# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a005597 Showing 1-1 of 1 %I A005597 M4056 #115 Jan 05 2025 19:51:33 %S A005597 6,6,0,1,6,1,8,1,5,8,4,6,8,6,9,5,7,3,9,2,7,8,1,2,1,1,0,0,1,4,5,5,5,7, %T A005597 7,8,4,3,2,6,2,3,3,6,0,2,8,4,7,3,3,4,1,3,3,1,9,4,4,8,4,2,3,3,3,5,4,0, %U A005597 5,6,4,2,3,0,4,4,9,5,2,7,7,1,4,3,7,6,0,0,3,1,4,1,3,8,3,9,8,6,7,9,1,1,7,7,9 %N A005597 Decimal expansion of the twin prime constant C_2 = Product_{ p prime >= 3 } (1-1/(p-1)^2). %C A005597 C_2 = Product_{ p prime > 2} (p * (p-2) / (p-1)^2) is the 2-tuple case of the Hardy-Littlewood prime k-tuple constant (part of First H-L Conjecture): C_k = Product_{ p prime > k} (p^(k-1) * (p-k) / (p-1)^k). %C A005597 Although C_2 is commonly called the twin prime constant, it is actually the prime 2-tuple constant (prime pair constant) which is relevant to prime pairs (p, p+2m), m >= 1. %C A005597 The Hardy-Littlewood asymptotic conjecture for Pi_2m(n), the number of prime pairs (p, p+2m), m >= 1, with p <= n, claims that Pi_2m(n) ~ C_2(2m) * Li_2(n), where Li_2(n) = Integral_{2, n} (dx/log^2(x)) and C_2(2m) = 2 * C_2 * Product_{p prime > 2, p | m} (p-1)/(p-2), which gives: C_2(2) = 2 * C_2 as the prime pair (p, p+2) constant, C_2(4) = 2 * C_2 as the prime pair (p, p+4) constant, C_2(6) = 2* (2/1) * C_2 as the prime pair (p, p+6) constant, C_2(8) = 2 * C_2 as the prime pair (p, p+8) constant, C_2(10) = 2 * (4/3) * C_2 as the prime pair (p, p+10) constant, C_2(12) = 2 * (2/1) * C_2 as the prime pair (p, p+12) constant, C_2(14) = 2 * (6/5) * C_2 as the prime pair (p, p+14) constant, C_2(16) = 2 * C_2 as the prime pair (p, p+16) constant, ... and, for i >= 1, C_2(2^i) = 2 * C_2 as the prime pair (p, p+2^i) constant. %C A005597 C_2 also occurs as part of other Hardy-Littlewood conjectures related to prime pairs, e.g., the Hardy-Littlewood conjecture concerning the distribution of the Sophie Germain primes (A156874) on primes p such that 2p+1 is also prime. %C A005597 Another constant related to the twin primes is Viggo Brun's constant B (sometimes also called the twin primes Viggo Brun's constant B_2) A065421, where B_2 = Sum (1/p + 1/q) as (p,q) runs through the twin primes. %C A005597 Reciprocal of the Selberg-Delange constant A167864. See A167864 for additional comments and references. - _Jonathan Sondow_, Nov 18 2009 %C A005597 C_2 = Product_{prime p>2} (p-2)p/(p-1)^2 is an analog for primes of Wallis' product 2/Pi = Product_{n=1 to oo} (2n-1)(2n+1)/(2n)^2. - _Jonathan Sondow_, Nov 18 2009 %C A005597 One can compute a cubic variant, product_{primes >2} (1-1/(p-1)^3) = 0.855392... = (2/3) * 0.6601618...* 1.943596... by multiplying this constant with 2/3 and A082695. - _R. J. Mathar_, Apr 03 2011 %C A005597 Cohen (1998, p. 7) referred to this number as the "twin prime and Goldbach constant" and noted that, conjecturally, the number of twin prime pairs (p,p+2) with p <= X tends to 2*C_2*X/log(X)^2 as X tends to infinity. - _Artur Jasinski_, Feb 01 2021 %D A005597 Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209. %D A005597 Richard Crandall and Carl Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 11. %D A005597 Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, Vol. 94, Cambridge University Press, 2003, pp. 84-93, 133. %D A005597 R. K. Guy, Unsolved Problems in Number Theory, Section A8. %D A005597 G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, ch. 22.20. %D A005597 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A005597 Harry J. Smith, Table of n, a(n) for n = 0..1001 %H A005597 Folkmar Bornemann, PRIMES Is in P: Breakthrough for "Everyman", Notices Amer. Math. Soc., Vol. 50, No. 5 (May 2003), p. 549. %H A005597 Paul S. Bruckman, Problem H-576, Advanced Problems and Solutions, The Fibonacci Quarterly, Vol. 39, No. 4 (2001), p. 379; General IZE, Solution to Problem H-576 by the proposer, ibid., Vol. 40, No. 4 (2002), pp. 383-384. %H A005597 C. K. Caldwell, The Prime Glossary, twin prime constant. %H A005597 Henri Cohen, High-precision computation of Hardy-Littlewood constants, (1998). %H A005597 Henri Cohen, High-precision computation of Hardy-Littlewood constants. [pdf copy, with permission] %H A005597 Steven R. Finch, Mathematical Constants, Errata and Addenda, arXiv:2001.00578 [math.HO], 2020, Sec. 2.1. %H A005597 Philippe Flajolet and Ilan Vardi, Zeta Function Expansions of Classical Constants, Unpublished manuscript. 1996. %H A005597 Daniel A. Goldston, Timothy Ngotiaoco and Julian Ziegler Hunts, The tail of the singular series for the prime pair and Goldbach problems, Functiones et Approximatio Commentarii Mathematici, Vol. 56, No. 1 (2017), pp. 117-141; arXiv preprint, arXiv:1409.2151 [math.NT], 2014. %H A005597 R. J. Mathar, Hardy-Littlewood constants embedded into infinite products over all positive integers, arXiv:0903.2514 [math.NT], 2009-2011, constant T_1^(2). %H A005597 G. Niklasch, Some number theoretical constants: 1000-digit values. [Cached copy] %H A005597 G. Niklasch, Twin primes constant. %H A005597 Simon Plouffe, The twin primes constant. %H A005597 Simon Plouffe, Plouffe's Inverter, The twin primes constant. %H A005597 Pascal Sebah, Numbers, constants and computation (gives 5000 digits). %H A005597 Eric Weisstein's World of Mathematics, Twin Primes Constant. %H A005597 Eric Weisstein's World of Mathematics, Twin Prime Conjecture. %H A005597 Eric Weisstein's World of Mathematics, k-Tuple Conjecture. %H A005597 Eric Weisstein's World of Mathematics, Prime Constellation. %H A005597 John W. Wrench, Jr., Evaluation of Artin's constant and the twin-prime constant, Math. Comp., Vol. 15, No. 76 (1961), pp. 396-398. %F A005597 Equals Product_{k>=2} (zeta(k)*(1-1/2^k))^(-Sum_{d|k} mu(d)*2^(k/d)/k). - _Benoit Cloitre_, Aug 06 2003 %F A005597 Equals 1/A167864. - _Jonathan Sondow_, Nov 18 2009 %F A005597 Equals Sum_{k>=1} mu(2*k-1)/phi(2*k-1)^2, where mu is the Möbius function (A008683) and phi is the Euler totient function (A000010) (Bruckman, 2001). - _Amiram Eldar_, Jan 14 2022 %e A005597 0.6601618158468695739278121100145557784326233602847334133194484233354056423... %t A005597 s[n_] := (1/n)*N[ Sum[ MoebiusMu[d]*2^(n/d), {d, Divisors[n]}], 160]; C2 = (175/256)*Product[ (Zeta[n]*(1 - 2^(-n))*(1 - 3^(-n))*(1 - 5^(-n))*(1 - 7^(-n)))^(-s[n]), {n, 2, 160}]; RealDigits[C2][[1]][[1 ;; 105]] (* _Jean-François Alcover_, Oct 15 2012, after PARI *) %t A005597 digits = 105; f[n_] := -2*(2^n-1)/(n+1); C2 = Exp[NSum[f[n]*(PrimeZetaP[n+1] - 1/2^(n+1)), {n, 1, Infinity}, NSumTerms -> 5 digits, WorkingPrecision -> 5 digits]]; RealDigits[C2, 10, digits][[1]] (* _Jean-François Alcover_, Apr 16 2016, updated Apr 24 2018 *) %o A005597 (PARI) \p1000; 175/256*prod(k=2,500,(zeta(k)*(1-1/2^k)*(1-1/3^k)*(1-1/5^k)*(1-1/7^k))^(-sumdiv(k,d,moebius(d)*2^(k/d))/k)) %o A005597 (PARI) prodeulerrat(1-1/(p-1)^2, 1, 3) \\ _Amiram Eldar_, Mar 12 2021 %Y A005597 Cf. A065645 (continued fraction), A065646 (denominators of convergents to twin prime constant), A065647 (numerators of convergents to twin prime constant), A062270, A062271, A114907, A065418 (C_3), A167864, A000010, A008683. %K A005597 cons,nonn,nice %O A005597 0,1 %A A005597 _N. J. A. Sloane_ %E A005597 More terms from _Vladeta Jovovic_, Nov 08 2001 %E A005597 Commented and edited by _Daniel Forgues_, Jul 28 2009, Aug 04 2009, Aug 12 2009 %E A005597 PARI code removed by _D. S. McNeil_, Dec 26 2010 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE