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Denotational (Categorical) Models

Basic idea:
» Interpret each type A as some structure [A]

» Interpret each judgement I' = A as a morphism
[r=A]:[r] — [A]

» Interpret inference rules compositionally

Interpretations should “respect” proof equivalences, e.g.:

A-FA BEFB
A BFAw B

ﬂ— [ABFA=B]



Many Models of Linear Logic

(Fairly?) Simple:

» Sets and Relations

o] = 0
] = {e}
[A=B] = [Alw[B]
[AFA] = {(xx) | x € [Al}
[AFAeB] = {(x,inlx) | x € [A]}

(Fairly?) Complex:

» Coherence Spaces, Proof Nets, Game Semantics



Linear Logic and Linear Algebra

FinVect:

» Interpret a type as a finite dimensional vector space
(over a finite field)

» Interpret a judgment as a /inear transformation
(i.e., a matrix)



Linear Logic and Linear Algebra

FinVect:
» Interpret a type as a finite dimensional vector space
(over a finite field)
» Interpret a judgment as a linear transformation
(i.e., a matrix)
Why?
» Next simplest reasonable model (after Set).
» | haven't seen this worked out in detail anywhere before.

» There are lots of interesting things that live in the
category FinVect:
» All of linear algebra: Matrix algebra, derivatives,
eigenvectors, Fourier transforms, cryptography(?), etc.



Linear Algebra



Fields

A field F = (F,+,-,0,1) is a structure such that:

» F is a set containing distinct elements 0 and 1.
Addition: (F,+,0) abelian group, identity 0
Multiplication: (F —{0},,1): abelian group, identity 1
The distributive law holds:

v

v

v

Va,B,v € F. a-(B+7) = (a-B) + (a-7)

There are no zero divisors:

v

Va,eF. a-=0 == a=0vE=0



Vector Spaces

A vector space over F is just a set V with addition and scalar
multiplication:

Vv,we V. (v+w)eV

VaoeF.Vwve V.aveV

Satisfying some laws:
» (V,+,0) form an abelian group
» alv+w)=av+aw
» (a+ B)v=av+ Pv



Functional Vector Spaces FX

Pick a coordinate system (i.e. a set X) and define FX, the
“vector space with coordinates in X"

FX&2{v|v:X =T}

» A vector is just a function that maps each coordinate to
an element of IF
» Example: In the plane, we might pick X = {"x","y"}
» Vector addition and scalar multiplication are defined
pointwise

» The dimension of FX is just the cardinality of X.



Canonical Basis

Canonical basis for FX:

(6, | x € X}

» Here 0, is the vector:

B 1 ify=x

» Every vector in FX can be written as a weighted sum of
basis elements.

{ﬂ:3-5x+4-5y



Linear Maps

A linear transformation f : FX — FY is a function such that:
flav+pw)=af(v)+pf(w)

f is completely characterized by its behavior on the set of
basis vectors 0, .

f(0.) = My, ],

yey

Here: M¢[y, x] is a (matrix) of scalars in



Matrices

If FX has n coordinates and FY has m coordinates, then any
linear map f : FX — FY can be represented as a matrix:

f[Ylaxl] f[)/h X2] T f[)’h Xn]
fly2,x1] flyz, %] -+ fly2, x4
f[)’m, Xl] f[}/m; X2] e f[ym7xn]

For example, the 3x3 identity map:

O O
o~ O
= O O

o

=

[ ]



Linear Logic



Multiplicative Unit: 1

Interpret 1 as a vector space:



Multiplicative Unit: 1

Interpret 1 as a vector space:

» Coordinates: 17 = {e}
» [1] = FY (={v]|v:1I > F}

Interpret the “1 introduction” inference rule as the 1x1 identity
matrix:

[1+1] =[1]



Multiplicative Product: Ae B

Interpret A® B as a vector space:



Multiplicative Product: Ae B

Interpret A® B as a vector space:

» Coordinates: (A® B)' = AT x BT
» [A® B] = FA®B)!



Multiplicative Product: Ae B

Interpret A® B as a vector space:

» Coordinates: (A® B)' = AT x BT
» [Ae B] = F(A®B)T
Interpret ® introduction:

MMEA LB
F1®I'2|—A®B




Multiplicative Product: Ae B

Interpret A® B as a vector space:

» Coordinates: (A® B)' = AT x BT
» [A® B] = FA®B)!

Interpret ® introduction:

A ILEB for]—1TA1 g:[r]—[8]

Mel-FA2B fog:[Meol] —[A=B]

(feg)la,b), (x,y)] = fla, x] - g[b, y]



Multiplicative Product: Examples



Multiplicative Product: Examples

S




Multiplicative Product: Structural Rules

Contexts:
Fr=A|lTel
Structural Rule:
rl l_ A rl = r2
M, HA

r]EFQ

» reflexivity, symmetry, transitivity

» associativity: (M olM) el =T o (M ol3)
» unitlaw: T=T®1

» commutativity: 1ol =0l

» [y = T] is an isomorphism



Function Composition

Function Composition

Given f : FX — F4 and g : F4¥ — Y, define

(fig)ly,x1=>_gly. 2] flz.x]

zeZ

(a.k.a. matrix multiplication)



Function Composition

Function Composition

Given f : FX — F4 and g : F4¥ — Y, define

(fig)ly,x1=>_gly. 2] flz.x]

zeZ

(a.k.a. matrix multiplication)

Note: We sum over all elements of Z, so this is not necessarily
defined if Z is infinite!

» Option 1: Allow infinite vectors but only those with “finite
support” (zero almost everywhere)
— Ehrhard’s Finiteness spaces

» Option 2: Work with only finite matrices.
— How to ensure that A remains finite?



ldentity and Cut

|dentity:

AFA

-
. 1 if x=
’dA[%X] = { 0 if X?éi



ldentity and Cut

ldentity:
AFA
) 1 if x=
idaly,x] = { 0 ifx7é§
Cut:

MFA Agl;+B
r1®r2|_B

f:IM] —=1TA] g:[A=T:] — [B]

(feidr,);g: [Tiel] = [A B]



Additive Sums

Interpret A @ B as a vector space:



Additive Sums

Interpret A @ B as a vector space:

» Coordinates: (A® B)! = ATy Bf
> [Ao B] = FADE)



Additive Sums

Interpret A @ B as a vector space:
» Coordinates: (A® B)! = ATy Bf
> [[A o B]] — F(A®B)T

Interpret @ introduction:

r-A -8B
lFAe B rAe B

1 if y =inl x

inl agly,x] = {0 otherwise



Additive Sums
ooleans (over IFy):

HENENEN

inlpp : [B] — [B] @ [B] inrgp : [B] — [B] @ [B]

L



Exponential Types



Linear Logic: Exponentials

Dereliction
freA-B
fo!AF B
Weakening
frelk-B
fro!lAF B

Contraction
e (IAx!A)F B

r®!AFB

Introduction
- A

Ir+=1A




| is a Comonad

» | is a functor:
» On types: for vector space [A], need a vector space ![A]

» On functions: For f : [A] — [B], need !f :!I[A] —![B]
coreturng : [A] — [A]
comultiply 4 : [A] —=!"[A]
» Satisfying the comonad laws.

» Plus some other operations: m : A« B — (Ao B)



Defining !

For objects: interpret A as a vector space:
» Coordinates: (1A)T = [A]
> [1A] = FCA
» The canonical basis for [!A] is {0, | v € [A]}.



Defining !

For objects: interpret A as a vector space:

» Coordinates: (1A)T = [A]

> ['A] = FOA

» The canonical basis for [!A] is {0, | v € [A]}.
Potential Problem: [A] might be infinite

» e.g. if Fis infinite

» e.g. so require F to be a finite field



Defining !

For objects: interpret !A as a vector space:

» Coordinates: (1A)T = [A]

> [1A] = FCA

» The canonical basis for [!A] is {0, | v € [A]}.
Potential Problem: [A] might be infinite

» e.g. if Fis infinite

» e.g. so require F to be a finite field
For functions: suppose f : A — B then:

(1F)(6v) = drv)



Finite Fields

A field F is finite if |F| is finite.

Some beautiful theorems:

» Every finite field F, with g elements has g = pX, where p
is a prime.
» For every element a € F, we have:
»at+a+...+a=0

» o9 =«



Comonadic structure

» coreturny : [[A] — [A]

coreturna(d,) = v

» comultiply 4 : I[A] —!'[A]

comultiply 4(d,) = ds,



Back to the Comonad: Coreturn

Example: coreturng : [!B] — B over [,

Ll

More generally: The n" column of the matrix is just n written
in base g



Dimensionality

dim [0]

dim [T]

dim [1]
dim[1]
dim[A @ B]
dim[A & B]
dim[A® B]
dim [A — B]
dim [!A]

0
0
1
1

dim[A] + dim [B]
dim [A] + dim [B]
dim [A] x dim [B]

dim [A] x dim [B]
77



Dimensionality

dim [0]

dim [T]

dim [1]
dim[1]
dim[A @ B]
dim[A & B]
dim[A® B]
dim [A — B]
dim [!A]

0
0
1
1

dim[A] + dim [B]
dim [A] + dim [B]
dim [A] x dim [B]

dim [A] x dim [B]
qdim[A]



Observations



Basic Properties

» This model is sound with respect to (simply-typed)
lambda calculus.

» One way to gain completeness is to move to an algebraic
lambda calculus.

M,N,P = x| x.M|MN|m;(M)|m,(M)|{M,N})|
tt | £f | if M then Nelse P |
OM+N|a-M

A B = Bool|A— B|AxB.



Added Typing Rules

AFEM:A

AFa-M:A



Linear—Nonlinear Adjunction

Benton-style Linear-Nonlinear Decomposition:

Forget

FinVect([F)



Classical Linear Logic

» The Linear/Nonlinear approach generalizes to full classical
linear logic.

» Duality in FinVect([F) is given by transposition.

Forget,



Porting ideas from Linear Algebra to Lambda
Calculus

» Example: eigenvalues of a square matrix. In [F,, given a
lambda calculus function f : A — B it is possible to
construct f : A& B — A& B (a square matrix) such that:

v € eigvalues(f) = f(fst v) = snd v



Conclusions

The category of finite dimensional vector spaces over finite
fields is a model of linear logic.

» Very pretty mathematics!

v

Connects lambda calculus and linear algebra

v

Interpretation of (!A) in FinVect([F) is interesting.

v

What are the implications of picking a particular F,?

v

Applications?



Multinomials



Finite Fields
A field F is finite if |F| is finite.

Some beautiful theorems:

» Every finite field F, with g elements has g = p*, where p
is a prime.
» For every element a € F, we have:
»a+a+...+a=0

» a9 =«



Finite Fields
A field F is finite if |F| is finite.

Some beautiful theorems:

» Every finite field F, with g elements has g = p*, where p
is a prime.
» For every element a € F, we have:
»a+a+...+a=0
p times
» o=«
Consequence:
When working with multinomials whose variables range over
elements of IF, we have x9 = x.
For example, in F5:

(x+12 = x*+2x+1 = xX*+1 = x+1



Another Endo-Functor: M : A — 1A

Morally, we have:

Ax1&ALAL AL . ..



Another Endo-Functor: M : A — 1A

Morally, we have:

A~1&ALA LAY ...

Analogy: In Set [!A] is the set of all finite multisets whose
elements are drawn from [A].

» So the coordinates of the vector space corresponding to
lA should (morally) be finite multisets drawn from A.

» Example: Write BT = {inl e,inr o} as {0, 1}

(B)f = {0, {0}, {1},{0,0},{0,1},{1,1},{0,0,0},.. .}



Another Endo-Functor: M : A — 1A

Morally, we have:

A~1&ALA LAY ...

Analogy: In Set [!A] is the set of all finite multisets whose
elements are drawn from [A].

» So the coordinates of the vector space corresponding to
lA should (morally) be finite multisets drawn from A.

» Example: Write BT = {inl e,inr o} as {0, 1}

(B)f = {0, {0}, {1},{0,0},{0,1},{1,1},{0,0,0},.. .}

Problem: This isn't finite! (But we persevere anyway. . .)



Vectors With Multisets as Coords

(B)" = {0, {0}, {1},{0,0},{0,1},{1,1},{0,0,0},...}

One more observation: What would a vector with coordinates
as above look like?

-0
fo}-0fo}
g1} 041y

/{0,0}*0{0,0}
f0,1}-0¢0,1}
0rf1,13-01,1)

({0,0,0} ‘5{0,0,0}

o+t



Multinomials

Suppose we knew that we would only ever need multisets with
at most two of each element?

IB) — { 0.{o} {1},{0,0},{0,1},
{1,1},{1,1,0},{1,0,0},{1,1,0,0} }

agp-dg
{0} {0}
{1} 01}
{0,0}'9{0,0}
%{0,1}0{0,1}
1,1} 0411}
0{1,1,0}‘5{1,1,0}
Qf1.0,0} ‘5{1,0,0}
Qf1.1,0,0} ‘5{1,1,0,0}

-

A+t



Multinomials

Suppose we knew that we would only ever need multisets with
at most two of each element?

(I]B)T: { @,{O},{l},{0,0},{O,l},
' {1,1},{1,1,0},{1,0,0},{1,1,0,0} }

v = ap-8p v =  pox0x?
+ a{o}'5{o} +  o@10°Xx x25

1

+ g1y 01y + aoixOx

+ @ {0,0} 0100} +  a20x3x?

+ a{0,1}0¢0,1} = + cx11~x§x1

+ agy13001,13 +  02-XgX]

+ a(1,1,0}°0{1,1,0} +  aoyxgxt

+ a{1,0,0}'9{1,0,0} +  a12x}x3

+  041,1,0,0}°6{1,1,0,0} +  ap2xix3



Suppose we knew that we would only ever need multisets

Multinomials

at most two of each element?

-

A+t

agp-dg

{0} {0}

{1} 01}

{0,0}'9{0,0}

%{0,1}0{0,1}

1,1} 0411}
af1.1,0} ‘5{1,1,0}
Qf1.0,0} ‘5{1,0,0}
Qf1.1,0,0} ‘5{1,1,0,0}

U
el

_ { 0,{o},{1},{0,0},{0, 1},
{1,1},{1,1,0},{1,0,0},{1,1,0,0} }

a00~xoxg
Q10°XgXy
«p1-X X%
a20~x0x(1)
o<11~x§x1
Qp2-XgX7
21X X%
a12~x0x%

azz'xgx%

++++++ A+

with

ago-1
«@10°X0
a01°X1
azo-xg
Q11°X0X1
Q2 -x%
@21 -x%xl
12 -x0x§
a2 ~X5X§



Multinomials

Suppose we knew that we would only ever need multisets

at most two of each element?

-
v

agp-dg
{0} {0}
{1} 01}
{0,0}'9{0,0}
%{0,1}0{0,1} =
1,1} 0411}
af1.1,0} ‘5{1,1,0}
Qf1.0,0} ‘5{1,0,0}
Qf1.1,0,0} ‘5{1,1,0,0}

A+t

e e

_ { 0,{o},{1},{0,0},{0, 1},
{1,1},{1,1,0},{1,0,0},{1,1,0,0} }

a00~xoxg
Q10°XgXy
«p1-X X%
a20~x0x(1)
o<11~x§x1
Qp2-XgX7
21X X%
a12~x0x%

azg'xgx%

++++++ A+

with

ago-1
«@10°X0
a01°X1
azo-xg
Q11°X0X1
Q2 -x%
@21 -x%xl
12 -x0x§
a2 ~X5X§

Upshot: A vector whose coordinates are multisets over A can

be thought of as a multinomial with one variable for each

element of A.



Definition of M

» A multiset {0,0,1} corresponds to a term x3x; of the
multinomial.

> The set of these terms form a basis.
f : [A] — [B] acts on each x, by:

Xa é Zf[b a]'yb

beB



Definition of M

» A multiset {0,0,1} corresponds to a term x3x; of the
multinomial.

> The set of these terms form a basis.
f : [A] — [B] acts on each x, by:

Xa é Zf[b a]'yb

beB
So M(f) acts on a term like x3x; by:

x2xy - (O F6,0] - ys) x (3 16,01 -ys) x (3 £1b,1] - y)

beB beB beB

This is multinomial multiplication, modulo y? =y.



Example in [,
Let f:[leolol] - [1ole1l] be:

B

Then M(f) [lolal] = [lelel]is




Theorem (Functoriality of M)
For any f : [A] — [B] and g : [B] — [C]:

M(f; g) = M(f); M(g) : 'TA] =![C]



