# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a004062 Showing 1-1 of 1 %I A004062 M0861 #64 Oct 30 2023 15:23:26 %S A004062 2,3,7,29,71,127,271,509,1049,6389,6883,10613,19889,79987,608099, %T A004062 1365019,3360347 %N A004062 Numbers k such that (6^k - 1)/5 is prime. %C A004062 Prime repunits in base 6. %C A004062 With this 16th prime, the base 6 repunits have an average (best linear fit) occurrence rate of G = 0.4948 which seems to be converging to the conjectured rate of 0.56146 (see ref). %C A004062 Also, numbers k such that 6^k-1 is semiprime. - _Sean A. Irvine_, Oct 16 2023 %D A004062 J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements. %D A004062 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A004062 John Brillhart et al., Cunningham Project [Factorizations of b^n +- 1, b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers] %H A004062 Paul Bourdelais, A Generalized Repunit Conjecture. - _Paul Bourdelais_, May 24 2010 %H A004062 H. Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930. %H A004062 H. Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930. [Annotated scanned copy] %H A004062 H. Lifchitz, Mersenne and Fermat primes field %H A004062 S. S. Wagstaff, Jr., The Cunningham Project %H A004062 Eric Weisstein's World of Mathematics, Repunit %H A004062 Index to primes in various ranges, form ((k+1)^n-1)/k %t A004062 Select[Range[1000], PrimeQ[(6^# - 1)/5] &] (* _Alonso del Arte_, Dec 31 2019 *) %o A004062 (PARI) is(n)=isprime((6^n - 1)/5) \\ _Charles R Greathouse IV_, Apr 28 2015 %K A004062 hard,nonn %O A004062 1,1 %A A004062 _N. J. A. Sloane_ %E A004062 More terms from Kamil Duszenko (kdusz(AT)wp.pl), Jun 22 2003 %E A004062 a(14) discovered Nov 05 2007, corresponds to a probable prime based on trial factoring to 10^11 and Fermat primality test base 2. - _Paul Bourdelais_ %E A004062 a(15) corresponds to a probable prime discovered by _Paul Bourdelais_, May 24 2010 %E A004062 a(16) corresponds to a probable prime discovered by _Paul Bourdelais_, Dec 31 2019 %E A004062 a(17) corresponds to a probable prime discovered by _Ryan Propper_, Oct 30 2023 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE