss the k-fold cross-validation, a common technique
to split 7" into different folds of validation sets. The test set consists of exam-
ples that are used for analyzing the out-of-sample accuracy of the model, that
is, the performance of the model on data that has not been used for learn-
ing [[BCB14]]. Finally, the evaluation set is any set on which a defined accuracy
metric is calculated. This can be the training, the validation, or the test set.

There exists no single established metric, as all metrics each have their ben-
efits and drawbacks [Bot19; [Cha07]]. Therefore, we utilize different metrics
throughout this work, which we introduce in the following. We distinguish
between regression and classification metrics. In Section [2.3.2.1} we focus on
metrics for regression models, while Section focuses on classification.
Note that we reuse the notation introduced to describe the training set 7', but
explicitly speak of an evaluation set, as the defined metrics can be executed on
training, validation, or test set, as described above. Therefore, in the following,
we consider the set of n examples (z;,y;) fori € 1,...,n to be any evaluation
set on which our metrics are applied.

2.3.2.1 Regression

Absolute Error Our first error measure is the[Mean Absolute Error] (MAE).
TheMean Absolute Error (MAE)|calculates the mean of all deviations between
label and predictions [Bot19]|:

I~
MAEZEZM—M’ (2.1)
i=1

where n is the size of the evaluation set, y; = h(x;) is the predicted value, and
y; is the correct label of each sample. Note that although we assume y; and g; to
be one-dimensional (i.e., m = 1), these error definitions can also be adapted to
evaluate multi-dimensional labels or distributions, as they are basically distance
metrics [Cha07]]. is generally easy to interpret, is dependent on the scale
of the samples, and weighs outliers less strongly than [Mean Squared Error|
(MSE)| [Bot19]].

One variant of MAE|that aims at scale independence is the[Mean Absolute]
[Percentage Error| (MAPE)). This has the advantage that the accuracy of dif-
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ferent approaches can be compared, although the scale of the sample sets is
different [[Bot19].

1 n /\i_ i
ape = 120% |y| |y|, (2.2)
n Yi

=1

where n is the size of the evaluation set, y; = h(x;) is the predicted value, and
y; is the correct label of each sample. The [Mean Absolute Percentage Error|
[(MAPE)|is still intuitive to interpret, and its relative measure allows comparing
the performance between different scales [[Bot19]].

When used for model training, the averaging of MAE|can be omitted; hence,
the [Sum of Absolute Errors| (SAE) or L, loss, for example, used in[LAD|regres-
sion, is defined as [RN20]:

SAE| = "5 — il (2.3)
=1

where n is the size of the evaluation set, y; = h(x;) is the predicted value, and
y; is the correct label of each sample.

Squared Error Another common family of error functions is the squared error,
such as the Mean Squared Error] (MSE]) [Bot19; RN20]. In contrast to
the squares all deviations before aggregating them. This gives a higher
weight to outliers, as one large deviation quickly dominates several smaller
ones. The MSE]is defined as [Bot19]:

1n
MSE|= — 0i — i), 2.4
S5 20— v) 24)

where n is the size of the evaluation set, y; = h(x;) is the predicted value, and
yi is the correct label of each sample. While the MSE|is still scale-dependent,
it is much harder to interpret as squaring the errors transforms the MSE|to a
different scale than the original data. Hence, the [Root Mean Squared Error|
(RMSE)) aims at reverting this transformation by taking the square root of the
[Bot19]]:

1 n
- |z e — )2
RMSE|= " ZEZI(y, Yi)?, (2.5)

where n is the size of the evaluation set, y; = h(x;) is the predicted value, and
y; is the correct label of each sample.
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Analogously to the[Sum of Absolute Errors (SAE)| we can define the
[of Squared Errors| (GSE) or the squared Lo loss, which aggregates all squared
errors and can be used in[LSQ|regression [[RN20]]:

SSE|= Y (5 —vi)?, (2:6)
i=1

where n is the size of the evaluation set, y; = h(x;) is the predicted value, and
y; is the correct label of each sample.

2.3.2.2 Classification

In contrast to regression, classification problems have only a set of ¢ possible
classes. Therefore, during the evaluation of such models, there also exist a
bounded set of different outcomes based on the label and the prediction of
the model. For binary classification (i.e., ¢ = 2), there are only two possible
classes, namely a positive and a negative class. We define a|Irue Positive (TP)|as
a positive sample that was correctly classified as such and a[False Positive (FP)|
as a positive sample that was not detected. Analogously, we speak of a[True]
INegative (IN)| when a negative sample was correctly classified as negative,
and of a[False Negative (FN)| when a negative sample was falsely classified as
positive [[RN20; Alp20]].

Metrics Using these basic definitions, a set of accuracy metrics can be used to
evaluate the performance of a classifier. The first one is the Precision, defined
as [[Alp20]]:

_a
P+HFPr
where[TP|is the number of and [FP)is the number of [FPs|of the algorithm
on the respective evaluation set. The precision expresses the share of correct
classifications from all given positive classifications.

Next, we define the Recall, as the share of positive labels that were correctly
found [|Alp20]):

Precision = (2.7)

[[PHENI
where [TP|is the number of [TPs} and [FN]is the number of [FNs|of the algorithm

on the respective evaluation set.

Recall = (2.8)

30



2.3 Machine Learning

As both metrics are important, when analyzing the performance of a classifier,
they are usually aggregated by the F1I score. The F1 score is the harmonic mean
of precision and recall and can be calculated as follows [[RN20]]:

Precision - Recall APl
" Precision + Recall TP {FD|H{FN/
where Precision and Recall are the above-defined metrics, [TP|is the number of
is the number of and [FN|is the number of of the algorithm on
the respective evaluation set.

So far, none of the above metrics considers the number of [TN] of a classifier.
This is useful when the number of [I'N|is hard to determine or if it is too large so
that all other metrics would be dominated by the number of[TNs| One metric
that considers the number of [TNs|is the Accuracy, defined as [Met78]]:

Accuracy = AT
[P+ FP+HTN-HENI
where[TD]is the number of [TPs} [FP|is the number of [FPs| [TN|is the number of
TNs| and [FNJis the number of of the algorithm on the respective evaluation
set. Therefore, the denominator is equal to the total number of samples n =
MPs|+ [FPs + MTNs + [FNsl
Similarly, we also include the False Positive Rate (FPR) to analyze the perfor-

mance of different models [[Alp20; Met78]]:

F1=2

(2.9)

(2.10)

FPR TN (2.11)
where[FPis the number of [FPs|and [TN]is the number of of the algorithm
on the respective evaluation set. The FPR can be seen as the percentage of
negative labels that were incorrectly classified as positive or the probability of

reporting a false alarm [|AIp20]].

Receiver Operating Characteristic Curve Many classification algorithms can
be tuned via a threshold [RN20; Alp20]]. That is, every sample gets an assigned
score on whether or not it belongs to a respective class. Therefore, by tuning
the threshold of the respective algorithm starting at which threshold a sample
is classified as positive, the classification accuracy can be tuned.

The [Receiver Operating Characteristic (ROC)|curve analyses the behavior of
the recall and the FPR for different thresholds [[Alp20; Met78]]. Hence, it can be
used to analyze the internal prediction ranking of the evaluation samples. One
important metric for this analysis is the[Area Under Curve (AUC)| The
score can be seen as the integral of the ROC|curve; a bigger number (with a
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maximum of 1) is considered to be better, as it resembles that more positive
samples are ranked before negative ones [[Alp20].

2.3.3 Model Optimization

Next to the set of available algorithms presented in Section there exist
several meta-heuristics and techniques aimed at improving or optimizing the
performance of a machine learning model. In this work, we employ techniques
from the area of hyperparameter tuning and feature engineering. Therefore,
we will give a short introduction to the used techniques in Sections

and 2.3.3.2} respectively.

2.3.3.1 Hyperparameter Tuning

Most machine learning algorithms (or statistical estimation techniques) have a
set of configurable parameters that strongly influence the performance of the
respective approach [RN20; Alp20]. These parameters are commonly referred
to as hyperparameters, as they are not the parameters of the learned model but
rather of the model learning algorithm itself [[Alp20]]. However, choosing these
hyperparameters is not trivial as the effect of the respective parameter setting is
also highly specific to the underlying dataset used for training and validation.

If the number of features and their respective configuration settings is com-
paratively small, we can apply a grid search by simply evaluating all possible
value combinations of each feature. This is necessary, as the effects of many
configuration options interact with each other, making it necessary to try all
possible combinations [|Alp20]].

One remaining problem of this procedure is that we need a representative
evaluation of how well the model performs on the training data. This can be
done using the functions defined in Section However, as also discussed
in Section2.3.2} evaluating the generalization power of a trained model is only
possible by analyzing its performance on samples that have not been used in
the training set [RN20].

A common technique to solve this problem is k-fold cross-validation [[RN20;
Alp20]]. The method works by splitting the training data into k different groups
or folds. For each of the & folds, we then train a machine learning model on
the k& — 1 other available folds (training set) and evaluate the achieved model
on the remaining one (validation set). The overall score is then aggregated
from all k£ runs to assess the performance of the algorithm. However, one
of the main disadvantages of this technique is the increased computational
demand [[RN20].
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2.3.3.2 Feature Selection

For many machine learning problems, a large set of potential features is avail-
able for model training, many of which only contain limited or redundant
information [[RN20;|Alp20; GEO3]]. In such instances, feature selection can be a
valid tool for reducing the dimensionality of the problem [[GE03]]. One way of
reducing the dimensionality is to apply subset selection, that is, to select only a
subset of the available features while discarding others.

Feature subset selection techniques can be generally grouped into three
different types [[GEO3]|: First, Filter techniques select subsets of variables dur-
ing prepossessing and before the model itself is trained. These methods are
therefore independent of the chosen machine learning algorithm. Second,
Wrapper approaches treat the machine learning models as a black-box and
evaluate the achieved model prediction quality (possibly by means of k-fold
cross-validation) of different feature subsets. Third, Embedded methods per-
form variable selection as part of the training process of some machine learning
algorithms. Therefore, embedded methods are only applicable for specific
types of learning algorithms that support selection during model training.

Another way of dimensionality reduction is by combining multiple features
into a single feature, e.g., by transforming the feature space [[GE03]]. Similarly,
IPrinciple Component Analysis (PCA)|applies a linear transformation on the
feature space [[Pea01]] that itself does not reduce the dimensionality of the
feature space. However, one main advantage of is that the first princi-
pal components now account for larger amounts of variability in the dataset.
Therefore, it is possible to reduce the dimensionality of the feature space while
losing minimal information [JAlp20; GE03]].
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Chapter 3

State of the Art

We split the related works into three different chapters in alignment with the
research field of the respective contributions. Section 3.1 covers the prediction
of performance degradation. The section is split into two subsections, aligned
with the respective contributions. The first part focuses on the application-
agnostic degradation prediction in Section[3.1.1} while the second emphasizes
explainable degradation predictions in Section[3.1.2} Note that although the sec-
tions describe distinct aspects, there is still some overlap between the discussed
works.

Next, in Section 3.2} we discuss the learning of model parameters for software
performance models. This section is also subdivided into the essential areas
aligned with our contributions. First, we cover the area of extracting parametric
dependencies for performance models in Section [3.2.1] Second, we present the
field of resource demand estimation in Section Finally, as it is relevant for
both of the presented contributions, we include a short discussion about other
approaches on the topic of algorithm optimization and selection in Section[3.2.3}

Finally, Section [3.3]also focuses on learning performance models but pays
specific attention to the area of as our contribution aims at model-
ing distributed and cloud-hosted Therefore, we split the section into
three parts: (i) benchmarking and measuring the performance of DBMSs]| (Sec-
tion[3.3.1)), (ii) modeling and optimizing[DBMSs| performance (Section[3.3.2)),
and (iii) predicting the performance of configurable systems (Section[3.3.3)).
While the latter section does not specifically focus on the presented
techniques are still relevant as they can be seen as a somewhat more general
approach to modeling these systems.

3.1 Predicting Performance Degradation

Regarding the prediction of performance degradations or generally
|[Level Objective (SLO)|failures in software systems, we published a survey
about the current state of the art during the course of this thesis [|[Gro+20a]|.
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The publication presents a systematic mapping of 67 scientific articles, eight
theses, three technical reports, and two patents covering the topic of[SLO|failure
prediction in software systems and introduces a taxonomy in order to group the
found works. The taxonomy classifies related work along the dimensions of the
prediction target (e.g., anomaly detection, performance prediction, or failure
prediction), the time horizon (e.g., detection or prediction, online or offline
application), and the applied modeling type (e.g., time series forecasting,
machine learning, or queueing theory). Based on the given categories, we
identify research gaps that we attempt to close with our contributions.

However, due to the lack of space, we can not go into detail about the results
and instead refer to the publication itself. Instead, we will only focus on the
two most interesting subgroups relevant to the contributions in this work. The
Monitorless approach presented in Chapter ] on page [53|and the SuanMing
approach introduced in Chapter 5 on page[73|both fall in the category of online
prediction of failures as they are intended for detecting or predicting
performance degradation in an online cloud environment.

However, the presented taxonomy groups Monitorless as a black-box ap-
proach, while SuanMing classifies as an architectural approach. The main
reason for this is that SuanMing has explicit trace information from which
the application architecture can be inferred, while the application-agnostic
platform-level approach of Monitorless forbids the application of architectural
knowledge during the phase of performance detection. More details on the
design decisions can be found in the respective Chapters[d]and 5 on page
and on page

The following two sections present a detailed view of the related works of the
respective sub-fields. Note that the classifications presented in Sections[3.1.1]
and[3.1.2)are not targeted towards following or replicating the introduced taxon-
omy [[Gro+20a]]. Instead, we believe the intricacies of the respective approaches
usually lean towards a more fine-grained or accentuated differentiation of the
related work. For the same reason, we discuss the related work for the two
approaches in two different sections. Although there exist similarities or even
overlaps between the two fields, different approaches solicit different view-
points on the fields.

3.1.1 Application-agnostic Degradation Prediction

There are several approaches in both industry and academia for augment-
ing cloud operation by detecting performance saturation of software systems.
While the goals of the approaches are comparable, we distinguish them by
analyzing the type and amount of information that they require as the key idea
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of our contribution is to avoid application-level monitoring as much as possible

(see Chapter 4 on page[53)).

3.1.1.1 KPI-driven Solutions

The first group of approaches relies on application-specific metrics. For exam-
ple, Satopaa et al. [Sat+11]] require KPIs|to find valid operating ranges without
resource saturation. In many cases, additional metrics are required, for ex-
ample, the workload type or intensity [Gan+12}|Gan+14; Tru+11;Gan+19a;
YUKO6], or an indication of [SLO|fulfillment [[Gma+08; FPK14]]. Other propos-
als [Bod+09; MF10;SP19]] need [KPIs|as input to machine learning models to
predict performance degradation. Our own SuanMing approach introduced in
Chapter [5|on page[73|can also be grouped into this category. Instead, the idea
of Monitorless (introduced in Chapter @ on page[53) is to infer degradation
without actually measuring it.

3.1.1.2 Black-box Techniques

The second group of approaches treat applications as a black-box and use either
online (e.g., resource pressure models [Ngu+13]]) or offline analysis (e.g., byte-
code benchmarking [[KKR10]) to infer performance. Kundu et al. [[Kun+12]]
use machine learning to create performance models. Yet, these approaches
only work for the trained software and need to be recreated for each target
application. Emeakaroha et al. [Eme+10; Eme+12] rely on manually created
mappings between low-level metrics and high-level|SLAs| Wood et al. [Woo+07;
Wo0+09] achieve bottleneck detection based on fixed threshold rules build
from a limited set of platform metrics. Cortez et al. [[Cor+17]] and Bianchini
et al. [Bia+20]] present Resource Central, their generic machine learning system
able to predict different properties of[VM]for cloud optimization.

Similarly, commercial (e.g.,|/Amazon Web Services| (]AWS[)B Google Cloudﬂ
or Microsoft AzureE]) and open-source (e.g., CloudstacK®} or OpenStackﬂ) au-
toscaling solutions rely only on platform metrics but require expertise to man-
ually combine the scaling triggers properly.

"https://aws.amazon.com/autoscaling
"https://cloud.google.com/compute/docs/autoscaler
*https://azure.microsoft.com/features/autoscale
*https://cwiki.apache.org/confluence/display/CLOUDSTACK/Autoscaling
Shttps://wiki.openstack.org/wiki/Heat/AutoScaling
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3.1.1.3 Automated and Application-agnostic Approaches

The third group consists of more sophisticated proposals to apply machine
learning to application-level metrics in order to predict performance. Hence,
they do not need to measure application [KPIs|at runtime. These proposals are
applied, for example, to a web server for performance modeling during
migrations [HT11]], to a video streaming service for [KPI prediction [[Yan+15b;
Yan-+15al|, or for training Bayesian networks to classify compliance of
web servers [[Coh+04]. In contrast to Monitorless, there is no evidence on how
generic these models are and whether they can be used autonomously across
various applications and platforms.

To summarize, approaches from literature are usually tuned towards a spe-
cific application. This is done either by specifically monitoring for that
application or by analyzing, adapting, or training a specific use case of that
application. There is no evidence that the trained model can be transferred
to prior unseen applications. In contrast, our work aims at predicting appli-
cation performance without measuring or any application-level metrics
while creating one prediction model transferable to a large set of different
applications.

3.1.2 Explainable Degradation Prediction

In the previous section, our focus was on the type and amount of monitoring
data that the respective approaches require, as this is the main limitation of
our Monitorless approach. As the focus of our other contribution, the SuanMing
framework, is to deliver explainable predictions, the focus of this section is now
on the degree of explainability that the respective works offer.

3.1.2.1 Black-box Approaches

The first group relies on black-box techniques, for example, machine learning
techniques, to detect or predict performance degradations [Lou+18;/Sha+13;
vOI19]]. Lou et al. [Lou+18]] predict the failures of cloud services with rel-
evance vector machines using different flavors of quantum-inspired binary
gravitational search algorithms. Li et al. [LLG18]] postulate to incorporate
information from the network, the hardware, and the software to detect fail-
ures. Sharma et al. [Sha+13]] apply a multi-layered online learning mechanism
for distinguishing cloud-related anomalies from application faults. Others
focus on predicting [CPU| contentions with the use of different regression mod-
els [vOI19]. The Resource Central approach by Cortez et al. [[Cor+17]] and
Bianchini et al. [[Bia+20]], as already introduced in the previous section, can also
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be classified into this category. Bianchini et al. [[Bia+20]] also acknowledge the
need for debugging and explainability of machine learning models. Another
work includes Seer, an online cloud performance debugging system that uses
deep learning for performance prediction [Gan+19al]. Our own Monitorless
approach can be grouped into this category as well. However, as all these tech-
niques rely on black-box techniques, they can not deliver sufficient explanations
for their predictions.

3.1.2.2 Architectural Solutions

The second group of works applies similar techniques as SuanMing, targeting
degradation predictions using either rule-based [[CH10; Gu+08; Pit+14]], or
architectural models [[Pit+18; Moh12;|Cap+13; OY16; Mar+20]].

An example of a rule-based system is NETradamus, a framework for forecast-
ing failures based on event messages proposed by Clemm and Hartwig [[CH10]].
The tool mines critical event patterns from logs based on past failures in order
to create rules for the detection of failures in an online context. The work of Gu
et al. [Gu+08]] and Pitakrat et al. [Pit+14]] are based on a similar idea, that is,
creating rules based on log events of past failures for predicting new upcoming
failures of the same type. However, as the creation of these rules requires
available log data, which can not be assumed to be included in general cloud
monitoring, these approaches are not viable for the application in the SuanMing
framework.

Architectural models, for example, Pitakrat et al. [Pit+18]], develop failure
propagation models for incorporating the probabilities of cascading failures.
Mohamed [Moh12]] uses the so-called error spread signature to derive propa-
gating failure models. Other approaches [OY16; Cap+13]| propose to combine
measurement from hardware and from inside the software in order to over-
come the downsides of black-box failure models while keeping the monitoring
overhead acceptable. Mariani et al. [Mar+20]| aim at predicting failures in
distributed multi-tier environments; however, they do not address microser-
vice environments. Similar to above, these approaches generally require more
intrusive monitoring infrastructures than the SuanMing framework.

3.1.2.3 Root Cause Analysis Techniques

The third group of works is concerned with root cause analysis and failure
search for microservice applications. Jindal et al. [JPG19]] propose a regression
modeling technique for analyzing the capacity of each microservice, which
could be used for root cause analysis, similar to our work. However, they require
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a test-bed for analyzing the performance of the running services. Microscope
relies on causality graphs to pinpoint root causes for failures in microservice
applications [[LCZ18]. In contrast to our work, they introduce the concept of
non-communicating dependency in their dependency graph, for example, via
co-location. Other root case localization algorithms for microservices based on
attributed call or dependency graphs were proposed by Wang et al. [Wan+18]]
and Wu et al. [[Wu+20b; Wu+20al]. Zhou et al. [[Zho+18]] present an approach
for fault analysis in microservice applications using tracing tools, while Samir
and Pahl [SP19]| use Hierarchical Hidden Markov Models for analyzing root
causes.

While these works can deliver root causes and therefore the explanation of
respective performance problems, none of these works is able to forecast a
future performance degradation. Instead, these works focus on the explanation
of currently occurring degradations. However, the applied techniques are still
related to and relevant for the SuanMing architecture.

3.2 Learning Performance Model Parameters

There already exist a lot of works covering the topics of learning or extracting
performance models from monitoring data. For example, Walter et al. [Wal+17]],
Hrischuk et al. [[Hri+99], Israr et al. [Isr+05]], Mizan and Franks [[MF11]], Brosig
et al. [BKK09; BHK11]], Brunnert et al. [BVK13]], Willnecker et al. [Wil+15a]],
and Spinner et al. [SWK16} Spi+19] all propose different frameworks or ap-
proaches for the dynamic extraction of performance models from monitoring
or tracing data. However, while there was already extensive work done on this
topic, two areas that require specific attention are (i) the extraction of paramet-
ric dependencies and (ii) the continuous learning of resource demands.

Our first aspect of attention, parametric dependencies, describe the rela-
tionship between the input parameters of a component and its performance
properties. Additionally, the importance of including such influences in per-
formance models has been discussed by a variety of works, for example, by
Woodside et al. [Woo+95]], Pozzetti et al. [[Poz+95]], Menascé [Men97]], Menascé
and Gomaa [MG98]], and Koziolek [[Koz10]. Nonetheless, none of the above
approaches is capable of extracting parametric dependencies.Section [3.2.1 dis-
cusses the related works in more detail.

Resource demands are the second central parameter of performance models
that we will focus on. Extracting resource demands has been the target of
many different extraction approaches. Nevertheless, there is a lack of holistic
approaches, as we discuss in Section
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Thirdly, we will cover the topic of optimizing and selecting a set of base
approaches, sometimes also referred to as meta-learning [Smi09; Ker+19]]. The
techniques proposed throughout this work are originating or closely related
to approaches proposed in the field of machine learning and self-adaptive
systems [[Kou+17]]. Therefore, we give a short overview of the current state of
the art in Section [3.2.3] However, none of the previously developed techniques
focus on learning the parameters of performance models as we do. Hence, our
work serves as a proof-of-concept that these techniques can be applied in the
area of learning performance models as well.

3.2.1 Parametric Dependencies

We first focus on the area of learning parametric dependencies. As already
stated, the extraction of parametric dependencies has only received limited
attention in research, although the importance of parametric dependencies for
accurate performance predictions is widely known [Wo00+95; Poz+95; Men97;
Koz10; [ Koz08|] and the manual modeling of parametric dependencies is time-
intensive and error-prone [KKR10].

As such, we include all approaches explicitly dealing with the extraction of
parametric dependencies in Section[3.2.1.1} In addition, we discuss the area of
modeling software using statistical functions in Section[3.2.1.2} Although works
from this area do not explicitly include the notion of parametric dependencies,
the applied techniques are still related and are therefore also influential to our
work.

3.2.1.1 Extracting Parametric Dependencies

Krogmann et al. [KKR10]] perform dedicated performance experiments after
instrumenting the application to monitor method call parameters and the
number of executed byte-code instructions. The number of executed byte-code
instructions are later mapped to resource demands for a specific system using
byte-code benchmarks. Therefore, the proposed approach can not be applied at
run-time, as the used byte-code instrumentation causes monitoring overheads
of up to 250% [KKR10]].

Courtois and Woodside [[CW00|] propose to use regression splines to extract
parametric dependencies. They perform dedicated performance tests to obtain
the data on which they fit the regression splines. This approach is not applicable
to monitoring data from a running system, as there is no way to influence what
monitoring data will be collected next.
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The approach of Mazkatli and Koziolek [MK18]] updates architectural per-
formance models based on source code change analysis and dynamic monitor-
ing [Mon+21]]. In addition, it calibrates models incrementally with parametric
dependencies [Maz+20] that can be optimized using a genetic search algo-
rithm [[Von+20]]. In contrast, we do not assume source code information to be
available.

Brosig et al. [BHK11]] propose an approach to extractPCM|[[BKR0Y]] instances
based on monitoring data collected by Oracle WebLogic Server. Their approach
requires information about parameter tuples for which a dependency exists as
input.

To summarize, approaches from literature either require to run prelimi-
nary experiments in a testing environment [[CW00; KKR10]], available source
code [Maz+20; Von+20], or require already detected parametric dependencies
as input [BHK11]]. To the best of our knowledge, there is currently no approach
that can automatically identify parametric dependencies using only monitoring
data from the production environment.

3.2.1.2 Modeling Software Performance Using Statistical Functions

There exists a set of approaches that model the software dependencies, like we
do, using statistical functions. These functions aim to model the performance
of a system (usually response time) as a function over the configuration or the
input parameters of the system. Therefore, although they aim at a sufficiently
different granularity than parametric dependencies, the proposed techniques
are still influential for the design of our approach.

Kwon et al. [Kwo+13]] derive the response time of Android applications
from parameters calculated early on in the application execution. During an
offline stage, an instrumented version of the application is benchmarked to
determine the influence of parameters such as branch counts, loop counts, or
variable values on the application response time. Thereska et al. [The+10a}
The+10Db]] predict the performance of several Microsoft applications based on
configuration and input parameters from data collected from several hundred
thousand real users. The authors apply to filter relevant attributes, fol-
lowed by a similarity search to derive performance predictions. Westermann
et al. [Wes+12] analyze the suitability of [Multivariate Adaptive Regression|
[Splines (MARS)] [CART] [Genetic Programming (GP)| and Gaussian process
regression for the construction of software performance models. Additionally,
three different measurement point selection algorithms are evaluated, which
reduce the required number of dedicated performance measurements. Noor-

shams et al. [Noo+13]] investigate the prediction accuracy of LR} [MARS) [CART
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and cubist (an extension of [M5) for virtualized storage systems. The authors
propose a general heuristic search algorithm to optimize the parameters of
these regression techniques. Faber and Happe [[FH12]] derive software perfor-
mance models with the use of genetic programming and conduct a thorough
parameter optimization. The optimized [GP]algorithm outperformed in
their case study. In contrast, Velez et al. [Vel+21]] present Comprex, a white-box
approach to capture configuration-specific performance behavior to generate
both local and global performance-influence models. Weber et al. [WAS21]]
present a technique for method-level white-box modeling based on profiling
results.

To summarize, the presented software prediction techniques are a powerful
tool to predict the response time of a system for different workloads. However,
unlike architectural performance models, they can not be used to analyze the
impact of changes to the system itself, such as scaling, redeployment or system
evolution. We use the existing work on software performance prediction as aid
to select the regression approaches we apply in Chapter|/|on page

3.2.2 Resource Demands

The second important topic that we want to focus on in this work is the esti-
mation of resource demands. As resource demands are a crucial parameter
for many modeling approaches, the topic of extraction resource demands for
performance models received a lot of attention in the literature. Although there
exist approaches trying to directly measure the resource demand [[KKR09],
measuring resource demands during system operation is not feasible in most
realistic systems [[Spi+15]] due to instrumentation overheads and possible mea-
surement interferences. Furthermore, Willnecker et al. [Wil+15b]] show that
statistical estimation approaches can provide comparable accuracy to direct
measurements. Therefore, many different solutions for the estimation of re-
source demands based on standard monitoring tools have been proposed.

3.2.2.1 Resource Demand Estimation Techniques

Spinner et al. [[Spi+15] present a literature survey covering the most prominent
approaches. In this work, we just give a brief overview of the most relevant
techniques.

Approaches using operational laws The first idea is to approximate the re-
source demands using the measured response time, as the response time
is usually easy to obtain. The works of Urgaonkar et al. [[Urg+07], Nou et
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al. [Nou+09]], and Brosig et al. [BKK09|] propose ideas towards this approach,
called [Response Time Approximation (RTA)l However, assumes that
the queuing delay is sufficiently small, which can be problematic in practical
scenarios.

Therefore, other approaches propose the Service Demand Law (SDL)} based
on the operational utilization law [[MDAO04]|. While Menascé et al. [MDAO4]]
and Lazowska et al. [Laz+84] proportion the utilization for each workload class
by collecting additional per-class data, Brosig et al. [BKK09] try to estimate it
using the response times of the different classes.

Approaches using statistical techniques Other approaches rely on |LR|to
perform resource demand estimation. regression can be used to estimate
the unknown resource demand based on the utilization law [MDAO04], called
[Utilization Regression (UR)| as done by Pozzetti et al. [Poz+95]], Rolia and
Vetland [RV95; RV98]], and Pacifici et al. [Pac+08]].

Kraft et al. [Kra+09]] also use LR|but estimate the resource demands based
on response times and queue length on arrival. We call this approach[Response]
time Regression| (RR)). They use regression for estimating the resource
demands based on response times and queue lengths on arrival. Pérez et
al. [PPC13]] extend this approach to other processor scheduling techniques. Oth-
ers use LAD|regression [Kel+06; [ ZCS07;[SKZ07]] other regression types [[CC07;
CCTO08]).

Zheng et al. [[Zhe+05}; ZWLO0S; [Zhe+15] and Kumar et al. [KTZ09]] apply
[Kalman Filters (KFs)|for resource demand estimation. Kumar et al. [KTZ09]
utilize the measured utilization and the arrival rate, while Wang et al. [Wan+11;
Wan+12]] use an alternative [KF|based on the utilization law [MDAO04]].

Approaches using optimization The third group of approaches tries to es-
timate the resource demands by formulating an optimization problem and
minimizing the error respective error function.

If the chosen constraints are linear, the problem is solvable by quadratic
programming as used by Zhang et al. [Zha+02]]. Incerto et al. [INT18]] also
propose a linear programming technique to estimate service demands and
routing probabilities by utilizing deterministic approximation [INT21]]. Other
approaches using non-linear optimization to minimize the error function, in-
clude Liu et al. [[Liu+03[], Kumar et al. [KZT09]], Wynter et al. [WXZ04]], and
Liu et al. [[Liu+06]. Liu et al. [Liu+03] and Kumar et al. [KZT09]] adapt the
error function to use relative instead of absolute errors. Wynter et al. [WXZ04]]
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and Liu et al. [Liu+06]] propose an approach that increases robustness against
noisy measurements.

Another approach using optimization is proposed by Menascé [Men08]]. Due
to the non-linear structure of the objective function, the problem is not solvable
with linear or quadratic programming. Therefore, Menascé [Men08]| proposes
a recursive non-linear optimization solver strategy.

Other approaches Finally, other approaches include the works of Sharma
et al. [Sha+08]] using Independent Component Analysis (ICA) and the works
of Kalbasi et al. [Kal+11]] using[SVMs]to estimate resource demands. Other ma-
chine learning techniques like clustering or change-point regression are applied
by Cremonesi et al. [CDS10]] and Cremonesi and Sansottera [[CS12} |[CS14b]],
while Garbi et al. [[GIT20] utilize recurrent Kraft et al. [Kra+09]] and
Pérez et al. [PPC13]] propose the use of maximum likelihood estimation, while
Sutton and Jordan [S]11]], Wang and Casale [WC13]], and Wang et al. [WCS16]|
estimate resource demands with Gibbs sampling. Rolia et al. [Rol+10]] and
Kalbasi et al. [Kal+12]] are able to estimate aggregate resource demands of a
given workload mix. For more details on the individual algorithms, we again
refer to the survey by Spinner et al. [Spi+15]].

3.2.2.2 Approaches Combining Resource Demand Estimation Techniques

While all introduced approaches mainly focus on presenting a single approach,
there already exist works aiming at providing libraries for a set of techniques.
These include the Filling-the-Gap tool by Wang et al. [WPC15]] and the
[brary for Resource Demand Estimation (LibReDE)|by Spinner et al. [[Spi+14]].
Filling-the-Gap [WPC15] provides and compares implementations of the com-
plete information method [[PCP15]], a variant of Gibbs sampling with queue
lengths [Wan+12]], one approach using maximum likelihood estimation based
on a Markov chain representation [PCP15]], one technique based on maximum
likelihood estimation using a fluid approximation [PCP15], two regression-
based approaches [PCP15} [ZCS07], and one approach based on optimiza-
tion [WXZ04; Liu+06].

Similarly, the publicly available tool|Library for Resource Demand Estimation|
(LibReDE)) [Spi+14] offers open-source implementations of currently eight
different estimators:

e Approximation with response times: [Response Time Approximation|
(RTA) [BKK09)].

e Approximation using the[SDL} [Service Demand Law| (SDLJ) [BKK09].
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e [LSQ|regression based on queue lengths and response times:
time Regression| [Kra+09].

[LSQ|based on utilization law: [Utilization Regression| (UR]) [RV95].

A[KF|based on utilization law: Wang Kalman Filter] (WKF) [Wan+11}
Wan+12]].

A [KF based on response times and utilization: [Kumar Kalman Filter|
(KKE) [ZWL08; KTZ09].

Recursive optimization based on response times [Men08]].

e Recursive optimization based on response times and utilization [WXZ04;
Liu+06].

The results obtained for comparing these approaches are published in the
respective study [Spi+15;/Spil7]]. The results show that no approach outper-
forms the others in all scenarios. This is in accordance with the no-free-lunch
theorem [WM97]] and supports the claim as well as the motivation behind our
approach presented in this work. To the best of our knowledge, the only ap-
proach for the automatic selection of resource demand estimation techniques is
proposed by Spinner [Spil7]]. However, this approach is not designed as a con-
tinuous and self-improving learning activity. Instead, its focus is on estimating
the resource demands once, using the available estimation data.

3.2.3 Optimization and Selection in Self-adaptive Systems

Although no works with a focus on resource demand estimation or depen-
dency extraction have been proposed, the idea of continuously adapting and
optimizing a system in a changing environment is not new. For example, the
communities of self-aware, self-adaptive, or self-organizing systems tackle
challenges of monitoring, managing, and optimizing intelligent systems in
continuously changing environments [[Kou+17]. In addition, hyperparameter
tuning and algorithm selection is an interesting topic in the area of machine
learning [Ker+19;Bie+18]]. (Also refer to Section[2.3.3)).

3.2.3.1 Algorithm Optimization

As such, the ideas presented throughout this work have been successfully
applied to other domains. For example, Porter et al. [Por+16]] present Rex,
a development platform that is also able to apply online learning and opti-
mization based on a linear bandit model. Others define self-organization or
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self-assembly to achieve a similar goal [RP17; EM14; KW14]. Fredericks et
al. [Fre+19a}; [Fre+19b]] present an overview of different optimization techniques
in self-adaptive systems. They divide works into techniques using probabilistic,
combinatorial, evolutionary, stochastic, or mathematical optimization. Addi-
tionally, we also contributed to a survey and a taxonomy for online learning
of collective self-adaptive systems [DAn+19; DAn-+20]], where the focus is on
learning, adaptation, and optimization.

Algorithm optimization is also a common topic in machine learning, either
through hyperparameter tuning is also a common topic in machine learn-
ing. Therefore, a set of algorithm configuration approaches, like Sequential
Model-based Algorithm Configuration (SMAC) [HHL11]], or
fpling Search (S3)| [Noo-+13; Noo15]] have been proposed, as well as analy-
sis and visualization tools [[Bie+18]]. A sub-field is also neural architecture
search [EMH19]], which goal is to automatically find neural network architec-
tures and which techniques could also be applied in future work.

However, while all of the presented approaches demonstrate the feasibility
of applying the proposed techniques in practice, none of these works explicitly
focuses on the area of resource demand estimation or parametric dependency
extraction as we do. Therefore, our contribution in respect to this field is to
demonstrate and verify the applicability of continuous algorithm optimization
in the specific domain of resource demand estimation.

3.2.3.2 Algorithm Selection

An orthogonal field in the context of continuous optimization is algorithm selec-
tion [Bis+16}|[Ker+19]. Algorithm selection [Ric76]] (closely related to the field
of hyper-heuristic selection [[Bur+13; SHP15] or meta-learning [Smi09; Rij+14]])
is defined as choosing from a set of algorithms the best for a specific problem in-
stance, and has found many application areas in prior research [Xu+08; HRK11}
Mal14; Geb+11; |[Lin+15; Bis+16]].

However, the creation of features for the selection process is a critical task
influencing the performance [Bis+16; Ker+19]. Hence, by tailoring our fea-
tures to the specific task at hand, we can provide better results than generic
optimization and selection frameworks. The application presented in Chapter||
on page 91|is different from most of the proposed techniques as it offers the
possibility to perform selection on continuously incoming data streams, which
currently only a few works consider [Rij+14; Rij+17; [Ker+19]]. In addition,
Chapters|6|and [7]on page 91 and on page[109| provide an application for on-
line algorithm selection [[Arm+06}|GS10]]. Both areas have been identified as
specific research challenges by prior works [Ker+19]].
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Again, as no works concentrate on resource demand estimation or depen-
dency learning, the focus of this work is to demonstrate the feasibility algorithm
selection in our specific domain. However, similar to the previous section, many
of the proposed techniques can be applied to our task as well in order to further
improve the results presented in this work.

3.3 Modeling Distributed Cloud Database
Performance

In Chapter 8, we will also cover the topic of measuring and modeling config-
urable and distributed [Database Management Systems| (DBMSs]) in the cloud.
Therefore, in addition to the related approaches listed in the previous section,
we target three more areas in this section: (i) performance measurement of
distributed in Section[3.3.1} (ii) performance optimization of
in Section [3.3.2) and (iii) more generally the performance prediction of config-
urable software systems in Section 3.3.3]

3.3.1 Benchmarking and Measurement

benchmarking is a common process to determine the performance
of an operational model for Therefore, there exists a multitude of
different benchmarks that support diverse workload models and evaluation
objectives [[SD17;[Ren+17]]. In consequence, there are numerous supportive
performance studies that focus on cloud-hosted available [[Coo+10;
KKR14; Hen+18]. Yet, each of these studies covers only a small part of our
scope.

The Mowgli framework by Seybold [[Sey17]] and Seybold et al. [Sey+19]]
enables a holistic approach to automated benchmark setup, measurement, and
tear-down while enabling evaluation of non-functional features under runtime
and resource constraints, specifically targeted at cloud providers. We, therefore,
also build upon the Mowgli tool in our contribution. However, all works in this
section solely focus on benchmarking or measurement of distributed
and therefore do not consider the modeling perspective.

3.3.2 Modeling and Optimization

DBMSs| performance optimization approaches such as ITuned [[DTB09]], DB-
Sherlock [YNM16], and OtterTune [[Van+17]] target single instance relational
DBMSs| that are operated on dedicated resources. These approaches have a
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special focus on the workload by considering trace-based workloads [DTB09;
YNM16]] or unknown workload types [[Van+17]]. Rafiki [Mah+17] targets the
performance optimization of single instance [Not only SQL (NoSQL)|[DBMSs|
for different workload types by automatically determining [DBMS|runtime pa-
rameters and deriving their optimal configuration. While these approaches
provide comprehensive performance prediction mechanisms for single node
they neither consider aspects of distributed DBMSs|nor the volatility
of cloud resources.

Performance models for distributed are, for example, presented by
Farias et al. [[Far+18], Dipietro et al. [DCS17]], and Xiong et al. [XYD19]], con-
sidering the performance prediction impact of different cluster sizes [[Far+18]|
and specific runtime parameters [DCS17; XYD19].

Finally, the URSA framework [Zhe+19] targets the automated capacity plan-
ning of a single node operated on cloud resources. Thus, the focus of
URSA lies on the cloud resources, while the aspects of distributed are
not considered.

In summary, existing approaches provide comprehensive performance pre-
diction mechanisms for single node on dedicated resources [[DTB09;
YNM16; Van+17; Mah+17]], focus on distribution aspects [DCS17} Far+18;
XYD19]] without considering cloud resources or consider only cloud resources
without considering distribution aspects [[Zhe+19]. In contrast, our
work aims at specifically addressing the modeling and optimization challenges
of distributed and cloud-hosted DBMSsland therefore tries to close this research
gap. The respective contribution is described in Chapter 8 on page

3.3.3 Prediction of Configurable Systems

The third group of related approaches is generally focused on modeling and
predicting the performance of general configurable software systems.

Zhu and Liu [[ZL19] propose ClassyTune, a system for tuning software
systems in cloud environments. Singh et al. [Sin+16]] optimize the perfor-
mance of object-relational mapping frameworks, mapping database operations
onto high-level by using a multi-objective genetic algorithm. Zhang
et al. [Zha+15]] propose the application of Fourier learning to predict the
performance of configurable systems with theoretical accuracy guarantees.
Siegmund et al. [Sie+15] combine machine learning and sampling heuristics
to build performance-influence models for highly configurable systems. Sarkar
et al. [Sar+15]] compare different sampling techniques for CART-based perfor-
mance models and introduce a novel heuristic for the selection of the initial
samples. Guo et al. [Guo+17]] improve the[CART}based performance model
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by resampling the training data to determine the accuracy of the resulting
model and automated hyperparameter tuning. Ha and Zhang [HZ19] propose
a deep sparse neural network architecture and hyperparameter optimization
approach for the performance prediction of configurable systems. Nardi et
al. [NKO19] introduce HyperMapper 2.0, a multi-objective optimization frame-
work with support for unknown feasibility constraints, as well as categorical
and ordinal parameters. Westermann et al. [Wes+12]] compare the accuracy of

and Kriging for the construction of software performance
models. Similarly, Noorshams et al. [Noo+13]] evaluate the accuracy of

Trees, and Cubist Forests for the performance modeling of
storage systems. Other white-box approaches [Vel+21; WAS21]] build models
based on detailed profiling of the software artifact to predict the configuration-
specific performance behavior. The latter approaches have also been discussed
in Section

However, none of these approaches are specifically considering distributed
and cloud-hosted To the best of our knowledge, no approach exists
that addresses measurement variability during sampling or specifically targets
distributed as we do.
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Chapter 4

Detecting Resource Saturation

In this chapter, we present Monitorless, an approach for the application-agnostic
prediction of resource-based performance saturation. In the same way that
the Serverless Computing [[Eis+21b]] paradigm allows the execution environ-
ment to be fully managed by the cloud provider, we discuss a Monitorless
model to take care of application monitoring. We show that training a machine
learning model with platform-level data, collected from the execution of repre-
sentative containerized services allows inferring application [KPI|degradation.
This is an opportunity to simplify operations, as engineers can rely solely on
platform-level metrics to configure portable and application-agnostic rules to
automatically trigger actions such as autoscaling, instance migration, network
slicing, etc.

Recent research work aimed at automating performance analysis and or-
chestration typically relies on specific application [KPIs|measurements [Igl+17;
TAL15;Ven+16;Yan+15b]] (see Section [3.1)on page[35]). However, we argue
that application-specific metrics limit the generality of solutions and their ap-
plicability across applications and platforms as application-level metrics are
not always available [Bia+20; Cor+17]]. That is, operation teams need to profi-
ciently evaluate and control critical KPIs|and keep track of their specific target
operating range for each running application, which reduces the agility of
deployment.

Therefore, we leverage machine learning to loosen the dependencies between
operation tasks and application-specific Intuitively, the idea is to use
historical data from various and commonly used services, labeled with informa-
tion about bottlenecked resources and hardware configuration, to infer service
degradation without the need to specifically monitor or analyze any
during production. Thus, our approach uses only a standard set of application-
agnostic, hypervisor-level, platform metrics (e.g.,[CPUland RAM]utilization)
to infer degradation. These metrics are autonomously processed by a
machine learning algorithm to detect performance issues without the need to
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explicitly monitoring them. Therefore, we call our approach “Monitorless”, as
we avoid the monitoring effort for application-level metrics.

The reasoning behind Monitorless is motivated by 1) new software architec-
tural patterns such as microservices that allow building applications from a
collection of loosely coupled and fine-grained services; 2) cloud commodity
hardware that allows for a more concrete and homogeneous set of platform-
level metrics; and 3) the fact that application|[KPIs|are directly related to the
usage of underlying platform resources (physical or virtual), and finding this
relation is a solvable machine learning task. This way, we solve RQ[L1] (‘{How|
lcan platform-level measurements be utilized to detect resource saturation?|”). In our
proof-of-concept, Monitorless relies on a binary classifier that works with a
large set of features derived from combinations of platform-level metrics. The
classifier is trained with data obtained during the execution of typical microser-
vices, widely used by application developers (e.g., databases, load balancers,
messaging, etc.), monitored as they experience resource saturation as well as
in normal operation.

We introduce the Monitorless framework and show that one resource satura-
tion model allows for detecting performance degradation of several complex
applications, even when such applications are unknown to the trained model.
Therefore, we answer RQ [I.2| (“{How can we generalize the results to create a generid|
land holistic prediction model?]”). We note this represents a significant divergence
between Monitorless and other solutions based on[KPlIs|as we propose a generic
approach with a single resource saturation model working for a heterogeneous
set of different applications. In contrast, other machine learning solutions are
based on training models with specific application data known beforehand or
rely on [KPIs| that are not transferable and generic. This is the target of Goal[l]
(“Design an application-agnostic approach for the detection of resource saturation
Ibased on platform-level monitoring data.|”).

In summary, the key contributions are the following:

e A methodology for creating the appropriate feature set for the robust
operation of cloud environments driven by generic platform data. Fea-
tures are selected according to the [Utilization, Saturation, Error (USE)|
method [Grel3]] and extracted with the Performance Co-Pilot|tool.

e A pipelined architecture for model training and validation, as well as the
components required to infer performance degradation without moni-
toring application and to integrate the Monitorless model into the
cloud orchestrator.

"https://pcp.io
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Moreover, Monitorless can be used as a building block that enables black-box
services and applications deployed on a cloud platform to be autonomously
managed. In particular, since our framework can be used to detect performance
degradation in a service-agnostic way based on generic platform-level metrics,
it can be used as a basis for autoscaling and consolidation decisions, as well as
performance bottleneck analysis. Thus, we posit that in many cases Monitorless
can eliminate the need for (i) dedicated tests to analyze performance behavior
and (ii) specialized online service-level monitoring of [KPIs} The long-term goal
is to have one globally applicable model for predicting resource-based service
degradation, applicable for the vast majority of operating service instances,
without the need to retrain the model for every application. This work was
conducted during a research visit at Nokia Bell Labs in Dublin, Ireland. We later
also published the developed approaches and the respective results [Gro+19d].

The rest of this chapter is organized as follows. Section {.1| presents an
overview of the Monitorless architecture and design, whereas Section elab-
orates on the feature selection and the methodology used to create a robust
machine learning model. Finally, we conclude in Section Experimental
results for Monitorless are discussed later in Chapter [0jon page

4.1 Monitorless Design

Figure {4.1|illustrates the components of Monitorless in a simple deployment
with two physical nodes running three applications (indicated with different
colors), each composed of one or many instances of different microservices.
Monitorless introduces two key components: (i) a monitoring agent deployed
on each cloud node and (ii) the orchestrator function serving as a centralized
repository for data collection and training. Both components can be integrated
into an existing cloud environment to augment its functionality.

The monitoring agents run on each physical host to collect a set of predefined
platform-level metrics using standard monitoring tools. Examples of these
metrics include usage, usage, and throughput of [[/Ofdevices; all
of them are measured at the[OS}level and include hypervisor information, for
example, namespace and cgroups interfaces for Linux containers. The orches-
trator periodically receives metrics from the agents. First, the data collected
is used to make performance predictions at each service instance to detect
resource saturation; see Section for more details on the prediction model.
Second, the orchestrator infers the overall application performance from the
predictions at individual containers composing the application. Third, based
on the inference, the orchestrator can decide to change the current deployment
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Figure 4.1: Overview of the Monitorless components.

by migrating or scaling applications automatically as remediation for perfor-
mance problems. The orchestrator operates online, repeating the steps above
at regular intervals.

Next, we describe the nomenclature used throughout this chapter in Sec-
tion[4.1.T) the methodology proposed for detecting saturation in Section[4.1.2)
and a formal definition of the machine learning problem Monitorless is designed
to solve in Section4.1.3l

4.1.1 Nomenclature and Definitions

A cloud is a set of connected nodes C = {c, ..., ¢} in which multiple applica-
tions are executed, and where each node ¢ € C is a computing entity able to host
service instances in a virtualized environment (as VMs or Linux containers).
Consequently, |C| is the total number of nodes in the cloud C. An application
A= {81,...,8) 4/} is composed of interconnected services running in the cloud,
where each service S = {71, ..., Z;s|} consists of one or more service instances.
These service instances are functionally identical but can differ in terms of which
node they are assigned to, effectively determining the type and amount of
available resources. Thus, each service instance Z is assigned to run inside its
own virtual environment on exactly one node c of the cloud environment. The
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4.1 Monitorless Design

parameter |A| describes the number of services within application .A and |S| is
the total number of service instances of service S.

At each point in time ¢, the monitoring agents collect a set of ks host metrics,
H 1, as well as a set of ky virtual metrics, Vz 1, for each service instance Z running
on node c. Moreover, at each point in time ¢, it is possible to observe a
value P 4(t), which represents the performance of application .A at time ¢. Each
service instance 7 is associated with one set of host metrics H.: € RF# as well
as one set of virtual metrics Vz; € R* for a given time ¢, assuming that 7
was running at time ¢. We denote the vector representing the concatenation of
metrics H.; and Vr¢, as Mz.

4.1.2 Labeling Resource Saturation

We consider service instances (i.e., microservices composing the application)
to be either saturated or non-saturated at a given time and define the saturation
state of an application A at time ¢ according to its P4 (t). We use application[KPIS|
only for labeling data to train our models. Note that such are not required
for using the resulting model. Depending on the application, examples of
can be response time or throughput of a web service, jitter in a video
streaming application, or availability indicators in communication systems. In
the following, we present a methodology for labeling throughput. However,
this step can be analogously applied to similar for other more sophis-
ticated manual modeling might be necessary. Note that this labeling
is only required during the training of different applications and implies the
abstraction from the of the used application. Therefore, this abstraction
of different[KPIs|enables Monitorless to act application-agnostically. The actual
training is done using labeled (and therefore KPIlindependent) historical data
from a set of selected representative applications without assuming that the
target application is also used for training. Although for common use cases
(e.g., autoscaling), binary classification is enough, note that one can also apply
more complex state descriptions based on multiple classes.

In practice, finding resource saturation is difficult as metrics can have non-
deterministic or noisy behavior (see observed throughput (blue dots) in Fig-
ure[4.2)), important points in the dataset can be missing, or the sampling fre-
quency is too low. Usually, an application serving increasing workloads shows
a proportional increase in throughput until a saturation point is reached, from
which a non-linear behavior is expected (see the elbow around 700 requests/sec
in the smoothed curve (orange line) of Figure[4.2)). This behavior can be cor-
related to other for example, the response time would rapidly increase
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Figure 4.2: Observed throughput, smoothed curve, and calculated differences
of an example load test.

when the throughput reaches the nonlinear region. Alternatively, there would
be an increase in the number of dropped requests.

To label the dataset propetly, it is critical to ensure that the non-linear behavior
of is due to resource saturation when detecting elbows or knees in [KPIs|
Although there is no mathematically unique “elbow” in an exponential curve,
we use the definition of Satopaa et al. based on curvature and employ
their Kneedle approach to find it.

Therefore, to create training and test data, we linearly increase the workload
of a given target application .4. While applying the workload, we monitor the
P4(t). Relating this [KPI to the workload intensity for time step i defines a
discrete function f with f(a;) = 3;, where «; is the workload intensity and f;
the corresponding [KPI Our implementation of Kneedle to label the training
and test data is outlined below:

1. Smooth f by applying a Savitzky-Golay filter [SG64] (orange curve in
Figure or any similar filter.

2. We normalize the points of f to the unit square by setting:
a; + (0 —minj{e;})/(max;j{a;} — min;j{e;}), and

Bi + (Bi — min;{B;})/(max;{B;} — min;{S;}).

3. We calculate the differences between 3; and «; by setting: 3; < 8; — o.
This yields the green curve in Figure

4. The set of candidate saturation points are the local maxima of this curve
defined by the differences above, and we manually choose the local maxi-
mum (such as in Figure[d.2), defining the corresponding f3; as our thresh-
old T.
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Hence, we obtain a function P4 : R — {0, 1}, with

~ ] 0 ifPy(t) <Y, (nosaturation)
Palt) = { 1 otherwise. (saturation)

The function f above is assumed to have positive concavity. If the opposite is
true, the same technique can be applied by setting 3; <— max;(3;) —3; and o; <
max;(a;) — ;. We note that Savitzky-Golay filters have tunable parameters
that should be adjusted depending on input data. However, its purpose is to
provide a smoothed curve from which we can identify a knee or elbow in a
reproducible manner, as we are applying machine learning algorithms to the
function f. Thus, the procedure above need not be fully automated for arbitrary
input data, and, indeed, we recommend that f is visually inspected as a sanity
check.

4.1.3 A Machine Learning Problem

The training dataset 7 is built from multiple instances running various ser-
vices on different deployments and serving diverse workloads to increase the
model robustness. We define the machine learning problem as follows. 7 is
partitioned in many subsets 77 for each instance Z from which we generated
labeled data. Each 77 is a set of pairs Tz; = {(Mz,, 75A7t)}. The vector Mz,
represents the system state of service instance 7 at time ¢, and H.; C Mz, are
the platform metrics obtained from each host. Instead, Vz; C Mz, are metrics
specific to the service running in the instance Z. In the case of a Linux container,
this could be the time relative to the allocated maximum. Thus, multiple
containers running on machine c at time ¢ share the same feature values for
H.: but have different values for V7 ;. Note that this architecture enables the
model to handle any variable number of service instances on different hosts.

Then, solving the machine learning problem consists of (i) processing Mz,
first to extract feature vectors z7; and (ii) training a binary classifier map-
ping zz ¢ to yzt = Pag.

4.2 Modeling Process

This section provides implementation details of the prototyped Monitorless
binary classifier.
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4.2.1 Metric Collection

The [USE| method [Grel3]] allows for detecting performance bottlenecks by
examining the Utilization, Saturation, and Errors of each relevant platform
resource. We include as much of the metrics as possible to detect resource
bottlenecks without incurring monitoring overhead.

For collecting such metrics, we use themonitoring tool”, which provides
a wide set of platform metrics while being lightweight. gathers usage
and saturation indicators of processors (incl. virtual processors), memory,
network and storage devices, controllers and buses, as well as interrupts and
network errors. As a preprocessing step, metrics reporting counters must be
converted into rates, and utilization metrics to a relative scale, for example,
a percentage value. These steps are necessary to avoid overfitting our model
to a particular hardware configuration or system state. See Section for
more details. Measurements are extracted every second, a default interval of
PCP|at the time of writing. This is a reasonable sampling time as it enables
the algorithms to react quickly and start/stop Linux containers that usually
instantiate within a few seconds [XFJ16]]. As the framework is not conceptually
dependent on[PCP} other platform-level monitoring agents could be applied as
well.

4.2.2 Training Data

The idea of the Monitorless model is to classify service performance without any
prior knowledge. For this purpose, it is necessary to create training data using
services with different resource utilization patterns, performance demands,
and traffic intensity. In this work, we create training data using a small set of
services widely used by application developers. Ideally, we would choose a few
dozen different services, in different configurations and deployments, running
on different machines, and with many hours of measurement data. However,
as our goal is to present a proof-of-concept rather than a mature software
product, we believe that this small set is enough to provide a convincing proof-
of-concept. However, note that adding a set of more diverse services during
the model training can help to further improve the robustness and accuracy of
the prediction model.
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4.2.2.1 Training Services and Applications

We use three different applications for training: Sohﬂ Memcachedﬂ and Cas-
sandraﬁ We select these applications for two reasons: i) they are representative
services in Cloudsuite [[PSF16]], and ii) they show different resource usage
profiles and, therefore, different resource bottlenecks. To improve the repro-
ducibility of our results, we rely on the Cloudsuite benchmarking tools to run
these services [[Fer+12a} PSF16]]. Generally, the goal of the training application
set is to include a wide variety of different and representative resource usage
scenarios applied in practice.

Solr Apache Solr is an enterprise search platform. We use an index size of
12 GB of content crawled from the Internet that comes with Cloudsuite and
the HTTPLoadGenerator [KDK18]] to generate varying workloads as
specified by [Load Intensity Modeling Tool (LIMBO)| [Kis+17]]. The individual
response times and failed request rates are logged every second to label the
training data.

During the load generation, clients send search requests with a range between
one and five terms. Each term is randomly selected from the top 10,000 most
frequent words in the index. The server outputs a list of the ten most relevant
documents according to these terms. Our hardware configuration allows the
index to fit into the main memory, thus eliminating page faults and minimizing
disk activity [Jan+10]]. With this configuration, the benchmark is mostly [CPU}
bound. In addition, however, we also conduct experiments with different
configurations in which the container resources were limited in the server to
alter such[CPUtbound behavior.

Memcached Memcached is a distributed memory object system, usually used
to alleviate database loads via caching. Again, we used the load generator
provided by Cloudsuite that uses a 10 GB Twitter dataset to populate the cache.
It then applies a constant target throughput with a configurable get/set rate
parameter. Memcached is configured to be memory-bound. Thus, in our setup,
we constrained [CPUJresources in the containers just for one dataset and changed
the memory configuration to either 8 GB, 4 GB, or unlimited.

Cassandra Apache Cassandra is a scalable[NoSQL|database system. We use
[Yahoo! Cloud Serving Benchmark (YCSB))| [[Coo+10] to generate database

Zhttps://solr.apache.org
*https://memcached.org
4ht‘cps ://cassandra.apache.org
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workloads. The database is populated with 30 million records, consuming
about 30 GB (plus additional indexing and log files). Several constant target
loads are applied by changing the number of client threads and the required
target throughput. As Cassandra stresses several resources, we can tune it to be
either [CPUlbound or disk-bound. One setting with 20 cores and a 30 GB
limit creates an bottleneck, while a setting with six cores and unlimited
memory creates a bottleneck.

4.2.2.2 Generated Datasets

Each application is monitored under different workloads and resource con-
straints. They run both in isolation, as the only instance running on the host,
as well as in combination with other instances. The purpose of the latter is to
create a model robust to interference caused by resource sharing in the physical
host. Table[4.T]lists all the configurations used for training, the benchmarked
services, including [CPU|]and [RAM]|limits [RAM)), whether they ran in
parallel (Par), the traffic pattern (Traffic), and the resource bottleneck (Bottle-
neck). A dash indicates no container limitation for the respective resource or
no parallel executions. All training experiments are conducted on HP ProLiant
DL380 Gen9 servers provisioned with a 48-core Intel® Xeon® E5-2680 v3
@ 2.50 GHz processor and 125 GB of memory, connected by a 10 GBit/s switch
and running CentOS 7.3. with Docker 17.06.1-ce and [PCP|3.12.1.

The master orchestrator collects throughput, response times, and platform
metrics generated throughout the execution of the specified workloads. An
additional experiment with linearly increasing load is conducted in order to
determine the threshold value T, defined in Section After acquiring this
threshold, the labeling (saturated or non-saturated) of samples is performed
as described in Section 4.1.3]

If a test runs in parallel with other tests to create interference, we indicate this
in the Par column. For example, Solr (test 3) was run in parallel with Cassandra
(test 18). For Memcached, we show the minimum and maximum request
rates used. Cassandra workloads can be divided into four different classes: A,
B, D, and F. These correspond to core workloads available in Ais an
update-heavy workload (Read/Write: 0.5/0.5), B is read-heavy (Read/Write:
0.95/0.05), D is constantly inserting records and reading the most recent, and F
reads a record, modifies it, and then writes it. For Solr, we have two workload
curves generated by LIMBO] The first (sin-1000) is a simple sine function with
a minimum request rate of 1 and a maximum request rate of 1 000 requests per
second. The second (sin-noise-1000) has the same base structure but was
massively modified by adding random noise to increase variability. For the
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Table 4.1: List of created training datasets.

#  Service ICP_UL RAM| Par Traffic Bottleneck

1 Solr 3/- - sin-1000 Container
2 Solr -/- - sin-1000 Host

3 Solr -/8 GB 18  sin-noise-1000 I/OFBandwidth
4  Solr -/8 GB 19  sin-noise-1000 [/OrBandwidth
5 Solr 3/8 GB 20  sin-noise-1000 [/OFBandwidth
6  Solr 1.5/8 GB 22 sin-noise-1000 Container
7 Memcached -/- - 2K-50KR/s [RAM}Bandwidth
8 Memcached 1/- - 20K -85K R/s Container
9 Memcached -/8 GB - 39K - 45K R/s [/OrQueue

10 Memcached -/4 GB 23 10K -65KR/s 1/OrQueue

11 Cassandra -/— - A: 30K -100K R/s Network-Util.
12 Cassandra -/ - B: 20K - 70K R/s Host

13 Cassandra -/— - D:40K-90KR/s  Network-Util.
14 Cassandra 20/30 GB - A:300-1200R/s [[/OFBandwidth
15 Cassandra 20/30 GB - B: 100-900 R/s [/OrBandwidth
16 Cassandra 20/30 GB - B: 700 — 1000 R/s I/OrBandwidth
17 Cassandra 20/30 GB - B: 100 - 1000 R/s [/OrBandwidth
18 Cassandra 6/- 3 A: 15K -25K R/s  Container-CPU;
19 Cassandra 6/— 4 B: 10K - 15K R/s Container-CPU|
20 Cassandra 6/- 5 D:10K-25KR/s  Container{CPU
21 Cassandra 6/— - A: 5K -20K R/s Container-CPU|
22 Cassandra 6/- 6 B: 5K - 20K R/s Container{CPU|
23 Cassandra 6/- 10 B:10KR/s Container{CPU
24 Cassandra 1/- - F:200R/s [/OrWait

25 Cassandra 1/- - F:20R/s [/OFWait
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sake of simplicity, we describe the used workload patterns in a very concise
matter. However, we configured the different runs such that the training sets
capture as many different contention scenarios as possible.

Furthermore, we give an indication of the limiting factors and critical met-
rics in each dataset. If two datasets run in parallel, the goal is to learn also
the isolation effects, that is, how resource sharing impact multiple running
applications.

4.2.2.3 lterative Improvement of the Training Set

We repeated the tests outlined in Table [4.1)multiple times, iterating over the
various stack configurations to improve the datasets with more representative
use cases stressing most of the resources in the platform. As a result, we devised
the following structure to create a robust and accurate model.

1. Normalize our training data and save the normalizing instance. We use
the MinMaxScaler in Scikit-learn [Ped+11]].

2. Use the normalizing instance to analyze with a validation dataset. This is
done by scaling the validation set with the known scaler instance. If any
feature has a maximum or minimum value outside the scaling range of
the trained scaler, we know that this feature was not sufficiently trained.

3. Analyze the features not covered by the training set and decide if they
are critical for the model performance.

4. Design additional training cases that include other feature values in the
training set and perform the additional measurements.

5. Add the training set to the others and repeat from step 1 in order to
validate that the training has now improved.

4.2.3 Feature Selection and Optimization

We collect 1 040 platform metrics using the PCP|monitoring tool as described
in Section Of these collected platform-level metrics, 952 consider the host
and 88 are specific to service instances (i.e., containers) running on the host. As
expected, not all the metrics are relevant for the machine learning model, and
in many cases, metric preprocessing is required such that they can be useful or
leveraged by the algorithm. Next, we describe the preprocessing performed on
these raw metrics.
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4.2.3.1 Binary Features

[CPU|and [RAM utilization are important indicators of saturation; thus, in order
to improve the accuracy of the model, we introduce three additional boolean
(i-e., hot-encoded) features for both of these metrics. Namely, LOW indicates
whether utilization is under 50%, MED indicates whether utilization is in the 50%
—80% range, and HIGH indicates whether it is above 80%. For [CPU]utilization,
we also introduced two other boolean features called VERYHIGH, indicating
utilization above 90%, and EXTREME indicating utilization above 95%. These
new metrics are inserted both for the host and for the container-specific metrics
resulting in a total of 16 additional binary features.

4.2.3.2 Scaling

We scale all metrics having units in byte-values like KB or MB, and which are
not convertible to a relative scale. For example, the number of bytes read by
an[[/Ofdevice where the maximum capacity is not known is transformed to
a logarithmic scale. The goal of this transformation is to improve accuracy
by emphasizing the magnitude rather than a specific value and thus reduce
hardware dependency. Nevertheless, these metrics are still prone to overfit to a
specific hardware configuration as they are not on a normalized, and therefore
portable, scale and need to be handled carefully.

4.2.3.3 Normalization

As the maximum values of some features are undefined, we opt to artificially
limit the possible values to a range. We used the StandardScaler of Scikit-learn
to transform feature values such that their distribution has a mean value of
zero and a standard deviation of one. Hence, each monitored value would have
the sample mean value subtracted and then divided by the standard deviation
of all existing samples.

4.2.3.4 Filtering with Random Forest or PCA

We use the[Random Forest| algorithm [Bre01]] to filter the most relevant
metrics, as it allows for simple computation of the information gain of each
feature and ranks them by importance. We trained the on each of the
datasets shown in Table4.1|and took the union of the top 30 most important
features of each dataset. Below the top 30, the algorithm assigns features a
weight lower than 1/# Features. This union set consists of 117 unique features.
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We make three observations about this filtering step. The first is that the
filtering does not decrease the cross-validation accuracy, which implies that
resource saturation is detectable by looking at a small set of platform metrics;
this finding is consistent with related work [[Coh+04]]. Second, while there
is overlap between most top 30 feature lists (e.g., utilization), there are
also metrics that are specific to one dataset. This encourages the inclusion of
many different training applications to stress different platform resources in
the future. Third, the binary features for memory were filtered out, whereas
the binary features for [CPU| were selected as highly important. The reasons for
this can be: (i) the training set has not enough memory saturation samples,
(ii) the binary labels are not actually required for training because memory
problems are likely to be preceded by other symptoms (e.g., disk usage because
of page thrashing), or (iii) the binary labels are not required because memory
measurements are more insightful with the real values (i.e., non-binary).

An alternative method for feature selection is the [[Pea01]], which pro-
vides a linear transformation to obtain orthogonal features (see Section
on page[33)). can reduce the number of features in large spaces. The side
effect is that the transformed features no longer correspond to physical magni-
tudes, which makes it difficult to fully interpret the resulting model. Using the
Scikit-learn implementation of [PCA} we reduced the number of features to 50,
which accounts for 99.99% of the variability in the data.

4.2.3.5 Time-dependent Features

Metrics are collected for a fixed time window of one second. However, time-
dependent features can give some insight and reflect certain dynamics of perfor-
mance. For example, having a low utilization during the past 15 seconds
and a peak at the present time might not actually imply that the resource is
saturated. On the contrary, if utilization is high for the last 15 seconds,
then the platform is more likely to be experiencing resource saturation.

Based on this intuition, we create the X-AVERAGED and X-LAGGED vari-
ants of each metric. X-AVERAGED takes the average over the last X +1 samples
(seconds), including the current one, while X-LAGGED contains the value
of the metric X samples ago. This helps to include some context in an other-
wise isolated one-second snapshot of the platform. We include X-AVERAGED
and X-LAGGED for each metric with values X = 1,5,15. A window of 15
seconds proved to be sufficient in our experiments regarding the applications
we considered.
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4.2.3.6 Combining Features

It is a common practice in data science to create new features by multiplying
existing features, as this often improves the models significantly by revealing
relationships that are not visible by simply analyzing linear combinations of the
features separately. In our case, we multiply all pairs of features from different
domains (e.g., [CPUJand [RAM)), but in order to prevent an explosion of the
size of the feature set, we omit all time-dependent features from this step. This
refinement turned out to be crucial to capture performance problems across
features, that is, problems that are detectable by observing combinations of
metrics (see Section4.2.5] for more details).

4.2.3.7 Pipeline Optimization

To guarantee the right order and configuration, as well as to streamline the
execution of the aforementioned steps, we have implemented a pipeline. The
pipeline has five steps:

1. Create binary features and scale required features.

2. Normalize the features.

3. Apply a first reduction step (either filtering or[PCA]).

4. Create new time-dependent and multiplicative features.
5. Apply a second reduction step (either filtering or [PCA]).

6. Remove features with a variance of 0 (provide no information).

We perform a grid search on steps 2 to 5 in order to find the best combination
of features. Step 3 and step 5 can either do filtering,[PCA] or none of them, while
step 2 and step 4 can perform optional normalization and feature addition.

The grid search is performed with the training set described in Section [4.2.4]
applying the same cross-validation scheme. We again use a|Random Forest|
(RE) algorithm with default parameters as a prediction algorithm to evaluate
the individual feature engineering steps. We exclude the combination of not
applying a first feature selection in step 3 and then adding the multiplicative
features in step 4 since this is practically unfeasible due to the huge number of
resulting features.
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4.2.4 Training the Monitorless Model

Combining all datasets from Section and the features described in Sec-
tion we get a total training set of 63 086 samples with 4 492 features each.
The portion of saturated examples in the training set is 26%. For algorithm
training, we choose to compare six different classifiers.

1. Binary|Logistic Regression| (Logit) modeling [[Cox58|] using the Stochastic
Average Gradient (SAG) solver [[SLB17],

2. [Support Vector Classification (SVC)|based on LIBLINEAR [Fan+08]],
3. [FS97]] with [CART] [Bre+84],

4. [CGl6l],

5. a three-layer (106 neurons), fully connected, feed-forward
(NN) [Gurd7], and

6. [Bre01]].

Note that we use a linear kernel for[SVC|as any other kernel function increased
the algorithm training time significantly.

We use the Python implementations of [[CG16]], Keras [[Cho+15]]
with a TensorFlow backend [[Aba+16]] for the and Scikit-learn [Ped+11]]
for all other algorithms. We perform five-fold cross-validation with a grid
search optimizing the F'1 score to select the hyperparameters of each algorithm.
The five-fold cross-validation partitions the training sets from Table 4.1| using
20 sets for training and 5 sets for validation in the fold. By partitioning the
training sets in this way, rather than using the union of all training sets, we
aim to avoid overfitting. Table 4.2|lists the parameters considered during the
hyperparameter grid search, with bold parameter values as the chosen ones for
all considered algorithms. The naming of the parameters follows the convention
of Scikit-learn.

Table[4.3]lists the training times, the per-sample classification time, and the
F'15 score of our first validation set. Note that detailed results, including a
proper definition of the used metrics and a description of the used scenario, are
included later in Chapter[9|on page The results presented here just provide
a preliminary analysis of the individual performances of each algorithm. We
utilize the results in order to define the|Random Forest] approach as our
machine learning algorithm of choice.

We observe that[Random Forest] outperforms all other approaches with
an F'1 score of 0.99. There is a clear trade-off between training and prediction
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4.2 Modeling Process

Table 4.2: Examined grid search parameter space for each applied algorithm.

Algorithm Parameters Values

C 0.01,0.1,1

ILogit] tol 0.1, 0.01, 0.001, 0.0001
class_weight balanced, None
C 0.1,1,10
tol 0.01, 0.0001, 0.00001
SVE penalty 11,12
class_weight balanced, None
n_estimators 50, 250, 500
algorithm SAMME, SAMME.R

|AdaBoost| DT _criterion gini, entropy
DT_splitter random, best
DT_min_samples_split 5,10, 20
min_child_weight 1,4,16,64

|XGBoost| max_depth 1,4,16, 64
gamma 0,1,4,16

activation_functionl

softmax, relu, sigmoid, linear

activation_function2

softmax, relu, sigmoid, linear

activation_function3

softmax, relu, sigmoid, linear

n_estimators

250, 500, 1000

min_samples_leaf

5,10, 20, 30

min_samples_split

5,10, 20, 30

criterion

gini, entropy

class_weight

balanced, subsample, None

time, on the one hand, and prediction accuracy, on the other hand. However,
even for the slowest algorithm ([RF)), the prediction time was still only 40 ms per
prediction on average. This is sufficiently fast to make such predictions online
in production. Interestingly, we found that([Logit, [Neural Network] (NN)), and
[AdaBoost|only predict the majority label and, hence, a classifier that predicts all
samples to be saturated would receive the same score. While does make
some correct predictions, it does poorly overall and achieves an even lower
score than simply predicting the majority label. The high F'1 score of 0.997
can be attributed to the number of training samples, including many clearly
saturated or non-saturated examples. Note that all training and classification
times given in Table |4.3| exclude the feature extraction process described in
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Table 4.3: Performance of the applied algorithms.

Algorithm Training Time Classification Time  F'l

837.8s 0.2ms 0.579
3.1s 0.2ms 0.858
250.7 s 0.4ms 0.858
76154.9 s 41ms 0.858
5140.3 s 6.3ms 0.944
68.3 s 40.6 ms 0.997

Section since the required time is the same for all algorithms and only
accounts for roughly 28 ms per prediction on average.

Based on these results, we select the model created by [Random Forest|
for the evaluation of Monitorless in the next section. The hyperparameter tuning
of [RE| resulted in 250 trees, trained with 20 samples in a leaf node using the
information gain as the splitting criterion and applying no weights to the
different classes (see Table[4.2)).

4.2.5 Comparing the Model Behavior with Expert Decisions

Finally, in this section, we analyze the trained model focusing on the filtered
features to provide insight from a system perspective and compare the outcome
to expert-made decisions. For this, we use the feature importances as given by
the trained [RE{model as |RF provided the best results and is comparatively easy
to interpret. Table[d.4)shows the 30 most important features based on the trained
[RFjmodel. The x-symbol denotes a multiplication of two features. The features
S-MEM-U, C-CPU-MEDIUM, C-CPU-HIGH, C-CPU-VERYHIGH are derived
relative utilizations, the suffix HIGH and VERYHIGH are binary features. An
AVERAGED-£ or LAGGED-k denotes that the feature was averaged or lagged by
k seconds. All other parameters follow the nomenclature of thePCPmonitoring
tool.

First, we observe that the combination of features is a beneficial step as almost
all used features are multiplications of two original metrics. Most of them are
the multiplication of [CPU}evel metrics with a metric of another resource, for
example, CPU-HIGH multiplied with various network or RAM}related fea-
tures. Different metrics like utilization are also included but with a lower
ranking and are therefore not contained in the table. Intuitively, this means
that service saturation is captured by analyzing more than one resource type
at the same time. Additionally, lagged and average features are occasionally
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4.2 Modeling Process

Table 4.4: Top 30 features sorted by importances assigned by Random Forest.

Feature name

network.tcp.currestab x C-CPU-HIGH
hinv.ninterface x C-CPU-VERYHIGH
kernel.all.pswitch-AVERAGED14
mem.vmstat.nr_inactive_anon x C-CPU-VERYHIGH
network.tcp.currestab x C-CPU-VERYHIGH
network.tcpconn.established x C-CPU-HIGH
C-CPU-HIGH

network.sockstat.tcp.inuse x C-CPU-VERYHIGH-AVERAGED14
C-CPU-VERYHIGH x C-CPU-VERYHIGH
network.sockstat.tcp.inuse x C-CPU-VERYHIGH
cgroup.cpusched.periods x C-CPU-HIGH
C-CPU-VERYHIGH
C-CPU-SUPERHIGH-AVERAGED14
C-CPU-HIGH-AVERAGED4
mem.vmstat.nr_kernel_stack x C-CPU-VERYHIGH
cgroup.cpusched.throttled x C-CPU-VERYHIGH
kernel.all.nprocs x C-CPU-HIGH

hinv.ninterface x C-CPU-MEDIUM
C-CPU-SUPERHIGH-LAGGED15
S-MEM-U-mapped x C-CPU-VERYHIGH
C-MEM-U-usage x C-CPU-HIGH
cgroup.cpusched.throttled x C-CPU-HIGH
C-CPU-VERYHIGH-AVERAGED4

C-CPU-HIGH x C-CPU-VERYHIGH
vfs.inodes.free x C-CPU-VERYHIGH
mem.vmstat.pgpgin x C-CPU-HIGH
mem.vmstat.nr_inactive_file x C-CPU-VERYHIGH
vfs.inodes.free x C-CPU-HIGH
disk.all.aveq-AVERAGED4

S-MEM-U-active_file x C-CPU-VERYHIGH
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used. In fact, raw (un-engineered) metrics are rather low-rated and are used
seldom. However, the chosen features heavily depend on the utilizations
(in various levels), the number of network connections, the disk queue, the
memory utilization, the number of throttled cgroup periods, etc. All of these
metrics intuitively make sense to a system engineer. Hence, we conclude that
the Monitorless model itself does not behave very differently from any human
performance engineer regarding the set of analyzed metrics. Nonetheless,
there are also some interesting combinations chosen by the system which are
surprising and not directly obvious. Furthermore, no human can monitor all
of the considered metrics in parallel. Therefore, although the performance
predictions of the|[RF algorithm are reasonable and comprehensible to a human
expert, they are not reproducible by a human at the given scale and rate.

4.3 Summary

In this chapter, we introduce Monitorless, a method for inferring application
degradation in the cloud. The differentiating feature of Monitorless is that
only platform-level metrics are required as input instead of application-specific
metrics, allowing for accelerated software onboarding and feature releases.
Therefore, one defining[RQ)|of this chapter is RQ[L.1| (“{How can platform-level]
[measurements be utilized to detect resource saturation?|”). We address RQ [l.1]by
proposing a binary classifier that leverages machine learning to bridge the
gap between platform-level and application-level monitoring. Furthermore,
Monitorless answers RQ [I.2| (“lHow can we generalize the results to create a generic|
land holistic prediction model?|"), by proposing diversified applications and feature
engineering methods to generalize the training dataset. Using this generalized
dataset, a holistic model can be created that works on the individual service
level, and therefore is independent of the application structure.

With Monitorless, operation engineers can rely on a generic and stable set
of metrics to streamline testing without application expertise or handcrafted
configurations. Hence, Monitorless represents our solution that achieves Goal|l]
(“Design an application-agnostic approach for the detection of resource saturation
Ibased on platform-level monitoring data.[”). This information can be used for fast
resource provisioning and allocation as Monitorless can detect such bottlenecks
in a matter of seconds. Our model is designed to be compatible with current
cloud automation practices and easy to integrate. In Chapter [9]on page[I51} we
evaluate the performance of Monitorless on different microservices applications
with varying complexity and levels of interference.
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In this chapter, we present SuanMing, our solution for predictive for
microservice applications in the cloud. We already established that microser-
vice applications [[Fow15} LF14]] are increasingly seen as the main architec-
tural paradigm for developing medium and large cloud applications [[Lin16;
Dra+17; Gaj+20]]. While a microservice architecture offers clear advantages for
developing and operating an application, the increase in the number of indi-
vidual components also increases the perceived complexity of the respective
system [|[Gan+19b}; Fow15} Eis+20al]. Therefore, operators and performance
engineers increasingly rely on[APM]tools to supervise the operation of an appli-
cation [Jam+18}[Faz+16]]. There exist several[APM|tools and services that allow
the collection, processing, and analysis of performance metrics of cloud-based
applications (see Section on page[19)).

However, such tools are limited to reactive performance management; that
is, performance degradations can only be detected and addressed after they
occurred in the system. This leads to unavoidable quality of service degradation,
which negatively impacts user experience and revenue [[Gan+19a; [Ela18} Ein19].
Therefore, we envision a proactive tool capable of predicting performance
degradations before they occur.

To that end, we surveyed approaches targeted towards online failure predic-
tion [[Gro+20al]. We found that previous approaches either require intrusive
monitoring not available in low-overhead tools or lack the means to pro-
vide sufficient explanations of the prediction. More details on the respective
approaches and their shortcomings are discussed in Section[3.1.2}

Therefore, we target Goal Ml (“{Develop an approach for the prediction of perfor]
|mance degradation using application-level tracing|”) by formulating the research
questions RQ[LI| (“{How can tracing data be utilized to predict the future performance
of a system?|”) and RQ[IL.2| (“{How can we pinpoint the root cause service of a per]
formance problem?|”) to address these properties. We introduce SuanMing, our
framework for enabling explainable performance predictions for microservice
applications running in cloud environments.
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SuanMing utilizes tracing data commonly available in tools to learn
three different models: (i) a forecasting model predicting the user behavior;
(ii) a propagation model inferring the behavior of each user request in an ap-
plication; and (iii) a performance prediction model predicting the performance
of services and back-propagating its effect on other dependent services. Based
on the model predictions, SuanMing is able to forecast the future state of the
application and provide an explanation by pinpointing the respective root cause
service. For this, SuanMing utilizes the increased granularity of microservice
applications, as this enables a divide-and-conquer strategy for the performance
predictions without the need for extensive and intrusive monitoring.

The contribution of this chapter is two-fold:

e We introduce SuanMing, an approach for predicting performance degra-
dation of microservice applications based on the propagation of internal
requests and the back-propagation of service performance, enabling the
pinpointing of a root cause service.

e We present an abstract formalization of the involved prediction tasks to
enable a modular architecture of the proposed approach.

Operators can use SuanMing as a plugin to their already configured and
running monitoring stack to augment the reactive capabilities of their
tools with a predictive and proactive component that is able to determine and
consequentially avoid performance degradations before they occur. Due to
the modular and highly configurable approach of the framework, operators
can fine-tune the sensitivity of the approach based on their specific needs. In
contrast to related work, SuanMing requires no additional application data
for delivering predictions. Instead, all information is extracted from the
tool, and models are continuously updated. We published our contribution
together with our colleagues from the Huawei Research Center in Tel Aviv,
Israel [|[Gro+21d]]. Furthermore, we published the analysis of the related work
as a separate taxonomy [[Gro+20a]] and created a replication package of our
experimental results [[Gro+21e]].

In the remainder of this chapter, we introduce the general SuanMing frame-
work in Section[5.1} We detail the individual components of the architecture
in Section[5.2]and summarize our contribution in Section 5.3l We provide an
experimental evaluation in Chapter|10on page
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5.1 Querview

5.1 Overview

Our approach is based on two key observations in microservice architectures.
First, we assume that the performance of microservices is only dependent on
the type and amount of requests arriving at each particular service instance.
This is based on the assumption that microservice designs should be mostly
stateless [[Eis+20a; KDK18]] and that all state information is transmitted using
the request itself.

Second, a service usually has a limited set of responsibilities [[Jam+18; LF14].
Subsequently, a single user request usually causes a sequence of internal re-
quests to other microservices in order to realize complex application behaviors.
This enables us to split the prediction of large and complex applications into
multiple smaller tasks that are individually solvable as the small-scoped ser-
vices have a predictable performance behavior. The propagation of requests
and their resulting performance are also predictable by tracing request call
trees.

We use a divide-and-conquer approach. First, we predict the user requests
and their propagation through the application. Then, we use the fine-granular
analysis of the individual services to infer the whole application performance
and additionally pinpoint the location of the performance degradation without
the need for in-depth monitoring data.

5.1.1 Terminology

Before we describe our approach in more detail, we introduce some important
definitions which we use during the individual component descriptions. In
the following, the term service represents an application component, which is
stateless and has a clear-scoped functionality, for example, a microservice. A
service always consists of one or multiple endpoints. An endpoint is an interface
(or workload class) of a service, which can be called by users or other services,
for example, endpoints. User requests are requests that enter the system
from outside the monitored environment. On the contrary, requests are calls
that were issued by other entities (i.e., other services) from inside the system.
A backend service is a service, which does not issue requests to services and
responds to incoming requests only. A frontend service is a service responding
to user requests.
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Figure 5.1: Architecture overview of the SuanMing framework.
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5.1.2 Architecture

Figure presents our reference architecture containing the different compo-
nents of SuanMing. The structure enables us to separate the learning of the
models and the actual prediction into parallel executable online processes. Ad-
ditionally, due to the modular structure, it is possible to modify and exchange
individual algorithms of the framework without affecting the performance of
the other components.

The Controller serves as a central synchronization component, responsible
for updating times, configurations, and activities. Next, the Provider collects
and parses incoming data and stores it into a uniform format using the data
storage component. Subsequently, the gathered monitoring information is fed
into the Propagation Trainer and Performance Trainer components. Both modules
train a prediction model and store it in the model storage. In contrast, the
Load Forecaster directly produces a forecast of the expected number of incoming
user requests, which is forwarded to the Predictor. The Predictor is the central
component responsible for predicting the performance of each service using the
load forecast together with the trained propagation and performance models.
Finally, the Analyzer compares the predictions with the user-given goals in
order to alert and pinpoint any anticipated performance degradation.

Figure [5.1|depicts all components in blue that are required for live execution.
As the propagation and performance model trainers store the finalized models
using the model storage, the creation of these model instances can happen
asynchronously, depicted as green. In the following, Section [5.2explains each
component in more detail.

5.2 Components

In this section, we provide a detailed description of all individual components
involved in the architecture depicted in Figure Section details the
Provider component, while Section focuses on the Forecaster. Follow-
ing, we introduce the propagation and performance trainers in Sections 5.2.3
and respectively. The Prediction component combines all trained models
to predict actual predictions in Section[5.2.5] Finally, we introduce the Analyzer
component in Section [5.2.6]

5.2.1 Provider

SuanMing requires two types of training data. First, we need information about
the chain of internal requests issued to process an incoming user request. This
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is required to extract the application architecture as well as to forecast the
number of requests arriving at every service using the propagation model.

Second, performance metrics for every service must be available in order to
train the performance models and to conduct predictions for these monitored
values. Depending on the availability, more metrics influencing the service
performance, including parameter values, deployment, and co-locations, or
hardware specifications, can be added optionally. However, the target perfor-
mance metrics (e.g., response times) are required as labels for the performance
model training algorithms.

Both types of information are usually contained in call traces, call stacks,
or call trees. Therefore, the required monitoring and tracing data is obtain-
able in many state-of-the-art tracing tools, like Jaeger, Zipkin, Pinpoint, Dap-
per [Sig+10], or Kieker [HWH12]] (see Section[2.2.Ton page[I9)). The current
implementation supports the formats of Zipkin, Pinpoint, and the proprietary
format used in Huawei Cloud (see the evaluation in Chapter [I0]on page[171]).

5.2.2 Load Forecaster

The Load Forecaster component is responsible for forecasting the number of
user requests in the next prediction period. The forecast result is represented by
atuple Ue J]7_; RZ(, where each entry u; € RY{ represents the number of user
requests to the m; endpoints of service i. As our list S of observable services
contains s = |S| services, U contains s vectors. Summed over all elements,
U contains m entries, where m = 3 _;_, m, is the total number of application
endpoints.

However, the problem can be simplified by isolating each request type of U as
a univariate time series and forecasting the expected requests independently.
As there already exist many works capable of forecasting user behavior (e.g.,
Herbst et al. [Her+17], Bauer et al. [Bau+20c]], and Bauer [[Bau21]]), we rely on
GluonTS [|Ale+20] in this work as it offered the best prediction performance in
our prior analysis. However, due to the modular approach of SuanMing, this
component can be seamlessly exchanged for another forecasting approach. As
a side contribution, we also helped develop an automated forecasting frame-
work [Bau+20a]] and a benchmark suite for forecasting techniques [[Bau+21]],
which can be utilized in future work.

5.2.3 Propagation Trainer

The Propagation Trainer component is responsible for learning the propaga-
tion model describing how many additional internal inter-service requests are
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needed to process an incoming user request.

5.2.3.1 Formalization

We formalize the request propagation using the propagation matrix D.

ds,l T ds,s
where each entry d; j : RZ; — RZJ in D represents a function mapping a vector
of incoming requests at service i to a vector of requests to service j sent by
service i. Hence, both input and output of each propagation function d; ; are
vectors containing scalars greater or equal to zero. The dimension of each vector
is determined by the variable m;, which represents the number of endpoints of
service 7.

Note that our model is able to assess the distribution of calls across the
different endpoints of each service. This is useful for performance predictions,
as different endpoints might have different performance metrics. For example,
a web server might take longer to show the dynamic login page than to deliver a
static index page. In total, the matrix D has s? entries overall, where s represents
the number of services in the application.

The application topology modeled by D can also be visualized as a directed
graph. Each node represents a service, and an edge from node i to node j
represents service ¢ sends requests to service j. In a graph representation, the
edges between the nodes are associated to the propagation functions stored in D.
Consequently, we can associate paths in this graph with composite propagation
functions. For example, a path v = (4, j, k) from i over j to k corresponds

to the composite function d, = d; o d; ; using the composition operatorﬂ o.
A propagation model is called acyclic, if for every cycle v = (4, j,k, ..., 2,1)
at least one of the associated component functions d; ;,d; x, . .., d.; is the null

function. We define a null function as a function that always returns zero. Hence,
the topology graph omitting all edges associated with null functions must be
acyclic. Analogously, a propagation model is called cyclic, if at least one cycle
exists, where none of the associated component functions is the null function.

A propagation model is called regular, if for every cycle v and every input
vector x the sequence

dy(z)" =dyodyo..od,,
—_—

n

'Let f and g be functions, then the composite function g o f is defined as g o f = g(f(z)).
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converges to zero for n tending to infinity. Such models represent topologies,
where limited cycles but no infinite loops exist. This means that, after a certain
number of iterations, the application always terminates. All acyclic models
are regular by definition. Our framework assumes that all valid propagation
models are regular models.

5.2.3.2 Model learning

The task of the Propagation Trainer is to learn the propagation matrix D using
historical data. To build this model iteratively, we initialize all functions d; ; as
null functions, representing no dependency between the services i and j. After
each observation period, we update each function d; j;, where a request between
service ¢ and service j has been recorded. This step can be done by analyzing
the average behavior of the call tree of each request. The model learning still
continuously updates the propagation model whenever new monitoring data
becomes available in order to react to changes in application or user behavior.

5.2.4 Performance Trainer

As the final learning component, the performance trainer utilizes the infor-
mation of the individual requests at each service endpoint to predict the per-
formance of the individual endpoints and the resulting performance of the
overall system. We assume that the performance is mainly dependent on the
number and type of incoming requests to the service. This is a simplification
made possible by the assumption of statelessness of modern microservice ar-
chitectures [[Eis+20a; KDK18]]. If all microservices follow this requirement and
are stateless, the performance of each request only depends on the availability
of resources, which is dependent on the number and type of other requests
arriving at the same processing resource and the parameters of each request
itself.

5.2.4.1 Formalization

The performance of a service 7 is described using the performance vector p; €
R™:i". To describe the performance of a service or endpoint, we use r different
performance metrics of interest. These could be, for example, the average
response time or the number of exceptions. These metrics are calculated for all
m; endpoints of service i. Consequentially, the service performance vector p;
of service ¢ has m; - r entries overall.
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We obtain the requests arriving at ¢ from the tuple of requests X e [[;_; RZ]
calculated by the forecasting and the propagation model. Additionally, the
framework allows adding additional features of arbitrary type o, for example,
the number of incoming requests on co-located or influencing services, the
parameter distribution of the given requests, the measured resource utilization,
a priority vector, etc. It is then dependent on the chosen modeling type, how the
given auxiliary information is utilized. These auxiliary metrics o can be forecast
using the standard load forecasting component also utilized for forecasting
the request numbers (see Section or other specialized forecasting or
prediction engines. As the type and number of the auxiliary features are
dependent on each service, o; refers to the set of auxiliary features for service i.

For adding additional important factors of the service performance, we
consider the position of the service in the topology graph. We define z; as
a variable, which represents for a given service i the sum of all endpoints of
all services, receiving calls from service i. A backend service only responds
to incoming requests. Therefore, for a backend service b, 2, = 0. We assume
that its performance p, only depends on the number of incoming requests
and the set of auxiliary metrics a;. Therefore, the performance function fj, :
RIS x Rl — R™™> maps my, + |ay| input values to r - m;, performance metrics.
For all other services i, we assume that the performance p; additionally depends
on the performance measures of all endpoints answering calls from i. Note
that we do not make any distinction between synchronous or asynchronous
calls. It is up to the performance function to determine the actual impact of
each influencing service.

To summarize, for each service i there is a performance function f; : RTj x
R7#itleil _ RmiT that maps the requests tuple z; € RY¢, r - z; additional influ-
encing service performances, and |«;| auxiliary input values to the predicted
service performance p;. We define F' = (fi,..., fs) to be the tuple containing
all s performance functions of an application.

5.2.4.2 Model learning

For learning performance models, historical training data is required. Hence,
we have a training set L;, consisting of ¢ individual measurement periods
for each service i. The combination of all L; is the set of the total available
training data L. Each scenario contains a tuple as one input of m; + r - z; + ||
performance-relevant features, together with » measurable performance metrics
for each of the m; endpoints of service i. Therefore, L; is a tuple of two matrices,
each consisting of t measurement rows. The first matrix contains (m;+r-z;+|a;|)
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performance-relevant features, while the second matrix contains (r - m;) target
performance measurements in each row.

Due to the formalization and the modular design of SuanMing, we support
multiple possible performance modeling and learning techniques. In this
work, we focus on black-box machine learning algorithms as they offer the
most transferable and domain-independent performance. However, other
approaches can be integrated as well, should the need arise for different or more
expressive models. For example, one could integrate the presented resource
demand estimation techniques presented in Chapter [6] or the dependency
detection mechanisms of Chapter|/|to model the performance of the system.

In the current implementation, we approximate the performance functions
in F' using supervised machine learning algorithms to predict the »r measurable
performance metrics. Consequentially, we can train regression models, which
approximate the performance function list ¥ (see Section[2.3]). It is also possi-
ble to train different prediction models for each performance metric. As the
performance functions might be subject to change, we update F' on a regular
basis using measured performance data. Using this black-box modeling type,
the additional performance indicators «, like deployment information or hard-
ware specifications, can be easily added as no semantic meaning needs to be
provided. This is advantageous, as we can not assume to have prior knowledge
about the application available. Hence, all performance indicators that may
seem relevant for the prediction of any of the r targeted performance metrics
and that can be reliably monitored can be easily integrated into the performance
predictor functions f;.

5.2.5 Predictor

The Predictor can be seen as the main component of the SuanMing framework.
It combines the user requests forecast U with the propagation model D and the
performance prediction model F' for predicting the future state of the system.

5.2.5.1 Request propagation algorithm

The first step is to calculate the number of requests arriving at each service
in the given time period and, hence, propagate the user requests through the
system. Given the service dependencies captured by D and the predicted user
requests U, we want to predict how the requests are forwarded through the
application. We propose an iterative algorithm that works with any regular
model D.
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Algorithm 5.1: Request propagation.

Input :Propagation matrix D, user requests U, threshold ¢, number of

services s, number of endpoints per service (my, ..., ms)
Output :Total requests X.
1 X=U
2 X=U

3 while X # (0,,,,...,0,,,) do

4 X:(il,...,:ﬁﬁ):(Oml,...,()ms)

5 foreach z;in X do

6 if z; # 0, then

7 foreach d, ; in i-th row of D do
8 L L Zi‘j :.’Iz‘j-l-di,j(i‘i)

9 X=X+X
10 X=X
11 Set all numerical entries in X lower than € to 0

12 return X

Algorithm [5.1|takes the user request tuple U, generated by the forecasting
engine, as an input and returns the request tuple X e []°_; RY¢, which contains
the total number of predicted incoming requests in the next prediction period
for all services and endpoints. The tuple X can be seen as the sum of the in-
coming user requests U and their generated internal calls. Hence, at the start of
Algorithm[5.1] the values of U are assigned to X. Then, the algorithm iteratively
calculates the resulting internal calls starting in line 3. The tuple X represents
the requests that need to be forwarded in the current iteration of the algorithm.
Once the loop terminates, there are no more requests to forward, and we can
return the total tuple of requests X.

In the inner loops of line 5 and line 7, line 8 evaluates the propagation
functions d; ; for each service 7 and all target services j if i forwards requests.
The newly generated internal requests are stored in the temporary support
variable X, which gets filled with zeros at the beginning of each iteration
(line 4). After iterating all services, the newly generated requests X are added
to the total numbers of requests X and need to be considered for the next
iteration. Hence, X gets set as X. As already stated earlier, requests do not
need to be integers, as a service can also call another service with a probability
of, for example, 80%. Therefore, functions d; ; are defined on non-negative real
numbers for input and output.
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To prevent an infinite loop, the threshold parameter ¢ is used. It represents a
lower bound, which is applied to X . All numerical entries which are smaller
than e are set to 0. This guarantees termination of Algorithm [5.1] for regular
propagation models as it can deal with cyclic topologies as long as cycles send
fewer requests than received per iteration. Additionally, Algorithm[5.1]is easy
to parallelize, as the only synchronized calls are the commutative addition in
line 9 and the assignment in line 10. This enables high scalability, even for
increasing topology sizes, as they can be processed independently.

However, if D is linear and acyclic, we can improve the scalability of the
request propagation algorithm even more. A propagation model D is consid-
ered linear, if every propagation function d; ;(x) within D can be written in the
form of d; j(x) = ¢;j - « with ¢;; € R™7*™ being a constant matrix. As the
composition of linear functions is itself linear, it follows that for every path ~,
the associated composite propagation function is also linear.

Additionally, if a service i receives calls from multiple origins, the total
number of incoming requests is the sum of all inbound request flows. Hence,
the vector of incoming requests x; can be written as the sum of multiple linear
propagation functions. We further know that the resulting request tuple X is
the sum of the user requests U and the internal calls, while every internal
call is originated by a user request. From these properties combined with
the acyclicity of the propagation model, it follows that every vector x; can be
written as a linear combination of the entries u; of the user requests U. With
that, we are able to calculate every z; using s matrix multiplications:

S
zi =y Ajuj,
i=1

where A;; is the matrix of all summarized request propagations from service j
to service 7 and u; is the j-th element of the user requests tuple U. Therefore,
for linear and acyclic propagation models, the iterative calculations from Al-
gorithm 5.1 can be summarized into s? independent matrix multiplications,
followed by s? (asynchronous) additions. Depending on the size of an applica-
tion topology, this might further improve the computation effort and, hence,
the scalability of the request propagation model learning.

5.2.5.2 Performance inference algorithm

Finally, after we predicted the number of requests at each service i, the per-
formance prediction algorithm infers p; for the given state. Algorithm
iteratively calculates the performance p; for each service i by starting with
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all backend services and going backward through the application topology.
It requires the performance model F' = (fi,..., fs), containing all perfor-
mance inference functions learned in Section[5.2.4} the total requests for each
service X= (z1,...,x5), and the list of additional metrics for each service
A= (o,...,0q). Itis assumed that A is known using forecasting techniques
or historical measurements of the available variables and can be treated analo-
gously to X.

Algorithm 5.2: Performance inference.

Input :List of services S, performance model F', tuple of request
vectors X, list of additional metrics A.
Output :Predicted application performance P.
1 F, S, X, A =resolveCycles(F, S, X, A)
2 P,S' =0
3 while S’ C S do

4 | foreachiec S\ S do

5 Let d; be the set of dependencies of service i
6 if d; C S’ then

7 Pi={p; € P|jed}

8 pi = filwi Ui U B)

9 P=PU Di

10 S'=5Ui

11 return P

In line 1, Algorithm first ensures that the application is acyclic and then
continues to initialize the performance vector P and the set of processed services
S'. Following, it iterates through all services until S” is no longer a proper subset
of S. That is, until every service has an associated performance prediction.
For an unprocessed service i, we calculate the list of required performance
values P, that are necessary for processing that service’s performance prediction
function f; in line 7 based on the set of services d; that i depends on. In line 6,
it is determined whether P; can be calculated, that is, whether all influencing
service metrics are already available. If so, the performance inference model is
queried and stored in line 8 and line 9, and the service 7 is added to the list of
processed services. Similar to Algorithm the calculation of the individual
performance metrics is highly parallelizable for large topologies, improving
the scalability of SuanMing.
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Note that for any backend service b, d, = ). Therefore, as () C S’ is always true,
including @ C 0 in the first iteration, all backend services are added in the first
iteration of the loop, as their performance only depends on the input requests
X and the additional metrics A. Hence, for acyclic graphs, Algorithm [5.2|is
guaranteed to terminate. For regular and other cyclic models, Algorithm
does not terminate as all services of the cycle can not be calculated as long as
their influencing services are not known.

Consequentially, it is necessary to refer to a heuristic capable of resolving
cycles in the application model in line 1 of Algorithm[5.2} One possible heuristic
sets the performance values of all services of the cycle to co. This results in false
positives; however, all affected services will be post-processed in Algorithm[5.3}
which is capable of solving cycles and, therefore, filtering false positives. Other
possible heuristics include ignoring the dependency generating the fewest calls
for a given input list or contracting all affected services into one hyper-service.
While the former might reduce the prediction accuracy of individual services,
the latter lacks the granularity to pinpoint a specific service.

5.2.6 Analyzer

The final component focuses now on the analysis of the predictions produced
in the previous steps. Therefore, the target of the Analyzer component is to
classify the severity of the predicted performance problems and to deliver ex-
planations for the performance prediction in order to foster actionable insights.
For example, two services a and b might experience performance degradations
as their response times increase. However, as service a calls service b while an-
swering its request, its performance is only degraded due to the time service a
waits for service b. Therefore, by addressing the performance degradation of b,
we automatically also solve the performance degradation of a.

In our case, the system operator defines target ranges for every performance
metric of user endpoints in advance. SuanMing is then tasked with supervising
these ranges and alerting the operator if one value is predicted to exceed its
target range in the near future. This translates into a binary classification
problem. The classification is done using the predicted performance vector p;
for every service i and comparing it to the defined target threshold ¢; for each
of the r performance metrics. The approach of binning performance metrics
into different classes was already shown to be suitable for related performance
problems [Bia+20]].

However, as SuanMing focuses on explainable predictions, a simple problem
classification does not suffice. Therefore, if a service is expected to perform
worse than the defined threshold, the analysis component needs to pinpoint

86



5.2 Components

the service responsible for the anticipated performance problem in order to
offer solutions on how to avoid it. Hence, Algorithm calculates and returns
the list of root cause services R, responsible for the predicted performance
problem. Based on the computation of R, an operator can specifically target
all necessary services, for example, by up-scaling all services in R to avoid the
predicted performance problem while still using minimal resource effort.

Algorithm 5.3: Root cause inference.

Input :Predicted performance P, performance thresholds 7',
performance model F, input requests X, additional metrics A.
Output :Predicted application performance P, List of root cause

services R.
1 R=1
2 foreach p; € P do
3 if not satisfies;, (p;) then
4 Let P, be the set of predicted dependent performance metrics of
service i
5 ]Di/ = Uﬁjeﬁi min (ﬁj,t]’)
6 if not satisfiesy, (fi(z; U oy U P!)) then
7 | R=RuUi

®

if not confident(P, R) then
L return (), ()

10 return P, R

)

Similar to Algorithm Algorithm |5.3|requires the performance model F,
the tuple of input request vectors X, and the list of additional metrics A. In
addition, Algorithm |5.3|utilizes the performance predictions P = (P1y---,Ds),
that is, the output of Algorithm 5.2} and the defined performance thresholds
T = (t1,...,ts) for each service.

Algorithm utilizes the helper function satisfies;, (p;) to check whether a
performance prediction p; of service ¢ violates any of its defined thresholds ¢;.
The function returns false if any of the » components in the predicted perfor-
mance vector p; is higher than its defined threshold ¢;, otherwise it returns true.
That is, satisfiest, (p;) performs an element-wise greater-than comparisonE] If

*Without loss of generality, we assume that a threshold is always an upper bound for what
values are acceptable. If a threshold is set as a lower bound, we negate the value and all of
its predictions.
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a service 7 is detected to violate any of its performance thresholds ¢; in line 3,
we calculate the all-fine performance vector P/ for service i in line 5. This is
done by lowering all threshold-exceeding values to the defined threshold and
therefore simulating a normal behavior of all influencing services. If i still
violates its threshold after all influencing services respond normally, it is added
to the list of root cause services R as i itself is responsible for the performance
problem. On the other hand, if all performance predictions in p; fall below their
respective threshold in ¢; after all influencing services respond within their
given boundaries, then it can be concluded that the performance problems of
i can be fixed by fixing the performance problems of its influencing services.
Hence, i is not considered to be a root cause service.

After the calculation of R, the Analyzer finally conducts a confidence check
of all its predictions in line 8. This step is necessary to avoid inaccurate per-
formance predictions, especially due to a lack of training data or model inac-
curacies. Therefore, SuanMing enables the Analyzer component to scrap all
performed calculations based on a configurable confidence function. If the
confidence check fails, Algorithm does not return any prediction. If the
check succeeds, Algorithm 5.3 returns the application performance prediction
P, as well as the list of responsible root cause services R.

In this work, our confidence value is based on the accuracy of the forecaster,
as all model predictions are dependent on the forecasting accuracy and as it
gives good insight into the general model accuracy. We use the coefficient of
variation of the output distribution of the GluonTS [[Ale+20]] forecast as our
measure of confidence. Hence, in the following evaluation, SuanMing starts to
deliver root causes and ratings after the described coefficient of variation falls
under 0.15. This value was chosen empirically after preliminary analysis in our
test environment. However, in future work, we plan to extend the confidence
analysis to compare the respective prediction with actual measurements from
the last periods in order to rate the confidence of all component predictions.

As Algorithm [5.3|iterates over every performance prediction only once, it
is guaranteed to terminate in linear time on both cyclic and acyclic topolo-
gies. Additionally, similar to Algorithms[5.1)and 5.2} Algorithm [5.3]is highly
parallelizable, improving the scalability of SuanMing.

5.3 Summary
To summarize, SuanMing relies on two fundamental models influencing the

prediction power of the algorithm: the propagation model D and the per-
formance inference model F. In the first phase, predicted user requests are
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forwarded through the application. In the second phase, the performance of
each service, starting with the backend services, is determined by backpropa-
gating the performance through the application. These two steps are able to
deliver an accurate prediction of an arbitrary set of  performance metrics of
interest, provided these performance metrics are captured by the monitoring
infrastructure. Combined with an accurate forecast of future user behavior, the
models can predict the future state of the system. This answers RQ [IL.1] (‘{How]|
lcan tracing data be utilized to predict the future performance of a system?|").

Based on the predicted future state, an operator is then able to define target
thresholds for every performance metric, either for all services or only for
a subset, as a priority list of supervised endpoints. If any of these priority
endpoints is expected to miss its target, SuanMing can alert the operator and
deliver a list of responsible services for anticipated performance degradations.
Therefore, the approach delivers the root cause for predicted degradations, as
defined in RQ[IL.2| ({How can we pinpoint the root cause service of a performance]
[problem?]”). By fixing these calculated responsible services (e.g., by adding
resources), the operator can prevent the anticipated performance problems
before they occur in the system. If required, SuanMing can still identify backend
or intermediate services that experience performance degradation, even if they
do not lead to any user-facing performance degradation.

SuanMing is designed to work scalable, lightweight, on top of online cloud
measurement infrastructures, without prior application knowledge, and with
arbitrary kinds of acyclic and regular application topologies. Furthermore,
SuanMing is designed as a framework offering several extension points for the
adaptation and improvement of all learning and prediction modules. Therefore,
we achieve Goal [[I| (“{Develop an approach for the prediction of performance degrada}
|tion using application-level tracing|”). We evaluate the proposed contribution in

Chapter[10|on page
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Chapter 6

Estimating Continuous Resource
Demands

In this chapter, we introduce SARDE, our approach for the continuous estima-
tion and improvement of performance models. Timely and precise resource
demand estimates are a crucial input to autoscaling mechanisms [Bau+18|] or
performance modeling techniques [Hub+17; Kou+16}|[Reu+16; BKR09]] used
for elastic resource provisioning. A resource demand (or service demand [Spi+15}
Spil7]]) is the average time a unit of work (e.g., request or transaction) spends
obtaining service from a resource (e.g.,|[CPU|[HDD)] or[SSD)) in a system over
all visits, excluding any waiting times [Laz+84; MDAO04] (see Section [2.2.2]
on page [22)). However, the direct measurement of resource demands is not
feasible during operation in most realistic systems [[Spi+15] due to instru-
mentation overheads and possibly measurement interferences. Furthermore,
Willnecker et al. [[Wil+15b]] show that statistical estimation approaches can
provide comparable accuracy to direct measurements. Therefore, it has been
shown that statistical estimation of resource demands is a valid and useful tool
to realize precise elastic cloud resource management [Wil+15b; Bau+18]], and
several approaches for resource demand estimation have been proposed over
the years [[RV95; BKK09; Wan+12; [ ZWLO0S; Spi+15]. For a detailed overview,
we refer to Section [3.2.2Jon page

When selecting an appropriate approach for a given scenario, a user has to
consider different characteristics of the estimation approach, such as the ex-
pected input parameters, configuration settings, its accuracy, and its robustness
to measurement anomalies. The accuracy of the different approaches is heav-
ily dependent on factors including but not limited to system load, workload
type, deployment structure, internal state, and monitoring granularity [Spil7]].
Additionally, Spinner et al. [Spi+15] show that no single approach is optimal
in all scenarios. This follows the no-free-lunch theorems for machine learn-
ing [Wol96|] and optimization [WM97]], stating that any two algorithms are
equivalent when their performance is averaged across all possible problems.
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In addition, many approaches offer configuration parameters to tune its be-
havior, which drastically influences the estimation accuracy [[Spil7|] of some
approaches. However, it is not trivial to determine how the various parameters
should be configured for optimal performance. Hence, correctly selecting and
configuring the appropriate approach for a given scenario requires exhaustive
testing or detailed expert knowledge.

The first steps focus on combining different estimation approaches into a
single usable tool [Spi+14; WPC15] to enable the use and the seamless ex-
change of approaches. However, the only approach considering the automatic
selection of resource demand estimators does not focus on continuous and
online estimation [Spil7]]. In addition, there exist no works on automatic and
systematic evaluation of the best parameter settings for a given test set since
previous approaches only do manual testing and develop rules of thumb for a
chosen small set of parameters [[KTZ09;/CC07;/CCT08; Zhe+05; ZWL0S; Spi+15;
Spil7|.

The problem is furthermore aggravated as modern software paradigms, like
DevOps and cloud deployment, become increasingly popular (see Section[2.]]
on page[15). Therefore, timely and precise resource demand estimations get
increasingly complex as more and more variables are subject to change, and
estimates have to be continuously updated. For example, any autoscaler is con-
stantly changing the deployment structure of the considered software system,
and the applied workload is never truly constant in an online application. In
consequence, the considered environment is both unknown at design time and
constantly evolving during operation time [[Cal+12]]. Since the characteristics
of the system and the properties of the measurements are the main influencing
factors for the performance of resource demand estimators [Spi+15], the best-
suited approach (together with its parameterization) for estimating resource
demands is also continuously changing. It is therefore impossible for any hu-
man user to continuously select, parameterize and supervise resource demand
estimators during system operation.

To address this problem, we introduce SARDE, a framework for continu-
ous, Self-Adaptive Resource Demand Estimation. SARDE is able to operate,
parameterize and select multiple different resource demand estimations in a
continuous manner and adapts autonomously to changes in its environment or
ISystem under Study (SUS)| This work focuses on combining and interlacing the
different building blocks to create an adaptable and robust framework that can
be applied in any continuous environment without requiring expert knowledge.
To that end, SARDE continuously

e estimates resource demands,
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e selects the best-suited estimation approach,

e learns and adapts the selection strategy in order to adapt to changing
environments, and

e tunes the parameters of individual approaches based on online observa-
tions.

SARDE works as a fully autonomous, situation-aware, and self-adaptive en-
semble resource demand estimation approach. It utilizes the above techniques
to improve the performance of current state-of-the-art approaches without the
need for human supervision or expert knowledge. Therefore, SARDE repre-
sents a significant step forward towards our published vision of self-aware
performance models [[GEK18;} [Spi+19]], but also towards the vision of auto-
nomic and self-aware computing [[KC03; Kou+17]] in general, as the techniques
we introduce can also be transferred to other areas of research.

We published detailed descriptions of our works on optimization [|[Gro+17],
clustering [Gro+19al], and recommendation [Gro+18]], as well as a holistic
combination [|[Gro+21b]]. Furthermore, we presented the value of resource
demand estimation for autoscalers [[Bau+18]]. The source code of SARDE is
available on GitHubﬂ In addition, we published a replication package on
CodeOcean [[Gro+21al] for analyzing the experimentation in Chapter 11| on
page [187] All contributions serve to answer RQ [[TIL.1] (“{How can we combine
different estimation approaches to efficiently produce continuous resource deman
estimations?]”), in order to fulfill Goal [T ({Enable the continuous estimation an
improvement of performance model parameters using production monitoring data.|")
in conjunction with the DepIC approach introduced in Chapter [/ on page

In the remainder of this chapter, we first give an example motivating the
advantages of SARDE in Section Following, we give a comprehensive
overview of our approach in Section|6.2]and then add a more detailed descrip-
tion in Section[6.3] Finally, Section[6.4|closes with a short summary. We evaluate

SARDE in Chapter[11]on page

6.1 Motivating Example

In this section, we will first intuitively describe the idea behind resource demand
estimation in general and then motivate our reasoning behind SARDE using a
small example trace. Let us assume that we have a for which continuous
monitoring streams of throughput, response times, and resource utilization

"https://github.com/jo102tz/LibReDE- SARDE
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are collected. The system serves three different request types, methods, or
workload classes WC1, WC2, WC3, for which we want to estimate the respective
resource demands, as these can be used to accurately model the performance of
the For illustration purposes, during the first interval, a[CPU]utilization of
80% is measured, while on average, throughputs of 20 (WC1), 11 (WC2), and
5 (WC3) requests per second of the respective workload classes are measured.
In the second interval, the utilization drops to 60%, as 30 (WC1), 4 (WC2), and
10 (WC3) requests per second are processed. The task of the resource demand
estimators is now to calculate the resource demand of each workload class
based on this set of coarse-grained measurements. One resulting estimation
could be that WC1 and WC3 both take 10 ms per request, while WC2 is more
intense and takes 50 ms as this would fit with the measurements on a one-core
system. However, the actual truth is still unknown to us and, dependent on
the chosen technique, different approaches arrive at different estimations.

Our current implementation of SARDE is based on the [Spi+14].
The publicly available library [LibReDE| [SGK19]] provides a set of implementa-
tions of different resource demand estimation approaches (see Section[3.2.2Jon
page[43). Furthermore,[LibReDEJis peer-reviewed and accepted by the[Standard]
[Performance Evaluation Corporation Research Group (SPEC RG)| [SGK19]].
Therefore, in the rest of this work, we will utilize the following base estimators
from

. approximation with response times [[BKK09],

o approximation using the[Service Demand Law]|[[BKK09]],

° regression based on queue lengths and response times [Kra+09],

o based on utilization law [RV95]],
° Kalman filtering based on utilization law [Wan+11; Wan+12]], and

o Kalman filtering based on response times and utilization [[ZWLO0S;
KTZ09].

In order to illustrate and motivate the idea behind SARDE, Figure shows
the error (calculated as described in Section [I1.1.3|on page of the continu-
ously updated estimation using the listed available estimation approaches over
time. Details on the used system and workload are included in Section [I1.1.1.2]
on page[188|

We observe that over the course of three hours, the performance of each
estimator is massively influenced by the type and amount of monitoring data
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available, as well as the underlying characteristics of the system. As a result,
(pink) starts as the best estimator, followed by (brown). However,
the accuracy of starts to decline after a while, and in fact, continues to
have the worst estimation performance of all available approaches. In total,
four of six available estimators exhibit to be the best estimator at least once
during our three-hour experiment. Additionally, it is not clear in advance which
estimator will perform how well, especially as some estimators also tend to be
very unstable.

Hence, SARDE acts as an ensemble estimator able to combine the best from
all estimators and compensate for the weaknesses of some approaches using
the strengths of others. In other words, the aim of SARDE is to successfully
learn and adapt to the changing performance of the estimators in order to be
able to always select the best approach for each scenario. In addition to that, we
observe that some approaches are very susceptible to changes in their parameter
settings [[Gro+17]|. Therefore, by adapting these parameters in the applied
scenario, SARDE could even improve the performance beyond the current best
method without the need for human supervision or expert knowledge.

6.2 Overview

This section gives a high-level overview of SARDE, as illustrated in Figure
First, SARDE comprises two running databases: One containing monitoring
streams from the another storing the sequence of resource demand esti-
mations made over time. Next to the databases, SARDE continuously runs the
estimation engine, performing periodic resource demand estimations based on
the continuously updated monitoring streams. The estimation engine offers
different configuration interfaces, like the specific approach to use or the param-
eter settings of the individual approaches. The resulting estimations are then
stored in the resource demand database. From there, external processes (e.g.,
an autoscaler [[Bau+18; Bau+19] or a performance model extractor [Wal+17;
Spi+19]]) can retrieve the latest resource demand estimations. On top of that,
SARDE consists of two interacting feedback loops: Optimization and Selection.

The optimization process deals with parameter tuning (e.g., the aggregation
interval or the monitoring window) of the individual approaches. To that end,
monitoring data from the system as well as the corresponding resulting estima-
tions are utilized. The optimization then specifically tailors the parameters of
each available estimation approach to the specific[SUS|to minimize the resource
demand estimation error.
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Figure 6.2: High-level overview of the SARDE approach.

The selection process utilizes the same data as the optimization process.
Instead of optimizing the parameters, the selection process fits a machine
learning model predicting which approach to select for a given situation. This
is done based on specific features of the monitoring data, like the average
utilization, or based on properties of the for example, the number of
servers or workload classes. Based on these features, the selection process can
then select the best-suited estimation approach for the given situation.

As the optimized parameter settings influence the performance of the in-
dividual approaches, these settings have to be considered while training the
machine learning model and are therefore directly fed into the selection pro-
cess. The selection itself interacts only indirectly with the optimization, as the
process has an impact on the resulting resource demand estimations in the
resource demand database, which is, in turn, an input to the optimization loop.
In addition to utilizing the historical data, both processes perform additional
computations and resource demand estimations for exploring the space of all
possible configurations.

6.3 Approach

In this section, we describe the two feedback loops presented in Section
and how communication between them is organized in more detail. As both
the optimization process and the selection process interact with the estimation
engine, as shown in Figure synchronization and communication between
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these processes is required. To keep all sub-systems of SARDE up-to-date, we
introduce a set of semaphore artifacts. These artifacts can only be written by
one respective process but may be read by all other processes. This way, it can
be ensured that the different feedback loops do not block each other during
execution while using the most recent version.

Figure [6.3|depicts the five different activities running in parallel: monitoring,
parameter optimization, selection model training, approach selection, and
finally, resource demand estimation. In the following, we will discuss each of
the individual processes in more detail.

6.3.1 Monitoring

As the different resource demand estimation approaches require both system-
level and application-level monitoring, the monitoring engine has to monitor
application-level metrics (like throughput and response time per workload
class) and system-level metrics (e.g., average utilization per instance)
live from the running system. These monitoring streams are then stored in a
database, and each entry is assigned a corresponding timestamp. The gathered
data can then be fed into the remaining four processes, each of which requires
the information as input.

6.3.2 Optimization

Different resource demand estimation approaches offer several parameters to
be tuned. Additionally, some parameters like, for example, the aggregation
interval of the monitoring data (step size) or the measurement window to
consider (window size) can be tuned for all approaches. This is done by
analyzing the estimation error of individual estimation approaches via cross-
validation on the monitoring data gathered on the system. A configurable
search algorithm then applies different parameter settings and searches for
a (near-)optimal configuration of those parameters for each of the available
approaches. Although this is a relatively straightforward task, the optimization
still bears many challenges, as the number of different possible configurations
rises exponentially with the number of parameters and the time available for
optimization is limited. The goal is, therefore, to utilize an algorithm that is able
to find a good parameter configuration using a small number of exploration
runs.

The applied self-tuning algorithm is generally abstract and works for any
generic parameter providing a minimum and a maximum value. We evaluated
different approaches and then decided to rely on[S3|in this work [[Gro+17]].
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The [S3| was developed by Noorshams [Noo15]] in the context of regression
model optimization. Here, we utilize this algorithm in order to optimize the
parameters of our resource demand estimation techniques. The|S3|algorithm
can be configured by three hyperparameters: The number of splits per param-
eter k, the number of exploration points considered per iteration n, and the
maximum number of iterations j,,q,. Noorshams et al. [Noo+13]] show that
the total complexity of the algorithm is given by O(jiaz - 7 - (k + 2)!), where |
is the number of parameters that are optimized simultaneously. Therefore,
offers good control over the trade-off between run time and solution quality by
tuning its hyperparameters. Additionally, it is possible to optimize an arbitrary
number of parameters simultaneously. This is important as inter-parameter
dependencies, that is, one parameter influencing the other, can be taken into
account. However, it has to be noted that the number of parameters to be
simultaneously optimized heavily influences the computational complexity.
Note that|S3|is just one possible search algorithm; other algorithms focusing
on modeling or optimizing configurable software systems [[Zha+15; Sie+15;
Guo+17;[HZ19; Gro+20b]| are applicable as well.

Although this step can be executed offline using a large trace database, the
optimization is usually more effective when optimizing for a specific kind and
type of system. Additionally, as the evolves or the amount of available
monitoring data increases, the parameters need to be adapted continuously.
Therefore, the process is periodically triggered. However, depending on the
chosen algorithm, this process can be very time-consuming, running for multi-
ple hours or even days for huge systems. Therefore, the execution is triggered
comparatively seldom.

6.3.3 Training

The third step is the process of training the estimation approach selector. The
selection process in Figure 6.2]is split into two activities as the selection itself is
executed far more frequently than the training of the selection model. During
the training phase, a model is learned which is able to predict the best-suited
approach for the given estimation problem. This model is then stored as the
Selection Model, which is used by the actual selection process.

6.3.3.1 Problem Formalization

The problem of selecting the best algorithm for a specific problem instance was
also formulated by Rice [Ric76]] as the algorithm selection problem. Based on
this work, Smith-Miles [[Smi09]] formalized the following four components for
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modeling a selection problem: (i) the problem space, (ii) the feature space,
(iii) the algorithm space, and the (iv) performance space. In this work, we can
translate this to the task of selecting the best-suited resource demand estimation
approach as follows:

e The problem space P represents the measurement traces available for
estimation,

o the feature space I’ contains the characteristics of each trace, as described

in Section [6.3.3.3]

e the algorithm space A is the set of available resource demand estimators,
and

e the performance space Y represents the mapping of each algorithm to
the estimation error.

For a given measurement trace p € P with characteristics f(p) € F, the
objective is to find a selection mapping S(f(p)) into the algorithm space A,
such that the selected algorithm o € A minimizes the performance mapping
y(a(p)) € Y. The task of the model learning is to find the function S, mapping
each possible trace characteristic to the selected algorithm, while the actual
selection process (see Section [6.3.4)) is executing S(f(p)).

6.3.3.2 Dataset

One of the defining aspects during training is the available dataset. Note that
the training procedure itself can be done either online or offline. This decision
mainly influences what data is available during the training phase to extract
knowledge from. SARDE utilizes a combination of offline and online training.

Offline training We refer to offline training as a training process that is per-
formed once, using a variety of systems and configurations. Based on this set,
one can apply all available approaches to the different training sets and use the
feedback from those runs to determine which approach is suited best for the
specific problem instance. This information, together with a set of descriptive
features, is then given to a machine learning algorithm, which learns a model
from all training sets, extrapolating the relationship between the different fea-
tures and the best-suited approach. We call this resulting model the selection
model. Naturally, the accuracy of this approach highly benefits from an increas-
ing amount of training data and a high similarity of the training systems to the
current problem instance.
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Online training Offline training has the disadvantage of being trained before
the actual application to the Therefore, in online training, we continuously
monitor the current system and the performance of the different approaches,
as these can also serve as training samples for our selection model [Ker+19]|.
Furthermore, the performance of the individual approaches changes if the
optimization process described in Section [6.3.1)adapts the parameter settings
of the respective approaches. If so, the training must be repeated for the newly
found parameterization, which can be cost-intensive for the offline dataset.
However, online learning has the disadvantage that the trained model is prone
to over-fitting to a specific system and can not adapt very well to changes in the
configuration or the structure of the[SUS| This is due to the drastic reduction of
training data in comparison to the larger dataset used in offline training.

Hybrid training As a consequence, we introduce hybrid training, a combination
of both offline and online training, in this work. The idea of hybrid training is to
utilize the training datasets as applied in offline training but iteratively adding
online data from the[SUS]to the dataset and periodically triggering the training
process. Therefore, the training process is able to adapt to the feedback of the
running system while also maintaining robustness towards major changes of
the respective system.

6.3.3.3 Features

Another central aspect of all machine learning approaches is the feature set
used for training. This section contains the list of features we extract from each
monitoring trace. These features capture certain characteristics of the input
traces that we deem useful for judging which algorithm would be most suitable
for estimating that respective trace.

The machine learning algorithms are heavily dependent on those features,
and a careful selection, as well as the right amount, is crucial for a satisfac-
tory outcome. Since machine learning algorithms try to distinguish between
different classes of traces, too many features can actually be harmful. A trace
refers to one training example of our dataset. A trace usually consists of a set of
time series, for example, of the utilization of each resource, the response
time, and the arrival rate of each request of the respective workload classes.
The utilization measures the average utilization of the[CPU|for a certain
interval, the response time contains the response time of each request, and the
arrival rate holds the number of incoming requests for a certain interval. These
traces are then given to the estimation approaches for their estimations. For
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each trace, we create a feature representation y that captures the characteristics
of this trace.

Next to the time series itself, we have some general meta-information about
the traces, including the number of resources (e.g., number of or
cores) and the number of different workload classes. For example, Spinner
et al. [[Spi+15]] showed that the number of workload classes has a direct impact
on the performance of the estimators. This meta-information is also added to
the feature set. Another big impact on the performance of estimators is the
utilization of the system [Spi+15]]. Therefore, it is useful to include information
about the average utilization of the available resources as well as the mini-
mum and the maximum utilization. In addition, we also to extract statistical
information about the time series of each trace.

However, it does not seem useful to average this information over all available
resources. Especially since different workload classes are known for stressing
each resource differently. We, therefore, define a set of statistical features
to extract utilization information for each individual resource, together with
information about the arrival rate and response times of each workload class
and concatenate them to one feature vector y.

The extracted statistical features for a time series " = (dy, . .., d;) consisting
of an ordered set of data points are as follows:

e The number of data points: n = |T'|.

. . .o 1
o The arithmetic mean: 7= - >"" | d,.

e The geometric mean: 7' = ([, di)% .

e The standard deviation: o = \/ LS (di —T)2

e The quadratic mean: Zy,s = /= > 1, d2.

e The minimum value: T,,;,, = min (7).
e The maximum value : T4, = max (7).
& (4T
(5 3m(d-T)2)
1

n ._T\3
e The skewness, measuring asymmetry [JG98]: s = —* Ziz f)
[ﬁ Z?:1(di—T)2]

e The kurtosis, measuring tailedness [Wes14]: k = 7 — 3.

3/2
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e The 10" percentile: | = Pyo(T).

e The 90" percentile: u = Pyy(T).

This results in a total of eleven statistical measures. Given that these are
calculated for each resource and twice for each workload class (for arrival rates
and response times), the total number of features amounts to |y| =2+ 11 -7 +
22 - w, with r being the number of resources, w being the number of workload
classes in the training set, including the number of resources and workload
classes available as two additional features.

One advantage of the selected features is that they are fairly easy and fast to
compute. In addition, most of the features are standard statistical measures
that are easy to comprehend as a user. Exceptions might be the kurtosis and
the skewness metrics; however, kurtosis and the skewness are common metrics
in time series analysis [JG98; Wes14]]. We also examined other feature sets
of diverse size and composition [[Gro+18]], including the correlations and the
co-variances between the traces, the variance inflation factor, and information
about the statistical distributions. While it might seem useful to include further
features into the training, these features are costly to calculate and therefore
greatly increased the required selection time [[Gro+18]]. As the respective fea-
tures did not significantly impact the prediction accuracy, we decided to settle
on the final feature list presented above. We also excluded any feature prob-
ing techniques [[Hut+14;|Kot+15] as we consider the performance impact too
high. Additionally, removing any more features from the above list negatively
influenced the selection results while offering only an insignificant runtime
advantage.

6.3.3.4 Labels

After acquiring the feature vector per trace, one can execute all resource demand
estimators on the given trace and then use the resulting estimation error as
labels for training a machine learning algorithm. A selection engine can then
be built by training different regression models, each predicting the error
of individual estimators and then choose the one with the lowest expected
error [Bis+16]]. However, in the following, we work with a classifier-based
approach. We compare the error values of each estimator in order to label
each feature set with the value of the best algorithm. During the selection,
the predicted label of the classifier can be viewed as the approach expected
to perform best. This way, only one classifier model needs to be trained and
executed, which saves computation time during online execution.
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What remains is the determination of the estimation error of each approach
during training. If available, the real estimation error can be used if the training
set contains a set of artificial or specifically monitored traces. However, this
will not be feasible for many traces, for example, during online training. As the
real resource demand is per definition unknown to SARDE, we have to rely on
the internal error calculation based on cross-validation. The validation error
used for labeling is explained in more detail in Section[11.1.3|on page

6.3.4 Selection

After the training process produced an accurate selection model, the selection
process analyses the type and structure of the monitoring streams. It uses the
provided selection model to make an informed decision about which approach
to use for estimation. Simply put, the acquired machine learning model is
utilized, and its prediction for the best-suited estimator is applied. This process
was deliberately split from the training process, as this process can use the
same selection model multiple times in order to update the selected approach
based on changes in the system or the monitoring streams.

duration of process

-
r Rl

Training \ : \
Selection -- —\\*-\ - -\V-\ - - -\*-‘ - -\‘-\ -
IR IR AR IR IR R IR AR AR AN AR A AR |

Monitoring

\4

Time
Figure 6.4: Exemplified timeline visualization.

Figure[6.4]illustrates an exemplified timeline, visualizing the five processes
running in parallel. While monitoring is a continuous process, the estima-
tion is executed quite frequently, with the more computationally expensive
procedures running slower and fewer iterations. Note that this is just an exem-
plary configuration, the actual intervals of SARDE can be tuned by the user.
Furthermore, the arrows of the respective colors show how the results of the
particular process influence the other running processes. We observe that, for
example, a finished training process updates the selection model used for the
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next selection process that has not started yet. This model is then used until it
gets updated by a subsequent training iteration. Similarly, the output of the
selection process, the selected approach to use for estimation, is applied for
all subsequent estimation runs as long as the selection is not updated. It is
furthermore shown how the optimization results influence the next training
process. After a successful optimization, the optimization results take a while
to come into effect at the actual estimation, as the estimation uses the old pa-
rameterization until the training with the new parameterization is finished and
the newly parameterized approaches are selected for estimation. This has the
advantage of protecting the continuous estimation from negative effects by a
disadvantageous optimization run, as the training process is able to double-
check and filter the respective approaches if necessary. However, the cost of this
approach is the delay between a finished optimization and its parameterization
coming into effect.

6.3.5 Estimation

The most frequent process is the actual estimation process. Its frequency mainly
depends on the variability of the system and the monitored traces, as well as
the quality of the estimated resource demands itself. Upon execution, the
estimation process loads the approach selected by the selection process and
updates it with the optimized parametrization by the optimization process, if
available. Then, the estimation is executed on the newest monitoring data. Note
that, as depicted in Figure|6.4, multiple subsequent estimation executions might
be performed using the same approach. This is on purpose, as the monitoring
data is updated between those executions, which impacts the estimation result.
To that end, all process executions always utilize the most recent monitoring
data available at the start of each process.

6.4 Summary

In this chapter, we presented SARDE, a framework for continuous self-adaptive
resource demand estimation. SARDE continuously (i) estimates resource de-
mands, (ii) selects the most suitable estimation approach from a set of avail-
able alternatives, and (iii) optimizes the parameterization of the estimation
approaches in order to minimize the estimation error. This is achieved by
continuously evaluating the performance of each estimator in the current and
constantly changing scenario. Based on the characteristics of the current situa-
tions, SARDE is able to adapt each estimator itself, but also to select the most
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suitable approach as well as improving and hardening the overall estimation
error. This enables SARDE to serve as an ensemble resource demand estimator,
capable of delivering reliable estimations in unknown and constantly changing
environments without expert knowledge or human intervention.

Therefore, the ideas presented in this chapter answer RQ by presenting
a technique to continuously combine different resource demand estimation
techniques. Together with the contributions in Chapter[7|on page[109] SARDE
achieves Goal [III] (“[Enable the continuous estimation and improvement of perfor]
[mance model parameters using production monitoring data.”). We evaluate SARDE

in Chapter|[I1jon page

107






Chapter 7
Learning Parametric Dependencies

A significant factor for the prediction accuracy of performance models is its
parameterization, i.e., the values for model parameters such as loop frequencies,
branching probabilities, or resource demands [[Spi+15]]. However, these model
parameters often depend on the input parameters of a component (e.g., the size
of a list impacts the time required to sort it). Therefore, many architectural per-
formance models allow to explicitly model input parameters and their influence
on model parameters in the form of so-called parametric dependencies [Koz08;
Ham09; Bon+05; Eis+18;} Sit+01a} Sit+01b]]. These describe the resource de-
mand of a function call in dependence on a given set of input parameters.
The importance of including such influences has been discussed by a variety
of authors, including Booth and Wiecek [BW80]], Woodside et al. [Woo+95],
Pozzetti et al. [Poz+95]], Menascé [Men97], and Koziolek [Koz10]].

Manually modeling parametric dependencies requires expert knowledge,
is prone to errors, and causes significant manual effort. For example, in a
case study by Krogmann et al. [KKR10|], more than 24 hours were required
to manually model the parametric dependencies in a small system. Therefore,
manually modeling parametric dependencies for large systems is infeasible
due to the effort required to model them. In another work, we furthermore
found out that the required effort for creating the performance models hinders
the adoption of performance modeling techniques in the industry [Bez+19]].

As already mentioned during our discussion of related work on automatic
extraction of performance models in Section 3.2 on page 40}, most approaches
are not able to extract parametric dependencies [[Wal+17; Hri+99; [Isr+05;
MF11}; BKK09; BVK13}[Wil+15a; SWK16; Spi+19]. Notable exceptions include
the works of Courtois and Woodside [[CWO00], Krogmann et al. [KKR10]], and
Brosig et al. [[BHK11]] (see Section on page [#1]). Courtois and Wood-
side [[CWO00] propose to use regression splines combined with automated
performance testing to derive functions that describe resource demands based
on input parameters. Krogmann et al. [KKR10] use genetic search to find
dependencies between a component’s input parameters and the number of
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executed bytecode instructions. Brosig et al. [BHK11]] model parametric depen-
dencies in models but require input information about parameter tuples
for which dependencies exist. To summarize, approaches from literature either
require running preliminary experiments in a testing environment [[CWO00;
KKR10]] or already detected parametric dependencies as input [[BHK11]].

Therefore, in this chapter, we address RQ[IL.2| (‘{How can the impact of pai
[rameters on resource demands be identified and characterized?|”). We do this by
introducing DepIC, our approach to derive parametric dependencies solely
from monitoring data available at run-time. This task can be split into two
sub-tasks: (i) detecting the dependencies, that is, identifying which parameters
influence a model variable, and (ii) characterizing the dependencies, that is,
describing how the value of a parameter can be derived from the influencing
parameters. In the following, we first focus on sub-task (i), i.e., the detection of
parametric dependencies in Section[7.1} Second, we describe our solution to sub-
task (ii), i.e., the characterization of already detected parametric dependencies
in Section

The proposed DepIC approach significantly reduces the required effort of
modeling parametric dependencies, enables automated extraction of more
detailed models, and therefore makes the modeling of dependencies feasible for
large systems. DepIC can also be used as assistance for a performance modeling
expert, who can use our system’s suggestions as candidate dependencies in
order to manually change or tune them. Furthermore, DepIC can work solely
with production monitoring traces of the managed applications and does hence
not depend on any kind of prior knowledge, source code information, or static
analysis. As a consequence, all required structural information is obtained
from the monitoring data itself. Therefore, this work fits well into our vision of
self-learning and self-improving performance models [[GEK18]] and addresses
Goal [l ({Enable the continuous estimation and improvement of performance model
lparameters using production monitoring data.|").

To that end, the presented approach can be used to enhance existing model
extraction pipelines, as shown in Figure Currently, a performance model
without parametric dependencies can be extracted from monitoring data us-
ing existing model extraction approaches [Wal+17; [Hri+99; [Isr+05; MF11}
BKKO09; BVK13; (Wil+15a; |[SWK16; Spi+19]]. The approach presented in this
work can be applied in parallel on the same monitoring data to automatically
identify dependencies between model parameters in the first step (Dependency
Identification) and then characterize these dependencies in the second step
(Dependency Characterization). For the second characterization step, exist-
ing approaches for the characterization of dependencies, such as Brosig et
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al. [BHK11]] and Courtois and Woodside [CWO00], or our proposed incremental
modeling techniques [Maz+20; Von+20]], can similarly be applied using minor
modifications.

Model Extraction

i i A\ Yy,
—» Monitoring Data P Wal7-Hri+99:Isr+05:MF 11:BKK0S; » Performance Model
BVK13;Wil+15;SWK16;Spi+19]

i |

Dependency Identified Dependency
Identification —> . —> Characterization
[Gro+19] DependenCIeS [Ack+18;BHK11;CW00;Maz+20;Von+20]

Artifact Contribution
State of the Art

Figure 7.1: Model extraction workflow.

After the second step, we have a concrete function that describes the depen-
dency between the target model parameter and the influencing parameters.
The resulting functions can then be integrated into the previously extracted
performance model to improve its expressiveness. The exact nature of this inte-
gration step depends on the modeling features offered by the specific modeling
formalism. Possible supporting formalisms include the [[BKR09; [Koz08]]
or the[DML] [Kou+16; Eis+18]].

Our contributions detecting parametric dependencies [Gro+19b]] and char-
acterizing them [[Ack+18]] were published as individual publications and also
referenced in a combining vision [|[GEK19]]. Furthermore, we collaborated with
other researchers on this topic and contributed to other publications in the
area of model learning and especially the area of parametric dependencies. In
particular, the work of Mazkatli et al. [Maz+20]] presents an approach for the
continuous integration of performance models. The idea [MK18] is to inte-
grate the process of model extraction into modern pipelines of DevOps
processes, which incrementally extracts and calibrates the performance model,
including parametric dependencies. The publication of Voneva et al. [[Von+20]]
extends this by focusing in particular on optimizing the process of extracting
parametric dependencies in this context by applying In addition, we con-
tributed to a similar approach that tries to speed up the analysis of architectural
models using statistical response time models [[Eis+19]|.
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In the following, we concentrate on the detection of parametric dependencies
in Section |7.1] and the characterization of already detected dependencies in
Section [7.2 We conclude with a short summary in Section[7.3]

7.1 Detection of Parametric Dependencies

The detection of parametric dependencies can be framed as a classic application
of feature selection: We define one model parameter as a target parameter and
consider all other model parameters as potential features. The challenges when
applying feature selection to this domain are obtaining suitable measurement
streams, selecting the most promising dependencies, and discarding detected
dependencies without modeling gain.

In this section, we propose a generic algorithm for the automated identifi-
cation of parametric dependencies on monitoring streams. This includes the
preprocessing of monitoring records, the creation of feature selection tasks, an
interface to integrate a chosen feature selection technique, and three different
heuristics to filter the identified dependencies. These heuristics utilize domain
knowledge to drastically decrease the number of identified dependencies reduc-
ing them to only performance-relevant ones. Following, we apply and evaluate
three different feature selection approaches [[CS14a]]: a filter method based
on correlation-based feature selection [[Hal99]], a wrapper method based on
[Qui92]], and an embedded method based on [RFregression [Ho95; Bre01]].

A high-level summary of our approach is shown in Algorithm As
the monitoring data is usually unstructured, we define the input data in =
{r1,...,ri} as a set of n unordered monitoring records r1, ..., r;, with k en-
tries in total. We describe a dependency d = (p, p.) as a tuple consisting of a
dependent parameter p and an explanatory or independent parameter p. used
to describe p. For the remainder of this chapter, we assume a dependency to
involve just one independent parameter p.. Note that DepIC is still capable
of identifying two separate dependencies for the same dependent parameter.
Therefore, we can create multi-parameter dependencies by combining two or
more separate dependencies.

First, Algorithm [7.1|initializes an empty set D containing all found depen-
dencies. Then, we transform the unstructured monitoring entries into data
streams in line 2. The resulting set of data streams S is a collection of different
sub-streams. Different sub-streams are necessary as loop and recursion struc-
tures make it impossible to aggregate all data streams on the same call path.
We elaborate on that problem in Section [/.1.2]
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Algorithm 7.1: Detecting parametric dependencies.

Input: Monitoring data in = {rq,...,74}.
Output: Set of found dependencies D = {(p1,p1,);-- -, (Pns21,,) }-
D=0
S = extractDataStreams(in)
foreach s; in S do

T; = createFeatureSelectionTasks(s;)

foreach t; ; in T; do

scores; ; = applyFeatureSelectionAlgorithm(t; ;)
L D = D U createDependenciesy (t; ;, scores; ;)

NN Uk W=

®

D = filterResult(D)
return D

]

We then iterate through all found data streams S to create a list of indi-
vidual feature selection tasks T; for each sub-stream s; in line 4. Each task
consists of one defined dependent parameter, together with all possible inde-
pendent variables. Each task t; ; is then fed into a black-box feature selection
algorithm in line 6. The algorithms are required to return a vector scores; j,
assigning a weight to each independent parameter for the specific task. These
scores are then used to create the set of dependencies in line 7. Currently,
the method createDependencies includes dependencies if its score is higher
than a given threshold 6. However, this threshold depends on the used fea-
ture selection algorithm and the corresponding scoring technique. Therefore,
createDependencies has to be parameterized with a certain threshold 6. After
all sub-problems and the resulting tasks have been investigated, the algorithm
filters all found dependencies in line 8 and finally returns the set of found
dependencies D.

In the following, we elaborate on the individual steps taken by Algorithm 7.1}
Section[7.1.T) defines the monitoring requirements and some necessary prepro-
cessing steps to receive a valid input for the described algorithm. We elaborate
on the process of extracting data streams from the monitoring data (extract-
DataStreams) in Section[7.1.2} Section gives some details on how to cre-
ate the individual feature selection tasks (createFeatureSelectionTasks).
The application of the different feature selection techniques (applyFeature-
SelectionAlgorithm) is explained in Section Finally, the creation of the
actual dependencies (createDependencies) and the filter procedures (filter-
Result) are described in Sections and respectively.
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7.1.1 Monitoring

In this section, we describe the monitoring streams used by DepIC to identify
parametric dependencies.

7.1.1.1 Monitoring Requirements

Our approach completely relies on monitoring data without the additional
consideration of system architecture or source code. The following data has to
be contained in the monitoring stream of each relevant method invocation in
order to ensure that the DepIC can extract parametric dependencies:

1. The Method identifier (e.g., method signature),

2. the call path trace information to reconstruct method invocations using
recursion or loops,

3. the method parameter identifiers (e.g., the parameter name, type, as well
as the concrete parameter values),

4. the method return identifiers, type, as well as the concrete parameter
values, and

5. the resource demand of the specific method invocation.

The call path trace is required to extract structural information from the moni-
toring data, for example, which method is called by which other method. This
is required for detecting dependencies between different method scopes. For
example, if one parameter in method A influences the behavior of method B.

Monitoring frameworks that satisfy most of these requirements out-of-the-
box are Kieker [Hoo+09; HWH12]], along with other tracing tools like Pinpoint,
Zipkin, or Dynatrace (see Section[2.2.1.3]on page 21]). However, critical param-
eters are parameter and return values, as well as accurate resource demand
measurements, which are not collected by most standard tools.

Therefore, we reside to use the open-source solution Kieker, as it offers the
option to insert custom probes enabling customization of the collected metrics.
We created a custom monitoring probe collecting the required information.
Additionally, for complex parameters likes collections and arrays, we log the
size of the collection or the length of the array. Binary objects can be captured
using their id or their size in bytes. If required, Krogmann [Kro12]] proposes
heuristics for exporting even more parameter properties. Otherwise, there
exists the possibility of using domain knowledge by an expert to manually
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model important parameter properties. As there already exist works toward
that end, we do not consider the logging of parameters as a core contribution
of our work and assume the values as given.

7.1.1.2 Resource Demand Estimation

As the goal of DeplC is to find dependencies describing the resource demand of
a function call for a given set of input parameters, we require accurate resource
demand estimates, as noted in the fifth requirement of Section As the
estimation of resource demand is an important topic for modeling, we cover
the topic of estimating resource demands in extensive detail in Chapter [f]on
page [T}

However, for the estimation of parametric dependencies, we require indi-
vidual resource demands per method invocation, which is not supported by
most statistical approaches. If the load is sufficiently low, we can assume the
measured response time and resource demand to be similar, as there would be
no queuing delays in that case [BKK09]], otherwise known as As aresult,
we suggest circumventing the issue by selectively utilizing low-load scenarios
for the input data. We investigate the impact of higher utilization levels in the
evaluation in Section[I2.3|on page Future work can also adapt and utilize
the techniques presented by SARDE in order to deliver more fine-granular
resource demand estimates as required by DepIC.

7.1.1.3 Anomaly Detection

As our approach is based on measurement data and we aim to find relations
and correlations in the measurements, the proposed technique is susceptible
to outliers. Therefore, an additional step of anomaly detection and filtering
is necessary while preprocessing the monitoring data. The concrete amount
depends heavily on the algorithms used for feature selection. In this work, it
was sufficient to apply a 99.9-percentile filter to any measured vector. Hence,
after collecting the data, we take all values that are below the 99.9-percentile
of the measurements to remove any outliers. This has proven to be sufficient
in our experiments; however, it may, of course, depend on the used platform,
measurement infrastructure, and application stack. Hence, we can not propose
a general solution and acknowledge that other experiment setups might require
more sophisticated solutions [[HA04].
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7.1.2 Creation of Data Streams

Monitoring streams generated by a system with different components are gen-
erally not structured in such a way that they can be directly inputted into
standard machine learning algorithms. Consequently, preprocessing steps are
necessary to adjust the data to fit into the required format. For this, structural
information has to be extracted from the monitoring data, loops and recur-
sions have to be resolved, and resource demands have to be extracted from
the measured response times. These so-called data streams can then be fed
into machine learning algorithms. We covered the topic of extracting the re-
source demands in Section Therefore, this section focuses on resolving
structural information.

In order to create the data streams from the monitoring streams, the initial
data is transformed into a directed multi-graph representing the call path,
where the vertices represent a method signature and edges the invocation of a
method A (start node) calling method B (end node). This graph is constructed
by evaluating the execution order index and execution stack size of each method
invocation of the current trace. This can be done using the data listed under
requirements (1) and (2) in Section[7.1.1.1} Each edge can now be associated
with the respective measurements (parameter logs, together with response time
measurements). Based on the constructed graph, the data can be transformed
into data streams. This process is subdivided into two steps.

First, every call path of the graph is extracted. Each call path resembles
a succession of method invocations. We define a call path as a sub-graph
containing all direct and indirect successive calls of the specified root-vertex.
Second, loops and recursions are resolved as they are problematic for the
calculation of our parameter correlation.

o-—6—9
—

Figure 7.2: Example graph representation of a call path.

Consider, for example, the case of function A calling function B, which
then calls function C' in a loop. This is illustrated in Figure Function A
invokes B once, B invokes C' 5 times in a loop. In this case, for every call of 4,
we get a set of parameter measurements of A and one measurement set for B,
but multiple sets of measurements for C. Even more problematic is the fact
that the number of measurements is variable and probably different for every
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invocation of A and B. This poses a challenge for our detection algorithms
as most standard machine learning algorithms can not deal with a varying
number of measurements per sample. Hence, the collected data can not be
directly written into the data stream since each entry in one data stream has to
correspond to the entry of another data stream with the same index.

Therefore, we have to aggregate all calls from B to C' into one call in order to
process them later on. However, if we ignore C' and collapse all measurements
into one aggregation, we lose a lot of information as C' might itself consist
of multiple vertices and call multiple other components (including further
loops). Consequentially, we want to aggregate loop calls into one entry while
preserving the ability to extract dependencies in the loop itself.

Resolving loops A loop can be identified in the graph data structure by ana-
lyzing the number of edges from one vertex to another. The number of calls
from B to C can be directly assessed by counting the number of directed edges
from B to C' (see Figure[7.2)). Since this is done for each call path trace, we can
analyze the number of invocations from B to C'. If the number of invocations
varies on different call paths, we assume that we have a dynamic loop structure
depending on the internal state or the input parameters.

This is solved by dividing the original data stream into two sub-problems
(i-e., two sub-streams). That is, on the one hand, the scope of the function
calling upon a looped function (A and B), and on the other hand, the scope
of the loop itself (C'). In order to do this, we create one data stream instance
of our original problem with the loop collapsed to one entry, including the
number of collapsed entries as a parameter. We call the number of entries
invocation count or loop count, as it describes the number of calls from B to C.
This addition is necessary in order to be able to extract dependencies containing
the iteration count of the loop since this information is lost when collapsing
the entries and splitting the data into sub-problems. The second sub-problem
instance contains the parameters inside the loop. This is necessary to avoid
losing information about dependencies inside vertex C' (as C' could consist
of several vertices and edges itself). Our identification algorithms are then
applied to each of the sub-problems individually.

Given the graph in Figure two sub-problems are created. One with the
data streams of methods A, B, and C with all execution entries of C' collapsed to
one entry; the other sub-problem is the loop itself with data streams of methods
B and C, while the entries of B are replicated for each invocation of C'
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Resolving recursions Another common programming concept applied in
practice is recursion. Recursion can be identified by searching the constructed
graph for cycles. We can distinguish between direct and indirect recursion as

seen in Figures[7.3and [7.4] respectively.
Recursions can be resolved similarly to loops. We represent each recursion

as a black-box and only save the initial call parameters, the aggregated call
parameters, the result, and the response time. Additionally, the recursion depth
is saved as this information could be meaningful concerning the performance
of the method (similar to the loop invocation count). The main difference
of indirect recursions is that all vertices concerned in the recursion chain are
contracted into a single vertex for further analysis of the data stream. We
acknowledge that this is a sub-optimal solution for some applications since
an indirect recursion might span over many methods, which will then be
contracted to one single vertex. A more in-depth investigation of this issue can
be the target of future work.

° o

Figure 7.3: Example graph representation of a direct recursion.

In the example shown in Figure 7.3} function B calls itself after being invoked
by A. Only the parameters of the initial invocation of the recursion of B is
considered, while the other parameter values are aggregated to one set. How-
ever, in this example, the recursion depth parameter is added with a value of
three as there are three calls observable in Figure[7.3] In Figure[7.4} functions C
and B call each other after being invoked by A. Applying the approach on this
graph leads to the vertices B and C being merged into a single node BC' and
the data of the invocations between both nodes being aggregated while adding
the recursion depth parameter with a value of 2.

o@ o
—_—
R——

Figure 7.4: Example graph representation of an indirect recursion.
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7.1.3 Creating Feature Selection Tasks

This section describes the creation of single feature selection tasks from existing
data streams. Recall that a data stream s; = {v1,..., v} is a collection of k
vectors v; withi € 1,..., k. After our preprocessing, all vectors have the same
length and can be seen as features. The feature selection techniques introduced
in Section require a distinction between a dependent variable, that is, the
target variable, and a set of independent variables, also referred to as features.
The dependent variable is predicted based on the values of the independent
variables. In order to find all dependencies within a data stream, we construct
a feature selection task for each vector v;, which analyses the impact of the
remaining vectors on this vector.

One way of achieving this is to simply brute-force the whole parameter space
for each target variable. However, this is very inefficient as many parameter
combinations are evaluated and would furthermore result in a set of unuseful
dependencies. Therefore, our approach for creating feature selection tasks
from data streams is presented in Algorithm[7.2] It requires a strict total order
of all vectors as well as an additional label /; for each vector v;. The label
l e {MP,AVG,RET, NONE} describes the data type of each vector v;:

1. Model parameters (M P): The vector contains performance-relevant
model variables, like resource demand measurements or loop invocation
counts.

2. Averaged value (AVG): This vector contains averaged values as they
are created when loops or recursions occur in the data stream (see Sec-
tion[7.1.2)).

3. Return value (RET): These are the logged return values of a specific
function invocation.

4. Normal (NONE): Values of these vectors are non-averaged and usually
describe function parameter values.

Note that any vector is assigned exactly one label depending on the first rule
that applies, from top to bottom. Hence, averaged return values are always
classified as AV G, instead of RET), as rule (2) applies first. Together with
the labels, Algorithm[7.2]requires a strict total order of all vectors. This order
describes the chronological order of the parameter occurrences. The vector
v; is monitored after v;, if v; > v; fori,j € 1,..., k with i # j. For simplicity,
we assume that we have no concurrent records and therefore Vi, j € 1,...k :
v; = vj & i = j. Both the strict total ordering and the set of labels can
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be obtained directly during the creation of the data streams in Section
without additional overhead.

Algorithm 7.2: Creation of feature selection tasks.

Input: Data stream S = {(v1,01),..., (vg, lg)}-
Output: Set of [ created tasks 7" = {t1,...,#}.
T=10
Let Vs p be the subset of S, with Vv, € Viyp : I; = M P
Define Vava, VreT, VNONE analogously
Let Vinp =S\ Virp // independent variables
foreach v; in V;p do
L T=TU (Ui, VIND)

Vinp = Vinp \ VreT

Vigr =0

foreach v; in descending ordered Viyp U Vrer do
10 | Vinp=Vinp \vi

11 if v; ¢ Vay e then

12 L TZTU(UZ',V]NDUV}/?ET)

13 if V; € VRET then
14 L V]/%ET = VI/%ET U v;

SN Ul B WN

© ® 3

15 return T’

Algorithm [7.2|describes how the four different classes influence the creation
of feature tasks. First, we consider the performance-relevant model parameters
Virp as the most critical parameters, as we are aiming to find dependencies
describing them. Hence, we use all available parameters to find such dependen-
cies in line 5 and line 6 of Algorithm However, we do not relate M Ps with
other M Ps, as such dependencies are irrelevant (model variables are usually
both known or unknown at the same time).

Second, we merge both return values Vrg7 and all remaining vectors Viyp
and sort them in descending order in line 9 of Algorithm[7.2} Here, we implic-
itly use the defined ordering. However, return values can only influence other
values of lower order, while standard parameters only influence parameters of
higher order. Therefore, we first delete all Vg7 from the set of independent
variables in line 7 and then successively add them to the set of returned pa-
rameters V}, ;- in line 14. These returned parameters V}, ;- can then influence
other parameters. On the contrary, all standard vectors VyonE are left in the
set of independent variables, but they get successively removed from Viyp
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in line 10, once they can no longer serve as independent variables. We never
use the averaged parameters Vv ¢ as dependent variables. Since they contain
aggregated values over multiple invocations, they are considered in a different
data stream in more detail. However, we use them as independent variables for
all other tasks but successively remove them from the set of independent vari-
ables Vi p in line 10. This way, Algorithm massively reduces the amount
of created feature selection tasks while using our domain knowledge to ensure
that no possibly relevant parametric dependencies are skipped.

7.1.4 Applying Feature Selection Techniques

After creating concrete sub-tasks for each data stream, we can use standard
feature selection techniques from machine learning to select the most promising
variables as dependencies. Recall from the high-level overview in Algorithm|7.1]
that one task ¢t = (vp, Vinp) contains a dependent vector vp and a set of inde-
pendent vectors V;np with the same length. The goal of the feature selection is
to receive a scores vector, that is, a ranking for each v; € Vinp for the given vp.
This ranking expresses how useful v; is to describe vp, that is, how well vp can
be described using v;. This task is a classic feature selection problem (see Sec-
tion[2.3.3.2] on page[33)), as machine learning engineers often face the problem
of selecting the most promising features (independent variables) to predict a
given target (dependent variable) [[CS14a]|. Therefore, all presented algorithms
can return such a ranking.

However, usually, this ranking is not normalized. In classic feature engineer-
ing, this is not an issue as only the relative score of the different independent
variables is of interest. Our problem statement is different in the sense that we
not only need a relative rating but also a normalized, and hence comparable,
score. This score is required during the filtering step in Section [7.1.6] where
this score is the decision parameter, whether or not a feature selection task is
modeled into a dependency. Therefore, we have to adapt some state-of-the-art
techniques to make them applicable in our scenario. In the following, we dis-
cuss the three main classes of feature selection techniques [[CS14a; | GE03]]: filter,
wrapper, and embedded methods.

7.1.4.1 Filter

Filter techniques assign a value to the possible independent variables with-
out any interaction with the target algorithm. The correlation-based feature
selector ranks feature subsets according to a correlation with the dependent
variable [Hal99]]. Features are then either selected or removed based on a
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cutoff value for the scoring. The methods are often uni-variate and solely con-
sider the independent variables; therefore, they are computationally cheap and
commonly used as a preprocessing method.

In this work, we use absolute Pearson’s r as a measure for correlation as it
was shown to be effective in related work [[Hal99]]. Hence, for each independent
variable, we compute the absolute correlation with the dependent variable and
use it as the score. One advantage of Pearson’s r is that it is already normalized
between -1 and 1. We take the absolute value as negative correlations, that is,
inverse relationships, should also be captured by DepIC.

7.1.4.2 Wrapper

Unlike filter approaches, wrapper methods evaluate subsets of independent
variables proposed by different search algorithms (forward selection, back-
ward elimination, etc.) and thus enable the detection of interactions between
different independent variables. Scores are assigned based on the accuracy of
the predictive model using the particular subset. Since multiple subsets have to
be evaluated and a model has to be created for each evaluation step, the main
disadvantages are the significant computation time and the increased risk of
overfitting [[GE03]]. Additionally, the achieved filtering strongly depends on
the chosen regression algorithm for evaluation.

For evaluating subsets of the variable space,[M5|[[Qui92]] is used. This enables
the ability to identify non-linear and complex dependencies. In order to find
the optimal score, we evaluate the performance of all subsets and store the[Roof]
[Mean Squared Error (RMSE)|[HKO06]]. Then, each independent variable gets a
score based on the weighted average of all scores of all subsets it was involved in.
Each subset is weighted with the inverse of the number of parameters involved.
Hence, the more parameters involved, the less influence on the score of the
involved parameters it has.

However, as this score is based on the RMSE of the resulting regression,
it is not normalized and therefore not comparable between different feature
selection tasks. Therefore, we divide the score of each independent variable
with the of a baseline classifier. The baseline classifier always returns the
mean value of all training samples. Hence, we weigh the performance of each
independent variable in dependence on the performance of this simple baseline.
If the baseline performs well, the dependent variable does not show enough
variance. This, therefore, justifies a low score, as the modeled dependency does
not express a lot of information gain.
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7.1.4.3 Embedded

Embedded techniques are a result of trying to combine the advantages of
both filter and wrapper techniques. The selection of independent variables
is accomplished during the execution of a specific learning algorithm, thus
reducing computation time while still considering the interactions of variables.
However, not all machine learning approaches support this technique. We chose
the [RF|algorithm [[Ho95] for this task, a specific type of bootstrap aggregated
decision trees [[Bre96]].

The core idea of bagging is to use bootstrap samples using a standard training
set for fitting the k ensemble models. A bootstrap sample of size n is generated
by uniformly sampling n instances from the training set with replacement.
uses a modified tree learning algorithm selecting a random subset of inde-
pendent variables at each candidate split in the learning process instead of
considering the entire variable space. The random forest algorithm assigns a
rating based on the performance of the individual decision tree to each tree.
Therefore, we use the selection of the independent variable in the respective
decision tree together with the rating to obtain a ranking of the relevance of
the independent variable for predicting the dependent variable.

There are different measures for evaluating the importance of a variable in
tree-based models [KR10; HTF09]. In this work, we concentrate on the Gini
importance [HTF09]. Additionally, we include an additional variable consisting
of noise. We use it to compare the performance of independent variables to the
noise as a criterion for normalization similar to the baseline regressor of the
wrapper approach. We divide the score of each independent variable by the
score of the noise variable. Therefore, we receive a ratio of how much more
information a particular variable contains in comparison to a baseline variable.

7.1.5 Creating Dependencies

After obtaining the score vector computed in Section[7.1.4] we use this score
to create dependencies for the discovered relations. Each of our adapted al-
gorithms returns a vector scores for each variable selection task. This vector
assigns each independent variable an individual weight, reflecting its impor-
tance for describing the specific dependent variable. Furthermore, we ensure
that the given score is normalized. Therefore, we can compare the scores of the
different variable selection tasks with each other. Based on this score, we either
accept a task and model the found relation as a dependency, or we reject the
task as we do not see any valuable dependency in the considered relation.
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We achieve this by applying a threshold 6 for each selection task. As the
methods introduced in Section[7.1.4]all support different scores, we define three
different thresholds: 0y, for the filter approach, Oy ,qpper for the wrapper,
and Ogmpedded for the embedded approach. Therefore, the method is param-
eterized with a threshold 6, as already discussed in Algorithm For any
given 0, if the score of a variable is higher than 6, we create a dependency
from that particular variable to the dependent variable of the current feature
selection task v. If none of the scores exceeds the defined threshold value 6,
we do not create any dependencies and return an empty set. We analyze the
impact of using different thresholds in Section[I2.1] We describe the procedure
for dependency creation more formally in Algorithm [7.3]

Algorithm 7.3: Creating the resulting dependencies.

Input: Selection task ¢t = (v, Viyp), score
vector scores = (81, -, S|V xp)|)-

Output: Set of found dependencies D or 0.
Let p, p; be the corresponding parameters of v,v; fori € 1,...,|Vinpl|.
D=9
foreach v; in V;yp do

if s; > 0 then
L | D=DU(p,p)

return D

GoR @ N R

(=)}

Note that in line 1 of Algorithm[7.3) we assume to have the corresponding
parameter name for each vector v; available. This is necessary as Algorithm[7.3]
models the dependencies between the parameters, not their corresponding
measurement vectors v;. As the parameter names are usually given during
implementation, we do not include it as a formal input but rather retrieve it
during execution.

7.1.6 Result Filtering

Finally, in the last step of Algorithm we filter all modeled dependencies
from Section to reduce the number of resulting dependencies. Since we
are extracting dependencies for performance models, some parameters include
more information than others. Hence, although some dependencies might be
correct in terms of existing correlations in the monitoring data, the relation
between the parameters might not be useful in our performance model. In
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the following, we present three post-processing steps reducing the number of
detected irrelevant dependencies.

7.1.6.1 Filtering identical parameters

After observing the initial results, we discovered that many irrelevant depen-
dencies are actually identified due to identical parameter values. This is a
common practice in software engineering. For example, a parameter p (e.g., a
list) is passed to one method m;, which then forwards this parameter to the
next method mgy, which processes it. Therefore, methods m; and ms share
the same parameter p, which is correctly modeled and identified by DepIC.
However, now the parameter values p,,, and p,,, of m; and ms both exhibit a
dependency to the resource demand p, of method my, as ms is concerned with
the actual processing of p.

Therefore, we introduce the filtering of identical parameters. In our example,
we delete the dependency from p;,, to the resource demand of ms. The relation
between p,,,, and my is captured by the dependency between p,,, and p,,,, and
the successive dependency of p,,, to the resource demand of ms. Note that this
step is only applied if p,,,, and p,,, are observed to be identical.

7.1.6.2 Filtering correlating dependencies

The second filtering step is correlation-based filtering. It is explicitly the desired
behavior of our algorithm to extract two different dependencies d; and d> to a
dependent parameter p,. Both independent parameters p; and p influence pg,
but are not identical (if they are, the dependency is filtered in the previous
step.).

Now, we analyze the correlation between p; and p». If both p; and p; correlate,
we have a redundant dependency and therefore want to select the stronger
relation. Hence, we analyze the scores of the dependencies of p; and p assigned
by the feature selection technique in Section[7.1.4, We delete the dependency
with the lower score and therefore keep the stronger relation. As both always
appear in the same feature selection task, we can also simply consider the
relative ranking of both variables to compare them to each other. This also
implies that correlation-based filtering is independent of the normalization
method applied during the scoring process described in Algorithm [7.2]

This reduces overfitting as we select fewer but more significant variables.
Note that both relations are kept if there is no strong correlation between p;
and ps. In our experiments, an absolute Pearson’s r correlation coefficient of
at least 0.8 has shown to be sufficient. Therefore, independent variables are
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filtered if their Pearson’s r correlation is equal to or higher than 0.8 or lower
than —0.8.

7.1.6.3 Graph-based filtering

Finally, our last step is to eliminate all dependencies that do not influence any
performance-relevant model parameters. For example, two input parameters
might be influencing each other. However, if none of them influences any
resource demand, they do not have any (modeled) performance impact. There-
fore, capturing the relation between them is useless as it does not give us any
performance-relevant information.

Hence, we construct a graph consisting of all model parameters as nodes and
all dependencies as directed edges between them. The edges are the opposite
direction of the dependency (i.e., if a dependency has a model parameter as a
target, the model parameter will be the source of the directed edge). Now, we
iterate through all performance-relevant parameters and perform a breadth-
tirst search. All dependencies that were not discovered by any of the breadth-
tirst searches are deleted. As they are not discovered, they have no path and
therefore no (transitive) relation to any of the performance-relevant parameters.
We consider resource demands as well as loop counts as performance-relevant
parameters, i.e., the (transitive) targets of all detected dependencies. The
impact of each of these filtering steps is evaluated in Section[12.2lon page

7.2 Characterization of Parametric Dependencies

After we identified which parameters influence the relevant performance prop-
erties of the system, the second sub-task is characterizing the found dependen-
cies. Therefore, this section focuses on the characterization of the previously
identified dependencies, i.e., it aims at determining the exact relationship be-
tween the independent and the dependent target parameter.

This is a classic statistical regression task, which is why many regression
techniques from machine learning could be applied. To do so, we create a
representative dataset containing parametric dependencies and evaluate how
well a set of different regression approaches can characterize the contained
parametric dependencies. We find that no machine learning approach performs
well for all parametric dependencies. This is in accordance with the no-free-
lunch theorem for machine learning [[Wol96]], which states that there exists
no single machine learning algorithm that is universally good for all problem
instances. Based on these results, we propose a meta-selector selecting an
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appropriate machine learning technique for every dependency based on the
characteristics of the available data.

Our approach takes potential dependencies (either labeled by a human or
extracted by the algorithm presented in Section[7.1]) as input and automatically
characterizes them, i.e., automatically learns how to derive the model parameter
such as loop frequencies, branching probabilities, or resource demands from
input parameters. By applying our meta-selector, we significantly reduce the
required effort compared to trying different available modeling approaches
and therefore make the modeling of dependencies for large systems feasible.
Similar to the proposed identification approach in Section the approach
works online, requires only run-time monitoring data, and otherwise treats the
monitored application as a black-box.

We describe how we created our dataset in Section[Z.2.Tland introduce the
applied machine learning techniques in Section Finally, we present why
and how we created the meta-selector in Section [7.2.3l

7.2.1 Dataset Creation

We first create multiple datasets, each containing the measured values, in our
case the response time, of a certain application (in the form of a short algorithm
execution) in dependence on various observable input parameter values. As
servers can run arbitrary applications and services, all kinds of applications
might be relevant for our black-box learning approach. In consequence, we se-
lect popular algorithms from different domains (e.g., sorting, image processing,
or cryptography) and with different characteristics (e.g., number of input pa-
rameters, noise intensity, or expressiveness of dependency) in an effort to meet
the diversity of real-world application scenarios. Additionally, some datasets
were added, where there is no correlation between the input parameters and
the response time (e.g., getRandomInt).

Non-numeric input parameters are transformed into meaningful numeric
values (e.g., binary values are mapped to 0 or 1, and enumerations to a range of
integers between 1 and the number of different values). In order to obtain the
response time dataset, we repeat each execution 100 000 times with different
input parameter combinations.

For the selection of parameter inputs for each measurement point, we apply
the following strategy:

e First, a realistic value range for each input parameter is defined.

o Next, the actual measurement points are created by dividing the param-
eter space into equidistant measurement points. The distance between
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these points depends on the chosen size of the dataset, the number of
parameters, and the range of each parameter.

e Next, the chosen tuples are randomly shuffled to prevent the datasets
from being biased by underlying optimization processes (e.g., garbage
collection or just-in-time compilation).

e Finally, each measurement point is executed and measured in a single-
threaded and sequential fashion to avoid system overload and measure-
ment interferences.

Since all tests are done in a single-threaded and sequential fashion, we assume
that the measured response times equal the resource demand of the respective
resource. In the following, we use the term response time, as all measurements
are technically only response time measurements. However, in this context, we
can interpret all response time measurements as resource demand estimates as
well.

Table lists the functions we used to create the dataset, together with the
defined range for the respective input parameters. In the following, we will
briefly describe the functionality of each used function.

ackermannFunction calculates the Ackermann function for the given parame-
ters n and m. As the AckermannFunction is known to drastically increase
its runtime for increasing values of n and m, we have to rely on a rather
small set of parameter values.

fibonacci returns the i-th Fibonacci number. The parameter i defines the index
of the requested number. The second parameter defines if an iterative
(iter.), an optimized recursive (recOp. ), or an unoptimized recursive
(rec.) implementation should be chosen.

filterArray filters a given array for the given key. Hence, it returns a filtered
array only containing elements with a specified key. The parameter
arraySize defines the number of elements in the array, filterKey is
the integer representation of the key.

gaussianFilter applies a Gaussian filter function to a given image. The param-
eters imageWidth and imageHeight define the width and the height of
the processed image in pixels, sigma is the o-parameter for the Gaussian
filter.

getRandomlnt returns a random integer in the range between the given pa-
rameters minInt and maxInt. Note that this function should NOT contain

128



Table 7.1: Measured functions and defined input parameter ranges.

7.2 Characterization of Parametric Dependencies

Name Input parameter name Range
ackermannFunction n 0-3
m 0-3
fibonacci i 1-40
opMode (iter./recOp./rec.) 0-2
filterArray arraySize 0-100 000
filterKey 0-100 000
gaussianFilter imageWidth (px) 100 - 6 500
imageHeight (px) 100 -4 010
sigma 1-10
getRandomInt minInt 1-100 000
maxInt 1-200 000
histogramEqualization imageWidth (px) 100 — 6 500
imageHeight (px) 100 -4 010
loadFile fileSize (KB) 1-1024
rgbFilter imageWidth (px) 100 - 6 500
imageHeight (px) 100 -4 010
rsaEncryption stringLength 0-30
keySizeExponent (2%) 9-11
rsaDecryption stringLength 0-30
keySizeExponent (2%) 9-11
scalelmage imageWidth (px) 100 -6 500
imageHeight (px) 100 -4 010
scaleFactor 0.1-3.0
searchArray arraySize 0-100 000
key 0-100 000
shaHashing stringLength 0-10 000
sha-Mode (-1/-256/-512) 0-2
sortArray arraySize 1-10 000
subsetSum arraySize 1-10 000
sum 1-100 000
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any dependencies from the input parameters to the response time of the
function.

histogramEqualization enhances the contrast of a given image by adjusting
the image intensities. As the procedure is calibrated by the histogram
on the image itself, we only have the two parameters imageWidth and
imageHeight, specifying the size of the image in pixels.

loadFile loads a file from disk into The only parameter specifying this
process is the size of the file in KB as fileSize.

rgbFilter is another image operation for filtering with different color channels.
The two parameters imageWidth and imageHeight specify the size of the
image in pixel.

rsaEncryption encrypts a message according to the RSA algorithm [[RSA78]].
The parameter stringlLength defines the length of the input message,
while keySizeExponent (27) defines the length of the key. The range of
the exponent is between nine and eleven, leading to the three possible
key sizes 512, 1 024, and 2 048.

rsaDecryption decrypts an encrypted message according to the RSA algo-
rithm [[RSA78]]. The parameter stringLength defines the length of the
resulting non-encrypted message and keySizeExponent (2%) defines the
length of the key. The range of the exponent is between nine and eleven,
leading to the three possible key sizes 512, 1024, and 2 048.

scalelmage resizes an image and scales its content to be either smaller or
bigger than the original input. The parameters imageWidth (px) and
imageHeight define the original image size in pixels, the parameter scale-
Factor defines the desired output size. A factor smaller than one leads
to a reduction of the image size, a factor greater than one leads to an
increase.

searchArray performs a linear search through the given array and looks for
the given key value. The length of the array is defined by arraySize and
the desired item search key by key.

shaHashing computes the hash of a given string using the Secure Hash Al-
gorithm (SHA) [Han05]]. The length of the string to hash is defined by
stringLength. There are three modes to operate: SHA-1, SHA-256, and
SHA-512. This is configured by the parameter shaMode (-1/-256/-512).

130



7.2 Characterization of Parametric Dependencies

sortArray reorders all elements of the given array. The parameter arraySize
defines the number of elements to sort.

subsetSum calculates if any subset of the given list of elements can be found,
such that the sum of all elements of the subset equals the given prede-
fined value. The parameter arraySize defines the number of elements to
choose from, and the parameter sum defines the required target sum.

The given parameters are either direct input parameters (e.g., filterKey)
or derivated from the input parameters (e.g., arraySize). Note that not all pa-
rameters do have an impact on the measured response time. This is on purpose,
as the regressors should be capable of filtering the important parameters. We
analyze the corresponding set of measurements in more detail in the respective
publication [[Ack+18]].

7.2.2 Applying Machine Learning Techniques

In order to characterize the dependencies from the measured dataset, we can
apply standard regression techniques from the area of machine learning. For
this, we define the dependent variable as the measured response time, i.e., the
resource demand, and the independent variables as the given input parameter
values.

The applied algorithms are chosen from various areas of machine learning,
such as decision tree learning, instance-based learning, and ensemble learning.
We apply the following algorithms:

e A mean predictor as a baseline to compare against,

o [[AIt92]] dynamically choosing the number of neighbors between 1
and 5 using cross-validation and weighting neighbors by the inverse of
their distance,

. [[DS98] using batch gradient descent and the loss function,

o [Hub64] as a robust regression approach using Stochastic Gradient
Descent (SGD) [RM51;[Bot99]],

e [Support Vector Regression (SVR)| [CV95]] using a polynomial kernel,

) [[Gur97]] configured as a fully connected feed-forward net using one
node per input parameter on the input layer, followed by a single hidden
layer with (#Input Parameters+1)/2 sigmoid nodes, and a linear output
node,
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¢ [CART]|[Bre+84]] using reduced-error pruning,

o [[Qui92]| using squared error loss for fitting the [LRImodels,

e Bagging [Bre96]| using[CART]as the base model, and

. regression [[Ho95} Bre01]] also using as the base model.

The mean predictor serves as a dummy regressor and always returns the
mean value of all training samples. All algorithms rely on the implementations
from theWaikato Environment for Knowledge Analysis (WEKA)|3.8 [Hal+09;
FHW16]| library for Java. We use the default parameterization for all approaches,
where not specified otherwise, to avoid bias and ensure comparability. For more
details on the chosen parameters, we refer to the original publication [|Ack+18]].
Short explanations of the respective regression techniques can be found in
Section[2.3.T|on page 24|

We systematically measure the prediction performance of different regres-
sion techniques on the collected datasets and thus evaluate their suitability
to learn and represent parametric dependencies for performance models. We
compare the different algorithms using the[Mean Absolute Error| (MAE]) (see
Section on page27). Therefore, the best regressor for a given dataset is
the one observing the lowest MAE|during the respective cross-validation.

In an effort to increase and diversify our training dataset, we use different
sub-sets as training to determine how the prediction performance of each
technique scales with the size of the training set. The evaluation process for
each measurement set is as follows:

1. We randomly shuffle the dataset and isolate the first 1 000 measurement
points as the validation set.

2. Next, we train each regressor on seven different training sets of increasing
size and evaluate its performance on the isolated validation set. The
training set sizes, i.e., evaluation steps, are 10, 100, 500, 1 000, 3 000, 6 000,
and 9 000. Thus, we arrive at 105 evaluation runs (15 datasets, each using
7 training set sizes) per regressor.

3. Finally, we repeat steps (1) and (2) 10 times for each dataset with different
seed values, resulting in a total of 1 050 (15 datasets, 7 training set sizes,
and 10 repetitionseach ) data points to compare.

Table [7.2| shows the distribution of the best regressor on our dataset. We
observe that[SVR] performs best in most cases, being the best regressor in 40.8%
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of all cases. However, [kNN] (18.5%),[NN]| (15.3%),[RF| (9.7%), and [M5] (9.1%)

also each make up significant shares of performance. In fact, every applied
approach performs best on at least one evaluation set. Surprisingly, even the
mean predictor (Mean) observes the minimal in some cases, hinting
that the respective dataset is not reasonably learnable by any of the applied
algorithms. This is in accordance with the no-free-lunch theorem [[Wol96],
which states that no machine learning algorithm can be the best in all given
scenarios.

Table 7.2: Relative share of samples for which each predictor is the most accu-
rate.

Algorithm Relative share

Mean 0.4%
18.5%
1.0%
0.7%
40.8%
15.3%
1.3%
9.1%

Bagging 3.3%
9.7%

7.2.3 Meta-selector Construction

After reviewing the results of the previous Section we can conclude
that no single regression algorithm exists that is able to model all different
types of parametric dependencies. Therefore, the need for a meta-algorithm
that analyses the given monitoring data arises. The algorithm analyzes the
respective dataset and selects the best algorithm based on a set of defined
characteristics. A similar approach is also applied in Chapter 6| on page
when choosing the best approach for resource demand estimation. A key
property of the meta-selector is the available characteristics that can be used as
features for the training of the meta-selector. We select a small set of statistical
properties that have proven to be easily collectible for all datasets and still be
influential based on our domain knowledge:

e The number of training instances in the dataset (size),
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e the number of input parameters to consider (params),

e the range of measured response time values, i.e., the maximum minus
the minimum value (range),

o the [Coefficient of Variation| (CV]) of the response time measurements
(cv),

e the maximum linear correlation between any input parameter and the
response time (maxCorr),

e the minimum linear correlation between any input parameter and the
response time (minCorr), and

e the coefficient of determination [[DS98]] of the dataset (R?).

These features are extracted for the dataset described in Section[7.2.2l The
label of each trace is the regressor that showed the lowestMAE|on the given
trace. Therefore, we can train a classification algorithm to classify and therefore
recommend one of these available regressors based on the features of any
dataset. In total, we have a set of 1 050 training samples, each with seven
features and one target class (the desired algorithm).

As the task of selecting the best approach based on the feature values is a
classic supervised machine learning problem, we use a standard classification
algorithm to create a decision tree for the selection. The advantage of using
decision trees is that their decisions are traceable and human-readable. In doing
so, we hope to gain additional insights into the relations between the dataset
characteristics and the algorithm performances. For the construction of the tree,
we again utilize the [Bre+84]] algorithm, implemented by the
library [Hal+09; FHW16]], version 3.8. For training, the minimum number of
instances per leaf is set to two, and we limit the maximum tree depth to four.
This should reduce the complexity of the tree and hence improve readability
and interpretability.

The resulting decision tree is visualized in Figure The nodes of the
decision tree are depicted from left to right, which the decision feature in
the rectangle and the respective thresholds on the outgoing edges of each
decision node. The leaf nodes are depicted as rounded rectangles around the
respectively chosen approach. In addition, each leaf node shows the number of
correctly chosen approaches, together with the number of training samples that
were falsely classified, i.e., originally belong to another class. As we configured
a maximum depth of 4, there is a maximum of 4 decision nodes on each path
before we reach a leaf node.
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> 0.3ms (17/3)

< 0.3mg (59/2)
>1291  [[HR] (9/6)

<1291 (30/12)
> 6.6ms (76/38)

< 6.6ms (229/97)

Figure 7.5: Resulting meta-selection decision tree.

135



Chapter 7: Learning Parametric Dependencies

We observe that a low difference between the minimum and the maximum
of the measured response time values (range) together with a low
(CV) leads to the selection of SVR|or as regression algorithms.
Other important parameters that influence the selection are the number of
parameters (params), the number of training instances (size), and the min-
imum linear correlation (minCorr). As expected, is chosen for many of
the given measurements, as it was the most prominent class in the dataset
(see Table[7.2). Interestingly, [kKNN]is also a popular choice, both for short and
long measurement runs. The only approaches that are never selected by the
meta-selector approach are the and the Bagging approach, together
with the mean predictor baseline. This makes sense, as the sum of training
samples of all of these algorithms combined just makes up around 6% of the
total training set. However, although outperforming all approaches in only
0.7% of the cases, [HR| gets recommended by the meta-selector in one leaf node,
albeit it being a relatively small one (15 samples).

7.3 Summary

In this chapter, we introduce DepIC, an approach to identify and characterize
parametric dependencies for performance models. DepIC uses monitoring data
from a running system without any further knowledge about the application,
the deployment, or the component structure. This monitoring data is then
analyzed, and correlations between different parameters are identified with the
use of different feature selection approaches from the area of machine learning.

In addition, we investigate different techniques for the black-box characteri-
zation of these found parametric dependencies. The results show that no single
approach performs well for all possible dependencies. Therefore, we construct
a meta-selector that classifies a monitoring stream in order to select the best
suitable regressor for it and trained it on a variety of different regressors and
measurement sets.

DepIC represents a significant step towards the vision of self-aware perfor-
mance models [[GEK18|] and introduces the respective algorithms to answer
RQ [I1.2) ("{How can the impact of parameters on resource demands be identified|
land characterized?]”). If integrated into a continuous and self-aware modeling
workflow, DepIC enables a performance model to autonomously learn and
improve itself during system operation in a production environment. Hence, it
integrates with SARDE (see Chapter|f|on page[91)) to achieve Goal [lII| (‘{Enabl¢]
the continuous estimation and improvement of performance model parameters using|

roduction monitoring data.|”).
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Chapter 8

Modeling DBMS Configuration
Spaces

In this chapter, we introduce Baloo, our approach for measuring and modeling
the performance of distributed [Database Management Systems| (DBMSs)) in
cloud environments. Since microservice architectures require each service to
take care of its own data [Rud19; LF14]], modern software systems rely heavily
on different DBMS|systems for data storage [[Aba+20]]. Therefore, modeling,
configuring, and optimizing the underlying is still an important con-
cern.

Similar to many other software systems,[DBMSs|offer a large set of parameters
to adjust their internal configuration. These massively impact non-functional
properties such as the performance, scalability, or availability in addition to
the occupied resources and operating cost of the respective system [XYD19;
Sey+19]]. Distributed are particularly challenging systems as they offer
not only DBMS}specific configuration options such as consistency or availability
settings but also configuration options from distributed systems, such as used
cluster size or the applied replication factor [[Sey+19]. Furthermore, cloud
resources have become the preferred infrastructure of operating distributed
as they provide scalability and elasticity on resource level [[Sak14}
Aba+20]]. Unfortunately, this operational model further increases the configu-
ration space by adding cloud-related dimensions such as resource type, storage
backend, and others [|Gal+18;[Sey+19]].

In addition to understanding the performance impact of each individual con-
figuration, it is necessary to also understand the inter-dependencies between
parameters in the overall configuration space [SD17; XYD19]]. This is extremely
challenging even for domain experts and therefore demands supportive meth-
ods covering the entire configuration space. Due to its size, we can not simply
evaluate every configuration option [XYD19]. Instead, we need to improve
decision-making by modeling and predicting the performance of the whole
configuration space using only a subset of measurements.
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This task is aggravated by the fact that we can not assume cloud measure-
ments to be stable. Instead, cloud performance benchmarks and measurements
are always subject to change [IYE11]] and therefore require a sufficient amount
of measurement repetitions in order to draw meaningful conclusions about the
expected system performance.

We discuss the related work on the performance prediction of cloud-hosted
in detail in Section [3.3|on page To summarize, the state of the art
either focuses on single-node ignoring distribution [Mah+17;Zhe+19]],
targets only specific technologies ignoring cloud resource characteris-
tics [XYD19]], or considers only cloud resources without characteris-
tics [ZL19]).

To summarize, a core challenge of modeling and optimizing the performance
of distributed is the time-intensive and expensive generation of the
underlying dataset based on the following main reasons:

1. Measurements of single configuration points are costly, as they require
a cluster of cloud resources that need to be reserved during the entire
measurement period.

2. Performance measurements of distributed DBMS have high variability
and therefore need to be repeated multiple times to achieve statistical
significance [[LC16; TYE11]].

3. The thorough evaluation of a performance prediction approach for any
configurable system requires measurements of every possible configura-
tion, an exponentially growing space.

In this work, we, therefore, aim at solving these challenges and formulate
Goal [IV| (“{Develop a workflow for modeling configurable, cloud-based, and distributed|
IDBMSs|"). To fulfill Goal [TV} we present Baloo, a novel framework for mea-
suring and modeling arbitrarily complex configuration spaces of configurable
software systems. The design of Baloo specifically targets distributed
aiming to solve the specific challenges formulated above. Our approach (i)
selects a suitable robust statistical measure for the given scenario, (ii) deter-
mines the minimal required number of measurement repetitions for a given
measurement point, (iii) chooses the next required measurement point, and
(iv) constructs a model of the configured parameter space using a machine
learning model. Therefore, in this chapter, we strive to answer RQ[IV.1] (‘{How
can the influence of performance variabilities during benchmark measurements be
mitigated?|”) and RQ [[V.2| ({How can we analyze a configuration space that is too
large to measure exhaustively?|”).

138



8.1 Owverview

By modeling the whole configuration space, our approach can quickly extrap-
olate expected performance results for a given configuration without actually
measuring it. This is a strong benefit over a naive black-box optimization search.
Hence, the resulting performance configuration model provides the
foundation for selecting a performance-optimal operation and deployment
configuration of a configurable system. Besides finding the most performant
configuration, it gives a better understanding of the entire configuration space,
providing valuable insights for operators and architects when trading perfor-
mance against other non-functional aspects such as security, reliability, and
costs. Furthermore, the generic nature of the proposed framework enables
researchers and practitioners to configure, adapt, and modify our approach as
well as to transfer it to other domains. Although we adopt a white-box view,
where the management is handled by the user, our approach can also be
applied to serverless hosting scenarios in order to aid with the choice between
the given options.

We worked on and published Baloo in collaboration with colleagues from Ulm
University in Germany [Gro+20b|]. Furthermore, we published the reference
dataset [[Sey+20]] as well as a replication package [|[Gro+21c]] which we use in
the evaluation presented in Chapter|13|on page The dataset consists of a
total of roughly 450 measurement hours and 9 450 compute hours in a private
cloud environment and supports other researchers analyzing the performance
behavior of the investigated in detail and evaluate further approaches
for performance prediction.

In the rest of this chapter, we first give an overview of the Baloo framework
in the following Section[8.1} followed by a detailed description of the individ-
ual components in Section Finally, we summarize our contributions in
Section

8.1 Overview

In this section, we present an overview of our approach. Figure 8.1{shows the
workflow of Baloo with all involved steps designed to cope with the outlined
challenges. We distinguish between an online phase and an offline phase.
The offline phase is executed only once, whereas the blue steps of the online
phase are executed whenever a new performance model is requested. In the
following, we refer to a single configuration as a configuration point and to an
execution of a benchmark as a measurement run. The overall goal of Baloo is to
run as few measurements as possible for each configuration point and to use
as few configuration points as possible to train an accurate performance model.
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This performance model then enables the performance prediction of arbitrary
configuration points without explicitly measuring them.

For creating the performance model, the workload runs as follows. First,
the Performance Model Construction component step requests a training dataset
from the Configuration Point Selection component. Based on this training dataset,
the Performance Model Construction component builds a performance model
and evaluates its accuracy via cross-validation. If the performance model is
sufficiently accurate, it is returned to the performance engineer. Otherwise, the
Performance Model Construction component iteratively increases the training
set using the Configuration Point Selection component. For each requested
training dataset sample, the Configuration Point Selection selects which specific
configuration to measure and requests the respective measurement from the
Measurement Repetition Determination component. This Measurement Repeti-
tion Determination module triggers the automatic performance measurements
using the Mowgli measurement framework [Sey+19]. Mowgli automatically
deploys a distributed [DBMS|to a predefined cloud infrastructure, injects the de-
fined workload, performs performance measurements, and finally tears down
the respective system. As performance measurements of distributed es-
pecially in public clouds, experience high variability, the Measurement Repetition
Determination triggers additional measurements until the resulting performance
metrics are considered stable to be stable.

One remaining challenge of the Baloo framework is the aggregation of a
Mowgli benchmark measurement run into a single value. In order to judge
which configuration points are better, it is necessary to compare the outcomes of
the measurement runs for different configuration points. Yet, this comparison is
difficult, as the raw results of a measurement run are a time series of throughput
and latency values. Instead, a higher-level metric is required that captures the
quality of a measurement run for a configuration point. Therefore, Figure
shows an additional offline phase, which is concerned with the Robust Metric
Selection. This phase first provides the means to summarize the results of
individual measurement runs. The goal of this phase is to determine the robust
metric that, based on a large dataset of existing performance measurements,
best reduces the noise in the measurement data and is able to report a single
value of interest. Using this robust metric, Baloo can aggregate and therefore
evaluate different configuration points in order to guide the creation of a model
for performance engineers. In the following, we will explain each component

of Figure[8.1)in more detail.
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8.2 The Baloo Framework

In this section, we first describe the process of selecting a robust metric in Sec-
tion[8.2.T) followed by the measurement of a distributed in Section [8.2.2]
and the individual Baloo components Measurement Repetition Determination,
Measurement Point Selection, and Performance Model Construction in Sec-

tions[8.2.3/to B.2.5]

8.2.1 Robust Metric Selection

This section describes the offline phase of Figure As already mentioned,
this phase is executed only once for calibration. It is concerned with selecting
a robust metric to aggregate the results of a measurement time series into a
single value. By selecting a suitable metric for summarizing the performance
time series of one performance measurement, we make the performance mea-
surements we make the individual measurement runs comparable with each
other. The perfect metric reports the same values for two repetitions of the
same configuration point.

Therefore, our approach for finding the best robust metric tries to utilize this
property. We compare different robust metrics candidates by analyzing their
[Coefficient of Variation (CV)| a measure of the standard deviation in relation to
the sample mean, over all measurement runs available. Based on the resulting
list of for each individual measurement, we rate each metric using the
mean and the standard deviation of their respective scores. The metric
observing the lowest mean |[CV]is then defined to be the most suitable robust
metric for the given scenario.

For potential robust metrics, we investigate common robust measures of
central tendency from the literature [DD11]]: The mean, the median, the 95th-,
90th-, 80th-, and 70th percentile, the trimmed mean trimming by 5%, 10%, 20%,
or 30%, the winsorized mean using 5%, 10%, 20%, or 30%, the Trimean [[Tuk77],
and the Hodges-Lehman estimator [[Leh06]]. The results of the analysis of all
robust metrics are presented in Section on page

8.2.2 Distributed DBMS Performance Measurement

This step lays the basis for the following steps as it generates the individual
measurement runs (step 5 in Figure[8.1]). For doing so, Baloo builds on the
open-source and extensible DBMS|evaluation framework Mowglzﬂ that supports
the design and execution of DBMS| evaluations [[Sey+19]]. Mowgli allows to

"https://omi-gitlab.e-technik.uni-ulm.de/mowgli
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define relevant domain-specific properties and allow their specification based
on the supported technologies, such as the[DBMS]itself, cluster size, replication
factor, cloud provider, resource capacity, and workload type. Furthermore, it
fully automates allocation of cloud resources, deployment and configuration,
workload generation, calculation of performance data, and processing of results.
The resulting evaluation datasets (step 6) contain the benchmark metrics, mon-
itoring data, resource metadata, and execution logs of the respective evaluation
tasks.

8.2.3 Measurement Repetition Determination

Cloud-like environments are characterized by performance volatility [LC16}
IYE11]]. Therefore, multiple independent measurement runs are required to
conclude the actual performance of a configuration point [Pap+19]]. The more
measurement runs per configuration point and the more configuration points
are measured, the more precise the performance model will be. Yet, the more
measurements and measurement repetitions are required, the higher are the
resulting costs. Hence, Baloo needs to offer the capability to flexibly decide on
the required quality and hence, costs.

This step addresses this problem, as it decides on the number of required
measurements for a specific configuration point P. Here, the overall number
of measurements depends on the desired confidence ¢. and stability of the
measurements, which depends on the volatility of the environment. Each indi-
vidual measurement is then performed by triggerMeasurement as described
in Section[8.2.2] Baloo requires at least two measurements for judging the stabil-
ity of the results and uses a configurable upper limit n,,,; in order to control
execution time and costs. The exact procedure is presented in Algorithm

First, the set M of performance measurements is filled by two consecutive
calls of triggerMeasurement (step 4 of Figure as at least two values are
required to judge the stability of the measurements. This function wraps in-
vocations to Mowgli as described in Section In lines 4 — 7, the obtained
measurement values are analyzed and aggregated. If the calculated confi-
dence ¢ deceeds t. or if 1,4, has been reached, the calculated aggregation m is
returned (step 7 of Figure[8.)).

Baloo allows different implementations of outlier detection, aggregation, and
confidence estimations in lines 4 — 7 of Algorithm Our implementation
used in Chapter[I3|applies outlier detection based on isolation forests [[LTZ08]]
through the Python version of Scikit-learn [Ped+11]] with two isolation trees.
We use the median as the aggregation function and quantify confidence through
the of all measurements in M’. The confidence threshold . is set to 0.02.
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Algorithm 8.1: Measurement repetition determination.

Input: Desired configuration point P, target confidence threshold ¢.,
maximum number of measurements 7,4
Output: Obtained measurement value m.
M = triggerMeasurement(P)
do
M = M U triggerMeasurement(P)
M’ = removeOutliers( M)
m = aggregate(M')
¢ = confidence(M")
while ¢ > t. and | M| < npax
return m

® N Ul R W N =

Hence, the loop stops if CV (M) < 0.02. Note that both median and [CV]are
not calculated on M but rather on M’ which does not contain outliers.

8.2.4 Configuration Point Selection

This step selects the next configuration point (step 3 of Figure that needs
to be added to the training set in order to learn the behavior of the system. This
process is commonly referred to as sampling [Per+19]], while the underlying
selection strategy used to choose the next configuration point is called the
sampling method.

Pereira et al. [Per+19]] conducted a survey analyzing different sampling meth-
ods in the area of learning the performance of configurable software systems.
While a variety of approaches are available, random sampling is commonly
used. Furthermore, a recent study could not identify a dominant sampling
strategy. While our framework supports any strategy for the selection of the
next configuration point, the implementation used in Chapter|13|is based on
uniformly distributed random sampling. It was shown that uniformly dis-
tributed random sampling, in general, leads to the most accurate performance
models [Per+20]]. Although there are some exceptions, this finding is in line
with a recent study by Kaltenecker et al. [Kal+20]].

Our implementation of the random configuration point selection relies on
enumerating the entire configuration space, which does not pose a problem in
our scenario as the respective space is comparatively small. Otherwise, more
sophisticated solutions are required, for example, based on binary decision
diagrams [[Oh+17]] or satisfiability solvers [CMV13]].
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8.2.5 Performance Model Construction

Predicting the performance of unmeasured configuration points helps to reduce
the required time and costs for creating the performance model. Therefore, this
module is concerned with the construction of the actual performance model for
a given configuration space S. Its iterative approach determines the minimal
required number of measurements for achieving a configurable target accuracy
ts. A configurable maximum ratio 7, of S is used as the configurable upper
limit in order to control execution time and costs. This way, Algorithm[8.2]also
offers a trade-off between expected cost and solution quality.

Algorithm 8.2: Performance model construction.

Input: Configuration space definition S, target score threshold ¢,
maximum configurations ratio rmaz-
Output: Performance model p.

1 C = getlnitialMeasurements;;; (.S)

2 p = constructPerformanceModel (C')

3 s = scorePerformanceModel (C, p)

4 while s < tg and |C| < rpqy - |S| do

5 C = C UaddMeasurements, 4, (S, C)
6 p = constructPerformanceModel(C')

7 s = scorePerformanceModel(C, p)

8 return p

Algorithm|[8.2] describes the iterative process of constructing the performance
model. Required inputs are a definition of the total configuration space S that is
explorable, for example, the Cartesian product of all available feature values, the
required target score ¢, as a threshold, and the maximum ratio of configuration
points 7,4, that can be explored in relation to the total configuration space.

First, Algorithm conducts a set of initial measurements in line 1 based on
the given configuration space. This is equivalent to step 2 of Figure The
result (step 8 of Figure [8.1)) constitutes the set of available measurements C,
from which a performance model p is built and scored using an internal scoring
function. The function getInitialMeasurements is furthermore parameterized
with the init parameter. This configuration parameter determines the ratio of S
used for the first measurement set, that is, the number of initial measurements
to conduct in relation to the size of the configuration space S.

The algorithm keeps adding measurement points in line 5 until s > ¢, or

% > Tmaz- In each iteration, it recomputes p (line 6) and s (line 7). The
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parameter ratio of addMeasurements determines the number of configuration
points added in each iteration as a ratio of the size of S, similar to the init
configuration in line 1. After Algorithm terminates, it returns the last
trained performance model as step 9 of Figure

The algorithm is highly parameterizable by adapting ¢, and the scoring func-
tion. Note that the score function does not need to be bound between 0 and 1,
as long as ¢, is adapted accordingly. The restriction for the maximum number
of measurement points via 7, is useful to bound the maximum costs. Oth-
erwise, some scenarios would continue to measure the whole configuration
space if the respective target threshold can not be achieved by the selected mod-
eling type. For model construction, any regression algorithm (see Section [2.3.1]
on page or any other applicable performance modeling technique can be
applied. The implementation evaluated in Chapter [13|on page compares
a set of different regression algorithms, applies a three-fold cross-validation
score on C' to determine model accuracy, and uses variance as a score function.

8.3 Summary

In this chapter, we presented Baloo, a framework for measuring, modeling, and
predicting the performance of distributed in cloud environments for
different configurations. Therefore, Baloo meets the target of Goal [IV] (“{Develop]
la workflow for modeling configurable, cloud-based, and distributed DBMSs.|"). Our
approach builds upon the Mowgli framework and works by (i) measuring a
performance configuration, (ii) determining the number of measurement rep-
etitions, (iii) determining the next configuration point to be measured, and
(iv) building a performance model using all available measurement points to
predict the remaining unavailable measurement points of the configuration
space. Especially the first two steps help to mitigate the performance fluctua-
tions during cloud measurements and therefore answer RQ [IV.1| (“{How can the|
linfluence of performance variabilities during benchmark measurements be mitigated?|”),
formulated in the introduction of this chapter.

By modeling the whole configuration space, our approach can quickly extrap-
olate expected performance results for a given configuration without actually
measuring it. This answers RQ [IV.2| (“lHow can we analyze a configuration space|
|that is too large to measure exhaustively?|”). Therefore, Baloo can not automatically
find the most performant configuration for a distributed [DBMS|but also provide
a better understanding of the entire configuration space. As the presented algo-
rithms are highly configurable, Baloo offers a trade-off between the maximum
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measurement effort (in terms of measurement time and costs) and the resulting
model confidence. We evaluate Baloo in Chapter [13|on page
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Chapter 9

Evaluating the Detection of Resource
Saturation

In this chapter, we evaluate the Monitorless approach introduced in Chapter [4]
on page[53| We analyze three applications that are not included in the training
phase. Namely, one three-tier web service [PSF16]] and two microservice-
based e-commerce applications. The microservice applications are (i) TeaSt-
ore [Kis+18]], composed of five microservices, and (ii) Sockshop, composed
of sixteen microservices. During the presented experiments, we focus on the
following [Evaluation Questions (EQs)|in order to fulfill Goal ] (“{Design ar|
application-agnostic approach for the detection of resource saturation based on platformj
level monitoring data.|”):

e EQ9.1: Is the Monitorless model able to accurately detect resource saturation
of unseen applications?

o EQ 9.2: Is the trained model able to accurately detect resource saturation on
unseen hardware setups and interference patterns?

e EQ 9.3: Is the performance of the holistic model consistent on different target
applications?

o EQ9.4: Are latency and overhead feasible for online environments?

If the answers to all the listed are positive, we are able to show that it is
possible to design the envisioned holistic and application-agnostic prediction
model solely based on platform-level monitoring (Goal[l)). In the rest of this
chapter, we introduce the TeaStore in Section in more detail, as we also use
this application in later evaluations. Next, we describe the experiment setup in
Section[9.2] In Section [9.3|on page we discuss the results of the three-tier
web service. Following, we evaluate Monitorless using the two microservice
applications in Section 9.4, We conclude this chapter in Section
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9.1 The TeaStore Microservice Benchmarking
Application

Throughout this thesis, we utilize the TeaStore microservice benchmark appli-
cation to evaluate our approaches were applicable. In particular, we evaluate
the performance of Monitorless in Chapter [0} SuanMing in Chapter and
DepIC in Chapter [12| with the TeaStore. The TeaStor{] is an open-source and
distributed microservice benchmark application that represents a webshop for
tea [Kis+18;Kis+19al]. Users can browse the available products by category
and look at individual products. After logging in, the user can add items to
the shopping cart, modify the content of the shopping cart, and checkout by
entering shipping and payment information. Previous orders are tracked on
the user’s profile page. TeaStore displays advertisements for other products
based on the user’s previous orders, the current shopping cart, and the current
item or category. We also contributed to creating and publishing the TeaStore
application [Kis+18]]. Furthermore, the TeaStore is peer-reviewed and accepted

by the [Kis+19a].

Registry

Image-

: R mmender
Provider eco ende

”’

————————————— - - -

Figure 9.1: Overview of the TeaStore services and their communication pat-
terns.

TeaStore consists of five services, a database, and a service registry, as shown
in Figure0.1] The Database service is not shown in Figure[9.1]as it just interacts

1ht‘cps ://github.com/DescartesResearch/TeaStore
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with the persistence service and plays a minor role in our evaluations. The
WebUT service delivers static web pages and fills them with dynamic information
by querying the other four services. The ImageProvider delivers and caches
the product images. Password hashing and session validation are managed by
the Auth service. The Persistence service encapsulates access to the database
and provides a caching mechanism. Finally, the Recommender service tailors
the displayed advertisement to the current user by training a machine learning
model on the previous orders. The different arrow types depicted in Figure
define the type of communication between the services. All services interact
with the Registry but just send heartbeat and status updates. In addition, the
ImageProvider and the Recommender services access the Persistence service
only on start-up and do not send further requests during normal operation. All
inter-service communication is based on To summarize, TeaStore
uses a modern technology stack and is representative of current distributed
microservice applications [Kis+18]], which is why we utilize it in the following
experiments.

9.2 Experiment Design

To measure the accuracy of Monitorless, it is necessary to determine whether or
not a predicted label is correct. The threshold for determining saturation of the
overall application is discovered by running a linearly increasing load test, as
described in Section on page 57} which yields a set of ground-truth labels
yat = Pa(t) for each time ¢. Contrary to the training phase where only single-
container services were considered, here we apply Monitorless to applications
composed of multiple services. For scaling, our strategy to decide whether
the application is experiencing resource saturation is to take the logical OR of
the inferences over all instances of services comprising the application, where
a predicted saturation is interpreted as true. In other words, our prediction
vector is §4+ = Vzes sea Uzt While other use cases might require different
aggregations, O R should be sufficient for scaling instances. Although applica-
tion performance may not show degradation when short saturation occurs in
some components, scaling saturated instances is desirable, even if it does not
directly influence the end-to-end latency.

9.2.1 Metrics

We compare the prediction § 4+ to the ground-truth label y 4 obtained by the
threshold analysis P 4(t), in order to evaluate the performance of our algorithm.
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We use the notion of [TPs| [TNs|, [FPs| and [FNs|as defined in Section on
page 30l Therefore, the goal of Monitorless is to minimize and We
analyze the performance using the standard metrics of accuracy and F1 score
(see Section on page[27)). Typically, the costs associated with each[FPjand
are inherently asymmetric in practice because avoiding increasing latencies
(ENs|) could be more critical than avoiding unnecessary scaling decisions ([FPs])
or the other way around. Our solution supports adaptation towards this asym-
metry by manipulating the prediction threshold of our classifier towards the
direction of preference. In this work, we aim to minimize [FNs|by being more
conservative with our predictions. Therefore, we set the prediction threshold
of the RH classifier to 0.4.

A critical issue discovered during the preliminary evaluation is that many
EPs| and ground-truth saturated samples are close in time but not precisely
aligned. For example, many are followed by an within one or two
samples. The reason for this delay is that saturated applications have increased
response times. During peak periods, we observe response times of up to
three seconds. After three seconds, a request is usually dropped by our load
generators. Since requests take longer to arrive back to the load generator
during these peak periods, a gap is introduced between the recorded platform
metrics and the ground-truth labels, which are both monitored at a one-second
interval. This is an issue since our ground-truth labeling considers that all
responses arrived within the current one-second interval, and hence positive
labels in the ground truth are frequently delayed.

To fix this, we introduce lagged metrics. For a given lagged metric (to be
read as “false positives at distance k"), a false positive prediction is classified
as such only if there are no ground-truth saturated occurrences within the next
k samples. Analogously, for[F'N}, a false negative for a ground-truth saturated
sample occurs only if the previous k£ samples are predicted as non-saturated.
Hence, if a false positive occurs at time ¢ and a ground-truth saturated sample
occurs in the time range [t + 1,¢ + k], then the sample at time ¢ is classified as a
true negative[I'N},. If a false negative occurs at time ¢, and a positive prediction
occurs in the time range [t — k,¢ — 1], then such samples are added to [T'P}.

Therefore, [FPh = FPland[F P} X FP};.

This modification allows early saturated predictions to be transferred to
later saturated ground-truth samples, thereby handling the above-mentioned
application latency issues. Importantly, the symmetric case of a late prediction
is still classified as incorrect by this metric. Therefore, after the saturation was
already observed at the client, the predicted samples are still classified as [FNs|
if the saturated prediction a few samples later. Based on this definition and the
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fact that our peak response times were limited to three seconds, we perform
our evaluation with £ = 2 (note that k is specific to the applications we use in
this evaluation). Thus, in all subsequent discussions, we use the F'15 score and
Accy, which are defined analogously to the F1 score and accuracy, but for the
lagged metrics. This step is necessary for coping with monitoring delays in
the real system that cause predictions to be misaligned with the ground truth.
By doing so, we align the predicted data with the observed data in order to
appropriately judge the behavior of the system.

9.2.2 Baselines

As approaches from related work (see Section [3.1.1)on page 36]) follow a differ-
ent paradigm, we compare Monitorless against four optimal baseline approaches
based on static[CPU]and [RAM]|thresholds. The first is CPU-threshold, based on
the relative usage of each service instance. The second is MEM-threshold,
based on the relative RAM| or memory usage of each service instance. We
also look at a disjunctive CPU-OR-MEM and conjunctive CPU-AND-MEM
combinations, where instances are predicted as saturated if CPU or/and MEM
indicate saturation, respectively. We use[CPU|and RAM| for demonstration as
they are sufficient for the evaluated applications, but any other resource metric
can be used as well.

We note that the considered baseline approaches have an unfair advantage
over Monitorless in that they are configured with knowledge of the entire input
data in advance, including ground-truth labels. These ground-truth labels
are then used to choose the optimal threshold that maximizes the F1 score.
The presented baselines, therefore, represent the best possible outcome for
threshold-based approaches, given that the threshold would be optimally con-
tfigured. In practice, these thresholds are unrealistic to find since they need
to be configured before deployment based on expertise and understanding of
the relationship between application performance and resource usage. This
task is not required when using Monitorless as it works application-agnostic. In
addition to the four platform-metric baselines, we use one application-specific
baseline based on the actual measurements in Table 9.3|serving as the
upper bound.
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9.3 Three-tier Web Application

The first validation application is based on the social networking engine Elggz
included in Cloudsuite [[PSF16]| and is designed to answer EQ[9.1] (“{Is the Mon]
litorless model able to accurately detect resource saturation of unseen applications?|”).

9.3.1 Setup

The hardware used was identical to the hardware used in Section £.2.2.2lon
page[62]to create the training datasets. The test application consists of three
tiers, each deployed in their own service instance: (1) the front-end Elgg web
server, (2) the InnoDB database, and (3) Memcached to speed up the database-
driven application [Nis+13]]. Given that Memcached and a similar database are
already included in the training set (see Section[4.2.2]on page [60]), we stressed
the front-end tier by sending static requests to access the web server’s index
page. This ensures that the bottleneck is the front-end, a service on which the
Monitorless model is not trained.

We deploy all service instances as containers using Docker on one physical
machine. The Elgg container is assigned with one [CPU]| core and 4 GB of
memory; the other containers are unconstrained. The[PCP|monitoring agent is
running on this machine and sends metrics to a second orchestrator machine.
The workload is generated by a third machine running the HttpLoadGeneratOtﬂ
tool [[KDK18]]. The workload pattern is similar to sinnoise1000 (see Table[4.1]
on page [63)) but scaled down to 1/10th of the intensity, as the web server could
handle fewer requests than Solr.

Table 9.1: Comparing different baseline approaches to Monitorless using a three-
tier web serving application.

Algorithm I’Np |FPp |FNhp [TPp, Fly Acc
CPU (97%) 610 8 0 1838 0999 0.997
MEM (43%) 544 74 14 1824 0976 0.964

CPU-OR-MEM 538 80 0 1838 0.978 0.967
CPU-AND-MEM 616 2 14 1824 0.995 0.993
Monitorless 607 11 0 1838 0.997 0.995

Ihttps://elgg.org
*https://github.com/joakimkistowski/HTTP-Load-Generator
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9.3.2 Results

Table 9.1|shows the results of all baseline approaches compared to our model
evaluated using the lagged metrics. We observe that the test samples have a
ratio of saturated samples to non-saturated samples of about on to three, which
is the inverse of the one in the training phase for Monitorless. This indicates that
the model is not biased towards the majority training label. As the front-end
component is heavily [CPU}based, the detector can effectively flag satu-
ration. Observe that Monitorless is very accurate, achieving no false negatives
and only a few false positives, even without being tuned for the application.
We can, therefore, confidently answer EQ (“UIs the Monitorless model able to|
laccurately detect resource saturation of unseen applications?|”). However, as both
CPU and CPU-AND-MEM threshold-based approaches also perform well, we
provide next an evaluation with more complex applications to showcase the
advantage of Monitorless.

9.4 Multi-tenant Environment

In this section, we evaluate Monitorless in a more realistic multi-tenant scenario,
where several microservice-based applications are running in a distributed en-
vironment. We aim to show the accuracy of our model, as well as its robustness
to changes in the hardware configuration and underlying Therefore, the
services are running on a different[OS|than the one used during the training
phase. Therefore, the following experiments now focus on EQ [9.2] (‘{Is he]
trained model able to accurately detect resource saturation on unseen hardware setups
and interference patterns?|”) and EQ|9.3] (“[Is the performance of the holistic model
consistent on different target applications?|”).

9.4.1 Setup

In contrast to the previous experiments, the hardware for this test is composed
of three different HP ProLiant DL360 Gen9 servers equipped with 32 GB of
and a 10-core Intel® Xeon® E5-2650 v3 (Haswell) @ 2.30 GHz (M1),
a 12-core Intel® Xeon® E5-2650 v4 (Broadwell) @ 2.20 GHz (M2) and,
finally, an 8-core Intel® Xeon® E5-2640 v3 (Haswell) @ 2.60 GHz (M3).
M1 and M2 run Debian 9, whereas M3 is running Ubuntu 16.04. We use two
similar servers as workload drivers (M4, M5). These servers are connected via
a 1 GB network. Recall that we used a 10 GB network for training. Using a
different|OS|compared to the training is unproblematic, as supports a wide
range of [OSs| This proves the general portability of the trained model between
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different|OS| distributions. We distribute the following two test applications
among the three test machines M1, M2, and M3.

Our first evaluation application, the TeaStore [Kis+18]], was already intro-
duced in Section@.1] Tt consists of a total of seven containers that need to be
deployed (WebUI, Auth, ImageProvider, Recommender, Persistence, Database,
and Registry). The second application is Sockshoplﬂ Sockshop is a sim-
ilar online storefront application but slightly larger than TeaStore. It con-
sists of 14 different services: Edge-Router, Front-end, Payment, Catalogue,
Catalogue-DB, Carts, Carts-DB, User, User-DB, Order, Order-DB, Shipping,
Queue, and Queue-Master. In order to represent a multi-tenant environment,
we deployed all TeaStore and Sockshop services on M1, M2, and M3 servers
as follows. Entries marked with (T) are TeaStore services; all others belong to
Sockshop.

e M1: Recommender (T), Auth (T),Registry (T), Catalogue, Catalogue-DB,
Front-end, Queue.

e M2: Database (T), Persistence (T), Edge-Router, Carts, Carts-DB, Or-
der, Order-DB, Payment, Queue-Master.

e M3: WebUI (T), and ImageProvider (T), User, User-DB, Shipping.

All containers have a memory limit of 4 GB. The Auth (T), Catalogue-DB,
Carts-DB, Order-DB, and User-DB are assigned to two cores. All other
services are limited to one core. Additionally, we switched from remote log-
ging with to local logging, as otherwise, the limited bandwidth network
bandwidth creates a bottleneck.

TeaStore Load Generation We stressed the TeaStore application with the
HttpLoadGenerator [KDK18]]. The request contents are defined using stateful
user profiles. Each time a request is sent, an idle user from a pool is selected to
execute a single action on the store. The actions available to the user are: 1) log
in, 2) browse the store for products, 3) add these products to the shopping cart,
and 4) log out. The user’s distinct actions stress the services in different ways.
The number of users is chosen depending on the maximum load intensity,
such that it guarantees that an idle user is available each time a request is
sent. The arrival rate profile represents a realistic but worst-case workload
for clouds [SBI15] with more variance and multiple daily patterns within the
experiment. It is depicted in Figure[9.2| Note that the training is done on mostly

4ht‘cps ://microservices-demo.github.io
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smooth workloads. We purposely choose this challenging workload to evaluate
the robustness of Monitorless.

Sockshop Load Generation The load is generated via LocustE] using the
standard user profile delivered by Sockshop. Users log in, browse the catalog,
add items to their cart, and then place orders. The load intensity is controlled
via the number of concurrent users issuing requests to the system. Locust
usually applies a constant load once all clients are hatched. In order to apply
varying load patterns, we start three different Locust runs in parallel. Each
run takes 1 000 seconds and slowly hatches all clients until a maximum load of
700 concurrent clients is reached after 700 seconds. A constant load pattern is
then applied for the remaining 300 seconds before one run finishes. We start
such runs after 1 000, 3 000, and 5 000 seconds in parallel to the continuously
running TeaStore workload.

9.4.2 TeaStore Results

Applications containers are dimensioned such that most of the target load can
be handled; that is, only large load peaks cause the application to saturate.
This leads to a saturation-to-non-saturation ratio of 2.9%, far lower than the
training data and the previous evaluation in Section By analyzing the
predictions of Monitorless, we note that most are for the Auth service, the
WebUI, and the Recommender service. Figure 9.2 displays a detailed breakdown
of the predictions made by Monitorless over time, also showing the injected
workload and the measured response times. Green dots mark [T'P}, yellow dots
mark [F'P}, and red dots are[F'N}. are not shown since they are the most
common and easily predicted. The gray curve displays the workload intensity
(in requests per second) over time. The purple curve displays the measured
average response time per second.

We observe that Monitorless is able to detect saturation occurring in differ-
ent types of services (WebUI, Recommender, Auth, Registry, and Persistence),
each with its own resource bottleneck. Note that we can not determine the dis-
tribution of F' N, among the individual services as the function P 4 is only
observable at the application level and not at the service level. However, we
verify that the services that Monitorless predicted to be saturated were indeed
saturated by subsequently scaling the saturated components and re-injecting
the same load pattern. Thus, we repeat the same test with additional instances
(scaling) of the Recommender, and the Auth service on M2 and WebUI on M3,

https://locust.io
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Figure 9.2: Predictions and measurements of the TeaStore services over time.
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Figure 9.3: Predictions and measurements of the TeaStore services over time, after the proposed scaling is applied.
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since those were the three services causing the most saturation predictions.
The result of this repeated run is shown in Figure

In addition, we analyze the performance of Monitorless in more detail by
comparing it to the baseline approaches in Tables[9.2land 9.3] Table[9.2]shows
the comparison between Monitorless and the baseline approaches for the run
depicted in Figure in terms of sample-based prediction accuracy. Note
that Monitorless achieves an F'1, score of 0.712 compared to the best baseline
approach with 0.738. Although the F'1, score is lower than in the previous
examples, it still amounts to an accuracy of 0.977 with only three false negatives.
In contrast to the previous experiment, the CPU-AND-MEM has the best score
but at the expense of a higher count, which implies that it fails to detect
crucial saturation samples. Recall that we deliberately lowered the prediction
threshold in order to minimize Therefore, the comparatively high amount
of [FPs|could also be reduced at the expense of more [FNs|

Table 9.2: Comparing different baseline approaches to Monitorless on the TeaSt-
ore dataset.

Algorithm ’Np |FP, |[FNp [[Pp Fly Acc
CPU (95%) 6805 179 7 202 0685 0974
MEM (90%) 228 6756 4 205 0.057 0.060

CPU-OR-MEM 180 6804 1 208 0.057 0.054
CPU-AND-MEM 6853 131 10 199 0.738 0.983
Monitorless 6820 164 3 206 0.712 0.977

To show this effect in more detail, we analyze the end-to-end application
performance for an autoscaling scenario. We start with the baseline deployment
of one repetition of each service and scale up when saturation is predicted
(see Figure[9.2). All replicated services have a lifespan of 120 seconds, after
which the service is scaled scaled down in order to simulate an autoscaling
environment. This is the same for all analyzed approaches. Results are shown
in Table whereas the resulting performances are depicted in Figure
Table 9.3|reports the additional container provisioning related to the baseline
non-scaled application (see the second column) and the number of viola-
tions (see the third column) incurred by each technique (see the first column).
The average provisioning is calculated as the percentage of containers elastically
added to the baseline case (i.e., the non-scaled initial deployment). Using the

approach in Section on page [57, we indicate violations when the
average response time of all requests is higher than 750 ms, if any request is
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dropped due to overload, or if more than 10% of requests fail during each
one-second interval.

Note that we add the baseline worst-case No Scaling for reference. This
baseline has static resources over the execution and allows us to understand
how the different techniques provision containers upon scaling out events.
Intuitively, the number of violations should decrease with larger provi-
sioning (i.e., the system is more elastic). However, larger provisioning incurs
a higher cost. Similarly, we also include the optimal response time autoscaler
(RT-based), which is based on a-posteriori end-to-end latency measurements.
As the optimal autoscaler does not know which instance causes a latency in-
crease, we use our application knowledge to scale the WebUI, the Auth, and the
Recommender service when the latency increases. (Note that this again implies
application knowledge that Monitorless does not have.) For a fair comparison,
all approaches are tied to scaling the WebUI, the Auth, and Recommender at the
same time. Therefore, all three services are scaled if one of them is predicted
as saturated.

Results are in line with our previous observations from Table9.2] The optimal
approach is able to reduce the [SLO|violations from 183 to 1 by using 7% more
resources. This is expected as the approach based on response time directly
observes the response time that is used as|SLO] The remaining violations are due
to the natural reaction time of the approaches and are therefore unavoidable.

Table 9.3: Comparing different scaling approaches on the TeaStore dataset.

Algorithm Additional provisioning [SLO|violations
A-posteriori CPU (95%) +12% 12
A-posteriori MEM (90%) +33% 9
CPU-OR-MEM +39% 4
CPU-AND-MEM +9% 17
Monitorless +10% 7
No Scaling (baseline) 0% 183
RT-based (optimal) +7% 1

We observe that Monitorless manages to effectively reduce violations while
provisioning only 10% additional resources. Consider that the optimal ap-
proach provisions 7% in excess. The only approach that is cheaper in terms of
resource provisioning is the CPU-AND-MEM approach. However, CPU-AND-
MEM allows more than twice as many [SLO|violations while saving only 1% in
comparison to Monitorless, which is not a favorable trade-off. Both CPU-OR-
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MEM scaler and the MEM scaler provision 3 to 4 times more containers than
Monitorless due to the higher number of[F'Psp, as shown in Table The CPU
scaler generally makes a reasonable trade-off between cost and violations but
performs considerably worse than Monitorless in both dimensions.

Although there is room for improvement with Monitorless, we believe its
performance on the TeaStore application is very impressive considering that:
1) it has never been trained with any of the TeaStore services; 2) it is running
on slightly different hardware and than what it was trained on; 3) it is
not using application metrics to make predictions; 4) it is operating in the
presence of interference from another application, and, finally; 5) it achieves
this performance with no knowledge of how the TeaStore behaves for this
workload, unlike the threshold-based baseline approaches. Therefore, we can
answer EQ(9.2| (“|Is the trained model able to accurately detect resource saturation on|
[unseen hardware setups and interference patterns?|”) with “Yes”, as the setup was
consciously chosen to be different.

Furthermore, the experiment shows that Monitorless can detect bottlenecks on
co-located services stressing different resources. Scaling these services results
in a significant reduction of response time, where Monitorless achieves results
comparable to a simple autoscaler but without using any application knowledge.
Note that even though the baseline approaches use perfect information, that
is, application-level metrics as ground-truth with a-posteriori knowledge of
the evaluation set, there is no approach in the evaluation that outperforms
Monitorless in all scenarios. Moreover, the specifically tuned thresholds differ
for each alternative approach, whereas Monitorless performs consistently across
all experiments without tuning.

9.4.3 Sockshop Results

Compared to TeaStore, the performance of the larger and more complex Sock-
shop application is more challenging to predict, especially considering the
interference from other services. (Recall that during Sockshop operations, 21
different services are running on the three assigned hosts.) The Sockshop runs
are similar to those of TeaStore but contain only 999 samples each, resulting in
a total of 2 997 samples. The results are shown in Table The percentage of
saturated samples is 10.1%.

We observe that both the and the rates are higher than in the Tea-
Store experiment for Monitorless. Overall, Monitorless achieves an F'1; score of
0.598 together with an accuracy of 89%, only surpassed by the CPU-AND-MEM
baseline, with an F'1, score of 0.699. As our aggregation function over services
is the logical OR of all predictions, it naturally creates more as we increase
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Table 9.4: Comparing different baseline approaches to Monitorless using the
Sockshop dataset.

Algorithm ’Np |FP, |[FNp [[Ph Fly Acc
CPU (99%) 2036 657 3 301 0447 0780
MEM (10%) 683 2010 8 296 0227 0327

CPU-OR-MEM 595 2098 2 302 0223 0.299
CPU-AND-MEM 2604 89 93 211 0.699 0.939
Monitorless 2418 275 57 247 0.598 0.889

the number of services. Also, note that due to the higher amount of individual
services, more individual service predictions need to be done, which increases
the chance of [FP| predictions. Hence, in order to tackle larger applications, this
experiment motivates a more sophisticated approach for aggregation. How-
ever, note that the baseline approaches apply different thresholds than in the
other experiments (Web serving: 97%/43%, TeaStore: 95%/90%, Sockshop:
99%/10%). In contrast, the Monitorless model was unmodified throughout this
whole evaluation. This illustrates that Monitorless continues to perform well,
even on significantly more complex applications, without having to manually
adapt it to different application-level metrics. In summary, we argue that EQ
(“UIs the performance of the holistic model consistent on different target applications?|”)
can be answered with “Yes”. Although the accuracy of Monitorless is notice-
ably changing between different applications, the holistic modeling enables
it to function without adaptation, while all baseline approaches need to be
reconfigured with a-posteriori knowledge.

9.4.4 Experimental Repeatability

In this section, we aim at verifying whether the experimental results presented
in Table 9.2| were statistically significant by repeating the same experiment
three times. Table (9.5 compares the F'15 of Monitorless with our four different
baseline approaches over three different experiment repetitions. We excluded
the accuracy, as it observes less variation due to the high number of high
in the datasets and is, therefore, less insightful than F'1.

We observe that all approaches are subject to strong fluctuations between
the different experiment repetitions. The F'15 of the Monitorless model has a
variation of almost 0.1 between repetition one (R1) and repetition two (R2).
However, we observe that the performance of the baseline approaches drops
even further for R2, with over 0.15 for MEM and CPU-AND-MEM. In addi-
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Table 9.5: Comparison of repeatability of the TeaStore dataset over three repe-
titions.

Monitorless CPU MEM CPU-OR-MEM CPU-AND-MEM

R1 0.772 0.067 0.346 0.067 0.346
R2 0.689 0.050 0.186 0.050 0.187
R3 0.710 0.059 0.270 0.059 0.270
Tab. 0.712 0.685 0.057 0.057 0.738

tion, Monitorless outperforms all baseline approaches by a large margin on all
three repetitions. This again shows the fragility of the configured optimized
a-posteriori thresholds of the baseline approaches. Although the thresholds
perform equally well to Monitorless in Table the performance of these ap-
proaches immediately drops when repeating the experiment in Table as
subtle changes in the measurement (e.g., a 1 — 2% average increase in
measurement) can strongly influence their prediction behavior. Although
Monitorless is also affected by these variations, its performance has shown to
be much more stable during the different runs than the statically configured
threshold approaches.

9.5 Summary

In this chapter, we evaluate a preliminary Monitorless model trained on work-
loads produced by four different benchmark services by analyzing its perfor-
mance on three unknown applications composed of three, five, and fourteen
different microservices, respectively. Our evaluation provides evidence that it
is feasible to create a single holistic model that can accurately predict resource
saturation while being application-agnostic.

Even for complex microservice applications operating in the presence of
interference, the accuracy achieved by our approach can be as high as 97%.
This motivates the inclusion of even more test services with diverse resource
boundaries to improve predictions and detect performance degradation across
multiple resources.

In summary, we are able to answer four different evaluation questions in order
to evaluate whether we can fulfill Goal[l| (“{Design an application-agnostic approach]
[for the detection of resource saturation based on platform-level monitoring data.|”).
We show that EQ[9.1] (“{Is the Monitorless model able to accurately detect resource|
[saturation of unseen applications?]”) can be answered by analyzing three different
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microservice applications during our experiments. Additionally, EQ(9.2] (‘{Is]
the trained model able to accurately detect resource saturation on unseen hardware
setups and interference patterns?|”) can be addressed as we include different
hardware and interference patterns in Section[9.4] By comparing the accuracy
of Monitorless on different applications, we are also able to answer EQ[9.3| ({Is the|
lperformance of the holistic model consistent on different target applications?|”). Finally,
we already discuss the training overhead and prediction time for the different
model types in Section[#.2.4 on page[68 Therefore, we can also answer EQ
("Are latency and overhead feasible for online environments?|”), as the overhead of
all modeling approaches was within the feasible range for employment in a
real cloud environment due to classification times way below one second. In
the following, we discuss some remaining threats to validity, together with
limitations and assumptions in Section[9.5.2]

9.5.1 Threats to Validity

We group the following threats into concerns regarding the internal or the
external validity of our evaluation.

9.5.1.1 Internal Validity

We already discussed the implication of the applied metrics in-depth in Sec-
tion[9.2.1] Generally, the lag parameter k strongly influences the results of all
approaches. However, we argue that k£ = 2 is a reasonable setting for all our
experiments, as our load generator starts dropping requests after 3 seconds of
delay. In addition, the lagged metrics do not invalidate our conclusions as they
impact the performance of all approaches at the same time.

An additional threat to validity is the presented scaling analysis depicted in
Figure[9.3|and analyzed in Table[9.3} as it applies a set of strong assumptions.
For example, we do not conduct the scaling in an online environment but record
different independent runs, where one was applying the baseline and another
used the scaled deployment. During the prediction steps, rather than changing
the deployment, we switch between the different monitoring streams that the
individual approaches are given. This is done as the cloud experiments are
inherently noisy, and we need to ensure that all compared approaches see the
same monitoring stream and receive the same reaction after a scaling decision.
Otherwise, a delay in, for example, the start-time of a container could influence
the results.

In addition, the optimal application-level autoscaler based on response time
has no information about the individual service metrics, as it is just based on
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comparing the end-to-end response time with a pre-defined threshold. We,
therefore, had to tie its scaling decisions to the WebUI, Recommender, and Auth
services. Consequentially, all other approaches are needed to tie these services
together as well. This step was necessary to ensure fairness. Otherwise, the
other autoscaling could theoretically scale cheaper than the optimal approach,
as they would only scale one of the two services at a time.

Finally, as neither Monitorless nor the compared approaches have a notion for
under-saturation (i.e., a label for scaling down), we applied a relatively simple
time-based down-scaling rule. A pre-defined time interval after each up-scaling,
the system is scaled down. This time interval is independent of the approach
and was set to 120 seconds in this experiment. However, all approaches could
react with an immediate up-scaling after a forceful down-scaling decision in
order to avoid performance losses.

We are aware that the presented assumptions limit the interpretability and
generalizability of the results. However, we do not see Monitorless as an au-
toscaling solution but rather an approach for detecting services that experience
resource saturation without utilizing application-level knowledge. Therefore,
the presented autoscaling scenario simply aims at demonstrating one of many
use cases (including, for example, resource consolidation, degradation
prediction, service type classification, bottleneck identification, or detection
of resource leaks) in that Monitorless can be applied. Its main purpose is to
validate whether the results and the conclusion drawn from Table and
Figure 9.2/ can be supported and utilized in such a use case.

9.5.1.2 External Validity

We are aware of the diversity of microservices and cloud platforms that can
generate mixed bottlenecks and more complex resource utilization patterns.
Although we actively tried to employ different microservice applications, the
expressiveness of the evaluation is limited to the evaluated service types and
application categories. Therefore, to further generalize Monitorless while im-
proving its accuracy and robustness, we propose to incorporate datasets with
different resource saturation samples, together with different and noisy work-
load patterns, applications with different resiliency, scaling, and load balancing
setups.

Additionally, our generated feature set was specifically tailored to the ob-
tained dataset during training. Therefore, the application of the feature set
on other applications in practice or its general applicability to other training
datasets remains to be shown. Our methodology intentionally removes features
with less information gain. Therefore, other training applications that stress
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prior unseen features naturally also require the addition of different features.
Future work could validate whether our methodology for engineering the
features proves to be valid for other datasets and application ranges.

As our goal was to minimize [FNs| during this evaluation, the prediction
probability threshold of the applied [RFalgorithm was set to 0.4. Therefore, the
achieved results may require additional calibration to infer the performance of
applications with higher or lower confidence, as we could not validate whether
or not this threshold was specific to our tested scenarios or generally transferable
to other usage patterns as well.

We ran the experiment presented in Section 9.4|a total of three times in order
to test the reproducibility of our evaluation. The results of Monitorless were
consistent within variations of 10%, as Table shows. Unfortunately, the
optimal thresholds of the baseline approaches were not consistent between the
different repetitions, which made the comparison with the Monitorless model
infeasible. Although we could show that Monitorless generally produces more
stable results than the baseline approaches, no statistically significant difference
could be observed due to the strong variations between the individual runs.
This, therefore, remains a threat to the validity of this evaluation.

9.5.2 Limitations and Assumptions

We have shown that Monitorless is generic and feasible in practice for predicting
performance degradation. However, there are still some limitations requiring
further research. In this section, we elaborate on some limitations and discuss
how some could be addressed.

One central limitation of our work was that we excluded the network over-
head in our experiment by relying on local logging in Section This was
necessary as the network overhead caused by remote logging was significantly
impacting the application performance using the 1 GB connection. Note that
this problem did not arise during the training and the evaluation in Section [9.3]
as they were done using a 10 GB connection. A possible solution is to offload
orchestrator functionality to the agents, for example, the saturation prediction
in step 1 (see Section [£.1)on page 55]). This allows network traffic to be reduced
at the expense of higher overhead in the agents and fewer data available
at the orchestrator, possibly preventing more elaborated decision-making at
the cluster-scale level.

In the evaluation, we applied the predictions of Monitorless to autoscaling
policies for demonstration purposes but excluded the topic of down-scaling.
Although scaling down decisions are less critical from a system perspective, it
is possible to extend our approach by either utilizing a three-class prediction
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system or by training an additional classifier for detecting over-provisioned
services and conservatively scale down to reduce costs. This makes it possible to
extend Monitorless in order to recommend the exact amount of service instances
required for any particular scenario in future work. In addition, we currently
only concentrate on horizontal scaling, although Monitorless could be applied
for both horizontal and vertical scaling if a certain classification labeling is
provided.

Our experimentation was focused on cloud-based commodity server hard-
ware. Therefore, we excluded the influence of specialized graphics processors
or other accelerators. One important issue with hardware accelerators is the
monitoring stack, as it has to be consistent among different deployed models
and types. However, this represents only a technical limitation and does not
impact our conceptual approach.

Generally, Monitorless may require additional calibration to infer the perfor-
mance of applications with resource usage patterns significantly different from
those in the training set. Therefore, it may be required to add further training
applications in the future. However, we also plan to experiment with transfer
learning techniques [[PY10]] in order to calibrate the model for other target
applications as well.

The current version of Monitorless does not provide any explanation for
its predictions. However, one benefit of decision tree-based models is the
possibility of generating user-interpretable predictions. These might be utilized
by the application developers to identify bottlenecks in their software and
make design decisions. One approach could be to work with depth-restricted
decision trees or try to add explainability to the machine learning techniques via
Local Interpretable Model-agnostic Explanations (LIME) [RSG16]] or SHapley
Additive exPlanations (SHAP) [[LL17] in order to achieve model explainability.

In addition, the presented version of Monitorless focuses on reactive predic-
tions rather than on forecasting the future, as we assume the time frame of
creating new services to be sufficiently small. However, in a proactive scenario,
Monitorless could include a forecasting component that predicts the future value
of system metrics, similar to the work of Nguyen et al. [Ngu+13]] or Fernandez
et al. [[FPK14]]. For that reason, we also contributed towards a specialized fore-
casting engine [[Bau+20a]] and a benchmarking framework [Bau+21]] during
this thesis. However, as the last two aspects of delivering explainable and
proactive predictions are quite challenging based on the limited information
available to the Monitorless approach, we present an orthogonal approach that
specifically focuses on these issues in Chapter [5|on page
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Chapter 10

Evaluating the Prediction of
Performance Degradation

In this chapter, we evaluate the performance of our SuanMing framework, as
introduced in Chapter 5|on page /3l For evaluating the effectiveness and the
performance of SuanMing and the fulfillment of Goal II] ("Develop an approach]
[for the prediction of performance degradation using application-level tracing.|”), we
pose ourselves the following [EQs}

e EQ 10.1: Can SuanMing accurately predict the propagation of performance
degradations between different services?

e EQ10.2: How do different regression modeling approaches compare for modeling
the performance of an individual service?

o EQ10.3: Are the overheads of model training and performance inference feasible
for online environments?

e EQ 10.4: Is SuanMing effortlessly portable to different applications and moni-
toring environments?

e EQ10.5: How do different forecasting horizons affect the accuracy of SuanMing?

We analyze the predictions of SuanMing using the TeaStore [Kis+18]] (see Sec-
tion[9.1]) and the TrainTicket [Zho+18] microservice applications. Section[10.]]
presents our results for the TrainTicket application, while Section [10.2] focuses
on the TeaStore. All presented results are open-sourced and can be replicated
using a CodeOcean capsule [|[Gro+21e]]. Finally, we summarize our results in

Section [10.3l

10.1 TrainTicket

Our first experiment series focuses on the TrainTicket application [Zho+18]].
TrainTicket is a representative microservice application consisting of 42 different
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services concerned with administering, searching, and booking train tickets.
Due to the number of services in the application and the depth of the call chains,
it is suitable for demonstrating the performance propagation and pinpointing
capabilities of SuanMing.

10.1.1 Experiment Setup

We deploy each TrainTicket service in a single Docker container deployed on
an HPE ProLiant DL360 Gen9 cloud server equip ed with a 12-core Intel®
Xeon® E5-2640 v3 @ 2.50 GHz [CPUJ, 32 GB of [RAM|, running Ubuntu 18.04
with Docker 18.09.7. All contalners are resource- hrmted to minimize perfor-
mance interference between the services. Our implementation of the SuanMing
framework runs on an HPE ProLiant DL20 Gen9 with an 8-core Intel® Xeon®
E3-1230 v5 @ 3.40 GHz|CPU], 16 GB of with the same Ubuntu and Docker
versions. The TrainTicket services are monitored using the Pinpoint monitoring
framework deployed on a different VM| equipped with 2 cores and 16 GB
of running on a third host machine.

Lastly, we used an additional machine for emulating users visiting the
TrainTicket website. We use the HTTPLoadGenerator [KDK18]] to generate a
periodically increasing and decreasing amount of users on the system. Upon
visiting the site, users log in, solve a captcha, search for a set of possible trains
on a route, reserve and buy tickets, as well as collect and check-in the booked
tickets. Our users randomly send incomplete or faulty data when searching
or booking in order to make the overall user behavior less predictable. In to-
tal, 26 services and 58 service endpoints are involved in processing the user
requests. The baseload varies between 3 and 22 requests per second. We set
the prediction period to five seconds. Hence, the experiment time is divided
into periods of five seconds. Therefore, our models generate a new prediction
about the next period every five seconds, resulting in a total of 676 analysis
periods with corresponding predictions and 700 total training periods. As we
have 58 endpoints in the application, SuanMing trains 58 machine learning
models, using at least one and at most 12 features, depending on the position of
the endpoint in the graph. In addition to this relatively low baseload, we now
specifically overload one of the backend services (train) with 300 requests
per second to evaluate how the created performance degradation propagates
through the application and whether SuanMing is able to predict and pinpoint
the anticipated performance degradation correctly. As we want to evaluate how
this impacts the prediction performance on the travel service, we furthermore
ensured that the load on travel was effectively constant during the whole
experiment (compare Figure on page(175)).
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Concerning performance metrics to measure and predict, we focus on one
metric in this evaluation, namely the service response time. For the frontend
services preserve, preserveOther, and travel, we define thresholds of 1 500,
1 500, and 600 ms as performance thresholds, respectively. Hence, if the average
response time of preserve rises above 1.5 seconds in any given time period,
preserve is considered to experience performance degradation. The goal of
SuanMing is now to predict this degradation at least one period before it can
be measured in the system. The thresholds of all endpoints are set to at least
two times their normal response time during low load. For fast services with
response times smaller than 30 ms (except train), we set the threshold to 110
ms. As the propagation matrix of TrainTicket is linear, we can apply the linear
propagation algorithm discussed in Section 5.2.5/on page[82}
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Figure 10.1: Schematic state of the TrainTicket application at measurement
period 680.

10.1.2 Performance Propagation

Figure shows a schematic overview of all 26 involved service instances
and their connections at period 680, hence, after 3 400 seconds. Each box rep-
resents a service, each arrow depicts a user or inter-service call. Figure
shows the system status during a performance degradation at the train service
(red). We observe that the performance degradation propagates as expected
through the application. Although the frontend services travel, preserve,
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and preserveOther only receive a minimal number of requests (8.8 requests
per second), the average response time of these services increases massively
after the backend service train decreases its performance. We observe perfor-
mance degradations at several services (orange), all of which can be avoided by
addressing the problem at the train root cause service (red). In the following,
we analyze if SuanMing is able to correctly predict, detect, and propagate these
performance degradations, as well as pinpoint the respective root cause service.

10.1.3 Regression Analysis

For answering EQ we first analyze the performance of different regression
models using the /travel/query endpoint, an endpoint of the travel service.
We focus on /travel/query, as travel is a frontend service and therefore
relevant for the user experience. The goal of all modeling approaches is to
predict the performance degradation at the train service and to propagate
the performance problems up to the travel service. As travel itself is not
experiencing a high baseload, this assesses the model capabilities to propagate
the performance degradation to the system correctly.

The black line of Figure[10.2]shows the average response time for a request at
the /travel/query service over time, that is, the time one user has to wait for the
response of a search for possible trains. At the same time, the gray background
curve depicts the number of requests arriving at travel. We observe that the
observed response time spikes are not correlated to the number of incoming
requests at travel but are due to the poor performance of other services.

We compare four different regression models using (1) [Random Forest| (RF),
(2) [k-Nearest Neighbors| (kNN)), (3) [Bayesian Ridge Regression| (BRR)), and
(4) Bupport Vector Regression| (SVR)). All implementations are provided by
the Scikit-learn library [Ped+11]]. The models are trained using six-fold cross-
validation using out-of-sample forecast evaluation [BCB14] in order to optimize
their hyperparameter settings by performing a grid search on a set of three to
five hyperparameters to minimize the classification error measured using F1
score.

We observe that almost all modeling approaches depicted in Figure [10.2]
closely resemble the anticipated load spikes. From a visual inspection, [RF|
seems to perform best, as tends to underestimate the load spikes, BRR
tends to overestimate the low load phases, and k-nearest neighbor occasion-
ally massively overshoots the predictions. However, generally, all modeling
approaches are able to predict the performance degradation at /travel/query,
although the incoming load intensity is effectively stable. Note that the mea-
surement and the prediction curves were aligned for better visibility. In a live
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system, the prediction curves would rise before the measured response time
increases, as it is necessary to enable the mitigation of the degradation.

Figure additionally depicts the evolution of the regression model over
time. The dashed line at 505 seconds resembles the confidence threshold to
be passed for the first time. Hence, SuanMing did not output any degradation
predictions before that time, as the model confidence was too low. This makes
sense, as all SuanMing models start without any information or prior knowl-
edge. Hence, they need time to learn the application structure as well as the
performance behavior of the TrainTicket application. The chosen threshold
itself is also reasonable, as the regression models are fairly inaccurate during
the first phase of the experiment. As the confidence is calculated based on the
forecast, it is model-agnostic and can be applied to all model types at the same
time. For the presented experiment, the threshold was passed after 101 periods
or 505 seconds.

After the confidence threshold is passed, the [RF|regression curve closely
fits the measured performance, although the response time fluctuates heavily
between 200 ms and over 3000 ms. However, we observe that the models
iteratively learn and adapt to the incoming measurements. For example, the
load peak right after 2500s is lower than anticipated; therefore, the |RF and
curves overshoot the expected response time during that degradation.
Following, the models adapt to these changes and lower their predictions for the
succeeding periods in order to better resemble the measurements. Generally,
these small prediction errors lead to a relatively high regression error (compare
Table but have only minor effects on the classification accuracy.

10.1.4 Classification Analysis

We now evaluate the performance of SuanMing in terms of the overall clas-
sification accuracy to gain more details for answering EQ and EQ
Table(10.1|shows different regression and classification scores of different model
types summarized over the course of the whole experiment.

We report theMean Absolute Error| (MAE) as a regression metric for each ap-
proach, quantifying how closely the perceived load curve resembles the model
prediction. As the predicted response time of each service is then translated into
a binary classification (healthy or not healthy) using the defined thresholds,
we further study the classification performance of the individual approaches.
We analyze True Positivel (TP),[False Positivel (FP), [TFue Negafivel (TN), and
[False Negative| (FN)) scores, as well as the resulting accuracy and F1 scores.
Additionally, we report the global classification metrics, that is, the accuracy
and the F1 score for all 58 service endpoints combined. The values reported
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in Table all refer to the periods after the model confidence threshold has
passed, hence, excluding the first 505 seconds.

For comparison, we added a set of different baseline approaches. First, we
add Mean Regressor, a regression approach that always predicts the mean of all
previously observed values. The All-green, All-red, and Random approaches are
classifiers that always predict green, red, or randomly for each of the experiment
periods. As they do not work with regression, they do not have any regression
metrics available. Finally, we also add a variant of the RF predictor that receives
perfect load forecasts (Optimal [RF)). This approach assumes that the given
forecast is perfect (i.e., it works a-posteriori and not online) and therefore helps
at determining the impact of the forecasting error.

In total, the used experiment contains 85 periods experiencing performance
degradation at the /travel/query endpoint. Adding the other endpoints, a
total of 933 performance degradations were recorded. In comparison to the
total amount of periods, this is a relative share of 14.2% for /travel/query
or 2.7% for the total application. This ratio is representative, as performance
degradations are expected rather infrequently in practice.

Generally, we observe that all regression algorithms depicted in Table[10.]]
are generally capable of capturing the performance behavior of /travel/query.
The most notable difference is with the[BRR} which performs poorly on the MAE
and has a higher[FP}rate than the other approaches. shows the lowestMAE
and ties with for accuracy and F1 score on the /travel/query endpoint.
However, when we analyze the global score, |RF performs slightly better than
[SVR|regarding the F1 score, despite its higher regression error. We furthermore
note that the of all approaches are relatively high in comparison to the
configured response time threshold of 600 ms. However, by analyzing the
actual prediction in Figure we observe that the high average errors are
most likely due to the phases with high response times.

As the global F1 is our main metric of interest, and as the increased train-
ing time of speaks against it (compare Table on page [180]), we will
restrict to |RE regression for the rest of this analysis. The results obtained from
Table are in line with the impression of the regression curves in Figure[10.2]
and can now be utilized to answer EQ[10.2| (“lHow do different regression mod]
leling approaches compare for modeling the performance of an individual service?]”)
and EQ [10.7] (“{Can SuanMing accurately predict the propagation of performance
[degradations between different services?|”).

When comparing with the baseline approaches, we observe that all modeling
techniques consistently outperform the given baseline techniques. While the
poor performance of All-green, All-red, and Random is expected, the Mean
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Regressor baseline also achieves significantly lower scores. Note that the high
accuracy of the All-green and the Mean Regressor approaches is due to the
large share of [TN]periods in the experiment.

Finally, we observe that the performance of the [RF regressor can be signifi-
cantly improved by eliminating the forecasting error, as seen with the optimal
model. Although this approach is not realistic to apply in practice, we
can conclude that [RF|can correctly model the performance behavior of the
system, given the correct number of incoming requests. This shows the benefit
of the modular architecture of SuanMing, as the forecasting engine can be easily
exchanged if more accurate forecasts are required.

10.1.5 Root Cause Detection

As the[RF|lapproach is able to predict the performance degradation at the travel
service, we now analyze the list of root cause services returned by Algorithm[5.3|
on page[87] For the scenario shown in Figure SuanMing returns a list of
train, travel, travel2, basic, and ticketinfo as problematic or root cause
services that need to be addressed in order to solve the performance degrada-
tions in the system. However, by halving the inserted performance thresholds
P! the list is reduced to contain only train. This shows that SuanMing pinpoints
train as the respective root cause service but also identifies additional services
that require attention. We hypothesize that these inaccuracies are due to the
lack of training samples during high load phases, as performance degradations
at train are always accompanied by performance degradations in the shown
scenario.

10.1.6 Overhead Analysis

In this section, we assess the overhead of model training and prediction in order
to demonstrate the feasibility of using SuanMing in an online environment.
To that end, Table depicts the maximum time required for training the
regression models together with the mean prediction time per period for the
TrainTicket experiment shown in Table We analyze the maximum training
time as the time required for training the regression models increases with the
amount of monitoring data available. The prediction time is averaged over all
predictions and includes both the execution of the request propagation and the
performance inference for all endpoints of the service. For the prediction time,
the average gives a better picture of the expected prediction latency than the
maximum.
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Table 10.2: Overhead analysis of different model types for the TrainTicket
experiment.

Approach Max. Train Time Avg. Prediction Time

RE 6.243 s 0.226 s
kNN 3.102 s 0.135s
SV 17.405 s 0.092 s
BRR 2.915 s 0.067 s

We observe that all models are able to train all regression models in a matter
of seconds and deliver predictions in less than a second. Both timescales are
assumed to be sufficient for an online environment. In particular, prediction
times of less than one second are sufficiently fast for prediction periods of 5
seconds. We assess that[BRRJis the fastest of all approaches. However, this is
offset by its relatively poor prediction accuracy. Therefore, while the choice
of the best-suited modeling type is up to the user, we still recommend using
the RF approach. This answers EQ[10.3| (“|Are the overheads of model training and)
[performance inference feasible for online environments?|”), as all assessed modeling
types qualify for execution in online environments.

10.2 TeaStore

After we verified the capabilities of SuanMing on the TrainTicket application,
we now use SuanMing to predict performance degradations of a different
application in a more realistic testing environment. As a second application,
we use the TeaStore [Kis+18]], a microservice benchmarking application for
buying tea, consisting of seven services. The users of TeaStore can log in, browse
different categories and products, add and modify items in their shopping cart,
and checkout by entering shipping and payment information. For more details
on the TeaStore application, we refer to Section[9.1on page

In contrast to the previous experiment, we deploy TeaStore in a realistic
and commercial cloud environment (Huawei Cloudﬂ) and feed the available
cloud monitoring and tracing into the SuanMing framework. Additionally,
we increase the applied load pattern in order to represent realistic daily or
weekly fluctuating workload intensities and to regularly overload the TeaStore
application at specific services. Therefore, over the experiment duration of 6

1ht‘cps ://www.huaweicloud. com
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hours, the workload intensity irregularly fluctuates between 1 and 140 user
requests per second. The target thresholds of the frontend service WebUI are
set to 200 ms and for all other services to 100 ms. This aims at verifying that
SuanMing is not only able to deliver root cause predictions under lab conditions
but also deliver accurate performance degradation predictions in a realistic
cloud setting.

10.2.1 Classification Performance

We evaluate SuanMing by analyzing the performance of the [REmodeling tech-
nique with different baseline approaches, similar to the previous experiment.
Table compares the classification metrics of SuanMing with other baseline
approaches, focusing on the frontend service /WebUI/main. The shown values
refer to after the confidence threshold was passed, in particular, after 13 periods
or 65 seconds.

Table 10.3: Accuracy comparison of the TeaStore experiment.

Approach /WebUI/main Application-wide
PP Accuracy F1 Score | Accuracy F1 Score
SuanMing 0.826 0.816 0.913 0.693
Mean Regressor 0.520 0.681 0.802 0.574
All-green 0.486 0.000 0.857 0.000
All-red 0.514 0.679 0.143 0.251
Random 0.504 0.495 0.503 0.224

Similar to our results on the TrainTicket application, SuanMing is able to
outperform all baseline approaches in terms of accuracy and F1. However,
we notice that the accuracy is lower, while the F1 score has increased in com-
parison to the TrainTicket environment. This is due to the increased number
of performance degradations in the dataset and the correspondingly rising
number of true positives. Nevertheless, SuanMing is able to achieve a global
accuracy of over 91% with an F1 score of almost 0.7, which shows that the
results of SuanMing are transferable to different applications and monitoring
environments. Hence, this answers EQ[10.4] (“ls SuanMing effortlessly portable to|
ifferent applications and monitoring environments?”).
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10.2.2 Prediction Horizon

One advantage of the SuanMing design is that the performance prediction
models are time-agnostic and are sub-sequentially able to calculate performance
predictions for any arbitrary application state. After analyzing the performance
of single-horizon predictions, that is, the prediction for one period or five
seconds into the future, we now want to focus on increasing this prediction
period. The advantage of a higher prediction horizon is that it allows for an
earlier notification for anticipated performance degradations and hence gives
more time to address and mitigate the predicted problems.

1.00

0.75 1

0.50 -

Score

0.25 A

Accuracy F1 Score

000 I I I I I I I I
0 100 200 300 400 500 600 700 800 900

Prediction Horizon [s]

Figure 10.3: Global classification accuracy with increasing prediction horizons.

Figure[10.3]shows the global classification accuracies averaged over the whole
experiment duration for increasing prediction horizons. We observe that the
F1 score is significantly impacted by an increasing horizon, while the reported
accuracy stays almost constant. This is due to the fact that most services do
not experience performance degradations, leading to a high amount of true
negatives that can be accurately predicted by SuanMing. The F1 is mainly
influenced by the predictions on the WebUI service, as it was shown to be the
bottleneck for the TeaStore application. Overall, the curve drops almost linearly
until a score of around 0.6 is reached at a total prediction horizon of around
200 seconds. Increasing the prediction horizon to over 500 seconds does not
decrease the F1 anymore.

While a performance prediction of 600 seconds in advance is theoretically
possible, the F1 regularly drops below 0.6 for large horizons. It is then up
to the user to decide if the accuracy drop is acceptable. However, if a small
drop in prediction accuracy is acceptable, Figure shows that SuanMing
predicts performance degradations up to 200 seconds in advance. Generally,
the prediction accuracy of large horizons is strongly dependent on the applied
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workload and whether the forecasting engine is able to correctly predict the
future load pattern. Unforeseen noise or load spikes make this task increasingly
difficult. Therefore, we conclude that SuanMing can arbitrarily increase the
prediction horizon but increasingly depends on accurate forecasts in order
to perform its predictions. Finally, this answers our last[EQ} namely EQ
(“IHow do different forecasting horizons affect the accuracy of SuanMing?|”).

10.3 Summary

To summarize, in this chapter, we evaluated the capabilities of the SuanMing
framework to anticipate performance degradations of microservice applica-
tions. Our evaluation shows that SuanMing predicts and explains performance
degradations with an accuracy of over 90% on both the TrainTicket and the Tea-
Store microservice applications. These results were the focus of EQ[10.1] (“{Ca]
SuanMing accurately predict the propagation of performance degradations between
different services?|”) and EQ[10.4] (‘[s SuanMing effortlessly portable to different]
applications and monitoring environments?]”). We also compared different regres-
sion modeling approaches with each other in order to answer EQ[10.2| (“{How/
do different regression modeling approaches compare for modeling the performance o

an individual service?]”). Our analysis indicates that while multiple techniques
can be utilized, regression performs best in our scenarios.

We furthermore assess whether or not SuanMing is capable of delivering the
required predictions within a reasonable time frame in a realistic cloud envi-
ronment. Therefore, EQ[10.3| (‘{Are the overheads of model training and performance|
[inference feasible for online environments?]”) concentrates on the overhead of each
used modeling technique. We see that all utilized modeling techniques perform
sufficiently fast for deployment in an online cloud environment. Finally, we
analyze the forecasting horizon of our framework and the resulting implications
on the prediction performances by answering EQ [10.5| (“1/How do different fore{
lcasting horizons affect the accuracy of SuanMing?|”). We observe that it is possible
to receive performance degradation predictions several minutes in advance
by increasing the prediction horizon if accompanying accuracy decreases are
acceptable. Based on these results, we conclude that SuanMing presents a first
step towards autonomically supervising microservice applications in order to
avoid performance degradations before they occur in the system. In the follow-
ing, we discuss the threats to the validity of the presented evaluation as well as
the limitations and the assumption of the presented SuanMing approach.
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10.3.1 Threats to Validity

In the following, we split the relevant points into threats for the internal and
the external validity of our experimentation and discuss each of them in the
respective sections.

10.3.1.1 Internal Validity

From our analysis of Section we conclude that SuanMing and the accu-
racy of its performance predictions strongly rely on the applied forecasting
technique. Therefore, many of the reported accuracy metrics might be influ-
enced by our choice of GluonTS as a forecasting engine. We mitigate this issue
by explicitly including an analysis including the optimal forecaster in Table[10.1]
on page Due to the modular design of the SuanMing framework, it is
possible to exchange or optimize forecasting engines, depending on the specific
scenario or workload. We also experimented with Telescope [Bau+20b]] as an
alternative forecasting engine but then decided to use GluonTS for the analysis
presented in this work based on the preliminary results.

We quickly discussed the choice of metrics in Section Table in-
cludes the as our main regression metric. As our target is to classify
response time increases rather than to perform exact predictions, we decide
against squared errors like [MSE| or RMSE] as those put a stronger focus on
outlier predictions. The presented analysis generally focuses more on the ac-
tual classification metrics and less on the regression error of each individual
approach. Hence, we view any [I'P|as a correct prediction, although the pre-
dicted metrics (and the resulting regression error) might massively overshoot
the measurements. Therefore, all presented optimizations and perceptions
are biased towards classification. When focusing on minimizing the actual
regression error, some of the presented insights may not transfer.

10.3.1.2 External Validity

Similar to our previous evaluation in Chapter[9)on page we concentrated
on a limited set of microservice applications in this work. We are aware of the
diversity of different available applications and their performance behavior,
as well as the varying amounts of information provided by different tracing
tools. Hence, although we purposely vary between two different applications
and monitoring stacks, the expressiveness of the evaluation is limited to the
presented applications. Especially, EQ [10.4 (“|Is SuanMing effortlessly portable|
[fo different applications and monitoring environments?|”) usually requires a more
general analysis of a wide range of different monitoring tools and applications.
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However, based on the initial results and the modular architecture of Suan-
Ming, we are convinced that other monitoring stacks will only require minimal
amounts of implementation effort for the Provider component, as all other
components should work unchanged.

The focus of SuanMing is generally on synchronous request-response pat-
terns. However, microservice applications might also utilize asynchronous
communication, as well as relying on message-oriented middleware stacks.
As neither of our evaluated applications utilized such stacks, the applicability
of other communication patterns represents a threat to the generalizability
of SuanMing. However, in our view, asynchronous communication patterns
are less important for the type of performance modeling attempted by Suan-
Ming, as they do not directly influence the response time of the waiting service.
Nonetheless, the request propagation model is generally capable of tracking all
incoming requests, including asynchronous and middleware requests, as it is
only focusing on the statistical properties. Therefore, although excluded in this
evaluation, such communication patterns are also covered by SuanMing if the
monitoring tool includes the respective tracing data.

Finally, we did not consider replicated service instances in our experiments.
If the number of replications per service is expected to be constant, we can
abstract all service instances into the same service model. However, we could
also create individual performance models for each service instance and treat
them as technically independent services. If the performance of each replication
is expected to be equal, we could also dynamically model the number of current
replicas using the additional performance parameters o (see Section[5.2.4)on

page(80).

10.3.2 Limitations and Assumptions

The design of SuanMing is influenced by a set of limitations and assumptions.
First, we assume a static performance behavior by the underlying cloud plat-
form stack. Therefore, we assume no autoscaling, redeployments, service
migrations, or other performance fluctuations to happen during the operation
of SuanMing. Although this is not a conceptual limitation, the trained perfor-
mance models require repeatable performance behavior in order to deliver
accurate predictions. If required, major platform changes can also trigger re-
training of the respective performance models. Otherwise, we could include
the state of the cloud platform using the additional performance parameters o
(see Section on page[80]).

The current version of SuanMing focuses on pinpointing the respective service
as the root cause of expected performance degradations. In future work, one
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can extend this error search by correlating predicted performance degradation
with measurement from resource usage metrics. This can be done using the
auxiliary metrics to improve the performance model accuracy. That way, we are
able to deliver root cause predictions for not only which service is responsible
but also what is causing the problem at the respective service itself.

SuanMing only considers the call hierarchy when calculating the performance
dependency map. However, if deployment information of the individual ser-
vices are given by the the dependency map could be extended by taking
co-location dependencies into account. After augmenting the list of dependent
services with all co-located services, a performance degradation could also be
predicted by too many requests to a busy or a faulty service on the same host or
simply by other services consuming all computing resources. An application
of this was successfully demonstrated by Lin et al. [LCZ18]].

Similarly, we did not consider the performance of external services during the
presented evaluation. If the performance of the external service is assumed to be
static, then its behavior can be included in the performance model of the calling
service. Otherwise, external services can be considered as additional services,
which are modeled by their own performance functions. Unfortunately, if an
external service is pinpointed as a root cause, no automatic problem mitigation
can be triggered.

Furthermore, SuanMing currently relies on threshold definitions for all ser-
vices to define the expected performance behavior. Future work can extend the
capabilities of SuanMing by applying anomaly detection approaches [[CBK09]]
for automatically defining the thresholds based on historical data. The advan-
tage of these approaches is that they do not require[SLA|or threshold definitions
by the user but instead derive the thresholds from the actual system monitoring.
This is especially advantageous for long-running systems and when the defined
thresholds are possibly subject to change.

Finally, SuanMing is technically limited to predicting the performance of
services that are included in the monitoring. In addition, the framework re-
quires performance measurements for the SLA}relevant performance metrics
to label its training data. If more than one performance metric is desirable,
one could add indirect measurement strategies by inferring one unobservable
performance metric based on other observable quantities. This is currently not
in the scope of this framework but could be an interesting topic for future work.
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Chapter 11

Evaluating Continuous Resource
Demand Estimation

In this section, we evaluate and analyze the performance of SARDE concerning
various aspects. As SARDE aims to provide continuous resource demand
estimations in changing environments, SARDE is a part of fulfilling Goal [III]
(“[Enable the continuous estimation and improvement of performance model parameters
lusing production monitoring data.|”). To evaluate the continuous estimations, we
pose ourselves the following

e EQ 11.1: What is the gain of continuously repeating the estimation?

o EQ 11.2: What is the impact of applying algorithm selection, optimization, and
both combined to the repeated estimation?

e EQ 11.3: What is the overhead of applying these techniques?

In the following, we will describe and analyze the experiment series we
conducted in order to answer these questions. The precise experiment setup is
described in Section[I1.1] Following, Section focuses on the analysis of the
selection process, while Section analyses the performance of the optimiza-
tion algorithm. We put both aspects together and analyze the performance to
answer EQ in Section Finally, we analyze the workload properties
in Section[I1.5)and the overhead in Section[I1.6| We conclude our analysis in
SectionIT.71

11.1 Experiment Setup

We designed two different experiments to validate the accuracy of our approach.
Section|11.1.1]describes the two datasets. In Section[11.1.2] we describe the met-
rics used for evaluation, while Section[11.1.3|lists the configuration of SARDE

used in this evaluation.
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11.1.1 Datasets

First, we applied a common dataset consisting of a set of micro-benchmarks
executed on a system and already applied in a previous study of Spinner et
al. [Spi+15]]. Second, we extend this analysis by adding a long-term measure-
ment trace from a realistic application.

11.1.1.1 Micro-benchmark Datasets

This dataset consists of a set of measurements obtained by executing micro-
benchmarks on a real system. It contains 210 traces, each with an approxi-
mate runtime of one hour. The micro-benchmarks generate a closed work-
load [SWHO6]] with exponentially distributed think times and resource de-
mands. The think times themselves were set to fit the targeted load level of
each specific experiment. As mean values for the resource demands, 14 dif-
ferent subsets of the base set [0.02s; 0.25s; 0.5s; 0.125s; 0.13s] were selected,
with a varying number of workload classes C' = {1;2; 3} and target load levels
U = {20%; 50%; 80%}. The subsets were arbitrarily chosen from the base set.
This way, it can be ensured that the resource demands are not linearly growing
across workload classes. Additionally, the subsets intentionally contained cases
where two or three workload classes had the same mean resource demand.

11.1.1.2 Realistic Application

In addition to the micro-benchmark datasets, we conducted a long-term study
of a realistic microservice application measured on a real system. However, in
order to evaluate the accuracy of the approach, it is necessary that we know the
exact resource demands to be estimated. Therefore, we developed a synthetic
application that offers three different interfaces via a that perform a
prior defined load for each service call. For the following of this section, the
first workload class (WC1) performs an exponentially distributed load with
a mean of 0.01s, the second workload class (WC2) performs an exponentially
distributed load with a mean of 0.03s. The third workload class (WC3) performs
a normally distributed load with a mean of 0.005s and a standard deviation
of 0.001. Therefore, the presented application, although comprising only one
microservice, serves as an example of a possible microservice application.

To evaluate the adaptability of the individual approaches in comparison
to SARDE with respect to different influence factors, we varied both the load
intensity and the distributions of the individual workload classes. Figure[11.]]
depicts the load intensity, that is, the number of requests per second of each
workload class as a stacked line chart. The load is intentionally noisy and
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strongly varies over time. Additionally, the relative share of the different work-
load classes changes. As the different workload classes each have different
resource demands, the resulting utilization curve is not obvious.

In order to reflect a realistic cloud setup, we deployed the application inside
an Ubuntu 18.04 VM| associated with one pinned core and 4 GB
running on an HPE ProLiant DL160 Gen9 server equipped with an Intel® Xeon®
[CPU|E5-2640 v3 @ 2.60 GHz and 32 GB total RAM] using a KVM hypervisor.
The load driver generating the [REST| requests was situated on another host
in the same cloud to isolate the performance behavior and also include the
network overhead per request.
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Figure 11.1: Server utilization and throughput of the different workload classes
of the monitored application.

11.1.2 Evaluation Metrics

In this section, we describe the metrics we use during our evaluation. We focus
mainly on execution time and estimation accuracy. All execution times were
measured using version 1.0 of the publicly available Java implementation of
SARDEE' and version 1.1 of the underlying engineEl by relying on the
internal time measurement. All reported experiment times were conducted on
a Windows 10 machine using an Intel® Core® i7-6600U @ 2.60 GHz and
16 GBRAMI

"https://github.com/jo102tz/LibReDE-SARDE/releases/tag/v1.0.0

This is also the version endorsed by the|SPEC RG|[SGK19]].
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For accuracy, we evaluate the estimation error e per approach by averaging
the relative estimation error of each workload class:

1 C
eE:C;

where C' is the number of workload classes, D, is the resource demand estimate
for workload class ¢, and D.. is the real resource demand of class c.

)

Dc - Dc
D.

11.1.3 Configuration

There are several generic and configurable parts of the SARDE approach de-
scribed in Chapter || on page 91} In this section, we describe the specific config-
urations that we applied for the presented evaluation.

First, we concentrate on the estimation of the resource demand error. As
all evaluations and optimizations performed by SARDE rely on the internal
estimated error, it is crucial that the applied error validation closely resembles
the actual resource demand error. Recall that SARDE does not have the real
resource demands available for validation as they are naturally unknown to
SARDE during operation. Therefore, SARDE calculates the estimated validation
error ey using the estimated relative response time error eg and the estimated
absolute utilization error ¢;7. This error is then used for all internal validation
processes. The two error functions are defined as follows:

1 R.— R,
€R = 6 Zl Rc )
. —
€U = Z(Xc Dc) U 5
c=1

with C being the number of workload classes, R. the average measured re-
sponse time of workload class c over all resources, R, the predicted average
response time using Mean Value Analysis [Bol98] based on the estimated re-
source demands, X. the measured throughput of workload class c, D, the
estimated resource demand of workload class ¢, and U the average measured
utilization over all resources.

Using both errors, we can compute the compound validation error ey as a
weighted sum of e and €p:

1 . 1.
ey = imln(l,eU) + 5 in (3,¢eR).
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Note that we bound the utilization error at one and the response time error
at three. This is necessary since both errors are effectively unbounded and,
therefore, might dominate the other error during the validation. The values are
chosen, as during capacity planning, response time errors are usually acceptable
to be higher than utilization errors [Men02a; MGOO|]. Apart from that, both €z
and ep are currently weighted at an equal ratio. However, this configuration
could be adapted if a user is more interested in minimizing the respective error
value.

For the online analysis of the realistic application, we use an estimation
interval of 70 seconds, a selection interval of 170 seconds, a training interval
of 700 seconds, and an optimization interval of 1 000 seconds in order to keep
a reasonable amount of repetitions for each activity during the experiment.
Based on our results in Section [I1.2.1} we applied a random forest classifier
as the selection algorithm. Concerning the|S3|optimization algorithm, we use
tive splits, four exploration points, and five iterations for single parameter
optimizations. For multi-parameter optimizations, we reduce to one split, with
two exploration points and two iterations in order to reduce the algorithmic
complexity.

11.2 Selection

This section presents results concerning the selection of the best-suited estima-
tion approach. The first section compares different selection algorithms with
each other using our set of micro-benchmark experiments. Then, we analyze
the performance of continuous training and selection over time in our realistic
application.

11.2.1 Micro-benchmarks

To compare the different selection algorithms with each other, we utilize the set
of micro-benchmarks as they represent a wide variety of different scenarios in
their characteristics. Therefore, we can get a holistic analysis of the performance
of each selection algorithm.

We include a [Bre+84], an [Has+09]], a [Bre01]], a
[[Cox58]], an [[CV95], and a [[Gur97]] algorithm. The is

a sigmoid perceptron consisting of two fully connected inner layers, an input
layer, as well as an output layer for the selection. We used 100 neurons in total
and applied the back-propagation algorithm based on the least-squares error
for learning. For all algorithms, we relied on the implementations provided
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by the Smile [[Li14]] library. For a fair comparison, all algorithms were used
in their default parameterization. Furthermore, we add a random classifier
(Random), always choosing a random approach as a baseline. We split the
210 available scenarios into 168 training and 42 validation traces. The machine
learning algorithms were trained with the 168 training sets, and Table [11.]]
shows their performance on the 42 remaining validation sets.

Table 11.1: Comparison of different selection approaches using the micro-
benchmark set.

Algorithm Avg. error Hitrate Traintime Estimation time

Random 43.5% 16.7% - 14s
22.5% 52.4% 211.1s 1.1s
19.8% 66.7% 241.1s 20s
17.9% 71.4% 533.0s 21s
25.0% 42.9% 305.6 s 1.5s
18.0% 59.5% 262.3s 1.5s
18.0% 59.5% 2432 s 134s

The first column of Table shows the average resource demand estima-
tion error on the 42 remaining traces when applying the respective selected
approach. We observe that, as expected, the random classifier has the worst

performance; the[CART|and the[Logitjmodels also fall behind. However,
aBoost] SVM| and [NN]all perform comparatively well. has the best

accuracy, with an average estimation error of 17.9%. This is impressive if you
consider that the average minimum error of all approaches (and therefore the
de-facto perfect result) is 17.6%. Therefore, the performance of the approaches
chosen by [RE|is just 0.3% worse than the theoretical optimum. These results
are in line with the hit rate, that is, the relative share of scenarios in which
the algorithm selects the best approach. Again, Random Forest outperforms
all other approaches with a hit rate of almost 72%, while a random classifier
baseline achieves only 16.7%.

When analyzing the training time, we observe that all approaches take be-
tween 4 and 10 minutes for completing the training with a training corpus of
168 traces. Here, takes the longest time for training (almost ten minutes),
while all other approaches terminate within four to five minutes. However,
considering the large size of the training set (168 measurement hours), we
argue a training time of ten minutes is more than acceptable for online use.
Similarly, the average estimation time (including feature extraction, selection,
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and the estimation process itself) is sufficiently fast. Most approaches terminate
in under three seconds; only the approach requires up to 15 seconds of
estimation time. As typical estimation windows are usually in the range of
several minutes, these time scales are more than sufficient. One interesting
observation is that the random baseline, despite the lack of an actual selection
process, is not the fastest of the approaches. This undermines our observation
that the most dominant time factor for the average estimation time is, in fact,
not the selection algorithm itself (excluding but the estimation time of
the selected approach.

Based on our results, for the remainder of this chapter, we concentrate on the
algorithm with a parameterization of five trees (ntrees), two features per
node decision (mtry), a maximum leaf node size of one (nodeSize), applying
the Gini splitting criterion (rule), and using feature sampling with replacement
(subsample).

11.2.2 Realistic Application

Following the broad analysis of multiple validation scenarios, we now analyze
the performance of the random forest selection for our realistic application. For
this, we look at the continuous training and selection of the algorithm over
time. Figure[I1.2shows the estimation error for every approach over time. The
activities are depicted in the timing diagram at the top of Figure The red
bars indicate timing and duration of training phases, the orange bars indicate
selections accompanied by an abbreviation of the chosen approach, and the
blue bars indicate the regularly repeated estimations of all approaches.

In each training phase, the chosen selector algorithm (RE|in this case) was
trained on all available offline traces from the previous section, plus the addi-
tional experience from the currently running trace (hybrid training). Therefore,
the first trained model only has the micro-benchmark dataset available as a
training dataset. The second one uses the micro-benchmark set, plus the first
700 seconds of experiment time, and so on. As we had a maximum of three
different workload classes (r = 3) and one resource (w = 1) in the training set,
the feature vector y had a length |y| of 57 for training (see Section [6.3.3.3)on
page[102).

We observe that the estimates, as well as the corresponding accuracy of each
individual approach, are massively changing during the experiment. There is,
therefore, a good rationale for continuously repeating the resource demand esti-
mations and simultaneously for changing the applied approach (see Section|[6.]]
on page [93)). This already answers EQ[I1.1] (‘{What is the gain of continuously
[repeating the estimation?|”).
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Figure 11.2: Estimation error of different approaches compared with SARDE’s selection.
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Additionally, we observe that the SARDE approach (blue) jumps between
different respective approaches. While SARDE needs a while to learn and adapt
to the current trace (before 2 000 seconds), it then is able to predict and select
among the best-performing approaches until the environment changes and the
accuracy decreases (starting at 6 000 seconds). In reaction to this development,
another approach is chosen at around 8 000 seconds until its performance
decreases as well.

Table 11.2: Overview of the quality of selected approaches using the realistic
application.

Approach Average Rank Accuracy Accuracy Loss

SDL 202 11.52% 3.11%
RTAl 547  35.04% 26.63%
R 3.69  27.94% 19.53%
U 3.64  23.84% 15.43%
WKF 294  18.74% 10.33%
[KKF 3.21 15.17% 6.91%
SARDE 282  16.88% 8.64%
Random 3.08 18.49% 10.15%

In the following, we analyze Table for more details on the selection
results. Table shows the average rank of each selection approach, together
with its average total accuracy loss, that is, the average difference of the relative
estimation error of the given approach in comparison with the current best
approach. We observe that[Kumar Kalman Filter (KKF)|and [SDL|both have rel-
atively low ranks and a small accuracy loss in comparison to other approaches.
The approach has a particularly high accuracy loss, as its performance is
consistently worse than any of the other approaches.

SARDE is able to achieve an average rank of 2.82 with only 8.6% of accuracy
loss towards the theoretical optimum. Compare this with a baseline approach
of the random classifier, which achieves an average rank of 3.08 together with
an accuracy loss of 10.2%. Note that it is not possible to simply choose as
the best approach, for example, as the knowledge about the performance of
the individual approaches is not known prior to execution. Instead, the self-
adaptive features of the selection approach of SARDE enable it to constantly
monitor the performance of the individual approaches and switch between the
most promising approaches. Therefore, SARDE is able to learn from and adapt
to a scenario without any prior knowledge or training for that environment.

195



Chapter 11: Evaluating Continuous Resource Demand Estimation

This partly answers EQ[11.2] (‘{What is the impact of applying algorithm selection)
loptimization, and both combined to the repeated estimation?|”). Next, we analyze the
impact of the optimization process.

11.3 Optimization

After analyzing the selection process in detail, this section now focuses on the
optimization process. Similar to the previous section, we first analyze the set
of different micro-benchmarks representing a wide variety of test applications
and then concentrate on a more in-depth analysis of our realistic application.

11.3.1 Micro-benchmarks

The focus of this section is to show the potential benefit of parameter optimiza-
tion on our trace dataset. Naturally, not all estimation approaches have the
same set of parameters available. For example, the two [KFbased approaches,
[KKF|and [Wang Kalman Filter (WKF)| have five approach-specific parameters
that can be tuned. On the other side, other approaches, like or[RTA]} do not
have any parameters to fine-tune the respective approach. Table shows the
available optimization parameters for SARDE as well as the respective lower
and upper bounds.

Table 11.3: Overview of available optimization parameters and the approaches
supporting the respective parameters.

Parameter name Lower bound Upper bound Approaches
Step size 10s 360 s @
Window size 1 60 SDLI, IRTA

RR} WKH IKKH
Initial bounds distance 0.0 0.1 [WKEF, KKH
Bounds factor 0.0 1.0 |[WKE, [KKF
State noise covariance 0.0 2.0 |WKEF, [KKF
Observe noise covariance 0.0 0.1 [WKEF, KKH
State noise coupling 0.0 2.0 [WKEF KKHE

The only two parameters that are common to all approaches are concerned
with the input processing of monitoring data. The step size describes the aggre-
gation interval, that is, the interval for which all monitoring measurements are
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aggregated, and serves as the minimal time unit for each estimation approach.
Additionally, the window size defines the memory of each approach, that is, the
number of steps that are considered for each estimation approach. For example,
if the step size is 60 seconds, and the window size is 60, then only the last
60s - 60 = 3 600s of measurements are considered for the estimation. Hence,
the specific tuning of both parameters is more dependent on the individual
trace than on the specific approaches, as it is more a configuration parameter
(i.e., a parameter that needs to be set based on external requirements) than an
optimization parameter (i.e., a parameter that can be freely chosen to optimize
performance). This effect can also be observed later in Figure on page

Therefore, Table [11.4] focuses on the parameters of the two [KFjbased ap-
proaches, [KKFand WKE Table[11.4shows the performance of our optimization
tuning the five tunable parameters initial bounds distance, bounds factor, state noise
covariance, observe noise covariance, and state noise coupling using the bounds de-
fined in Table In order to evaluate the results on the micro-benchmarking
training sets, we split the 210 traces into 168 training traces and 42 validation
traces. The training algorithm optimized the parameter of the training traces,
while Table shows the performance of the remaining 42 validation traces.

Table 11.4: Estimation error and chosen configuration parameters of our vali-
dation benchmarks before and after optimization.

Algorithm Default Optimized Default Optimized
Optimization time - 6 456 s - 8878 s
Average estimated error 0.273 0.227 0.823 0.752
Relative improvement - 16.7% - 8.6%

Parameter values:

Initial bounds distance 0.0001 0.0 0.0001 0.1
Bounds factor 0.9 0.75 0.9 1.0
State noise covariance 1.0 0.0 1.0 1.0
Observe noise covariance  0.0001 0.1  0.0001 0.0
State noise coupling 1.0 2.0 1.0 1.0

We observe that the default parameterizations (as proposed by the default
configuration of the implementations) are sub-optimal for both |KH variants.
Both estimators could significantly improve the estimated error on the vali-
dation set. However, it is interesting that the which performs already
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significantly better than in its default configuration, also profits more
from the optimization. Although the absolute error reduction is greater for the
the relative improvement for the (16%) is almost double the relative
improvement for the In addition, we note that although [KKHis slightly
faster than both optimizations take comparatively long to optimize as
they need to take all 168 training traces into account. To summarize, we can
say that the optimization finds effective parameter optimizations, even if the
validation traces are unknown to the algorithm.

11.3.2 Realistic Application

After analyzing the performance of our optimization procedure on the different
micro-benchmarks, we now continue on our realistic application dataset. As
already discussed in the previous section, most approaches are limited to only
two configurable parameters: the step size and the window size. Therefore,
we configure the optimization used in the previous section to optimize the
parameters for the two [KF variants while focusing on step size and window
size for all other approaches (see Table[11.3). As these two parameters heavily
influence each other, the optimization combines both into one parameter that
only changes the window size relative to the respective step size.

Figure depicts the estimation accuracy of the different approaches over
time. Drawn lines represent the original error, dotted lines are the optimized
versions. In addition, the dashed lines of each color represent the accuracy of
the optimized approach. A new parameterization comes into effect at the first
estimation interval (blue) after the end of each optimization interval (green).
Every optimization run is able to utilize more data, as all collected data from
the previous trace is used.

First, we observe that not all approaches (purple, turquoise) profit from
the parameter optimization. This is due to the limitations of the optimizable
parameter set as discussed above. On the other hand, there are other approaches
(green, pink) that can profit greatly from changing the parameters. However, in
summary, Figure does unfortunately not conclusively prove or disprove the
applicability and the effect of the optimization process. It can certainly affect the
performance of the algorithms in both ways; hence, it is important to analyze
the interplay between the optimization and the selection component. If the
correct approaches are chosen, the optimization can help to improve the current
approaches, while its negative effects are mitigated by the selection process.
With this, we analyzed the impact of algorithm selection and optimization in
order to address EQ[11.2] Following, we analyze the interplay of both processes.
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Chapter 11: Evaluating Continuous Resource Demand Estimation

11.4 Combination

Finally, we now combine the two processes of optimization and selection in
order to evaluate their interplay as intended by the SARDE approach. For
this, we focus solely on the realistic application dataset, as the optimization
procedure and the selection interplay can only be analyzed over time which is
infeasible for the 210 available micro-benchmark traces.

Analogously to the previous sections, Figure depicts the estimation
errors of the individual approaches over time. The individual approaches
remain unchanged in comparison to the previous experiments. However, we
include the blue estimation line that represents the SARDE estimation. We
observe that SARDE is again efficiently able to choose between the different
available selection approaches, as already seen in the analysis of Section[11.2}
In addition to that, however, the blue estimation line now deviates from the
standard approach estimations as the parameter optimizations change the
performance of the estimations.

In the first half, SARDE shows some degrees of instability observable from
frequent changes in the selected approaches as well as sudden spikes in estima-
tion error. However, as soon as a spike occurs, the self-adaptation mechanisms
counteract that behavior by changing the chosen approach or the applied param-
eters. Therefore, towards the end of the trace, the stability gradually increases.
Additionally, we observe that at different points in time, the blue estimation
line exhibits a lower estimation error than any of the other approaches. This
is possible as the parameter optimization process gradually adapts to the spe-
cific properties of the trace and learns to fine-tune the estimation approaches
towards that.

Table 11.5: Summary of selected approaches during the execution.

Approach Number of selections
Service Demand Law]| 23
Response Time Approximationl 0
Utilization Regression| 7
Response time Regressionl 1
Kumar Kalman Filter| 20
Wang Kalman Filter| 12

Table summarizes the different selections also observable at the top of
Figure Similar to our analysis in Section we can confirm that the
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Chapter 11: Evaluating Continuous Resource Demand Estimation

selection algorithm still chooses from almost all estimation algorithms (except
the poorly performing [RTA]) in order to adapt to the respective situations.
A qualitative comparison, as presented in Table is not feasible as the
respective selection always relates to the optimized estimation approaches.

Table 11.6: Estimation quality of SARDE using the realistic application.

Approach Average Rank Accuracy Accuracy Loss
SARDE 2.79 15.96% 7.69%

In general, taking the results of the algorithm selection presented in Sec-
tion[11.2} the optimization presented in Section[I1.3} and the combination of
both into account, it can be said that SARDE effectively combines the accu-
racy gain of both processes. We validate this by repeating the analysis from
Table on page[195]in Table We exclude the optimization gain of the
running optimization process and still use the unoptimized base estimators as
a comparison. Therefore, Table only updates the performance of SARDE,
as the performance of all other approaches stays the same. Table shows
that the combination of optimization and recommendation slightly improves
all three measures in comparison to only applying the recommendation in
Table on page However, with an average rank estimation accuracy
of 15.96%, in comparison to 16.88% without optimization, the gain is unfortu-
nately not as significant as one might hope. Therefore, we can now fully answer
EQ [11.2] ({What is the impact of applying algorithm selection, optimization, and|
Iboth combined to the repeated estimation?|”). With all processes enabled, SARDE
achieves an average estimation error of 15.96%.

11.5 Workload Analysis

The analysis in Section [I1.4/helps us to understand the performance of SARDE
during a continuous estimation. However, another angle at analyzing the
given workload is to section it into different intervals. This enables us not
only to analyze the performance of SARDE but also to relate it to the workload
properties of the respective interval.

Therefore, Table presents the main arrival rate properties of the three
workload classes described in Section[11.1.1.2} together with the performance of
SARDE, split into ten different intervals. Recall that workload class 1 (WC1) and
workload class 2 (WC2) perform an exponentially distributed load with a mean
of 0.01s and 0.03s, respectively. In contrast, the third workload class (WC3)
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11.5 Workload Analysis

performs a normally distributed load with a mean of 0.005s and a standard
deviation of 0.001. Therefore, WC3 follows another intensity distribution and
is comparatively light.

Table 11.7: Workload properties of different experiment intervals.

Mean Standard Deviation Index of Dispersion
WCl1 wWC2 WC3 WCl1 WC2 WC3 WC1 WC2 WC3

1 0.00 2126 16.59 0.00 9.11 14.67 - 390 1298
2 1021 688 3022 776 308 732 590 138 177
3 2425 442 1702 358 240 375 053 130 0.83
4 2441 236 957 361 188 284 053 150 0.84
5 1376 535 374 6.64 469 280 321 411 210
6
7
8
9
1

013 866 155 048 355 121 177 146 094
0.00 217 146 000 132 1.04 - 081 074
000 234 275 0.00 138 1.69 - 082 1.04
0.00 449 987 004 18 358 100 077 1.30
0 273 523 1987 292 209 3.06 313 084 047

Table shows the mean, the standard deviation, and the index of disper-
sion [[Cox14]] of each workload class arrival rate in requests per second during
the respective interval. The index of dispersion is calculated by dividing the
variance, that is, the squared standard deviation, by the mean [[Cox14]]. We
observe that all ten intervals show vastly different workload characteristics.
For WC1, the intervals vary between 0 and 25 requests per second, together
with the standard deviation between 0 and over almost 8. The respective index
of dispersion is not defined for mean values of zero. In other cases, the index
rises to over 5 in interval 2. The other workload classes show similar behavior,
with mean arrival rates varying by a factor of 10 and index of dispersion values
ranging from as low as 0.8 up to a maximum of almost 13 in interval 1.

In addition, we note that the variations of the three workload classes are
independent and widespread in the different analyzed intervals. For example,
in interval 1, WC3 has the highest Index of Dispersion of almost 13, while WC2
also has a significant amount of dispersion, and WCl1 is absent. In the following
interval, the measured dispersion drops for WC2 and WC3, while it increases
to the trace maximum of 5.9 for WC1. Hence, we conclude that all intervals
contain vastly different workload patterns and intensity variations.

Therefore, we can now analyze the performance on SARDE at different
intervals to see how the estimator performs. Table shows the average error
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Table 11.8: Estimation error of SARDE for the different experiment intervals.
Interval 1 2 3 4 5 6 7 8 9 10
SARDE 052 023 018 018 0.5 0.09 013 0.07 0.09 0.17

of SARDE for each of the intervals. We observe relatively high errors in the
first two intervals, while the performance stabilizes starting in interval 3. This
could be due to the massive dispersions shown by WC3 and WCl in the first
two intervals or to the fact that SARDE has not yet collected a sufficient amount
of knowledge over the system. However, after these two critical intervals,
we observe that SARDE delivers relatively stable estimations, which are not
influenced by the distributions of the data. One possible conclusion is that the
task becomes significantly easier if one workload class is removed from the
trace, as the accuracy improves for intervals 6, 7, 8, and 9, where WC1 is mostly
absent. In summary, Table shows that SARDE has a reliable and stable
performance in our test evaluation, although the workload characteristics of
the individual intervals listed in Table are vastly different.

11.6 Overhead Analysis

Lastly, we evaluate the overhead introduced by applying the SARDE approach.
Naturally, all self-adaptation and self-optimization processes we introduced in
this work increase the computation effort for estimating the resource demands.
Therefore, the question arises whether or not the additional effort is worth
spending and to weigh the achieved benefit with the required additional costs.
The additional computation effort can already be seen by analyzing the top
part of Figure However, for a more quantitative approach, we additionally
summarize the different execution times in Table[11.9

Table 11.9: Overhead analysis of the individual activities.

Activity Executions Avg. time Std. deviation Total time
Estimation 154 0.2s 0.7s 385 s
Optimization 11 113.1s 234 s 1244.3 s
Selection 63 02s 0.1s 115s
Training 16 96.8 s 334s 1548.1 s
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First, we notice that in total, 154 resource demand estimations are conducted.
On average, each estimation takes around 200 ms to compute, resulting in
roughly 39 seconds of computation time spent for the continuous estimation.
The second most executed process is the selection of an estimation approach
based on an already trained machine learning model. This selection process is
similarly cheap compared to the actual estimation process, resulting in addi-
tional 12 seconds of computation effort spent on recommending.

In contrast to executing the selection model, which is comparatively fast, each
machine learning training run takes about 97 seconds to complete. Therefore,
the training is executed much more sparsely, resulting in a total training time
of just under 26 minutes. Finally, the optimization process is, as expected, the
most expensive technique of all self-adaptation processes. However, due to the
relatively low amount of 11 executions, just 21 minutes of computation power
is spent, as each optimization procedure takes slightly less than over 2 minutes
on average.

In total, SARDE consumes 2 844 seconds or 48 minutes of computation time
over the full duration of our three-hour experiment. Given that one is able
to efficiently scale the required computation power (as standard in modern-
day cloud computing environments), one is expected to utilize well under
one|[CPU}-core while running SARDE (27% in this experiment). Note that this
number is strongly dependent on the applied configurations, mainly on the
two most expensive processes of optimization and training. Fewer executions
or different parameterizations greatly influence the perceived overhead. Hence,
this answers EQ[11.3| (“|What is the overhead of applying these techniques?|”).

11.7 Summary

In this chapter, we evaluate the selection and the optimization of resource
demand estimation approaches using two different datasets. The first is a
collection of many different short-lived micro-benchmark scenarios, and the
second one is a realistic web application. Additionally, we analyze how the
combination of both approaches inter-operates on the web application and
also analyze the overhead of each individual activity performed by SARDE.
In general, the web application shows that resource demand estimates are
continuously changing. This insight demands the continuous repetition of
estimations, and, therefore, answers EQ[11.1| (“{What is the gain of continuously|
[repeating the estimation?|”). We see that selection and optimization are able to
continuously provide benefits for the ongoing estimations. In total, SARDE
achieves an average estimation error of 15.96% over the whole three-hour
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measurement period. These results help to address EQ [11.2| (“{What is the
impact of applying algorithm selection, optimization, and both combined to the repeate
estimation?|”). Finally, we conclude that on our evaluated datasets, the overhead
is minimal in comparison to the achieved self-adaptive properties SARDE
offers, as SARDE requires 48 minutes of computation time during the three-
hour experiment. This addresses EQ[11.3| (“\What is the overhead of applying these|
Fecliigues?)).

In addition to the source code of SARDE (see Chapter [6|on page[91]), we pub-
lished the code for constructing and analyzing the experimentation datasetE] and
a replication package for the evaluation results on CodeOcean [Gro+21a]]. In
the following, we discuss the remaining threats to the validity of our evaluation
in Section and the limitations of SARDE in Section

11.7.1 Threats to Validity

Although we conducted the presented evaluations with great care, there are
some remaining threats to validity to discuss.

11.7.1.1 Internal Validity

Our evaluation of the online application is based on a synthetic application,
written especially for this analysis. This way;, it is possible for us to exactly
define and program the specific resource demands into the application, which
is crucial in order to calculate the respective estimation errors. However, al-
though the resource demand of the application was precisely programmed,
the experienced resource demand is still influenced by other factors, like net-
work and middleware overhead or hardware variabilities. Therefore, the error
calculation itself has to be viewed as an estimation. However, the presented
synthetic application still provides reasonable results compared to the com-
pletely unknown resource demands of any real-world application. Therefore,
the presented analysis still provides the best accuracy for our analysis.

Additionally, we note that all self-adaptation and optimization processes
of SARDE are dependent on the internal validation error. The internal error
estimates the error of the respective estimation based on the incoming mea-
surements (as the gold standard is unknown). Therefore, this internal error
function is of paramount importance for the performance of all self-adaptation
techniques of SARDE. Therefore, all presented benefits and overheads are
strongly dependent on the chosen error configuration, next to the other given
configuration parameters presented in Section

*https://github.com/jo102tz/LibReDE- SARDE-data
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11.7 Summary

11.7.1.2 External Validity

Concerning external validity, all presented error measures and especially the
measured computation time of the realistic application reflect just the one
repeatable estimation run. Different input data streams from different applica-
tions or measured on different systems could lead to different results. Especially
the overhead analysis must be viewed as an exemplary analysis, as its values are
heavily dependent on the chosen parameterization as well as the respective ma-
chine learning algorithms or optimization techniques. As already discussed in
the previous section, the repetition intervals can be arbitrarily changed as well;
therefore, the results of the overhead analysis can not be directly transferred to
any arbitrary system.

In addition, our experiment results are limited to the evaluated workload
patterns and resource demands presented in Section We did our best to
spread and diversify the analyzed scenarios, which is observable in our analysis
in Section Nevertheless, future work could aim at extending our analyses
in order to verify whether the results transfer other scenarios as well.

11.7.2 Limitations and Assumptions

In this section, we discuss the limitations that SARDE currently faces. The
presented results only focus on six of the eight available approaches within
as the two techniques based on recursive optimization [Men08;[Liu+06]]
are based on an incompatible optimization library and are therefore not usable
for the presented study. However, the results using the presented six methods
already show the benefits of SARDE. Note that this represents a strict technical
limitation that does not affect the conceptual contribution of this work and
could be therefore addressed in future work to further improve the presented
results.

Similarly, currently does not support the notion of uncertainty in
the monitoring streams, being it due to missing values, low accuracy, or lack of
precision. Therefore, SARDE is also not able to support uncertain monitoring
streams. However, future versions might enable confidence values or multiple
measurement repetitions in order to remedy that problem.

While all activities are designed for continuous and online applications, the
current implementations are based on repeated batch learning. Therefore,
while the data patterns offer the possibility for online learning and online
algorithm selection capabilities, this is currently not implemented. However, it
is expected that such techniques would mainly improve the computation times
and therefore further simplify the use of the SARDE.
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Finally, our experiment explicitly does not focus on extrinsic changes in re-
source demands. Such a resource demand change would, for example, occur
if the running application is redeployed or changed using pipelines
following a new commit. This would invalidate all previous resource demand
estimations and require a reset of the monitoring traces of the affected parts of
the system. We focus specifically on such incremental extraction approaches
in another line of our research [Maz+20; Von+20] in collaboration with re-
searchers from the Karlsruhe Institute of Technology. However, as SARDE is
designed for continuous changes in the environment, we are confident that the
approach is able to work in such scenarios. This could be done by adding a
trigger interface to the framework, signaling invalidation of parts or the total
current application model.
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Chapter 12

Evaluating the Learning of
Parametric Dependencies

In this section, we will concentrate on evaluating our contributions in the area
of learning parametric dependencies, as introduced in Chapterm on page
Therefore, our goal is to evaluate DepIC, our approach towards dependency
extraction addressing RQ [III.2| (“{How can the impact of parameters on resource|
\demands be identified and characterized?|”). Based on this goal, we devised the

following [EQst

e EQ 12.1: Which feature selection technique is suited best for the identification
of parametric dependencies?

o EQ 12.2: What is the effect of the proposed result filtering approach on the
quality of the identified dependencies?

o EQ 12.3: What is the impact of increased system utilization on the quality of
the identified dependencies?

e EQ 12.4: How does the created meta-selector influence the characterization
accuracy?

In the following section, we designed experiments for specifically answering

the posed We will answer EQ in Section focus on EQ in

Section and discuss EQ in Section Finally, Section concen-
trates on the characterization and EQ We conclude this chapter with a

summarizing reflection in Section The TeaStore [Kis+18]], a microservice
reference application that we utilize in this experiment, is already introduced

in Section[9.T|on page [152

12.1 Comparison of Feature Selection Techniques

Our approach is modular and can include any existing feature selection tech-
nique. As described in Section on page we integrate one technique
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from each of the three categories of feature selection methods: a filter method,
an embedded method, and a wrapper method. We evaluate which of these
techniques produces the best results and what the advantages and disadvan-
tages of each technique are in order to answer EQ [12.1| ({Which feature selection|
technique is suited best for the identification of parametric dependencies?|”).

Server 1 Server 2 Server 3

Recom- Persis- Data-
mender tence base

Figure 12.1: Deployment of the TeaStore services in the presented experiment.

12.1.1 Experiment Setup

For this experiment, we distribute TeaStore across three servers as shown in
Figure The Recommender, the Auth, and the Registry are deployed on
Server 1 (10-core Intel® Xeon® E5-2650 v3 @ 2.30 GHz). The Persistence
and the Database are co-located on Server 2 (12-core Intel® Xeon® E5-2650
v4 @ 2.20 GHz). Lastly, the WebUI and the ImageProvider are deployed on
Server 3 (8-core Intel® Xeon® E5-2640 v3 @ 2.60 GHz). Apart from the
all hosts are identical HP ProLiant DL360 Gen9 servers, equipped with 32 GB
of running Debian 9 and Docker 17.03.2-ce. All services run inside
Docker containers, each assigned one core and 4 GB of memory limits to
ensure resource isolation. We apply a closed workload [SWHO06; Kis19]] of one
user with a think time of zero. The workload profile is similar to TeaStore’s
browse profile covering a normal user interaction with TeaStore. We use the
closed workload so we can ensure that the monitored response time is equal
to the resource demand. We run the experiment for two hours, resulting in a
total of 2.4 million monitoring records. We implement the framework using
Java and rely on the library [Hal+09; FHW16] for the implementations
of the machine learning algorithms.

In order to evaluate the feature selection techniques in isolation, we firstly
apply the proposed approach without filtering the results as presented in
Section on page This enables us to compare the unprocessed results
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of the different selection techniques. As a gold standard, an expert creates
a set of expected dependencies. For this experiment, the expert labels any
dependencies that exist and not only the dependencies he would include in
a performance model. This makes sense, as we are looking to evaluate the
ability of the feature selection techniques to detect any existing dependencies
from the monitoring data. As the process of manual labeling is time-intensive
and requires an in-depth analysis of the source code, we limit the scope of this
evaluation to the Recommender service.

1.0T—c o —
|
0.8
g
<
Q 0.6' ,/’,
2 7
S P
(2] ,//
g
> 0.4-
2 . .
[ el —— Filter [AUC = 1.00]
0.2 /,/ —— Embedded [AUC = 0.96]
e —— LR Wrapper [AUC = 0.95]
M5 Wrapper [AUC = 0.91]
0.0+ " : ; .
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 12.2: ROC curve and AUC score for the four analyzed feature selection
techniques.

12.1.2 Threshold Analysis

Next, recall that all feature selection approaches can be parameterized with a
threshold parameter 6, as introduced in Section on page We study
the impact of the threshold parameter ¢ by analyzing the curve of each
proposed feature selection technique. Figure depicts the Recall (True
Positive Rate) against the FPR. The circles indicate the selected threshold. We
describe these metrics in more detail in Section on page 27 Simply put,
the curve displays the impact of decreasing the threshold 6, as it shows
what Recall can be achieved for a given FPR. The score is defined as the
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area under the curve. Therefore, the is the integral over the
function and has an upper bound of one. Higher values are preferable, as they
express the probability of ranking a positive example over a negative one.

Figure includes the curves for the four approaches together with
the corresponding score. The dashed red line shows the theoretical per-
formance of a random classifier. All approaches clearly outperform a random
classifier, each offering a certain trade-off. We note that all approaches achieve
an[AU(Cscore > 0.9, with the LRlwrapper and the embedded approach slightly
outperforming the wrapper. Note that we included two variants of the
wrapper approach, as explained in the following section. However, the filter
approach even exceeds their performance by offering a perfect ranking and an
score of 1.0. This means that there exists a threshold resulting in a perfect
classification of all possible dependencies.

As our focus is on the detection of dependencies, a high number of true
positives is desirable. Therefore, based on the threshold analysis, we choose
the thresholds depicted in Figure with a threshold 0., = 0.8 for the
filter approach, a threshold Oy qpper = 200 for theand thewrapper, and
a threshold 0gmpedded = 30 for the embedded approach.

12.1.3 Results

The first thing to note is that during the execution using this comparatively
small dataset, the wrapper algorithm using[M5|took over two hours to complete.
Therefore, we also include a wrapper variant using the significantly faster
base algorithm. This variant terminates after ten minutes. In comparison, the
Embedded approach terminates after 14 minutes, while Filter runs for only five
minutes. We conclude that all but the[M5|wrapper terminate after acceptable
time, as monitoring data from a two-hour period and containing 2.4 million
records is analyzed. Therefore, we focus on the accuracy of the individual
approaches in the following.

The results of the respective approaches are presented in Table All
approaches use the optimized thresholds from Section[I2.1.2] It shows the abso-
lute number of [TPs| [FNs| and [FPs|of each approach based on the gold standard
labeled by our expert. We furthermore add the that is, the number of
correctly not-identified dependencies as well as the resulting precision, recall,
and F1 scores.

We observe that the filter approach seems to be suited best for the automated
identification of parametric dependencies (EQ[12.1)). It manages to identify all
22 dependencies without identifying any incorrect dependencies and therefore
achieves an F1 score of 1.0. The embedded approach performs reasonably well,
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as it also identifies all 22 correct dependencies with only five false positives,
achieving an overall F1 score of 0.9. In contrast, both wrapper approaches
identify 32 additional incorrect dependencies. However, the wrapper approach
based on|LR|also detects all 22 dependencies, while the wrapper misses
one of the correct dependencies, resulting in the lowest F1 score of 0.56.

Table 12.1: Accuracy of different feature selection techniques.

Approach Precision Recall F1
22

Filter 0O 0 90 1.00 1.00 1.00
Embedded 22 0 5 & 0.81 1.00 0.90
wrapper 22 0 32 58 0.41 1.00 0.58
wrapper 21 1 32 58 0.40 095 0.56

To summarize, all approaches manage to identify almost all of the required
dependencies and achieve a high recall. However, the filter approach out-
performs the comparable approaches by achieving a perfect F1 score of 1.0
by not including any false positives. We attribute the large number of false
positives of the wrapper and the embedded approach to the fact that their
respective underlying machine learning techniques are prone to over-fitting.
Additionally, the tuning of the hyperparameters of the underlying machine
learning algorithms for both the embedded and wrapper approaches has a
significant influence on the classification performance. Overall, we conclude
that the wrapper approach is not well suited for the identification of parametric
dependencies, as it results in a large number of false positives. Furthermore, the
long run time of the[M5|wrapper approach (over two hours for a single service)
makes it infeasible to execute for larger systems. The embedded approach can
be used in scenarios where a human validates the proposed dependencies, as
in such cases, one may prefer a slight tendency towards false positives in order
not to miss any relevant dependencies. These results can be used to answer our
first evaluation question, EQ[12.1] ({Which feature selection technique is suited best|
[for the identification of parametric dependencies?|”), as we conclude that the filter
approach is suited best for our scenarios.

12.2 Result Filtering

In Section on page[124] we introduced three steps of filtering the identified
dependencies in order to retain only performance-relevant dependencies that
should be considered for inclusion in a performance model. We now evaluate if
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DepIC accidentally removes any performance-relevant dependencies or, if it fails
to remove any dependencies that are not performance-relevant by answering
EQ[12.2) ({What is the effect of the proposed result filtering approach on the quality of
[the identified dependencies?]”).

12.2.1 Experiment Setup

We apply the same test setup as before but with traces from the entire TeaStore
application as input for this section of our analysis. This makes it infeasible to
have a predefined gold standard by a human expert, as the evaluated system
is too complex for detailed manual inspection. Instead, we go through all
identified dependencies and label them with respect to the expert’s knowledge
of the system.

This setup is appropriate for this evaluation step, as here we are only in-
terested in analyzing the impact of the result filtering (EQ[12.2)). The results
of Section[I2.1|suggest that the filter approach is the most effective technique
to identify dependencies. Hence, in the following experiments, we focus our
evaluation on the filter approach.

12.2.2 Results

We distinguish between three types of dependencies: (1) relevant dependencies,
(2) irrelevant dependencies, and (3) invalid dependencies. Relevant dependen-
cies are the ones we are looking for and want to include in our performance
model. Irrelevant dependencies are dependencies that are semantically correct
but do not influence the accuracy of the performance model (neither positively
nor negatively). Invalid dependencies are dependencies that are either semanti-
cally incorrect or negatively influence the accuracy of the performance model.
Hence, we want to focus on relevant dependencies to keep the performance
model reasonably sized and understandable for a human. As an automated
approach can not decide whether or not a modeled dependency is semanti-
cally correct based on the monitoring data, the goal of the filtering step goal
is not primarily targeted at filtering invalid dependencies. Instead, we focus
on reducing the number of irrelevant dependencies, as already explained in
Section[7.1.6/on page [124]

Table[I2.2 presents the impact of the individual steps of the result filtering.
Initially, our approach identifies 110 dependencies on the dataset, of which 94
areirrelevant and five invalid. After filtering dependencies that involve identical
parameters, we are left with 61 dependencies. Hence, 49 dependencies are
filtered, all of which are irrelevant.
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Table 12.2: Impact of each result filtering step.

Identified dependencies

Result filtering Relevant Irrelevant Invalid Total

None 11 94 5 110
Identical 11 45 5 61
Ident. + Correlating 11 35 1 47
Ident. + Correl. + Graph-based 11 8 1 20

Figure shows some example dependencies that are deleted during step 1
of the filtering process. The class and call names are abbreviated. The 1ist
parameter refers to the size of the list. The WebUT issues a query, requesting a list
of product recommendations based on the list of items in the cart of a user. This
query is received by the endpoint of the Recommender component, which
then forwards the request to a strategy selector. The strategy-selector chooses
the appropriate algorithm (in this case, the Orderbased recommender), which
then processes the actual request.

REST
WebUI Endpomt Orderbased

igetRecoms([List cart [List cart))

getRecoms(|Li

; getRecoms(|Li

Resource
demand

\ :lparameter —> relevant dependency --> irrelevant dependency]

Figure 12.3: Call path for getRecommendations annotated with identified de-
pendencies.

The resource demand of the Orderbased recommender is dependent on the
number of items in the cart (i.e., the length of the cart list parameter), which
is correctly identified. However, as shown in Figure the approach actually
detects a dependency from all list sizes to the respective resource demand.
While this is technically correct, we drastically improve readability by removing
all red dashed dependencies in Figure We end up with the description
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of the list being forwarded through several components and its impact on
the resource demand of the Orderbased recommender, where it finally gets
processed. As these types of indirection are a common practice in software
engineering, 46 additional and similar cases of parameter pass-throughs can
be filtered in step 1.

WebUI Auth Persistence

placeOrder([Int price],[List items])
; 7§ T >

! - loop:[count] /

___________

createOrderEntry( ltem item)

- e e

EGmm e e

relevant , irrelevant invalid

dependency dependency dependency

C—parameter —

Figure 12.4: Call path for placeOrder annotated with identified dependencies.

The second filtering step deals with correlating dependencies. An example
is shown in Figure again with class and call names abbreviated, while the
list parameter refers to the list size. Here, the WebUI places an order which
is sent to the Auth service to verify that the user is logged in. If so, for each
item in the cart, a new OrderEntry is created at the Persistence service. This
represents a loop that is called once for each element in the items list. However,
we can see that two dependencies influencing the loop count are identified: (1)
the size of the list, which does make sense, and (2) the price of the order, which
seems strange. Indeed, there is a correlation between the size of the list and
the price of the order. The probability of a higher price of the order increases if
more elements are in the cart. Therefore, both the cart size and the total price of
the order correlate with the loop count. However, the price of the order directly
influencing the loop count is an invalid dependency since it would imply that
an increase in item prices would lead to a higher loop count, which is invalid.
As there exists a dependency and, therefore, a correlation between the size
of the cart and the total cart price, step 2 deletes the dependency of price to
the loop count since the relation involving the size of the cart is stronger. In
addition to ten irrelevant dependencies, the second step filters four invalid
dependencies, resulting in a total of 14 filtered dependencies.

Finally, we look at the graph-based filtering introduced in Section[7.1.6/on

216



12.2 Result Filtering

page[124] Note that the irrelevant dependency mapping the size of the cart to its
price, as depicted in Figure is not deleted in step 2. Instead, the following
graph-based filtering filters this dependency. The graph-based filtering will
not mark this dependency during the breadth-first step, as it is not related to
any performance-relevant parameter. The irrelevant dependency depicted in
Figure will therefore be deleted by the third filter step, together with 27
other irrelevant dependencies.

To summarize, we can say that all three filtering steps combined delete 86
irrelevant and four invalid dependencies. Therefore, over 90% of undesired
dependencies are filtered. After analyzing the remaining one invalid depen-
dency, we conclude that its existence is rooted in the applied workload. Our
approach finds a dependency between the number of requested images and
their requested size at the ImageProvider component. This is due to the imple-
mentation of the WebUI, requesting either a list of small product review pictures
or one single high-resolution product detail image. Therefore, this relation is
contained and can be observed from the monitoring data. However, we classify
it as invalid as this relationship is not based on the software code but rather
on the workload profile of the specific component. Nevertheless, based on
the monitoring data, this observation is actually correct. Without in-depth
knowledge about the application, it is not possible for DepIC to filter these rare
edge cases.

Additionally, seven of the remaining eight irrelevant dependencies are added
due to the addition of the discussed invalid dependency. These are technically
correct (e.g., modeling the parameter passing of the requested image size) but
finally relate to the discussed invalid dependency and are therefore marked as
irrelevant as they do not model a performance-relevant property. If we were
to remove the discussed invalid dependency by hand, these seven irrelevant
dependencies would subsequently be filtered by the described filtering mecha-
nisms, as they describe a relationship to this invalid dependency. After doing
so, we are left with a single irrelevant dependency. In addition, we note that no
relevant dependencies were filtered, which answers EQ [12.2] (“|What is the effect|
lof the proposed result filtering approach on the quality of the identified dependencies?]”).

We conclude that DepIC is able to enrich the base performance model of
TeaStore with 11 relevant dependencies learned from monitoring data. We
can furthermore calculate the precision using relevant dependencies as true
positives and invalid ones as false positives (given that irrelevant dependencies
can neither be counted as true positives nor false positives). With 11 relevant
and a single invalid dependency, DepIC achieves a precision of 91.7% after all
filtering steps.
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12.3 Impact of System Utilization

In the current version, DepIC approximates the resource demands based on
the observed response time, as detailed in Section on page This
approximation works well under low resource utilization but becomes inaccu-
rate with increasing load [[Spi+15]]. We now evaluate the impact of different
utilization levels on the accuracy of our approach. To this end, we conduct our
next measurement series.

12.3.1 Experiment setup

We start with the identical setup as already used in Section However, we
now increase the number of users concurrently using TeaStore to cause higher
system utilization. We first determine that the WebUI is the bottleneck service
by analyzing the utilization of each container. Next, we empirically analyze the
workload intensity of a closed workload that leads to a certain [CPUJutilization
of the bottleneck service. For each utilization level, we collect monitoring data
for two hours. We feed this data into the filter-based dependency detection
algorithm with all filtering steps activated, similarly to the setup used in Sec-
tion[12.2] and label the resulting dependencies according to the same scheme.
The applied setup used in Section created roughly a utilization of 15% at
the WebUI. In this experiment, we now add measurements for utilization levels
of approximately 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90%[CPU]utilization
at the bottleneck resource.

12.3.2 Results

The results of our analysis are shown in the stacked chart of Figure[12.5, We can
observe that the number of irrelevant and invalid dependencies increases with
higher system utilization. This is expected as the accuracy of the response time
estimation for resource demands decreases with increasing utilization [Spi+15]].
However, our approach still identifies all correct dependencies even with in-
creasing resource utilization at the bottleneck service. Furthermore, we observe
that there exist stronger factors influencing the accuracy of the approach than
the load level alone, as the number of irrelevant and invalid dependencies is
not increasing monotonously and is therefore influenced by other factors as
well.

This is contrary to our initial expectation, as inaccuracies of the resource
demand estimation should lead to inaccuracies in the detected dependencies.
We conclude that the inaccuracies of resource demand estimates do not affect
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Figure 12.5: Classes of identified dependencies from monitoring data for in-
creasing utilization levels.

the approach as strongly as expected since the relative differences between the
resource demand estimates remain the same. Even though the increased load
has a negative effect on the accuracy of the estimated resource demands, all
demands get affected to a similar degree. Therefore, the relative proportions
between the estimates stay intact and are still observable by DepIC. This an-
swers EQ [12.3| (“{What is the impact of increased system utilization on the quality]
lof the identified dependencies?|”). We conclude that DepIC is still usable with
monitoring data from higher utilization levels; however, manual review of
the identified dependencies becomes increasingly necessary as the precision
slightly deteriorates.

12.4 Dependency Characterization

Finally, this section aims at evaluating the impact and the performance of the
meta-selector trained and created in Section [/.2.3|on page[133] Therefore, the
following experiment focuses on evaluating the selections of the trained selector
on previously unseen dependency characterization tasks. The gained insights
can be used to answer EQ[12.4] (‘{How does the created meta-selector influence the|
[characterization accuracy?|”).
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12.4.1 Experiment Setup

Using the dependent Student’s ¢-test [Stu08]] for paired samples, we can test
whether using the selected technique A significantly reduces the average pre-
diction error 4 (i.e., the MAE]) compared to using a fixed machine learning
approach B that generally performs well. Recall that[SVR|was by far the best
approach in our experiment data, which is why we choose as a baseline
algorithm for this experiment (see Section [7.2.2|on page[131)). The paired t-test
is appropriate, as the samples are randomly selected, the data is paired, and
approximately normal distributed. We furthermore assume that the variance
of the two approaches is equal. However, this assumption might not necessarily
be accurate as the two approaches might have a different prediction behav-
ior. We choose the null hypothesis Hy = ;14 > 11 and alternative hypothesis

Hy = pa <upp.

Table 12.3: Dataset for meta-selector evaluation.

Name Input parameter name Range
ArrayListSerialization —arrayListSize 1-1000
arraySize 1-10 000

BinarySearchArray key 0 —100 000
isSorted 0-1

numRowsA 1-50

MatrixMultiplication =~ numColumnsA 1-50
numColumnsB 1-50

SolveTowersOfHanoi  numDisks 1-20
. numlInstances 1-2000
TrainMLP numEpochs 1-2000

The paired samples are obtained on five new runtime datasets, listed in
Table In the following, we give a brief description of each dataset:

ArrayListSerialization serializes and stores a numerical array to the disk. The
parameter arrayListSize describes the number of elements contained
in the array.

BinarySearchArray performs a binary search in a given integer array and a
given integer key. The parameter arraySize describes the number of
numerical elements contained in the array, key is the element to search
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for, and isSorted is a boolean value. The value is true if all values in the
array are ascending in value and false otherwise.

MatrixMultiplication executes a multiplication of two matrices. Their size is
specified with numColumnsA (columns of the first matrix), numRowsA (row
of the first matrix) and numcolumnsB (columns of the second matrix). The
number of rows of the second matrix is implicitly defined by the size of
A.

SolveTowersOfHanoi is an algorithmic solver of the Towers of Hanoi prob-
lem [[HKP18]]. The parameter numDisks describes the number of disks
that need to be moved.

TrainMLP trains a multi-layer perception. The two parameters numInstances
and numEpochs describe the number of instances used for training and
the number of training epochs, respectively.

These datasets were obtained using the same methodology as presented in
Section on page Per set, we use 10 different training set sizes (n =
20, 50, 200, 400, 700, 2 000, 4 000, 6 000, 8 000, 10 000), resulting in a total of 50
paired samples. For each sample i, we calculate the difference d; between the
of A and B on the dataset’s respective test set:

d; = MAE,(A) — MAE;(B).

Next, we calculate the mean d and the standard deviation &, of the set of
differences d. With this, we can calculate the ¢-value of our dependent samples:

d
0d
The following section presents the results for our specific datasets.

12.4.2 Results

After discussing the experiment methodology, we now analyze the results
achieved by the trained meta-selector. The mean difference d over all
samples is 20884 576 ns and the standard deviation &, of the differences is
6 166 633 ns, resulting in the following t-value:

20884576
+ = /50 . 2020 0N

= 23.9476.
6166633ns 39476
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The critical ¢-value for 49 degrees of freedom and a probability level of 1% is
£(0.99;49) = 2.404892. As ¢t > t(0.99;49), we can reject the null hypothesis and
conclude that the proposed ensemble technique is superior to[SVR]

Compared to always choosing [SVR] for all test sets, the selector improves the
overall MAE by 30%. Additionally, it is interesting to note that the best-suited
approach changes with the number of available measurement points. For two of
the datasets, even four different approaches performed best depending on the
size of the training set. This underlines the importance of using a meta-selector.

Our evaluation shows that for the given samples, the average prediction
error is significantly lower when using the meta-selector instead of always
applying[SVR] the best individual machine learning approach. We infer that
our meta-selector is an appropriate approach for prediction technique selec-
tion. Overall, the experiment shows that it is feasible and beneficial to adapt
prediction techniques to observable dataset characteristics without applying
domain knowledge or manual effort. This answers EQ [12.4] (“|[How does the]
lcreated meta-selector influence the characterization accuracy?|”).

12.5 Summary

In this chapter, we evaluate the performance of DepIC, our approach for (i) the
automated detection of dependencies from monitoring data, and (ii) the selec-
tion of characterization techniques for identified dependencies presented in

Chapter [/ on page In order to do so, we pose ourselves four
Questions] (EQs).

We apply three different approaches for feature selection and show that a
filter-based approach outperforms the competing techniques in terms of solu-
tion quality and run time to answer EQ[12.1] (“{Which feature selection technique is|
[suited best for the identification of parametric dependencies?|”). Furthermore, we ana-
lyze different post-processing steps intended to reduce the number of irrelevant
dependencies on a microservice reference application. The post-processing
steps eliminate over 90% of the unwanted dependencies and increase the preci-
sion for 11 correctly identified dependencies to 91.7%. This answers our second
question: EQ|12.2| (“|What is the effect of the proposed result filtering approach on
the quality of the identified dependencies?]’). EQ ("{What is the impact of in]
creased system utilization on the quality of the identified dependencies?|”) aims at
uncovering the limitations of DepIC by conducting additional experiments
with different load levels. We observe that although the precision of DepIC
suffers from increasing load levels, it still correctly identifies all dependencies
under high utilization. Finally, we investigate the performance of the created
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meta-selector for dependency characterization. It reduces the prediction error
by 30% compared to using the best individual approach, answering EQ
(“[How does the created meta-selector influence the characterization accuracy?|”). We
now discuss the threats to the validity of the presented evaluation as well as
the limitations and the assumption of the presented approach.

12.5.1 Threats to Validity

Although the presented evaluations were conducted with great care, there are
still some remaining validity threats to be discussed.

12.5.1.1 Internal Validity

We evaluate the capability of DepIC to accurately identify the existence of para-
metric dependencies. However, we do not investigate how much the prediction
accuracy of a performance model improves after including the identified para-
metric dependencies. The reasoning behind this is that the prediction accuracy
of a performance model depends on many different factors, including the
applied modeling formalism, model solver, the system under consideration,
and the granularity of the applied model.As DepIC is generally applicable, we
did not restrict ourselves to any existing modeling formalism. We, therefore,
minimized the impact of any side effects in our evaluation and decided to
evaluate our approach in isolation. However, this prevents an evaluation of the
expressiveness of the detected dependencies since this would require applying
DepIC to a specific formalism, together with a technique for characterizing the
found dependencies.

Additionally, we focused on executing the t-test when analyzing the effec-
tiveness of the meta-selector in Section[12.4] Although other metrics like the
hit rate (share of samples, where the optimal approach was selected) or the
overall accuracy achievement might give us more information about the ac-
tual performance, these values are very dependent on the chosen evaluation
datasets themselves. As the datasets can not be viewed as representative of the
real-world measurements (see Section[12.5.1.2)), we intentionally avoided the
use of those metrics as they might suggest false confidence. Instead, our goal
was to verify the superiority of the meta-selector over a single approach appli-
cation, which could be convincingly shown using the applied ¢-test experiment
in Section 2.4l
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12.5.1.2 External Validity

From our experiments, we can not conclusively show that the thresholds de-
termined in Section [12.1.2]are transferable to other systems or if the threshold
tuning is an elemental step of the algorithm calibration for each system. Explor-
ing this would require a case study spanning a large number of representative
systems and workloads, including a variety of approaches for hyperparameter
tuning.

In Section[12.3) we explore the impact of system utilization on the accuracy of
our dependency identification approach. We showed that the results of DepIC
are usually stable, as long as the relative proportions between the measured
or estimated resource demands stay the same. As our experiments included
constant load scenarios, utilization levels did not have a strong impact on
the approach. However, as varying load levels might impact the measured
relative proportions, future research will investigate these effects and propose
possible countermeasures. Therefore, the results from this experiment are not
necessarily transferable to all other software systems.

Although we put in our best efforts to select and create a variety of repre-
sentative datasets (see Section[7.2.1]on page[127)), the number of used datasets
is still limited. Our collection was sufficient to support our assumptions and
evaluate that the no-free-lunch theorem [[Wol96;[WM97]] holds in the domain
of dependency characterization. However, due to the sheer number of possi-
ble measurement experiments and resulting datasets, the constructed meta-
classifier must not be seen as a final rule set but rather as a proof-of-concept
implementation of the respective contributions.

12.5.2 Limitations and Assumptions

In this work, we compare three different feature selection algorithms, one
from each major group of feature selection algorithms [[GEO3]]. This assumes
that the performance of the chosen approach is representative of the whole
group. However, this comparison can be extended with further feature selection
techniques as surveyed by Guyon and Elisseeff [|[GE03]].

When creating the data streams in Section [7.1.2]on page we settled on
strong simplifications for resolving indirect recursions. As our test application
did not contain many indirect recursions of considerable size, this did not cause
any problems in the presented study. However, we acknowledge that this is a
sub-optimal solution for some applications since an indirect recursion might
span over many methods, which lead to the contraction of them into one single
vertex.
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We addressed the problem of monitoring resource demands shortly in Sec-
tion on page[115|and evaluated the impact of increasing loads in Sec-
tion[12.3 of the evaluation. However, the chosen resource demand estimation is
still a strong simplification and could be improved by integrating it with more
elaborated techniques as presented in Chapter [6|on page

The current approach relies on a certain amount of monitoring data to be
available. Next to the requirements discussed in Section on page
the accuracy will likely be sub-optimal until a certain amount of monitoring
data has been gathered. This is due to the fact that the accuracy of machine
learning algorithms is usually strongly dependent on the available training set
size. However, recall that the meta-selector is able to partially cope with this
issue by selecting the respective approach.

Lastly, we acknowledge that DepIC only covers dependencies between model
parameters on the same call path. Parameters describing the current state of a
system, for example, the number of entries in a database, can also influence the
performance of a software component [[HBR13]] while not lying on the same
call path as the resource demand they influence. Currently, our approach is
not capable of detecting such stateful dependencies, as proposed by Happe
etal. [HBR13]]. However, the presented technique could be extended to support
such dependencies by adding state variables into every feature selection task.
We did not cover this in the current iteration, as this drastically increases the
run time and requires manual identification of state variables by an expert.
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Chapter 13

Evaluating DBMS Configuration
Models

In this section, we evaluate Baloo, our approach for measuring and modeling
the configuration space of a distributed as introduced in Chapter[8/on
page In the first step, we use an existing dataset to determine the robust
metric. We then use a newly generated dataset to validate the chosen metric
in Section [13.2)). The new dataset is then used to evaluate the quality of the
measurement repetition determination in Section and the performance
model construction in Section The resulting analysis aims to answer the
following [EQs| for the respective Goal [IV| (“{Develop a workflow for modeling]
lconfigurable, cloud-based, and distributed DBMSs.|").

e EQ 13.1: What metrics are suited for summarizing the measurement of one
configuration?

o EQ 13.2: What is the impact of the proposed dynamic repetition determination
approach on measurement cost and accuracy?

o EQ 13.3: What is the most appropriate regression modeling approach?

o EQ 13.4: What are the cost and accuracy implications of different target thresh-
olds?

In the following, we introduce both datasets used in this evaluation in Sec-
tion Our implementation of the Baloo framework, as well as all evaluation
scripts and the respective data, is publicly available for repetition as a Code-
Ocean capsule [|Gro+21d]. As discussed, Sections to then analyze
the presented Finally, we present an evaluation summary, as well as
a discussion of the threats to validity and the limitations of the approach in
Section
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13.1 Validation Datasets

For evaluating Baloo, we make use of two different datasets. The configuration
space of the respective datasets is depicted in Table and comprises eleven
dimensions. The first dataset is an existing and openly available dataset [SD19],
comprising 102 configuration points for Apache Cassandra and Couchbase.
The Apache Cassandra configuration points serve as a reference dataset for
determining the robust metric.

Table 13.1: Configuration space of the two evaluation datasets.

Parameter Seybold et al. [[SD19]] Baloo dataset [Sey+20]]

Infrastructure public Amazon EC2, pri- private OpenStack
vate OpenStack

VM type small — t2.medium tiny — small - large

DBMS Apache Cassandra Apache Cassandra

Cluster size 3-5-7-9 3-5-7-9-11

Client consistency any — one — two one — two — three

Replication factor 3 1-2-3

Benchmark

Workload write-heavy write-heavy

Records 4 000 000 4 000 000

Record size 5 KB 5 KB

Storage backend  [SSD) HDDL remote SSD

The second dataset has been created for this work and is also published on
Zenodo [Sey+20]]. For this evaluation, we defined seven configuration dimen-
sions as static. We select a private OpenStack-based cloud infrastructure as this
gives us control over OpenStack-specific configurations such as the overcommit-
ting factor and [VM] placement. We select Apache Cassandra as representative
cloud-hosted [NoSQLJDBMS| Finally, we use a write-heavy workload issued
from the [YCSB| [[Coo+10]] and four million records with a record size of 5 KB
for comparability to other work [Sey+19]]. We use for storage as it is
recommended for most[DBMSs]

For the remaining four dimensions type, client consistency, replication
factor, and cluster size), we use three different configuration options for VM|
type, client consistency, and replication factor. For the cluster size, we use five
different options. Due to the fact that the client consistency and the replication
factor can not be chosen fully independently, this yields a total of 90 different
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configuration points. The dataset contains ten measurement repetitions for each
configuration point and a time series of performance metrics, system metrics,
and additional metadata for each measurement run, summarized by Table[13.2}
More details on the datasets can be found in the respective publications [SD19}
Sey+20]].

Table 13.2: Summary of the gathered dataset and the contained monitoring.

Data Amount/Description
Configuration points 90
Repetition per configuration 10
Total data points 900
Performance metrics Throughput, latency
System metrics disk, and network usage
Metadata Execution, workload, and deployment logs

13.2 Robust Metric Selection

In this section, we evaluate the different statistical measures that are robust
metric candidates. We start with a publicly available dataset [[SD19]] and then
evaluate the transferability by comparing the results with our dataset. Table[13.3]
compares the average score of the different robust metrics. The lower the
score, the less variation and hence the better the metric fits our needs. As
listed in Section [8.2.1] on page we include the mean and the median, as
well as different variants of percentiles, the trimmed mean, and the winsorized
mean, the Trimean [Tuk77]], and the Hodges-Lehman estimator [[Leh06]] in this
evaluation [DD11]].

Although the two datasets are different with regards to the used cloud
infrastructure, the sizes, and the number of measurement repetitions,
we observe that the performance of the different metrics is very comparable
for both throughput and latency. For throughput, the 95t percentile achieves
the best score across both datasets. When analyzing latency, we observe that
both datasets have one minimum for the trimmed mean of 30%. The first
dataset has an additional minimum using the 30%-winsorized metric, while
the second dataset performs slightly better using the median. However, both
the 30%-winsorized and the median are in the third place for the respective
other dataset.
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To summarize, we can say that the results from the publicly available dataset
transfer very well to our own dataset. Hence, we conclude that the 95" per-
centile for throughput, as well as the trimmed mean or the winsorized mean
for latency, are viable, robust metrics that can be applied for comparing
cloud performance. As are usually optimized for throughput, we con-
centrate on throughput for the remainder of this work. Based on our insights,
we use the 95 percentile as a robust metric. With this, we can now confidently
answer EQ|13.1| ("(What metrics are suited for summarizing the measurement of one|

Forflguration ).

Table 13.3: Comparing the average CV for each robustness metric for the
external dataset with our own dataset.

Throughput CV Latency CV

Metric External Own | External Own
Mean 0.039 0.062 0.164 0.201
Median 0.044 0.063 0.036 0.051
95t percentile 0.028 0.039 0.138 0.174
90th percentile 0.029 0.042 0.079 0.107
80t percentile 0.032 0.047 0.052 0.076
70t percentile 0.036 0.052 0.042 0.062
Trimmed (5%) mean 0.039 0.062 0.046 0.076
Trimmed (10%) mean 0.039 0.062 0.038 0.056
Trimmed (20%) mean 0.041 0.062 0.035 0.052
Trimmed (30%) mean 0.042 0.062 0.035 0.051
Winsorized (5%) mean 0.039 0.062 0.057 0.090
Winsorized (10%) mean 0.039 0.062 0.043 0.059
Winsorized (20%) mean 0.039 0.063 0.036 0.055
Winsorized (30%) mean 0.041 0.063 0.035 0.052
Trimean 0.042 0.062 0.036 0.053
Hodges-Lehmann 0.039 0.063 0.036 0.054

13.3 Measurement Repetition Determination

In this section, we evaluate the measurement repetition determination dis-
cussed in Section [8.2.3|on page [143]in order to answer EQ [13.2] ({What is the
impact of the proposed dynamic repetition determination approach on measurement,
cost and accuracy?|”). The core idea of the presented algorithm is to determine
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the least number of measurement repetitions that still approximate the true
mean of the underlying distribution, that is, the target value of interest. We
do so by comparing estimations obtained by Baloo with the median of all ten
measurement repetitions from the evaluation dataset.

As the true mean of the underlying distribution is unknown, we make the as-
sumption that the median of all ten measurements approximates the true mean
of the underlying distribution and serves as a gold standard in this evaluation.
We compare Baloo with different static methods of always measuring one, two,
three, or five repetitions and then returning the median of that value set. As
Baloo uses probabilistic elements and the selection of the next measurement
point is non-deterministic as well and strongly influences the obtained results,
we repeat the evaluation 100 times.

Table 13.4: Comparing different baseline approaches with Baloo for average
accuracy and measurement repetitions.

Approach [MAPEl |RMSE| Average # points

Baloo 1.42% 2518 2.59
1-point 2.75% 5384 1.00
2-point 2.19%  403.3 2.00
3-point 1.54% 3154 3.00
5-point 0.76%  148.1 5.00
10-point 0.00% 0.0 10.00

Table [13.4 shows the MAPE|and the RMSE] of Baloo and the four baselines
together with the average measurement repetitions required. The reported
results are averaged over the 100 repetitions of the evaluation. We observe
that the error generally decreases as we increase the number of measurement
points. This is expected as more measurement points reduce the impact of
random measurement noise. It is also observable that the baseline approaches
have a deterministic number of measurement points, as is expected due to the
nature of the baseline. Baloo outperforms 1-point, 2-point, and even 3-point
in average MAPE| and [RMSE| while requiring only 2.59 measurement points
on average. This shows that two measurements are sufficient to accurately
describe a performance measurement in most cases.

Nevertheless, sometimes more measurements are required. This insight can

be supported by comparing the reported MAPEs|with the given RMSEs| For
MAPE] our approach is only slightly better than 3-point (roughly 8% decrease).

This difference is larger when analyzing the RMSE| (roughly 20% decrease).
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Since the puts a stronger focus on outliers, we can conclude that our
approach is able to correctly determine critical measurement points while keep-
ing the requested measurement to the minimum amount of two measurements
when not required. The 5-point baseline and 10-point gold standard consis-
tently achieve lower errors than our proposed approach. This is expected,
as they also conduct significantly more measurements. If higher accuracy is
required, our approach could be tuned accordingly. This answers EQ

To summarize, our approach successfully handles the trade-off between
required measurement repetitions and target accuracy. It is worth noting that
in this experiment, the average number of required measurement points is
comparatively low, as all experiments were executed on a private cloud with
a relatively low load (see Section [I3.1]). Therefore, the number of required
measurement repetitions, as well as the gain achieved by our approach, might
be even higher for other environments [LC16; KKR14]].

13.4 Performance Model Construction

In this section, we evaluate the performance model construction techniques
and the corresponding performance models. As our approach works with
any regression technique, our analysis compares the performance of different
machine learning algorithms. For this, we analyze the required amount of mea-
surement configuration points together with the achieved target accuracy on
the remaining validation set. We include models created by |Linear Regression|
(LR)), Ridge Regression| (Ridge]), [Elastic Net Regression| (ElasticNet)), [Bayesian|
Ridge Regression| (BRR)),[Huber Regression| (HRJ), [Gradient Boosted Decision
Trees| (GBDT]), [Random Forest| (RF), and Additionally, to get a better
comparison, we add a baseline regressor (Mean) which always predicts the
mean of all seen samples.

In this experiment, we vary the target accuracy threshold ¢, of the internal
score s based on three-fold cross-validation between 0.1, 0.15, 0.2, 0.25,
and 0.3. The maximum ratio r,,,, was set to 0.9, resulting in a cutoff at 81 (0.9 -
90 total) configuration points. For the initial configuration measurement set,
we set an init-ratio of 0.05, resulting in at least 5 ([0.05 - 90]) configurations
for each approach. We only add one configuration per increment, that is,
ratio = 0.01, as for our comparatively small example set, the training time was
significantly lower than the measurement time and could therefore be neglected.
Furthermore, this enables a better analysis of the required configuration points.
All algorithm implementations are based on Scikit-learn [Ped+11]] and use the
defined default parameterization.
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The comparison is shown in Figure The x-axis depicts the number
of configuration points that were measured before the respective workflow
terminated, that is, ¢, was achieved, or 81 configurations were measured. The
y-axis shows the on the remaining configurations that were not added
to the training set. We repeat all experiments 25 times and report the average
value as these processes are highly influenced by the random seed.
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Figure 13.1: Achieved accuracy versus required configuration points for varying
target accuracies.

From Figure we observe that multiple approaches perform comparably
in terms of required configuration points and the achieved prediction error.
However, and Mean (baseline) are not able to capture the performance
structure very well and, therefore, perform poorly in terms of prediction error
and required configuration points. [SVR|even runs out of measurement options
and therefore retrieves the maximum number of configuration points for ¢, =
0.1.

All other approaches perform similarly well, but we can still identify small
differences between them. Increasing the target accuracy has the expected
effect of generally reducing the prediction error while increasing the measured
configuration points. While achieves the overall lowest prediction er-
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ror (10.72%), R is able to achieve slightly worse results using considerably
fewer configuration points for t; = 0.15 and ¢t; = 0.2. For bigger values of
ts,[GBDT| performs slightly better again. Using this, we can answer EQ
(“\What is the most appropriate regression modeling approach?|”) and conclude that
[RF and show the best performance on our dataset.

Table 13.5: Detailed performance of all algorithms for a fixed target accuracy
ts of 0.15.

Approach |MAPE Measurements Configurations Time

22.04 43.56 1778 0.43s
21.37 51.62 19.64 0.52s
22.80 98.60 38.10 1.04s
20.23 71.16 2720 0.84s
19.26 52.78 2046 0965
18.44 55.66 2152 1265
17.50 66.30 25.88 5.05s
27.30 181.88 7040 2.00s
Mean 28.44 181.74 7026 1.89s

Table [13.5|shows more details on the performance of the individual algo-
rithms for ¢, = 0.15. In addition to the average achieved error (MAPE]) and
the required number of configurations (Configurations), we see the average
number of total measurement runs conducted (Measurements) and the average
time of the workflow execution excluding measurements (Time). We conclude
that even unoptimized machine learning approaches are able to achieve pre-
diction errors of around 20% on a dataset consisting of 90 configuration points,
made up of 900 individual measurement series while measuring less than
25% (~ 22) of configurations and conducting around 6% (~ 54) of individual
measurement runs.

Adding more measurement points increases the accuracy and reduces the
error to up to 12%. However, the accuracy gain per added configuration de-
creases over time, which is consistent with our expectations. The additional
computation effort introduced by our framework is negligible (execution times
of under 1 second per training process) if we consider that one measurement
run takes minutes or even hours to complete. Therefore, the achieved time
savings are more than 94%, for an accuracy cost of just 20%. Even by reducing
the accuracy cost to 11%, we can still achieve measurement time reductions
of over 80% (162.78 measurements on average). We believe this result to be
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sufficient, considering that average performance in public clouds also regularly
fluctuates [[LC16; IYE11]]. Therefore, this answers EQ [13.4] (“{What are the cost|
land accuracy implications of different target thresholds?|”).

13.5 Summary

In this section, we quickly summarize the insights of the presented evaluation
and discuss the most relevant threats to the validity of the results, as well as
the remaining limitations of the Baloo approach. To evaluate our framework,
we measured the distributed Apache Cassandra in our private cloud
using 90 different configurations and ten repetitions each, resulting in 900
measurement runs comprising of roughly 450 measurement hours and 9 450
compute hours. We made the resulting dataset publicly available to foster
future research in this area [Sey+20]].

We compare different robust metrics in order to answer EQ (‘What|
[metrics are suited for summarizing the measurement of one configuration?”) and find
that the 95" percentile (throughput), the trimmed mean (latency), and the win-
sorized mean are all viable metrics when comparing [DBMS|runs. In addition,
we see that using the proposed dynamic repetition determination minimizes
the required amounts of measurements while still maintaining acceptable mea-
surement inaccuracies compared to static baseline approaches (EQ[13.2)). Lastly,
we analyze different performance model construction techniques (EQ and
compare the results of different target thresholds (EQ[13.4)). The evaluation
shows that our highly configurable approach is able to save between 80% and
94% of measurement time for a respective accuracy cost of 11% to 20% when

using [RF or[GBDT}

13.5.1 Threats to Validity

After we summarized the result, we discuss the threats to the validity of the
achieved insights in this chapter. We divide this section into internal validity
and external validity.

13.5.1.1 Internal Validity

The analysis of Section [13.3| defined the 10-point approach, that is, the median
of all ten measurement repetitions, as the gold standard for all measurement
repetition approaches. This is a necessary assumption as the true mean of the
distribution is unknown at evaluation time. However, this still introduces a
threat to the validity of this analysis, as all presented results are based on this
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assumption. This problem could be mitigated by increasing the measurement
repetitions of the gold standard (e.g., 100) in order to increase the confidence in
the generated gold standard. However, this would incur massive measurement
costs, as is therefore unfeasible for us in this work. Another evaluation approach
is to define an artificial distribution and evaluate the approaches by randomly
drawing samples from the distribution with the known mean. We purposefully
discarded that strategy as this implies defining an underlying distribution,
which could also bias the achieved results. Instead, we focus on real-world
measurement results in this work.

When analyzing the performance of the different regression techniques for
answering EQ13.3| ("(What is the most appropriate regression modeling approach?|”),
we restrict ourselves to using the standard parameterization. We are convinced
that applying parameter optimization (see Section[2.3.3.1]on page[32) or fea-
ture engineering (see Section [2.3.3.2 on page 33) methods could additionally
increase the performance of all used algorithms. As our analysis presented in
Section [13.4)is limited to the default parameterization, the presented ordering
might substantially change when tuning the respective approaches. However,
we consciously focus on simply showing the applicability of the proposed Baloo
framework and do not claim to produce the best possible results.

13.5.1.2 External Validity

The dataset introduced in this work contains only measurements for Apache

Cassandra, an open-source and distributed Although we believe

that Apache Cassandra is a reasonable choice as it is a well-known representa-

tive of a|[NoSQL|DBMS|that puts a strong emphasis on distributed deployment,

all results insights achieved in this work are limited to the underlying dataset.
We purposefully choose a in this work, as systems tradi-
tionally put a stronger focus on distribution aspects [[SD17;(Sey+19]], which was
the focus of our analysis. However, note that both Baloo and the used Mowgli
benchmarking framework work agnostic and can therefore be applied
to other systems as well. However, while we are confident that the concept
of Baloo can be transferred to other the achieved gain might differ,
especially when considering an system.

We evaluate the performance of different robust metrics in Section [13.2]to
answer EQ (13.1] (“{What metrics are suited for summarizing the measurement of one|
configuration?|”). For this, we compare our dataset with an additional external
dataset recorded using the same benchmarking tool (Mowgli). Although the
observed results are convincingly similar for both datasets, the presented anal-
ysis is only applied to two different datasets. As both datasets still concentrate
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on the Apache Cassandra the generalizability of the results of EQ
might be limited. Therefore, future work should continue our analysis for other
available dataset traces to validate whether our claims can be generalized to
more [DBMS|system:s.

Finally, all of our measurement and prediction results are focused on the
workload provided by Mowgli and Therefore, we can not claim any
generalizability beyond the applied workload. However, this is due to the lack
of an established, real-world benchmark for [Dom+21]], which
is why [YCSB]is the de-facto standard [Ren+17]. To that end, we published a
vision for realistic and tailored DBMS|benchmarking [Dom+21]] that will be
the target of future work.

13.5.2 Limitations and Assumptions

In this section, we discuss the main assumptions and limitations that we see
with Baloo. One of the main properties of Baloo is that it relies on real bench-
marking measurements. This is a conscious choice, as the theoretical and the
measured performance of a cloud system might substantially differ [SD17;
Wall9]]. However, the downsides of the required measurement series are the
increased cost implications and time investments. While the actual measure-
ment process is automated, we still need to reserve the respective hardware
resource in an environment that closely resembles the target system as well as
the time for each benchmark. Hence, Baloo offers the configurable cost-accuracy
trade-off in order to mitigate this issue.

Another consequence of the large cost associated with each measurement
run is the limited size of the presented dataset. Although we varied only
four different dimensions, resulting in a total of 90 different configurations,
the creation of the dataset required roughly 9 450 compute hours. This is
also one reason why we could not easily find comparable datasets, including
systematic and repeated measurement series. Therefore, we could not evaluate
the applicability of Baloo on large configuration spaces. As the regression
algorithms used in this work only rely on black-box measurement data and can
not utilize domain knowledge, Baloo is relatively conservative in reducing the
number of required configuration points. Therefore, for huge configuration
spaces, the accuracy targets of Baloo need to be adapted accordingly, resulting
in lower prediction accuracy.

In contrast to the other approaches presented in this work, Baloo is not pri-
marily intended for online use. The main reason for this is that Baloo needs
to be able to actively trigger measurement runs, while the other approaches
usually utilize passive monitoring streams from production systems. This fur-

237



Chapter 13: Evaluating DBMS Configuration Models

thermore implies that Baloo requires an accurate workload model for executing
the benchmarking runs. As all configurations are optimized for the conducted
measurements, the configuration of the benchmark workload has a huge impact
on the respective results.

The presented Baloo framework focuses on one-dimensional performance
classification. This is sufficient, for example, if the goal is to optimize a
for keeping a latency [SLA| while minimizing the required cost. However, most
can be measured with more than one performance metric. For example,
if both throughput and latency are relevant for the operator, we can utilize
multi-target prediction to model multiple relevant performance metrics for the
given configuration space at the same time. Therefore, extending the Baloo
framework for multi-target modeling can be a future research direction.

Finally, Section is focused on finding the metric that is suited best to
aggregate the complex measurement runs into single measurement values.
However, the aggregation of a multivariate time series into a single value nec-
essarily discards useful information about the properties of the underlying
benchmark run. This information can be used, for example, to discard measure-
ment runs if anomalies or other failures occur during the benchmark execution.
However, as the aggregation of this information into one or several meaningful
indices is not trivial, we leave this topic for future work.
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Chapter 14
Summary

Modern applications are often designed and developed as cloud-native mi-
croservice applications. Microservice architectures offer massive benefits for
development and maintenance. The paradigm is typically paired with a Dev-
Ops culture to further speed up application delivery. In addition, these appli-
cations are designed to run natively on public cloud platforms to tackle the
unpredictable usage growth and the increased performance and availability
requirements of users. Such applications are often referred to as cloud-native
applications.

The use of continuously changing and cloud-hosted microservice applica-
tions introduces a number of unique challenges for modeling the performance
of modern applications. These challenges violate common assumptions of
the state of the art and complicate the automated derivation of performance
models from monitoring data. Nonetheless, such performance models are an
essential tool to manage cloud applications in order to conserve energy and
minimize operating costs while still maintaining user experience. Hence, the
emergence of modern software paradigms necessitates new research towards
the automated learning of such performance models.

In this thesis, we present five techniques for automated learning of perfor-
mance models for cloud-native software systems. We achieve this by com-
bining machine learning with traditional performance modeling techniques.
Depending on the cloud computing model, privacy agreements, or monitoring
capabilities of each platform, we identify four main application scenarios where
performance modeling, prediction, and optimization techniques can provide
great benefits and arrange our contributions accordingly. In this chapter, we
summarize the individual contributions and revisit the respective goals and

targeted in this work.

Contribution 1: Monitorless: Detection of resource saturation using platform-
level metrics As our first contribution, Chapter E]presents Monitorless, our
approach for utilizing machine learning techniques to bridge the gap between
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platform-level monitoring and application-specific We show that a prop-
erly trained machine learning model can utilize platform-level data to inferring
the [KPI|degradation based on resource saturation of arbitrary applications in
order to answer RQ L.1| (1How can platform-level measurements be utilized to detect
resource saturation?|”). Furthermore, answer RQ [I.2| (“lHow can we generalize the
results to create a generic and holistic prediction model?|") by creating a diverse test
set that covers different scenarios and shows that this model is sufficient for pre-
dicting the performance of heterogenous microservice applications. This way,
Monitorless represents our solution for Goal [I] (“{Design an application-agnostid
approach for the detection of resource saturation based on platform-level monitoring]
datal).

Chapter[J|evaluates the presented solution using a multi-tier web service and
two representative microservice applications that are not included in the train-
ing phase (RQ[L.2)). Results show that Monitorless infers [KPI| degradation with
an accuracy of 97%. Furthermore, we use the inferred [KPI|degradations to show
that Monitorless achieves comparable performance than typical autoscaling so-
lutions, even if these utilize optimized thresholds (RQ[LI]). Using Monitorless,
engineers can rely solely on platform-level metrics to fulfill resource-based
and, therefore, remove the need for any application-level monitoring
(Goal[l). In addition, as the model is application-agnostic, there is no need to
retrain the provided model for different target applications.

Contribution 2: SuanMing: Prediction of performance degradations using
application-level tracing Second, we present SuanMing in Chapter The
goal of our second contribution is to utilize reactive tooling to predict
and avoid future performance degradations of microservice applications. This
is reflected in the two key of Chapter p| SuanMing shows that we can
utilize the tracing data to derive request propagation and performance models
for the individual components to answer RQ ("IHow can tracing data be|
[ufilized fo predict the future performance of a system?|”). Furthermore, we address
RQL.2| (“{How can we pinpoint the roof cause service of a performance problem?|")
by proposing an algorithm that uses both models to filter the root causes for a
performance problem. Using these techniques, we achieve Goal [[I] (“{Develop]
an approach for the prediction of performance degradation using application-level
tracing.”) by introducing the SuanMing framework.

Chapter [10|analyses the performance of SuanMing on two realistic microser-
vice applications. We show that our approach predicts (RQ[ILT]) and pinpoints
(RQ performance degradations with an accuracy of over 90% and that the
overhead of applying our approach is feasible for online environments. One
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main benefit of SuanMing is that operators can add our approach into their
already configured monitoring stack to augment the reactive capabilities of
their[APM]|tools with a predictive and proactive component that is able to deter-
mine and avoid performance degradations before they actually occur (Goal[I).
SuanMing requires no additional application data for delivering predictions, as
the required information is automatically deducted from the data.

Contribution 3: SARDE: Continuous and self-adaptive resource demand
estimation Our third main contribution targets the area of resource demand
estimation. In Chapter [6| we focus on answering RQ [[TL1] (‘{How can we combine
different estimation approaches to efficiently produce continuous resource deman
estimations?|”). In order to do so, we present SARDE, a framework for self-
adaptive resource demand estimation in continuous environments. SARDE
dynamically and continuously optimizes, selects, and executes an ensemble of
resource demand estimation approaches to adapt to changes in the environment.
This creates an autonomous and unsupervised ensemble estimation technique,
providing reliable resource demand estimations in dynamic environments.
Therefore, the approach presented in Chapter [f| represents our solution for
answering RQ

We evaluate SARDE using two datasets. One set of micro-benchmarks re-
flecting a multitude of different possible system environments and one dataset
consisting of a continuously running application in a changing environment.
Our results show that by continuously applying online optimization, selection,
and estimation, SARDE efficiently adapts to the online trace and reduces the
model error using the resulting ensemble technique (RQ[IILI)). In total, SARDE
achieves an average resource demand estimation error of 15.96%. SARDE works
as a fully autonomous, situation-aware, and self-adaptive ensemble resource
demand estimation approach. Therefore, SARDE continuously updates or
improves the performance model of a running application and brings us closer
to self-aware performance models (Goal [III]).

Contribution 4: DeplC: Learning parametric dependencies from monitor-
ing data Our fourth contribution addresses RQ [I11.2| (“|How can the impact|
lof parameters on resource demands be identified and characterized?|”). Chapter
proposes DepIC, our approach to derive parametric dependencies from run-
time monitoring data. The DepIC approach for Dependency Identification and
Characterization utilizes feature selection teck?iques for identification and
an ensemble regression approach for the characterization of dependencies

(RQIIL2).
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Our evaluation shows that DepIC achieves an identification precision of
91.7% using the investigated microservice application. Furthermore, Chap-
ter [12]shows that the proposed meta-selector for characterization reduces the
prediction error compared to the best individual machine learning approach by
30%. DepIC enables the automated extraction of more detailed models while
requiring only runtime monitoring data of the managed application and oth-
erwise treats the application as a black-box (RQ[IIL2)). Taken together, DepIC
and SARDE achieve Goal [lII| ([Enable the continuous estimation and improvement]
lof performance model parameters using production monitoring data|”) by answering
RQ[II.1jand RQ|III.2|and present our effort towards self-aware performance
models.

Contribution 5: Baloo: Measuring and modeling performance configurations
of distributed Finally, Chapter 8| presents Baloo, the fifth major con-
tribution of this thesis. Baloo is a framework for systematically measuring and
modeling performance configurations of distributed [DBMS|in cloud environ-
ments. We solve RQ[IV.1| (“{How can the influence of performance variabilities during|
[benchmark measurements be mitigated?|”) by introducing a dynamic measurement
repetition procedure automatically analyzing the benchmarking variabilities.
Furthermore, RQ[IV.2| (“[How can we analyze a configuration space that is too large to|
Imeasure exhaustively?|”) is addressed by comparing different machine learning
techniques for modeling unknown configurations. Based on the desired target
accuracy, Baloo dynamically estimates and executes the required number of
measurement configurations, as well as measurement repetitions per configu-
ration, and automatically creates a performance model over the whole available
configuration space. Therefore, Chapter 8 fulfills Goal [IV| (“{Develop a workflow|
[for modeling configurable, cloud-based, and distributed DBMSs").

Chapter |13|shows the evaluation of Baloo based on a dataset of 900 config-
uration measurements. The evaluation shows that the highly configurable
approach saves up to 94% of measurement effort for an accuracy cost of 20%
or 80% for a cost of 11%. Furthermore, we observe that the measurement
repetition algorithm dynamically adapts the number of required repetitions
(RQ[IV.1). Through modeling the configuration space, Baloo can quickly extrap-
olate expected performance results for a given configuration without actually
measuring it (RQ[IV.2). Besides finding the most performant[DBMS|configura-
tion, it gives a better understanding of the entire configuration space, providing
valuable insights for operators and architects when trading performance against
other non-functional aspects such as security, reliability, and costs.
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Summary In this thesis, we present five core contributions towards automated
performance modeling of cloud-native microservice applications. Each con-
tribution is tailored to one of the four specific target scenarios introduced in
Chapter |1} depending on the cloud computing model, privacy agreements, or
monitoring capabilities of the respective platform. Hence, the contributions are
specialized to provide the best modeling, prediction, and optimization results
for the respective scenarios. Nevertheless, the goal of all proposed approaches
is to provide automated performance modeling techniques that optimize cloud
operations for modern microservice applications. Together, they present a
holistic solution to a complex problem and significantly advance the research
field.
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Chapter 15
Open Challenges and Future Work

To conclude, we collect a list of remaining challenges that we did not target in
this thesis and give directions or targets for future work in this research area.

Tighter collaboration of individual contributions We already described how
the continuous learning capabilities of SARDE and DepIC for resource demand
estimation and dependency learning integrate to realize our vision for self-
aware performance models [[GEK18]]. This also seems natural as both contribu-
tions are aimed at the same target scenario and utilize similar monitoring data.
As DepIC relies on resource demand estimates for identifying and characteriz-
ing the dependencies, both tools can be integrated to work together. However,
the SuanMing framework would also massively benefit if request parameters
and parametric dependencies could be included in its performance prediction
models. Similarly, the capability of Baloo to predict the performance behavior
of a certain configuration of a system can be helpful to determine the
performance properties of microservice applications using our Monitorless or
SuanMing approaches. For future work, the main obstacle is to combine the
different scenario objectives (e.g., prediction goal, type and amount of available
monitoring, or resource constraints) into a meaningful and holistic view. If the
individual approaches continue to work as autonomous agents, we could con-
struct a collaborative self-adaptive system with fully autonomous and altruistic
agents with maximal knowledge access. These properties are chosen based
on a respective taxonomy we helped to derive during this thesis [DAn+19;
DAn+20].

Automatic decision framework As an alternative approach to the proposed
decentralized collaboration system, we can also introduce a central and holistic
learning entity. As we proposed approaches are generally independent but
complementary, one target could be the development of a supporting deci-
sion framework that helps operators choosing the right approach by providing
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appropriate guidelines. In addition, one could provide an autonomous deci-
sion engine, automatically selecting and executing a suitable approach. This
is possible, as all approaches themselves are already designed to run mostly
autonomous. We have already shown the benefit of adaptive instrumentation
techniques for performance modeling techniques [Maz+20]]. Therefore, the
approach could aim for dynamically switching the monitoring strategy along
with the applied approach, depending on the achieved prediction accuracy.
One remaining challenge is the correct configuration and parameterization of
the developed approaches, as all offer an additional set of configurable param-
eters, tweaking the model accuracy and the computational cost. Therefore,
the decision framework is also responsible for tuning and changing the re-
spective configuration, depending on the respective scenario and the available
resources. Such a meta-learning [[Smi09] framework could provide a layer of
meta-self-awareness [Kou+17] for the resulting system. Still, it might be able
to reuse many of the techniques already introduced during this thesis [|[GEK18;
Gro+21bf Maz+20].

Utilizing model predictions for optimization All of the modeling techniques
introduced in this thesis are focused on predicting the performance of a software
system. These models are a crucial part of optimizing the resource usage of
server systems. However, actual system adaptations and change decisions are
usually made by a higher-level entity, such as an autoscaler [Bau+18;Her18] or
an optimization engine [[Her+20b; Hub+17; Kou+16] Ost+14]. Therefore, next
to the core contributions presented in this thesis, we worked towards validating
the impact of resource demand estimation for autoscaling [Bau+18]] as well as
automated network analysis [[Her+20c; Her+20al], benchmarking [[Her+21]],
and optimization [[Her+20b]]. As the scope of this project was to focus on
the automated construction of usable performance models, future work might
focus on utilizing the resulting predictions in order to optimize system structure
and resource usage.

Developing holistic prediction models One central aspect of the discussed op-
timization engine is various types of performance models. However, optimizing
the performance of a cloud system is sometimes not the only interesting aspect.
For example, the availability or the resilience of a given application can be of
interest to cloud operators and customers as well [[Fer+12b]|. In addition, the
energy efficiency of the underlying server structure is also a major contributor
to the overall energy consumption of the infrastructure [Kis19]]. While the focus
of this thesis was clearly on performance, we also contributed towards models
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for power consumption of servers [Kis+19b|] as well as machine [Z{if+21]] or
[[Zif+20] failure prediction. Future work could aim at combining our
performance modeling techniques with these and other prediction techniques
in order to generate models with a more holistic view [Ber+11; Fer+12b]|. This
will help to further increase the energy efficiency of cloud systems and generally
improve the decision-making of data center optimization techniques.

Deriving confidence values for model predictions All of the developed mod-
els represent an abstracted view of reality. Naturally, all modeling approaches
introduce a certain amount of prediction error and uncertainty [[Wal19]]. There-
fore, many users are reluctant to trust the predictions of performance mod-
els blindly. We validated these assumptions by conducting one academic
overview [Gro+20a]] and one industrial survey [Bez+19]] during our work.
Next to providing human-readable explanations, one idea for increasing the
trust and the confidence of operators in the respective approaches is to define
and calculate confidence values for all models and their resulting predictions.
If a reliable confidence measure for a prediction is given, operators could define
thresholds until an optimization engine can autonomously execute its deci-
sions on the real system. Therefore, reliable confidences can also be seen as an
accelerator for the autonomy of performance models and the respective cloud
platforms [[Fer+12b]].

Support for emerging technologies Many of the techniques proposed in this
thesis are specifically designed for and focused on microservice applications.
However, as new paradigms such as serverless computing and are emerg-
ing [Eyk+18a} [Eis+21bj Eis+21c], future work can investigate the degree to
which the introduced approaches can be transferred into the new domain and
what assumptions might need to be revisited if any. Furthermore, new trends
might open new cloud scenarios or render some of the assumptions we defined
in Chapterinfeasible. For that reason, we already spent significant effort on an-
alyzing serverless use cases [[Eis+21bj Eis+20c} [Eis+21c]], platforms [Eyk+19],
and application performance [[Eyk+18a}; Eis+20b; [Eis+21a]] in parallel to the
work presented in this thesis. While we are convinced that many of the pro-
posed techniques can be transferred to other application areas, future work
will tell if the results achieved in this thesis hold up in other domains as well.
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