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1. Comparison with methods getting the
ground truth noise level

In this section, we show that the proposed method,
MAGSAC, leads to results superior to the competitor algo-
rithms even when they get the ground truth noise level σ. To
get the noise level for each image pair, first, we fit a model
to the manually selected inliers provided in the datasets. Fi-
nally, the threshold was set, independently for each image
pair, to the distance of the farthest inlier from the model
which was fit to all of the inliers.

The results for the problems and datasets (same as what
was used in the paper) are reported in Table 1. It can be
seen that the methods having the ground truth noise level are
more accurate than by using a fixed σ (i.e. the tests shown in
the paper). However, MAGSAC is still superior in terms of
geometric accuracy. The results of MAGSAC were copied
from the paper.

2. Full derivation to get Eq. 3

Let 0 = σ0 ≤ D(θ, p1) = σ1 < D(θ, p2) <=
σ2.... < D(θ, pK) = σK < σmax < D(θ, pK+1) < ... <
D(θ, p|P|) and using the quality function of plain RANSAC
Q(θ, σ,P) = |I(θ, σ,P)| = |I(θ, σi−1,P)| = i− 1 for all
σ ∈ [σi−1, σi). In this case quality function Q∗ is derived
as follows:

Q∗(θ,P) = 1

σmax

∫ σmax

0

|I(θ, σ,P)|dσ

=

K∑
i=1

∫ σi

σi−1

|I(θ, σi−1,P)|dσ +

∫ σmax

σK

|I(θ, σK ,P)|dσ

=
1

σmax

K∑
i=1

(i− 1)(D(θ, pi)−D(θ, pi−1)+

1

σmax
K(σmax −D(θ, pK))

= K − 1

σmax

K∑
i=1

D(θ, pi) =

K∑
i=1

(
1− D(θ, pi)

σmax

)
.

Assuming the distribution of inliers and outliers to be
uniform (inlier ∼ U(0, σ); outlier ∼ U(0, l)) and using log-
likelihood of model θ as its quality function Q, the likeli-
hood becomes

L(θ,P|σ) =
(
1

σ

)|I(θ,σ,P)|(
1

l

)|P|−|I(θ,σ,P)|
andQ(θ, σ,P) = lnL(θ,P|σ) = |I(θ, σ,P)|(ln l−lnσ)−
|P| ln l. The marginalized quality functionQ∗ is as follows:

Q∗(θ,P) =
1

σmax

∫ σmax

0

(|I(θ, σ,P)|(ln l − lnσ)− |P| ln l)dσ

=
1

σmax

K∑
i=1

∫ σi
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(|I(θ, σi−1,P)|(ln l − lnσ)− |P| ln l)dσ

+
1
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∫ σmax

σK

(|I(θ, σK ,P)|(ln l − lnσ)− |P| ln l)dσ

=
ln l

σmax

K∑
i=1

(i− 1)(D(θ, pi)−D(θ, pi−1))

+
ln l
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K(σmax −D(θ, pK))

− 1

σmax

K∑
i=1

(i− 1)

∫ σi

σi−1

lnσdσ

− 1

σmax
K

∫ σmax

σK

lnσdσ − |P| ln l

= K

(
ln

l

σmax
+ 1

)
− 1

σmax

K∑
i=1

D(θ, pi)

(
1 + ln

l

D(θ, pi)

)
− |P| ln l.

3. Full derivation to get Eq. 8
For the stopping criterion of RANSAC with a minimal sam-
ple of size m and fixed σ, at least k(θ, σ,P) samples have
to be drawn. Having the set of inliers I(θ, σ,P), k is calcu-
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lated as follows:

k(θ, σ,P) = ln(1− µ)

ln(1−
(
I(θ,σ,P)
|P|

)m
)
.

Let k∗(θ,P) be the stopping criterion of MAGSAC and as-
sume that σ1 = 0, where k∗ is k marginalized over σ as
follows:

k∗(θ,P) = 1

σmax

∫ σmax

0

k(θ, σ,P)dσ

=
ln(1− µ)
σmax

(

K∑
i=1

∫ σi

σi−1

1

ln(1−
(
I(θ,σ,P)
|P|

)m
)
dσ

+

∫ σmax

σK

1

ln(1−
(
I(θ,σ,P)
|P|

)m
)
dσ)

=
ln(1− µ)
σmax

(

K∑
i=1

σi − σi−1
ln(1−

(
I(θ,σi−1,P)
|P|

)m
)

+
σmax − σK

ln(1−
(
I(θ,σK ,P)
|P|

)m
)
).
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RANSAC MSAC LO-RANSAC LO-MSAC MAGSAC

k
u
s
v
o
d
2

F
,2

4 eavg 0.87 0.79 0.67 0.54 0.38
t 50 22 18 15 31
s 1118 474 224 150 382

A
d
e
l
a
i
d
e

F
,1

9 eavg 0.35 0.34 0.28 0.28 0.30
t 529 454 423 384 939
s 3 376 2 841 2 488 2 231 2 638

M
u
l
t
i
-
H

F
,4

eavg 0.74 0.72 0.50 0.52 0.47
t 45 40 79 78 467
s 81 54 68 52 1 324

h
o
m
o
g
r

H
,1

6 eavg 3.02 3.16 2.77 2.92 1.37
t 23 18 40 38 131
s 567 434 364 313 877

E
V
D

H
,1

5 eavg 4.25 3.84 3.72 2.99 1.76
t 292 251 172 150 162
s 6 317 5 453 3 452 2 788 2 239

s
t
r
e
c
h
a

E
,4

6
7 eavg 6.64 6.86 8.48 8.55 6.51

t 9 781 9 039 3 745 3 726 2 398
s 10 949 10 060 3 964 3 745 2 183

a
l
l

eavg 2.65 2.62 2.74 2.62 1.80
emed 1.95 1.98 1.72 1.73 0.92

t 1 787 1 637 746 732 688

Table 1: Accuracy of robust estimators on two-view geometric estimation. Fundamental matrix estimation (F) on kusvod2

(24 pairs), AdelaideRMF (19 pairs) and Multi-H (4 pairs) datasets, homography estimation (H) on homogr (16 pairs) and
EVD (15 pairs) datasets, and essential matrix estimation (E) on the strecha dataset (467 pairs). In total, the testing included
545 image pairs. The datasets, the problem, the number of the image pairs (#) and the reported properties are shown in the
first three columns. The other columns show the average results (100 runs on each image pair) of the competitor methods
at 95% confidence. The mean geometric error (eavg; in pixels) of the estimated model w.r.t. the manually selected inliers are
written in each 1st row; the mean processing time (t, in milliseconds) and the required number of samples (s) are written in
every 2nd and 3rd rows. The geometric error is the RMS Sampson distance for F and E, and the RMS re-projection error for
H using the ground truth inlier set. The threshold was set for each image pair independently to the value which the manually
selected inliers imply. For MAGSAC, σmax = 10 pixels. The MAGSAC results are copied from the paper.
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