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Chapter 1

Introduction

Among all the interesting spaces in topology, the spheres are no doubt beautiful
objects and of most consideration since antiquity. Any nontrivial observations of
them are of course very important. From the categorical point of view, we should
not just focus on the objects themselves, but the morphisms between them as
well. For this purpose, in algebraic topology, we do want to classify the set
of continuous morphisms between spheres under the equivalent relation named
homotopy, which describes a continuous deformation between two continuous
maps. Let Sn be the n-sphere and πk(X) be the set of homotopic equivalent
based maps from Sk to X. For the reason that Sk is a double suspension when
k ≥ 2, the set is actually an abelian group. A natural question is, what are
these abelian groups?

The importance of this question is not just aesthetical, but also from the
fact that it is connected to many other areas in mathematics, such as geometric
topology, algebra and algebraic geometry. For example, the groups of differ-
ential structures on spheres is somehow determined by the stable homotopy
groups of spheres (By the Freudenthal suspension theorem, the group πn(Sn+k)
is independent of n when n is larger than k + 1, and is called the kth stable
homotopy group of spheres, denoted by πst

k (S0)). Another impressive example
is the theory of topological modular forms, which relates certain parts of πst

∗ (S0)
to the moduli stack of elliptic curves. A quick look of the known table of these
groups shows that the pattern is not simple at all. Many great works has been
done for the last 90 years, but there are much more we want to know and want
to understand.

In Chapter 2, the theory of framed cobordism was discussed to calculate
stable homotopy groups of spheres. From Section 2.1 to 2.3, we introduce basic
notions of framed cobordism and discuss its relationship with stable homotopy
groups of spheres. In Section 2.4 and 2.5, following Pontrjagin’s method of
surgery, we sketch the proof of πst

2 (S0) ∼= Z/2. In Section 2.6, following Atiyah’s
methods and citing some facts of K3-surfaces, we work out the details of the
proof of πst

3 (S0) ∼= Z/24.
In Chapter 3, we talk about Serre’s method in Section 3.1, where Serre

5



6

fibration and Serre spectral sequences are discussed. In Section 3.2, we introduce
the EHP-sequences and Toda brackets. Using the EHP-sequences, we calculate
the 2-components of πn+k(Sn) for k ≤ 3. A table for 2-components of πn+k(Sn)
for k ≤ 24 can be found in in appendix A, where the data come from [Tod62,
MT63, Mim65, MMO74]. We also follow Toda’s proof for the non-existance of
Hopf invariant one problem in dimension 16 in Section 3.2.5.

In Chapter 4, we introduce the stable homotopy category in Section 4.1,
which is the right category to discuss stable groups. In Section 4.2 and 4.3, using
the notion of spectra, we introduce Adams spectral sequences and some basic
properties of E2-term for sphere spectrum at prime 2. To calculate the E2-term
of Adams spectral sequence, May spectral sequence was introduced in Section
4.4. Following Tangora’s method, we actually work out detailed calculations to
compute the E∞-term of May spectral sequence up to stem 29 at prime 2 with
illustrations. Citing some differentials of Adams spectral sequence in Section
4.5, we have the table of the first 29 stable homotopy groups of spheres at prime
2.

In Chapter 5, we talk about different kinds of cobordism theories charac-
terized by G-structures. We introduce basic notions in Section 5.1 and convert
the problem of computing cobordism ring to the one of computing the homo-
topy ring of Thom spectra by Pontrjagin-Thom construction in Section 5.2. In
Section 5.3, we do the calculations of the unoriented cobordism ring, the ori-
ented cobordism ring and the first three groups of spin cobordism. In Section
5.4, we compute the complex cobordism ring and introduce the Adams-Novikov
spectral sequence, which is based on complex cobordism MU and is efficient in
computing stable homotopy groups of spheres at large primes.

In Chapter 6, we give a short introduction to chromatic homotopy theory.
In Section 6.1, we discuss basic notions of formal group laws in that Quillen
discovers that complex cobordism in fact gives the universal formal group law.
We talk about the Brown-Peterson spectrum BP in Section 6.2, which is a sim-
pler version of complex cobordism when localized at a prime p. Similarly as the
Hopf algebroid (MU∗,MU∗MU), (BP∗, BP∗BP ) represents the moduli stack of
formal groups localized at a prime p. We therefore introduce Morava K-theories
as the ”points” of this geometric object in Section 6.3. Using the filtration of
BP given by the height of formal groups, we introduce the chromatic spectral
sequence in Section 6.4. In Section 6.5, we shortly describe the geometric ex-
planation of the chromatic filtration using Hopkins’ Nilpotence and periodicity
theorems. In Section 6.6, we present the result of calculation in chromatic level
one and discuss its relation to J-homomorphism and localization with respect
to K-theory. In Section 6.7, we present the result of calculation of homotopy
groups of K(2)-local sphere and the resolution concerning spectra, which are
homotopy fixed points of Lubin-Tate spectrum under actions of certain finite
groups. We also discuss its relationship with the moduli stack of elliptic curves.

We do not claim originality of any results in this survey and we have to
mention that the sources we quote here is where these results we learned from.
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Table 1.1: Symbols

Z the ring of integers
Fp the field with p elements
Z(p) the integers localised at p
H the quaternions
Sn the n-dimensional sphere
Rn the n-dimensional euclidian space
S the sphere spectrum
HF2 the Eilenberg-MacLane spectrum of F2

π∗(X) the homotopy groups of X
Σ the suspension
A(2)∗ the Steenrod algebra with coefficient F2

A(2)∗ the dual Steenrod algebra with coefficient F2

pt one point
MO the spectrum of unoriented cobordism
MSO the spectrum of oriented cobordism
MU the spectrum of complex cobordism
MU∗ the coefficient ring of complex cobordism, Z[x1, x2, ...]
MU∗MU the MU -homology of MU , MU∗[b1, b2, ...]
BP the Brown–Peterson spectrum
BP∗ the coefficient ring of BP , Z(p)[v1, v2, ...]
BP∗BP the BP -homology of BP , BP∗[t1, t2, ...]
K(n) the spectrum of the nth Morava K-theory
K(n)∗ the coefficient ring of K(n), Fp[vn, v−1

n ]
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Chapter 2

The Method of Framed
Cobordism

In this chapter, we take the north pole as the base point of the Sn, and identify
the complement of it with Rn.

2.1 Mapping degree and πn(S
n)

It is easy to show πi(Sn) = 0 for i < n. So the first nontrivial homotopy groups
of spheres are πn(Sn). The computation of πn(Sn) is standard. Here we give
an elementary argument.

To see the group is nontrivial, we define the notion of mapping degree.
Assume f : M → N is a smooth map between n-dimensional compact oriented
manifolds M and N . Then for a generic point p of N , f−1(p) is a finite set and
the Jacobian of f at each of the points x ∈ f−1(p) does not vanish for some
(hence any) oriented coordinate chart, and ind(x) is defined to be the sign of
the Jacobian.

Definition 2.1.1. The mapping degree of f , deg(f), is Σx∈f−1(p)ind(x).

It can be shown that deg(f) is independent of the choice of p, and it is
homotopy invariant. So we can define the degree of any continuous map to be
that of any smooth map homotopy to it.

In the case of spheres, the degree gives a homomorphism from πn(Sn) to Z,
since by definition of the sum of two maps, the preimage of a generic point for
the sum correspond bijectively to the disjoint union of the preimages of each
map. Since the mapping degree of the identity map is 1, this is an epimorphism.

In fact we have the following:

Theorem 2.1.2. The mapping degree gives an isomorphism πn(Sn) ∼= Z for
n ≥ 1.

9
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Proof. It suffices to show it is a monomorphism, that is, if f : Sn → Sn has
mapping degree 0, then f can be extended to a map f̃ : Dn+1 → Sn, where
Dn+1 is the (n + 1)-dimensional unit disk.

We can suppose f is smooth. Let p be a generic point of Sn, and f−1(p) =
{x1, . . . , xk, y1, . . . , yk}, with ind(xi) = 1 and ind(yi) = −1. By suitable choice
of sub-indices, we can find smooth paths l1, . . . , lk in Dn, which are embedded
submanifolds not intersecting each other and li intersects the boundary trans-
versely on xi, yi.

Further more, we can find local charts φ, ψ1, . . . , ψk, ς1, . . . , ςk : Dn → Sn

around p, x1, . . . , xk, y1, . . . , yk, respectively, and tubular neighborhoods τ1, . . . , τk :
Dn × [0, 1] → Dn+1 of l1, . . . , lk, such that:

1. φ, ψ1, . . . , ψk preserve orientation and ς1, . . . , ςk reverse orientation .

2. The images of ψ1, . . . , ψk, ς1, . . . , ςk do not intersect each other.

3. the images of τ1, . . . , τk do not intersect each other.

4. f ◦ ψi = φ, f ◦ ςi = φ.

5. τi|Dn×{0} = ψi, τi|Dn×{1} = ςi.

This can be achieved, for example, by giving Riemannian metrics to Sn and Dn

which is euclidian near p, x1, . . . , xk, y1, . . . , yk, and take the exponential map.
Now we can extend f to Im(τi) by the formula f̃ |Im(τi) = pr1 ◦ τ−1

i where
pr1 : Dn × [0, 1] → Dn is the projection. Let M be the complement of the
interior of ∪Im(τi), then f̃ is already defined on the boundary of M , and take
values away from p. Since the complement of p in Sn is homeomorphic to the
euclidian space, f̃ can be extended to the entire M , and we find the desired
map.

2.2 Framed cobordism

To generalize the method in the preceding section to calculate πn+k(Sn) for
k > 0, one has to investigate the preimage of maps from the (n+k)-dimensional
sphere to the n-dimensional sphere, which is in general a manifold of dimension
k. So the problem is to give manifolds some kind of indices generalizing those in
the preceding section for points. This is done by Pontrjagin, who introduced the
notion of framed cobordism to classify the preimage of maps between spheres.

Definition 2.2.1. A framed submanifold of Rn+k of dimension k is an k-
dimensional submanifold of Rn+k together with a framing (i.e. n linearly in-
dependent sections) on its normal bundle.

Let f : Sn+k → Sn be a based smooth map, and p ∈ Sn be a generic point.
Then the preimage of p is a k-dimensional submanifold with normal bundle
f∗TpS

n, and any frame of TpS
n pulls back to a framing of it. By deleting the
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base point, we get a framed submanifold of Rn+k, depending on the map f , the
point p, and a frame of TpS

n.
This submanifold is of course not homotopy independent. But it is homotopy

independent up to an equivalence relation called cobordism.

Definition 2.2.2. A framed cobordism between M and N , two framed sub-
manifolds of Rn+k of dimension k, is a submanifold L of Rn+k × [0, 1], whose
boundary is contained in Rn+k × {0, 1}, (also required to intersect transversely
with Rn+k × {0, 1}), together with a framing on its normal bundle, such that
L ∩ Rn+k × {0} = M and L ∩ Rn+k × {1} = N as framed submanifolds.

In such a case, we say M is framed cobordant to N .

Conversely, let M be a framed submanifold of Rn+k of dimension k. Then
we can find a tubular neighborhood σ : M × Dn → Rn+k of M such that the
framing pulls back to the one induced from some fixed frame of T0D

n. Define a
map M ×Dn → Sn by composing the projection to Dn with the map Dn → Sn

which collapses the boundary of Dn to the base point. We can extend this map
to Sn+k by sending the other points to the base point. Thus we construct from
a framed submanifold a map between spheres, which is easily seen to be a right
inverse to the preceding construction.

Moreover, starting from a framed cobordism, a similar construction gives a
homotopy between two maps. We conclude:

Theorem 2.2.3. The homotopy class of continuous maps from Sn+k to Sn, i.e.
πn+k(Sn), correspond bijectively to the cobordism class of framed submanifolds
of Rn+k of dimension k.

Proof. See [Pon76].

Remark 2.2.4. If we define the addition of cobordism classes to be disjoint and
’untangled’ union, then this is an isomorphism of abelian groups.

Remark 2.2.5. The suspension homomorphism correspond to the inclusion of
Rn in Rn+1, and a general position argument shows the Freudenthal theorem
for spheres that the suspension homomorphism Σ : πn+k(Sn) → πn+1+k(Sn+1)
is an epimorphism for n = k + 1 and an isomorphism for n ≥ k + 2.

Remark 2.2.6. The smash product of homotopy groups correspond to the carte-
sian product of framed manifolds.

2.3 Hopf fibration and πn+1(S
n)

The first nontrivial map from a higher dimensional sphere to a lower dimensional
one is given by the Hopf fibration.

Let S3 ⊂ C2 be the unit sphere. Then the group U(1) acts freely on it, and
the quotient is the complex projective line CP1 = S2. The quotient map defines
the Hopf fibration η2 : S3 → S2.
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To show this map is not homotopoy to the trivial map, look at the corre-
sponding framed manifold, which is a circle (in the sense of euclidian geometry)
with a certain framing.

Define the canonical framing of the standard embedding S1 ⊂ R2 ⊂ R3 to
be the orthonormal framing with the first vector lay in R2 and pointing out
and the second vector to be (0, 0, 1). Then any framing differs from a canonical
one by a map S1 → O(2). The orientation of S1 can be determined by the
framing so that when we move it isotopically to the standard one in R2 with the
standard orientation, the difference to the canonical framing is in fact a map
S1 → SO(1). One verifies the homotopy class of this map depends only on the
original framed circle.

Now the difference of the framing corresponding to the Hopf map from the
canonical one is just a degree one map. But if a framed circle in R3 is null cobor-
dant, then the framing should be extended to some disk and thus homotopic to
the canonical one. So the Hopf map is not null homotopic.

The above argument can be extended to higher dimensions to show the sus-
pension of the Hopf map is also nontrivial since this correspond to the nontrivial
element of π1SO(n) which is Z/2 when n ≥ 3.

To calculate the group πn+1(Sn), observe that any 1-dimensional framed
submanifold of Rn is cobordant to a circle, though the case of knots and links
cost some meditation. Thus the preceding argument gives the following result,
which is first obtained in [Hop30] and [Fre37]:

Theorem 2.3.1. π3(S2) ∼= Z generated by the Hopf map and πn+1(Sn) ∼= Z/2
generated by the suspension of the Hopf map.

Proof. See [Pon76].

2.4 Surgery

For the sake of simplicity, we consider only stable groups from now on. And in
the stable case, the background manifold Rn can be gotten rid with.

Definition 2.4.1. A stably framed manifold (X, N, σ, ς) is a smooth manifold
X, a vector bundle N over X, together with framings σ, ς of N and TX ⊕ N
respectively.

Another stable framing (X, N ′, σ′, ς ′) of X is said to be a subframing of
(X, N, σ, ς) if there is a vector bundle V over X with a framing ξ, such that
N = N ′ ⊕ V , σ = σ′ ⊕ ξ, and ς = ς ⊕ ξ.

Two stable framings of the same manifold is said to be equivalent if they are
subframings of some common stable framing. Equivalent stable framings will be
identified as the same stable framing.

A homotopy between two stable framings is any homotopy between two equiv-
alent ones.

Definition 2.4.2. A framed cobordism between two stably framed manifolds
(X, N, σ, ς) and (X ′, N ′, σ′, ς ′), is a stably framed manifold with boundary (Y, P, ξ, η),
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such that ∂Y , the boundary of Y , is X∪X ′, (X, N, σ, ς) is equivalent to (X, P |X⊕
V, ξ|X⊕ζ, η|X), and (X ′, N ′, σ′, ς ′) is equivalent to (X ′, P |X′⊕V, ξ|X′⊕(−ζ), η|X′),
where V is the normal bundle of ∂Y in Y , and ζ is the inward pointing unit
vector of V .

Remark 2.4.3. When restricting a stable framing to an orientable codimension
one submanifold, we mean to add the normal vector of the submanifold to the
framing of the normal bundle in the definition of a stable framing as the last
factor.

In general there are two choices of the normal vector. An orientation specifies
a choice of the normal vector. When restricting to the boundary, we call the two
choices inward pointing framing and outward pointing framing.

In the preceding definition, X gets the inward pointing framing, and X ′ gets
the outward pointing framing.

Theorem 2.4.4. The cobordism class of stably framed manifolds is isomorphic
with the stable homotopy group of spheres.

Remark 2.4.5. When taking the product of (X, N, σ, ς) and (X ′, N ′, σ′, ς ′), we
force N to be even dimensional, or a sign (−1)dim(N)·dim(X′) must be introduced.

To study the cobordism class of manifolds we need the notion of surgery.
In the following, all corners are to be smoothed without explicit mentioning.
Suppose Y is a cobordism between X and X ′. Let f : Y → R be a Morse

function such that f |X = 0, f |X′ = 1 and 0 < f < 1 in the interior of Y. Such a
function gives a handle decomposition of Y . Precisely, whenever a is a critical
value of f , f−1[0, a + ε] is obtained from f−1[0, a − ε] by attaching a handle
Dk × Dt where k is the index of the critical point and ε is a small positive
real number. And f−1(a + ε) differs from f−1(a− ε) by cutting Dk × ∂Dt and
pasting ∂Dk × Dt along ∂Dk × ∂Dt. And we see X ′ is obtain from X by a
sequence of such an operation called surgery. Conversely, if two manifolds differ
from each other by a sequence of such surgeries, we can construct a cobordism
by attaching handle bodies.

In the case of stably framed cobordism, we need to be careful about framings.
Dk × Dt carries a canonical framing (in fact unique up to homotopy if an
orientation is specified, since it is contractible), and this induces the canonical
stable framing over Dk×∂Dt, ∂Dk×Dt, and ∂Dk×∂Dt. Here Dk×∂Dt gets the
inward pointing framing and ∂Dk×Dt gets the outward pointing framing, while
∂Dk × ∂Dt gets the outward pointing one as the boundary of either ∂Dk ×Dt

or ∂Dk × ∂Dt..

Definition 2.4.6. Let (X, N, σ, ς) be a stably framed manifold of dimension
k + t − 1. Suppose φ : Dk × ∂Dt → X is an embedding and τ is a homotopy
from the canonical stable framing of Dk × ∂Dt to the one pulled back from X.
Then a surgery along φ is obtained by cutting Im(φ) and gluing ∂Dk×Dt along
∂Dk × ∂Dt. The framing over the remaining part of X is unaltered and over
∂Dk ×Dt is the canonical one except near ∂Dk × ∂Dt it is modified according
to τ so that it glues up.
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Taking care of framings in the preceding argument, we get:

Theorem 2.4.7. Two stably framed manifolds are in the same stably framed
cobordism class if and only if they differ from each other by a sequence of surg-
eries described above.

2.5 Arf invariant and πn+2(S
n)

The calculation of πn+2(Sn) is completed in [Whi50] and [Pon50]. Here we
follow the method of Pontrjagin.

We will assume n ≥ 4 in this section.
First we show the group is nontrivial.
Let S be an orientable surface. It is elementary that we can transform it

into a sphere by surgery along some non-seperatting S1’s.
Now suppose S is stably framed. Taking the account of framings, only those

surgeries along S1’s which bound stably framed disks are admissible. We know
the obstruction to extend a stable framing of S1 to the disk lies in π1(O) which is
Z/2. So define a function γ from immersed S1’s in S to Z/2 by taking γ(C) = 0
if the curve C together with the stable framing restricted from S bounds a stably
framed disk and γ(C) = 1 otherwise. When C = C1 ∪ · · · ∪ Ck is a immersed
submanifold with k components, we can extend the definition of γ by taking
γ(C) = γ(C1) + · · ·+ γ(Ck). For those C which have only double points, define
a function δ by taking δ(C) = γ(C) + s(C) where s(C) is the number of its
double points mod 2.

Theorem 2.5.1. δ(C) depends only on the mod 2 homology class of C, so that
we can write δ(z) for z ∈ H1(S,F2) unambiguously. Moreover, δ is quadratic
and

δ(z1 + z2) = δ(z1) + δ(z2) + J(z1, z2) (2.5.2)

where J is the intersection form for H1(S,F2).

Proof. See [Pon76].

For quadratic forms over F2 satisfying equation 2.5.2 there is the Arf in-
variant. Let a1, . . . , ag, b1, . . . , bg be a canonical basis for J in the sense that
J(ai, bi) = J(bi, ai) = 1 for i = 1, . . . , g and any other pairings of them form 0.
Then the Arf invariant of δ is defined to be

∑g
i=1 δ(ai)δ(bi). This is independent

of the canonical basis.
It happens that the Arf invariant of the quadratic form δ in theorem 2.5.1

is a stably framed cobordism invariant. So any stably framed surface S with
δ(S) = 1 would correspond to a nontrivial element of πn+2(Sn). In fact the left
invariant framing on S1×S1 would do, which can also be described as η2 where
η is the suspension of the Hopf map.

Alternatively, this invariant can also be described as the index of the Dirac
operator on S. The stable framing on S gives a spin structure on S and this
determines a KO-orientation on S as described in [ABS64]. The invariant is
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p!(1) ∈ KO−2(pt) where p is the map from S to one point. This is the mod 2
demension of the solution of the Dirac equation on S. See [Ati71] for details.

Now we show in fact this Pontrjagin–Arf invariant gives an isomorphism
πn+2(Sn) ∼= Z/2. The surjectivity is already prooved. To show injectivity,
suppose S is a stably framed surface with Pontrjagin–Arf invariant 0 (it can be
shown that it suffices to consider the connected case). Let the genus of S be
g. If g = 0, since π2(O) = 0, S bounds a framed solid ball and we are done. If
g > 0, then by the definition of Arf invariant, there exists some S1 embedded
in S which bound a framed disk and non-separating so that surgery along it
reduces the genus g. We arrive at the following:

Theorem 2.5.3. πn+2(Sn) ∼= Z/2 generated by ηn◦ηn+1 where ηn : Sn+1 → Sn

is the suspension of the Hopf map.

Proof. See [Pon76].

2.6 The computation of πn+3(S
n)

The calculation of πn+3(Sn) is difficult since it is hard to classify 3 dimensional
manifolds. However, this difficulty can be bypassed, and the group is calculated
in [Rok51].

Here we calculate the stable group, so assume n ≥ 5.
First we show the group is nontrivial, following [AS74].
Let X be a stably framed 3 dimensional manifold. This gives a spin structure

on X. The 3 dimensional spin cobordism group is trivial (this can be shown
by elementary methods, see section 5.3.3), so we can find a 4 dimensional spin
manifold with boundary Y such that ∂Y = X as spin manifolds. The tangent
bundle of Y together with the framing on X gives an element [TY ] ∈ KO(Y, X),
and we can calculate its Pontrjagin class p1([TY ]) ∈ H4(Y, X;Z). By integration
we get an integer p1(Y, X). Since TY has a spin structure, p1(Y, X) is in fact
an even number. This number depends on the choice of Y . If Y ′ is another
spin 4-manifold with boundary X, then consider the manifold Z obtained by
gluing together Y and Y ′ along X. Since X has a framing, which means we
can choose some connection on the stable tangent bundle of Z which is flat
near X, p1(Z) = p1(Y, X) − p1(Y ′, X). The Â-genus of a 4 dimensional spin
manifold is even (this can be shown by the Atiyah-Singer index theorem since
this is the index of the Dirac operator, or calculate directly the homomorphism
p! : KO(Z) → KO−4(pt) where p is the map to one point), and Â1 = −p1

24 , so
p1(Z) is divisible by 48. Thus e(X) = − 1

2p1(Y, X) mod 24 is well defined.
In fact, e(X) depends only on the stably framed cobordism class of X.

Suppose X̃ is another framed manifold cobordant to X, and W is a stably framed
manifold with ∂W = X ∪ X̃. If X̃ is the boundary of the spin manifold Ỹ , then
V = Y ∪X W∪X̃ Ỹ is a spin manifold. One verifies p1(W ) = p1(Y, X)−p1(Ỹ , X̃),
so e(X) = e(X̃).

The Lie group S3 ∼= Spin(3) with the left invariant framing has e(S3) = −1,
since the first obstruction for Spin is p1

2 . So the map e : πn+3(Sn) → Z/24 is
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an epimorphism.

Theorem 2.6.1. πn+3(Sn) ∼= Z/24 given by the e invariant and is generated
by the element ν corresponding to S3 with the left invariant framing.

Proof. Only the injectivity of e remains to be proved.
Let X be a stably framed 3 dimensional manifold, and Y a spin manifold

with boundary X. Let Z be the manifold obtained from Y by removing a small
solid ball D4 in Y . (Z, X) is homotopy equivalent to a CW-pair of dimension
3, and since πi(Spin) = 0 for i ≤ 2, the framing on X extends to one on W .
So W gives a stably framed cobordism from X to S3 with a certain framing.
The framings on S3 correspond bijectively with π3(O) ∼= Z, and one verifies the
addition in cobordism classes correspond to the addition in the homotopy group
π3(O). This shows πn+3(Sn) is cyclic with generator ν.

Suppose M is a closed 4 dimensional spin manifold and N is obtained from
M by removing a small solid ball D4. Then as before there is a framing on
N . This gives a null-cobordism of S3 with the framing restricted from M . The
nontriviality of this framing is the obstruction of the existence of a framing over
M , and since the first obstruction for Spin is p1

2 , we see this framing corresponds
to p1

2 times ν.
Now set M to be the K3 surface. We know that p1(K3) = −48, so 24ν = 0.



Chapter 3

Methods from Homotopy
Theory:
Sequences and Operations

The method in the last chapter of calculating πn+k(Sn) becomes more and more
complicated when k grows. One might wonder if there is any systematic method
in calculating the homotopy groups. In fact homotopy theory provides many
methods to deal with the homotopy groups in general and these can be used to
calculate the homotopy groups in a certain range. Though there is no method
available at present to provide a practical way to calculate the homotopy groups
to any range as one like, we understand quite a lot of the general structures of
the homotopy groups by now.

The homotopical methods use as the main tool exact sequences. These
exact sequences are unanimous in homotopy theory, and relates various kind
of groups together, leading to a complicated network in the end. Theories
and tricks are invented to unravel them so that the calculations are possible
for human beings. Also, in deciding the morphisms in the sequences, certain
natural transformations are needed. These are the cohomology operations and
homotopy operations, which has complicated relations. In some sense, these
are the origins of the seemingly random structure of the homotopy groups of
spheres.

3.1 The method of J.-P Serre

The first method leading to a general scheme to calculate the homotopy groups
was given by J.-P Serre. Since the homotopy group of the loop space of a
topological space is just a shift in degree of the original one, by taking the n-fold
loop space, the calculation of the homotopy groups reduces to the calculation
of the fundamental group, which is well understood. J.-P Serre developed the

17
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method of spectral sequence so that the cohomology of the loop space can be
calculated. This enabled him to prove the that the homotopy groups of spheres
are finitely generated, as well as the determination of the rank of the free part.
With the aid of cohomology operations such as Steenrod squares, he was able
to calculate the groups πn(Sn+k) for k ≤ 8.

3.1.1 The Serre spectral sequence

The method of spectral sequence is a means to calculate the derived functors
in two steps. One might ignore something in the first step, so that the derived
functor, such as cohomology groups, is comparatively easy to compute. And in
the second step, one computes the cohomology of the output in the first step.
But in general, we lose some information in the first step. For example, applying
the cohomology group functor loses those information carried by the differentials
in the complex. So we do not get what we want by directly calculating the
derived functor of the outcome in the first step. Instead, we must trace back
the information carried by the differentials, and the result is a spectral sequence.

A spectral sequence is a sequence of graded abelian groups E∗
r , with differ-

entials dr : E∗
r → E∗

r of certain degrees and dr ◦ dr = 0, satisfying the condition
that the homology of (E∗

r , dr) is E∗
r+1. The abelian groups in a spectral se-

quence may have more structures, such as module structures over some ring, or
a second degree, etc. In some cases, we can define the limit E∗

∞ of the groups
E∗

r as r → ∞, and the resulting groups E∗
∞ will give approximations to the

object we want to study. One can consult [Boa99] for a general discussion of
the convergence of spectral sequences.

The Serre spectral sequence is used to calculate the homology of the total
space of a fibration once that of the base and the fibre is known. It can also
be used reversely to calculated the cohomology of the base or fibre from the
knowledge of the other two.

Theorem 3.1.1. Suppose p : E → B is a Serre fibration, with fibre F , base
B. Let R be a commutative ring. Then there is a spectral sequence (Ep,q

r , dr)
with dr : Ep,q

r → Ep+r,q−r+1
r , converging to H∗(E, R), and Ep,q

2 is functorially
isomorphic to Hp(B,Hq(F, R)). Here H∗(F, R) is the local system (or locally
constant sheaf) defined by the cohomology of the fibre.

Proof. See [Ser51].

Remark 3.1.2. The Serre spectral sequence has a multiplicative structure on
each E∗,∗

r respecting degrees, and the differentials dr are derivations (in the
graded sense).

The Serre spectral sequence can be used to prove finiteness conditions of
cohomology groups.

Corollary 3.1.3. Suppose furthermore B is 1-connected and R is a PID. Then
if any two of the spaces F, B, E has the property that all cohomology groups with
coefficient R are finitely generated R-modules, then the third one also has this
property.
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Proof. See [Ser51].

This corollary show that many spaces constructed from fibrations, such as
the loop spaces of simply connected finite CW-complexes, has finitely generated
cohomology groups. But one should take in mind that in general this is not the
case for non-simply connected spaces.

To calculate the homotopy groups of spheres, J.-P Serre computed induc-
tively the n-fold loop spaces of the spheres using the fibration ΩX → E → X,
where E is contractible, for any space X. When the cohomology of ΩnSk is
computed, its fundamental group is deduced from the Hurewics theorem. Then
take the universal cover and apply the loop functor to compute the cohomology
of the next loop space.

Theorem 3.1.4. The groups πn+k(Sn) are all finitely generated. Their ranks
are given by

rank(πn+k(Sn)) =





1 if k = 0
1 if n even and k = n− 1
0 otherwise

(3.1.5)

Proof. See [Ser51].

3.1.2 Cohomology operations and Eilenberg-MacLane spaces

The cohomology operations are natural transformations between cohomology
functors. They are important in determining the differentials in the Serre spec-
tral sequence. And the structure of the algebra of all the cohomology operations
is used in the Adams spectral sequence, which will be discussed in the next chap-
ter.

The simplest cohomology operation is the Bockstein operation, which is
induced by a short exact sequence of the coefficient groups.

Let p be a fixed prime. The Bockstein exact sequence . . . → Hn(X,Z)
×p−−→

Hn(X,Z) → Hn(X,Z/p)
β−→ Hn+1(X,Z) → . . . , where β is the Bockstein op-

eration, gives an exact couple. The resulting spectral sequence is the Bockstein
spectral sequence. Let βr to be the differential of the Er-term in the spectral
sequence. This is call the rth Bockstein operation, and they give information
about the elements in H∗(X,Z) of order pr.

The other operations are the Steenrod squares Sqi, and the Steenrod powers
Pi. They satisfy (and characterized by) the following properties.

� For any pair of spaces Y ⊂ X,

Sqi : Hq(X, Y,Z/2) → Hq+i(X, Y,Z/2),

β : Hq(X, Y,Z/p) → Hq+1(X, Y,Z/p) for p an odd prime,

Pi : Hq(X, Y,Z/p) → Hq+2i(p−1)(X, Y,Z/p) for p an odd prime,

� Sq0 = id, P0 = id
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� if x ∈ Hq(X, Y,Z/2) then Sqqx = x2

if x ∈ H2q(X, Y,Z/p) then Pqx = xp

� if x ∈ Hk(X, Y,Z/2), k < q then Sqqx = 0

if x ∈ Hk(X, Y,Z/p), k < 2q then Pqx = 0

� Sq1, β are the Bockstein operations induced form 0 → Z/p → Z/p2 →
Z/p → 0.

� Cartan formula:

Sqk(xy) =
k∑

i=0

Sqix · Sqk−iy (3.1.6)

Pk(xy) =
k∑

i=0

Pix · Pk−iy (3.1.7)

� Adem relations:

if a < 2b, then

SqaSqb =
[a/2]∑

j=0

(
b− 1− j

a− 2j

)
Sqa+b−jSqj (3.1.8)

if a < pb, then

PaPb =
[a/p]∑
t=0

(−1)a+t

(
(p− 1)(b− t)− 1

a− pt

)
Pa+b−tPt (3.1.9)

if a 6 pb, then

PaβPb =
∑[a/p]

t=0 (−1)a+t

(
(p− 1)(b− t)

a− pt

)
βPa+b−tPt

+
[(a−1)/p]∑

t=0

(−1)a+t−1

(
(p− 1)(b− t)− 1

a− pt− 1

)
Pa+b−tβPt

� if δ∗ : Hq(A,Z/p) → Hq+1(X, A,Z/p) is the coboundary map, then
Sqiδ∗ = δ∗Sqi, βδ∗ = −δ∗β, Piδ∗ = δ∗Pi

For the construction of these operations, see [SE62].
We can construct other cohomology operations by composition of the Steen-

rod squares and powers. Because of the Adem relations, only certain kind of
compositions are needed.
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Definition 3.1.10. Fix a prime number p.

� If p = 2, let I = (s1, . . . , sk). I is admissible if si ≥ 2si+l and sk ≥ 1.
The length, degree, and excess of I are defined by l(I) = k, d(I) =

∑
sj,

and, for I = (s, J), e(I) = s − d(I). Define SqI
t = Sqs1 . . . Sqsk−1Sqsk

t .
Here Sqs

t = Sqs if s ≥ 2, Sq1
t = βt is the Bockstein operation if t < ∞,

and Sq1
∞ = 0. The empty sequence is admissible. Define SqI = SqI

1

� If p > 2, let I = (ε1, s1, . . . , εk, sk, εk+l), εi = 0 or 1. I is admissible if
si ≥ psi+1 + εi+1 and sk ≥ 1 or if k = 0 (then I = (ε)). Define l(I) = k,
d(I) =

∑
εi +

∑
2(p − 1)si, and, if I = (ε, s, J), e(I) = 2s + ε − d(J).

Define PI
t = βε1Ps1 . . . βεkPskβ

εk+1
t . Here β0

t = 1 for all t, β1
t = βt for

t < ∞, and β1
∞ = 0. Define PI = PI

1 .

In view of the Adem relations, the linear combinations of the form SqI or
PI exhaust all the cohomology operation obtained from the Steenrod squares
and powers together with the primary Bockstein operation.

The cohomology functors are representable in the homotopy category of
spaces. So by the Yonida lemma, the natural transformations between two co-
homology functors correspond bijectively to the morphisms between the objects
representing them.

The space representing the functor Hi(•,Π) is the Eilenberg-MacLane space
K(Π, i). So cohomology operations from Hi(•,Π) to Hi′(•,Π′) are classified by
[K(Π, i),K(Π′, i′)], or Hi′(K(Π, i),Π′). The cohomology of Eilenberg-MacLane
spaces can be calculated using the Serre spectral sequence, since we have the
relation ΩK(Π, i) ∼= K(Π, i− 1). The main results is as follows:

� Hi(K(G,n),Q) = 0 if G is finite and i > 0.

H∗(K(Z, n),Q) = Λ[ιn] if k is odd.

H∗(K(Z, n),Q) = Q[ιn] if k is even.

� H∗(K(Z/2, 1),F2) = F2[ι1].

H∗(K(Z/2t, 1),F2) = Λ[ι1]⊗ F2[βt(ι1)], for t ≥ 2.

H∗(K(Z/2t, n),F2) = F2[SqI
t ιn : I is admissible and e(I) < n], if

n ≥ 2.

H∗(K(Z, n),Z/2) = F2[SqIιn : I is admissible and e(I) < n, sk ≥ 2],
if n ≥ 2 and I = (s1, . . . , sk).

� For p an odd prime, and when t = ∞ the group Z/pt is replaced with Z,

H∗(K(Z/pt, 1),Fp) = Λ[ι1]⊗ Fp[βt(ι1)].

H∗(K(Z/pt, n),Fp) = Λ[Tn,t] ⊗ Fp[Sn,t], where Tn,t and Sn,t are
subsets of {PI

t ιn : I is admissible and e(I) < n or, e(I) = n and ε1 = 1}
of odd and even degree respectively. Here I = (ε1, , s1, . . . , εk, sk, εk+l).

The proofs can be found in [Ser53a], [Car55] and [May70].
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Remark 3.1.11. For unequal characteristics, the groups Hi(K(Z/qt, n),Fp) =
0 for i > 0 if p 6= q. In general, we have the notion of localization at a prime
number, just as in algebraic geometry, so that we can deal with one prime at
a time and ignore the other primes. See [BK72] for details of localization at a
prime number.

With the aid of cohomology operations, J.-P Serre could compute the first
eight nontrivial homotopy groups for the spheres. See [Ser53c] for details.

3.1.3 The Steenrod algebra

Using the results on the cohomology of Eilenberg-MacLane spaces, we can clas-
sify all the cohomology operations for cohomology with coefficient Fp. We are
mainly interested in the stable cohomology operation, i.e. those commuting
with the suspension. These operations constitute an algebra under composi-
tion, called the Steenrod algebra A(p)∗. And the cohomology of topological
spaces are modules over A(p)∗.

Theorem 3.1.12. The Steenrod algebra A(p)∗ is generated by the Steenrod
squares if p = 2, the Steenrod powers and the Bockstein operation if p > 2,
modulo the Adem relations. Moreover, it is a Hopf algebra with comultiplication
ψ(Sqi) =

∑
j+k=i Sqj ⊗ Sqk if p = 2, ψ(Pi) =

∑
j+k=i Pj ⊗ Pk and ψ(β) =

1⊗ β + β ⊗ 1 if p > 2.

Proof. See [SE62].

Since the Adem relations have a very complicated form, the Steenrod algebra
is not easy to investigate. However, we can take the dual algebra A(p)∗. Since
the dual algebra is a Hopf algebra with commutative multiplication, its algebra
structure must have a simple form.

Theorem 3.1.13. A(p)∗ is a graded commutative, noncocommutative Hopf al-
gebra.

� For p = 2, A(2)∗ = F2[ξ1, ξ2, . . . ] as an algebra where |ξn| = 2n − 1. The
coproduct ∆ : A(2)∗ → A(2)∗⊗A(2)∗ is given by ∆ξn =

∑
0≤i≤n ξ2i

n−i⊗ξi,
where ξ0 = 1.

� For p > 2, A(p)∗ = Fp[ξ1, ξ2, . . . ]⊗Λ[τ0, τ1, . . . ] as an algebra, where |ξn| =
2(pn − 1), and |τn| = 2pn − 1. The coproduct ∆ : A(p)∗ → A(p)∗ ⊗A(p)∗
is given by ∆ξn =

∑
0≤i≤n ξpi

n−i ⊗ ξi, where ξ0 = 1 and ∆τn = τn ⊗ 1 +
∑

0≤i≤n ξpi

n−i ⊗ τi.

Proof. See [Mil58].

Dually, the homology of topological spaces are comodules over the dual
Steenrod algebra A(p)∗.

The theory of cohomology operations can be extended to the generalized
cohomology theories, at least for good ones. But in general, the dual algebra
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would not be a Hopf algebra. Instead, it is a Hopf algebroid. See [Rav86],
chapter 2 for details.

3.1.4 The Postnikov tower

We can simplify J.-P. Serre’s method by using the Postnikov towers instead
of applying iterated loop space functor, so that we can avoid dealing with non-
simply connected spaces, and deal with stable homotopy groups directly without
knowing the unstable ones.

For reasons of simplicity, we consider only simply connected spaces in this
section.

Definition 3.1.14. The Postnikov tower of a simply connected space X is a
sequence

X

g0

²²

X1
f0oo

g1

²²

X2
f1oo

g2

²²

. . .f2oo

Y0 Y1 Y2

(3.1.15)

such that Yk is of type K(Π, k +1) and Xi, which is the homotopy fibre of fi−1,
is the i-connected cover of X.

One can show that the Postnikov tower exists and is unique up to homotopy.
Also, the homotopy groups of X is just the direct sum of the homotopy groups
of the Yj ’s.

Using the Serre spectral sequence, one can calculate the cohomology groups
of the Xi inductively, and determine the spaces Yi using the Hurewics theorem.
This is particularly useful in the stable range, because in this case the Serre
spectral sequence becomes an exact sequence.

Remark 3.1.16. The Postnikov tower is a kind of resolution of spaces by the
Eilenberg-MacLane spaces. In the next chapter, we will study another resolution,
the Adams resolution, which makes the calculation simpler, and also gives more
structures of the groups.

Using this method, one can calculate the first nine stable homotopy groups
of spheres, and to the thirteenth stem in the 2-component. The 14th stem of
the 2-component cannot be obtained with this method alone, essentially because
the Hopf invariant one problem for n = 16 shows up here.

3.2 The method of Hirosi Toda

The difficulty encountered by the cohomological methods in the preceding sec-
tion is overcome by H. Toda using homotopy operations, the composition and
Toda brackets. He was able to compute more stems of the homotopy groups of
spheres, and in particular, solved the Hopf invariant one problem for n = 16.
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We work with only the 2-component in the section, so all the spaces involved
will be implicitly assumed to be 2-local and the groups are all localized at the
prime 2.

3.2.1 The EHP-sequence

The sequence used by H. Toda was the EHP-sequence of I. M. James. This
sequence was primarily a long exact sequence for the 2-component, and could
be extended to the other components. However, we will only discuss the 2-
component in this section. so all the spaces involved will be implicitly assumed
to be 2-local.

The main point in the EHP-sequence is a 2-local fibre sequence Sn →
ΩSn+1 → ΩS2n+1.

To prove it, let us study the spaces ΩSj+1 first. It turns out to be the free
A∞ space generated by Sj . Since the A∞-operad is equivalent to the associa-
tive operad, we have a concrete model for ΩSj+1. Fix a base point e0 in Sj .
Define CSj to be the quotient space obtained from

∐
k≥1

∏k
Sj by identify-

ing (x1, . . . , xt−1, e0, xt+1, . . . , xk) ∈ ∏k
Sj with (x1, . . . , xt−1, xt+1, . . . , xk) ∈∏k−1

Sj , where
∏k

Sj means the cartesian product of k copies of Sj .

Theorem 3.2.1. The space CSj is homotopy equivalent to ΩSj+1.

Proof. See [May72].

The space CSj has a natural cell decomposition with one cell in dimension
kj for each k, and a calculation with the Serre spectral sequence of the fibre
sequence ΩSj+1 → E → Sj+1, for the cohomology with coefficientQ, shows that
all the boundary maps in the complex of the cell decomposition vanish. Thus
Hkj(ΩSj+1,Z) ∼= Z and the cohomology groups of other dimensions vanish.
Now in the Serre spectral sequence of ΩSj+1 → E → Sj+1 for the coefficient
Z, the only pattern is that dj+1(xkj) = x(k−1)j ⊗ y where xkj is the generator
of Hkj(ΩSj ,Z) and y is the generator of Hj+1(Sj+1,Z). So the multiplicative
structure of H∗(ΩSj+1,Z) can be read from it. If j is odd, xjx2kj = x(2k+1)j

and x2kjx2hj =
(
k+h

k

)
x2(k+h)j . If j is even, xkjxhj =

(
k+h

k

)
x(k+h)j . Modulo 2,

we obtain H∗(ΩSj+1,F2) ∼= Λ[x2tj : t ≥ 0]
Next we describe the map H : ΩSj+1 → ΩS2j+1. Since Sj ∧ Sj ∼= S2j , we

have a map h : Sj × Sj → S2j . The map H is defined to be H(x1, . . . , xk) =∏
σ h(xσ1 , xσ2) for (x1, . . . , xk) ∈ CSj , where σ = (σ1, σ2) runs over all sequences

with 1 ≤ σ1 < σ2 ≤ k and the product is the multiplication in CS2j . One checks
that this is well defined.

The map H maps the 2j-cell in ΩSj+1 to the 2j-cell in ΩS2j+1 with de-
gree 1. So if j is odd, H∗(x′2kj) = x2kj where xt and x′t are the generators
of H∗(ΩSj+1,Z) and H∗(ΩS2j+1,Z) respectively. If j is even, then we have
H∗(x′2kj) = (2k)!

2kk!
x2kj . Anyway, we have H∗(x′2kj) = x2kj modulo 2.

Theorem 3.2.2. There is a 2-local fibre sequence Sj E−→ ΩSj+1 → ΩS2j+1

where the map E is dual to the suspension.
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Proof. Let F be the homotopy fibre of the map H. Since H maps the j-skeleton
Sj ⊂ CSj to the base point, the map E : Sj → ΩSj+1 factors through F.
A calcualtion with the Serre spectral sequence of F → ΩSj+1 → ΩS2j+1 for
coefficient F2 shows that H∗(H,F2) ∼= Λ[uj ] with uj the restriction of xj , and
the differential vanish. This shows the map Sj → F is a 2-local equivalence.

Corollary 3.2.3. There is a long exact sequence

. . . → πi(Sn) Σ−→ πi+1(Sn+1) H−→ πi+1(S2n+1) ∆−→ πi−1(Sn) → . . . (3.2.4)

This is the EHP-sequence. The map H is called the Hopf invariant.

3.2.2 Homotopy operations

We will discuss homotopy operations in a general setting, including those with
many variables and the underlying space might vary.

So suppose F to be a functor sending the sequence of pairs of topological
spaces (X1, Y1), . . . , (Xn, Yn) to the pair (W,Z). Then a homotopy operation
would mean a natural transformation from [X1, Y1] × · · · × [Xn, Yn] to [W,Z],
where [X, Y ] means the set of homotopy classes of maps from X to Y .

The first example of a homotopy operation is the composition of maps. These
define in particular maps πm(Sn)× πn(Sk) → πm(Sk). These satisfy:

Let ιn ∈ πn(Sn) be the identity map, and α, β are elements of the homotopy
groups of spheres.

ιn ◦ α = α ◦ ιp = α for α ∈ πp(Sn) (3.2.5)

α ◦ (β1 ± β2) = α ◦ β1 ± α ◦ β2 (3.2.6)

(α1 ± α2) ◦ Σβ = α1 ◦ Σβ ± α2 ◦ Σβ (3.2.7)

Note the the composition is not distributive in general.
The suspension commutes with the composition:

Σ(α ◦ β) = Σα ◦ Σβ (3.2.8)

The Hopf invariant behaves well with composition if one of the components
is a suspension:

H(α ◦ Σβ) = H(α) ◦ Σβ (3.2.9)

H(Σγ ◦ α) = Σ(γ ∧ γ) ◦H(α) (3.2.10)

Remark 3.2.11. This equation shows in particular that H(kα) = k2H(α).
Letting α to be the generator of π3(S2), we see that the composition is not
bilinear in this case.
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For the map ∆ in the EHP-sequence, we have:

∆(α ◦ Σ2β) = ∆(α) ◦ β (3.2.12)

The proof of 3.2.9, 3.2.10 and 3.2.12 can be found in [Tod62], chapter 2.
The smash product is closely related to the composition. In the stable range,

they define the same ring structure on the stable homotopy groups of spheres.

α ∧ ιn = Σnα (3.2.13)

(α1 ◦ α2) ∧ (β1 ◦ β2) = (α1 ∧ β1) ◦ (α2 ◦ β2) (3.2.14)

If α ∈ πp+k(Sp) and β ∈ πq+h(Sq),

α ∧ β = (−1)(p+k)(q+h)−pqβ ∧ α (3.2.15)

α ∧ β = (−1)h(p+k)Σqα ◦ Σp+kβ = (−1)phΣpβΣq+hα (3.2.16)

Corollary 3.2.17. The composition is commutative (in the graded sense) in
the stable range, i.e.

Σqα ◦ Σp+kβ = (−1)khΣpβ ◦ Σq+hα (3.2.18)

Another important homotopy operation is the Whitehead product. To avoid
complicity, suppose the spaces are simply connected.

The space Sm×Sn has a standard cell decomposition, with one (m+n)-cell
and the (m + n − 1)-skeleton is Sm ∨ Sn. The attaching map gives a map ψ :
Sm+n−1 → Sm∨Sn. This map can also be described as follows. Sm+n−1 can be
viewed as the boundary of Dm×Dn, so Sm+n−1 = (Dm×Sn)∪Sm×Sn (Sm×Dn).
The map ψ on Dm×Sn is the composition of the projection to Dm followed by
the quotient map to Sm. The restriction to Sm ×Dn is similar.

Let α ∈ πm(X) and β ∈ πn(X), then their Whitehead product is defined by
[α, β] = (α, β) ◦ψ ∈ πm+n−1(X) where (α, β) : Sm ∨Sn → X restricts to α and
β on Sm and Sn respectively.

The Whitehead product is bilinear, and if we set deg(α) = m − 1 for
α ∈ πm(X), then it gives a graded Lie algebra structure (if the sign is cho-
sen suitably):

Theorem 3.2.19. If α, β, γ are elements in πp(X), πq(X), πr(X) respectively,
with p, q, r > 1, then

(−1)p(r−1)[α, [β, γ]] + (−1)q(p−1)[β, [γ, α]] + (−1)r(q−1)[γ, [α, β]]
= (−1)pr[[α, β], γ] + (−1)qp[[β, γ], α] + (−1)rq[[γ, α], β]
= 0 (3.2.20)

Proof. See [NT54].
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This suggests the Whitehead product has something to do as a commutator.
In fact, the Whitehead product is a commutator on the free part.

Theorem 3.2.21. Let φ be the composition πq+1(X) ∂−→ πq(ΩX) → Hq(X,Z),
then

φ[α, β] = (−1)deg(α)[φ(α), φ(β)] (3.2.22)

Where the bracket on the left side is the Whitehead product, and the one on the
right is the commutator of the Pontrjagin product on H∗(ΩX,Z).

Proof. See [Sam53].

Remark 3.2.23. The Whitehead product, together with the composition, gen-
erate all the primary homotopy operations on the homotopy groups of a fixed
space, as proved in [Hil55]. Also, the data given by the Whitehead product com-
pletely determine the rational homotopy type of a simply connected space, see
[Qui69b].

The Whitehead product also gives the commutator of the composition prod-
uct just below the stable range:

Theorem 3.2.24. Let α ∈ πp(Sm) and β ∈ πq(Sn). Define

θ = Σn−1α ◦ Σp−1β − (−1)(p−m)(q−n)Σm−1β ◦ Σq−1α

Then 2θ = 0 and
θ = [ι, ι] ◦ Σ2m−2H(β) ◦ Σq−1H(α)

Proof. See [Bar61].

It can be proved that

∆(ι2m+1) = ±[ιm, ιm] (3.2.25)

Since the Hopf invariant of [ιm, ιm] is 2,

H(∆(ι2m+1)) = ±2ι2n−1 (3.2.26)

Combining 3.2.12, 3.2.25 we get

∆(Σ2γ) = ±[ιm, ιm] ◦ γ (3.2.27)

So the θ in theorem 3.2.24 equals ±∆(Σ2mH(β) ◦ Σq+1H(α)).

3.2.3 The Toda bracket

The most important secondary homotopy operation is the Toda bracket. It is
defined for triples (α, β, γ) whenever α ◦ β = β ◦ γ = 0, and takes value a coset
for certain subgroup.
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Let n ≥ 0, and α ∈ [ΣnY, Z], β ∈ [X, Y ], γ ∈ [W,X] such that α ◦ Σnβ = 0,
β ◦ γ = 0. Then there exist homotopies Φ : ΣnX × [0, 1] → Z from α ◦ Σnβ to
0, and Ψ : W × [0, 1] → Y from β ◦ γ to 0.

Define Θ : Σn+1W → Z by the formula

Θ(w, t) =





α(ΣnΨ(w, 2t− 1)) for 1
2 ≤ t ≤ 1

Φ(Σnγ(w), 1− 2t) for 0 ≤ t ≤ 1
2

Then the Toda bracket < α, β, γ >n is defined to be the set of Θ when Φ,Ψ
run over all possible homotopies. This is a double coset in [Σn+1W,Z] of the
subgroups [Σn+1X, Z] ◦Σn+1γ and α ◦Σn[ΣW,Y ]. Sometimes we will omit the
subscript n.

Alternatively, we can describe the Toda bracket as follows. We call ᾱ ∈
[Y ∪β CX, Z] an extension of α if ᾱ|Y = α, and call γ̃ ∈ [ΣW,Y ∪β CX] a
coextension of γ if

γ̃(w, t) =





(γ(w), 1− 2t) if 0 ≤ t ≤ 1
2

∈ Y if 1
2 ≤ t ≤ 1

Then < α, β, γ >n = {(−1)nᾱ ◦Σnγ̃} where ᾱ and γ̃ run over all the extensions
of α and coextensions of γ respectively. This description shows that the Toda
bracket in the stable range coincides with the Massey product in the triangulated
category of spectra.

The Toda bracket has many good properties. Firstly, it is trilinear:

Theorem 3.2.28. Let α, α′ ∈ [ΣnY, Z], β, β′ ∈ [X, Y ], γ, γ′ ∈ [W,X]. Then

< α,Σnβ, Σn(γ + γ′) >n ⊂ < α,Σnβ, Σnγ >n + < α,Σnβ, Σnγ′ >n

if n ≥ 1 or W = ΣW ′, (3.2.29)
< α,Σn(β + β′),Σnγ >n = < α,Σnβ, Σnγ >n + < α,Σnβ′,Σnγ >n

if n ≥ 1 or γ = Σγ̂, (3.2.30)
< α + α′,Σnβ, Σnγ >n ⊂ < α,Σnβ, Σnγ >n + < α′,Σnβ, Σnγ >n

if n ≥ 1 or β = Σβ̂ and γ = Σγ̂, (3.2.31)

Proof. See [Tod62], chapter 1.

We also have the juggling formula:

Theorem 3.2.32. When the Toda brackets in the following formula are defined,
we have

< α,Σnβ, Σnγ >n ◦ Σn+1δ ⊂ < α,Σnβ, Σn(γ ◦ δ) >n (3.2.33)
< α,Σnβ, Σn(γ ◦ δ) >n ⊂ < α,Σn(β ◦ γ),Σnδ >n (3.2.34)

< α ◦ Σnβ, Σnγ, Σnδ >n ⊂ < α,Σn(β ◦ γ),Σnδ >n (3.2.35)
α ◦< β,Σnβ, Σnδ >n ⊂ < α ◦ β, Σnγ, Σnδ >n (3.2.36)
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Proof. See [Tod62], chapter 1.

We also have

< < α, β, γ >,Σδ,Σε > + < α, < β, γ, δ >,Σε > + < α, β, < γ, δ, ε > > = 0
(3.2.37)

In the stable range, there is commutation relations:

Theorem 3.2.38. Let α ∈ πp+h(Sp), β ∈ πq+k(Sq) and γ ∈ πr+l(Sr). Suppose
α ∧ β = β ∧ γ = 0, then < Σq+rα, Σp+h+rβ, Σp+h+q+kγ > and
(−1)hk+kl+lh+1< Σp+qγ, Σp+r+lβ, Σq+k+r+lα > have a common element.

Further assume α ∧ γ = 0, then (−1)hl< Σq+rα, Σp+h+rβ, Σp+h+q+kγ > +
(−1)kh< Σp+rβ, Σp+q+kγ, Σq+k+r+lα >+(−1)lk< Σp+qγ, Σq+r+lα, Σp+h+r+lβ >
contains 0.

Proof. See [Tod62], chapter 3.

Suspension commutes with Toda bracket:

−Σ< α,Σnβ, Σnγ >n ⊂ < Σα, Σn+1β, Σn+1γ >n (3.2.39)

The Hopf invariant of the Toda bracket can be calculated:

Theorem 3.2.40. Suppose n ≥ 1, then

H(< α,Σnβ, Σnγ >n) ⊂ < H(α),Σnβ, Σnγ >n (3.2.41)

Proof. See [Tod62], chapter 2.

If all three variables are suspensions, we can be more precise:

Theorem 3.2.42. Suppose Σ(α ◦ β) = β ◦ γ = 0, then

H(< Σα, Σβ, Σγ >1) = −∆−1(α ◦ β) ◦ Σ2γ (3.2.43)

Proof. See [Tod62], chapter 2.

As an example, we calculate the Toda bracket < 2, η, 2 > where η is the
generator of π1(S).

Theorem 3.2.44. The set < 2, η, 2 > contains a single element η2.

Proof. We know π2(S) ∼= Z/2 generated by η2. Suppose on the contrary
< 2ιn, ηn, 2ιn+1 > contains 0. Let K = Sn ∪ηn Dn+2 and α ∈ [K,Sn] be
an extension of 2ιn and β ∈ [Sn+2,K] be a coextension of 2ιn+1. Since
0 ∈ < 2ιn, ηn, 2ιn+1 >, we can choose α, β so that α◦β = 0. Let L = Sn∪α CK.
Then there is a coextension β̃ ∈ [Sn+3, L] of β. Define M = L∪β̃ CSn+3. K has
two cells, and we have Sq2(xn) = xn+2 where xn and xn+2 are the generators in
H∗(K,F2). L has three cells. The two lower dimensional cells is Sn∪2ιn

Dn+1 so
Sq1(yn) = yn+1. When the bottom cell is collapsed we get ΣK so Sq2(yn+1) =
yn+3. Here yn, yn+1, yn+3 are the generators in H∗(L,F2). Similarly, in M ,
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Sq1(zn) = zn+1, Sq2(zn+1) = zn+3 and Sq1(zn+3) = zn+4 for the generators
zn, zn+1, zn+3, zn+4 of H∗(M,F2). But Sq1Sq2Sq1 = Sq3Sq1 = Sq2Sq2 by the
Adem relations. We have Sq2(zn) = 0 because there is no (n + 2)-cell. But
Sq2Sq2(zn) = Sq2Sq2Sq1(zn) = zn+4, contradiction.

Remark 3.2.45. Using the decomposition Sn+2 β−→ K
α−→ Sn of < 2ιn, ηn, 2ιn+1 >,

one can calculate directly to show that this represents the element h2
1 in the

Adams spectral sequence, so < 2, η, 2 > = η2.

In general, the Toda brackets of the form < α, β, α > often have the form
β ◦ α∗ with α∗ depending only on α.

Theorem 3.2.46. Let α ∈ πn+k(Sn) and h ≥ 0 satisfy

(1− (−1)k)Σn−hα ◦ Σn+k−hα = 0 (3.2.47)

Assume k ≤ 2n − 2.Then there exists α∗ ∈ π2n+2k+1(S2n) such that for any
β ∈ πn+t(Sm) with β ◦ Σtα = 0,

Σnβ ◦ Σtα∗ ∈ (−1)km+kt+t< Σmα, Σn+kβ, Σn+k+tα >n+k

+(−1)kn+h+t+1< Σnβ, Σn+tα, (1− (−1)k)Σn+k+tα >h+t

(3.2.48)

Further if (1− (−1)k)Σn+k+1α = 0 then

Σnβ ◦ Σtα∗ ∈ (−1)km+kt+t< Σmα, Σn+kβ, Σn+k+tα >n+k (3.2.49)

Proof. See [Tod62], chapter 3.

In particular, from theorem 3.2.44, it follows that the α∗ associated with 2ι
is η. So we have:

Theorem 3.2.50. Let β ∈ πm+k(Sm) with k > 0. Assume 2β = 0, then

Σβ ◦ ηm+k+1 ∈ < 2ιm,Σβ, 2ιm+k+1 >1 (3.2.51)

There is also higher Toda brackets with more than three variables. For
example, let α ∈ [Y, Z], β ∈ [X, Y ], γ ∈ [W,X], δ ∈ [V, W ] satisfy α◦β = β◦γ =
γ◦δ = 0, < α, β, δ > and < β, γ, δ > both contain 0. Assume further that we can
choose homotopies Φ from α◦β to 0, Ψ from β◦γ to 0, Υ from γ◦δ to 0, such that
the elements κ, ρ defined by them in < α, β, δ > and < β, γ, δ > are homotopic
to 0. Choose homotopies Ξ from κ to 0 and Θ from ρ to 0. Then define the
bracket < α, β, γ, δ > to be the class defined by the maps Λ : Σ2V → Z, defined
by

Λ(v, s, t) =





Ξ(δ(v), 1− 2s, t) if 0 ≤ s ≤ 1
2 , 0 ≤ t ≤ 1

2
Ξ(δ(v), 1− s

1−t , t) if 0 ≤ s ≤ 1− t, 1
2 ≤ t ≤ 1

Φ(Υ(v, 2s− 1), 1− 2t) if 1
2 ≤ s ≤ 1, 0 ≤ t ≤ 1

2
α(Θ(v, s, 1− 1−t

s )) if 1− t ≤ s ≤ 1
2 , 1

2 ≤ t ≤ 1
α(Θ(v, s, 2t− 1)) if 1

2 ≤ s ≤ 1, 1
2 ≤ t ≤ 1

(3.2.52)
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when the homotopies run over all choices.
This is sketched in the following picture:

¡
¡

¡
¡

¡
¡

¡¡

Φ ◦Υ
Φ ◦ γ ◦ δ

α ◦ β ◦Υ

α ◦Ψ ◦ δ

Ξ ◦ δ

α ◦Θ

3.2.4 Calculation with the EHP-sequence

We give some examples of calculations of the 2-component of the homotopies
groups of spheres using the EHP-sequences and homotopy operations. The de-
tailed calculation of πn+k(Sn) for k ≤ 19 can be found in [Tod62], and more
calculations can be found in [MT63, Mim65, MMO74]. Their results are sum-
marized in appendix A.

To begin with, we first give the structure of the homotopy groups implied
by the existence of the division algebras.

Theorem 3.2.53. Let n = 2, 4 or 8, and h : S2n−1 → Sn the map with Hopf
invariant one. Then

Σ + h∗ : πi−1(Sn−1)⊕ πi(S2n−1) → πi(Sn) (3.2.54)

is an isomorphism for all i.

Proof. The case n = 2 is obvious. So assume n = 4, 8 in the following.
Define a map j : Sn−1×ΩS2n−1 → ΩSn by the formula j(x) = E (x) · Ωh(x),

the loop-multiplication in ΩSn of the inclusion E : Sn−1 → ΩSn and the map
Ωh. The cohomology ring of the loop space of spheres is calculated in 3.2.1.
The fact that h has Hopf invariant one means it pulls back the generator of
H2n−2(ΩSn,Z) to the generator of H2n−2(ΩS2n−1,Z). It follows that the map
j is a homotopy equivalence.

Remark 3.2.55. One can also use the long exact sequence

. . . → πi(Sn−1) → πi(S2n−1) → πi(Sn) ∂−→ πi−1(Sn−1) → . . .

from the fibration Sn−1 → S2n−1 h−→ Sn, and show directly that the map ∂ is a
left inverse to the suspension.
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Now we can give the calculation of πn+k(Sn) for k ≤ 3.
When k = 1, we know from the preceding theorem that π3(S2) ∼= Z gener-

ated by the Hopf map η2, and the Hopf invariant is an isomorphism. Next use
the EHP-sequence π5(S5) ∆−→ π3(S2) Σ−→ π4(S3) → 0. Since H(∆(ι5)) = 2ι3 by
3.2.26, π4(S3) ∼= Z/2 generated by η3 the suspension of η2. Thus:

Theorem 3.2.56. π3(S2) ∼= Z, πn+1(Sn) ∼= Z/2 for n ≥ 4.

The following lemma will be useful:

Theorem 3.2.57. Let α ∈ πi(S3) such that 2α = 0, so < η3, 2ι4,Σα >1 is
defined. Let β ∈ < η3, 2ι4,Σα >1. Then H(β) = Σ2α and 2β = η3 ◦ Σα ◦ ηi+1.

Proof. By 3.2.43, H(β) ∈ ∆−1(η2 ◦ 2ι3) ◦Σ2α = ∆−1(2η2) ◦Σ2α = ±ι5 ◦Σ2α =
Σ2α.

By 3.2.32 and 3.2.39, 2β ∈ < η3, 2ι4,Σα >1 ◦ 2ιi+2 = η3 ◦Σ< 2ι3, α, 2ιi > ⊂
η3 ◦ −< 2ι4,Σα, 2ιi+1 >1, and this contains η3 ◦ −(Σα ◦ ηi+1) = η3 ◦ Σα ◦ ηi+1

by 3.2.50.
A calculation of the indeterminacy of the bracket shows in fact 2β = η3 ◦

Σα ◦ ηi+1.

For k = 2, by 3.2.53, π4(S2) ∼= Z/2 generated by η2
2 = η2 ◦ η3. Next use the

EHP-sequence

π6(S3) H−→ π6(S5) ∆−→ π4(S2) Σ−→ π5(S3) H−→ π5(S5) ∆−→ π3(S2)

We know ∆ : π5(S5) → π3(S2) is injective. So Σ : π4(S2) → π5(S3) is surjective.
Let ν′ ∈ < η3, 2ι4, η4 >, then by 3.2.57, H(ν′) = η5 and 2ν′ = η3

3 .
This shows H : π6(S3) → π6(S5) is surjective, so Σ : π4(S2) → π5(S3) is an

isomorphism. By 3.2.53, π6(S4) ∼= π5(S3)⊕ π6(S7). Hence:

Theorem 3.2.58. πn+2(Sn) ∼= Z/2 generated by η2
n.

Now we calculate the case k = 3. As before, π5(S2) ∼= Z/2 generated by η3
2 .

Next use the sequence π7(S3) H−→ π7(S5) ∆−→ π5(S2) Σ−→ π6(S3) H−→ π6(S5). We
have H(ν′) = η5 and 2ν′ = Ση3

2 . We also have H(ν′ ◦ η6) = H(ν′) ◦ η6 = η2
5 by

3.2.9. So H : π7(S3) → π7(S5) is surjective. So π6(S3) ∼= Z/4 generated by ν′.
By 3.2.53, π7(S4) ∼= Z⊕ Z/4 generated by ν4 and Σν′ where ν4 is the map

with Hopf invariant one.
The next step is a little elaborated. But since we have already calculated

the stable group πn+3(Sn) for n ≥ 5 in 2.6, there is a shortcut. By the EHP-
sequence, π8(S5) ∼= π7(S4)/∆(π9(S9)). Since ∆(ι9) has Hopf invariant 2 by
3.2.26, ∆(ι9) = ±2ν4 + kΣν′ for some k. And the only way to obtain the
expected group Z/8 is ∆(ι9) = ±2ν4 ± Σν′. By suitable choice of ν′, we may
assume ∆(ι9) = ±(2ν4 − Σν′) so that 2Σν4 = Σ2ν′.

Theorem 3.2.59. π5(S2) ∼= Z/2, π6(S3) ∼= Z/4, π7(S4) ∼= Z⊕Z/4, πn+3(Sn) ∼=
Z/8 for n ≥ 5.
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3.2.5 The Hopf invariant one problem for n = 16

Here we show how the composition methods can be used to prove the nonexis-
tence of a map from S31 to S16.

First we need the result of the groups πn+7(Sn).

Theorem 3.2.60. π13(S6) ∼= Z/4 generated by σ′′ with H(σ′′) = η2
11. π14(S7) ∼=

Z/8 generated by σ′ with H(σ′) = η13, and 2σ′ = Σσ′′. π15(S8) ∼= Z⊕Z/8 gen-
erated by σ8 and Σσ′, where σ8 has Hopf invariant one. πn+7(Sn) ∼= Z/16
generated by σn for n ≥ 9. ∆(ι17) = ±(2σ8 − Σσ′) and 2Σσ8 = Σ2σ′.

Proof. See [Tod62], chapter 5.

We also need the result of πn+k(Sn) for k ≤ 9, which is collected in appendix
A. These calculations are also obtainable by the cohomological methods in
section 3.1.

Using the sequence π31(S16) H−→ π31(S31) ∆−→ π29(S15) we see that to prove
the nonexistence of a map in π31(S16), it suffices to prove that ∆(ι31) 6= 0 in
π29(S15).

Using theorem 3.2.24, ∆(ι31) = ∆(Σ16H(σ8) ◦Σ16H(σ6)) = Σ7σ8 ◦Σ14σ8 +
Σ7σ8 ◦ Σ14 ◦ σ8 = 2σ2

15, so it suffices to show 2σ2
15 6= 0.

We begin with π22(S8), which by theorem 3.2.53, equals Z/16{σ2
8}⊕Σπ21(S7).

So 2σ2
8 6= 0. We have to prove this element suspends to a nonzero one in

π29(S15). So we calculate the kernel of Σ, which equals the image of ∆ by the
EHP-sequence.

∆(π24(S17)) is generated by ∆(σ17). By 3.2.12, ∆(σ17) = ∆(ι17) ◦ σ15 =
±(2σ8−Σσ′) ◦σ15 = ±(2σ2

8 −Σ(σ′ ◦σ14)). We will show σ′ ◦σ14 6= 0 in π21(S7)
so 2σ2

9 6= 0. In fact, H(σ′ ◦ σ14) = H(σ′) ◦ σ14 = η13 ◦ σ14. This element is
nonzero, and equals ν̄13 + ε13 in the table of appendix A.

Next ∆(π25(S19)) is generated by ∆(ν2
19) = ∆(ι19)◦ν2

17 using 3.2.12. ∆(ι19)
cannot vanish because there is no map with Hopf invariant one in π19(S10). In
fact ∆(ι19) = σ9 ◦ η16 + ν̄9 + ε9, and ∆(ν2

19) = ν̄9 ◦ ν2
17. We have to prove that

ν̄7 ◦ ν2
15 6= σ′ ◦ σ14 in π21(S7). This is the case since ν̄7 ◦ ν2

15 is a suspension so
have Hopf invariant 0. Thus 2σ2

10 6= 0.
The two groups π26(S21) and π27(S23) vanish so that 2σ2

12 6= 0.
Now ∆(π28(S25)) is generated by ∆(ν25) = ∆(ι25) ◦ ν23 using 3.2.12. Since

H(∆(ι25) ◦ ν23) = 2ν23 using 3.2.9 and 3.2.26, ∆(ν25) and 2∆(ν25) are not sus-
pensions. ∆(4ν25) = ∆(η3

25). By 3.2.24, ∆(η3
25) = ∆(Σ14H(σ′′) ◦ Σ14H(σ′)) =

Σ6σ′′ ◦ Σ12σ′ + Σ5σ′ ◦ Σ13σ′′ = 16σ2
12 = 0. So the image of ∆ does not contain

common element with the image of Σ in π26(S12). And we have 2σ2
13 6= 0.

∆(π29(S27)) is generated by ∆(η2
27). Using 3.2.24 one proves ∆(η2

27) = 8σ2
13,

so 2σ2
14 6= 0.

Similarly, ∆(π30(S29)) is generated by ∆(η29) = 4σ2
14, and we have finally

proved 2σ2
15 6= 0.

Theorem 3.2.61. There is no map in π31(S16) with Hopf invariant one.
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The general theorem that the only maps with Hopf invariant one are those
induced by C,H,O, is proved by using secondary cohomology operations or using
K-theory, see [Ada60, AA66].



Chapter 4

The Adams Spectral
Sequence

In this chapter, a basic reference is [Rav86]. To make Serre’s method more clear,
we use the language of spectra.

4.1 Stable homotopy theory

We first state Brown’s representability theorem.

Theorem 4.1.1. Let H be a contravariant functor H on the homotopy category
of based CW complexes to the category of Abelian groups satisfies wedge axiom
and MV axiom. Then H is representable by a CW complex Y , that is, there is
an isomorphism between H(·) and [·, Y ] for any finite CW complex.

Proof. See [Bro62]

As a corollary, we have the following

Theorem 4.1.2. Any generalised cohomology theory Ẽ∗ is represented by {Ei}i∈Z,
such that Ẽ∗(X) = [X, Ei] and the maps Ei → ΩEi+1 are weak equivalences.

For example, for ordinary cohomology theories, we have natural isomor-
phisms H̃n(X;π) ∼= [X, K(π, n)] for any CW complex X, integer n > 0 and
Abelian group π. To better understand relations between these Ei, we intro-
duce the notation of prespectra.

Definition 4.1.3. A prespectrum is a sequence of based spaces E = {Ei}i≥0,
and based maps σ : ΣEi → Ei+1 as structure maps. A map f : E → F of
prespectra E and F is a sequence of based maps fi : Ei → Fi commuting with
structure maps. Hence we get a category of prespectra, denoted by PreSp.

35
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As shown in [May99], we can associate a generalized homology theory for
a given prespectrum under certain connectness conditions. To discuss more
properly with respect to the stability and generalized cohomology theories, we
introduce the notation of spectra.

Definition 4.1.4. A spectrum is a prespectrum such that the adjoints Ei →
ΩEi+1 to the structure maps are homeomorphisms. The category of spectra,
denoted by Sp, is defined as a full subcategory of PreSp.

Just like we can associate a sheaf to a presheaf, the inclusion functor PreSp →
Sp has a left adjoint named spectrification, denoted by L, which can be shown
by Freyd’s adjoint functor theorem.

Definition 4.1.5. The sphere spectrum, denoted by S, is defined to be the spec-
trification of the suspension prespectrum Si with obvious structure maps.

Remark 4.1.6. A similar statement of Brown’s representability theorem holds
for spectra.

As discussed in [Ada74], we can properly define generalized homology, coho-
mology and homotopy groups of a spectrum. For instance, denote HZ/(p) the
mod (p) Eilenberg-Mac Lane spectrum, then HZ/(p)∗(HZ/(p)) is just the mod
(p) Steenrod algebra Ap.

Remark 4.1.7. If we define the fibrations (resp. weak equivalences) to be the
maps f : E → F such that fi : Ei → Fi are fibrations (resp. weak equivalences)
and the cofibrations to be precisely those maps which have the LLP with respect
to the acyclic fibrations, then the category Sp becomes a closed model category.

Remark 4.1.8. If we defined suspension to be the translation functor, and dis-
tinguished triangles to be the cofibration sequences, then the homotopy category
of Sp, which is also called the stable homotopy category, becomes a triangulated
category.

As in the category of based topological spaces, smash product is also an
important operation in category Sp.

Theorem 4.1.9. There is a functor
∧

: Sp×Sp → Sp named smash product.
Smash product is associative, commutative (up to homotopy), and has the sphere
spectrum S as a unit, up to coherent natural equivalences.

Proof. For detailed constructions and proof, see [Ada74].

4.2 Construction of the Adams spectral sequence

Definition 4.2.1. A spectrum E is called connective, if πi(E) = 0 for all i < n
for some n.



37

Definition 4.2.2. A mod (p) Adams resolution (Xs, fs) for a spectrum X is
defined to be the diagram:

X0

g0

²²

X1
f0oo

g1

²²

X2
f1oo

g2

²²

. . .f2oo

Y0 Y1 Y2

where X = X0, Ys = Xs ∧HZ/(p),and H∗(gs) is onto.

Theorem 4.2.3. Let X be a connective spectrum of finite type, then there is a
spectral sequence

(E∗,∗
∗ (X), dr : Es,t

r → Es+r,t+r−1
r )

such that
Es,t

2 = Exts,t
Ap

(H∗(X,Fp)),Fp) ⇒ π∗(X)⊗ Z(p)

is conditionally convergent in the colimit sense (in the sense of [Boa99]).

Proof. We sketch the proof. As in Serre’s methods, we can show that for a
given spectrum X as above, there exist a mod (p) Adams resolution (Xs, fs)
such that each sequence

Xs+1
fs // Xs

gs // Ys
// ∑Xs+1

is a fiber sequence. Then we get a short exact sequence:

0 // H∗(ΣXs+1,Fp) // H∗(Ys,Fp)
gs // H∗(Xs,Fp) // 0.

Since each Ys = Xs∧HZ/(p) is a wedge of suspensions of HZ/(p) and HZ/(p)∗(HZ/(p)∧
Xs) is free as a module over the Steenrod algebra Ap, we obtain a free Ap-
resolution of H∗(X,Fp):

· · · // H∗(Σ2Y2,Fp) // H∗(ΣY1,Fp) // H∗(Y0,Fp) // H∗(X, Z/(p)) // 0.

Also from the fiber sequence, we get a long exact sequence of homotopy groups,
and by setting Ds,t

1 = πt−s(Xs), E
s,t
1 = πt−s(Ys), an exact couple is obtained:

D1
i1 // D1

j1~~||
||

||
||

E1

k1

aaBBBBBBBB

where i1 = πt−s(fs), j1 = πt−s(gs), and k1 is a boundary map. This leads to a
spectral sequence. Let X∞ = holim(Xs), we get an exact sequence:

0 // lim←−π∗(X∞) // π∗(X∞) // lim1

←−−π∗(X∞) // 0.
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Define Zs such that there is a fiber sequence

X∞ // Xs
// Zs

// ∑X∞.

Then use the octahedral axiom of the stable homotopy category as a triangulated
category, this spectral sequence converge to π∗(Z0), that is, π∗(X)⊗ Z(p).

Generally, we have the following.

Theorem 4.2.4. Let X be a connective spectrum of finite type, then there is a
spectral sequence

(E∗,∗
∗ (X), dr : Es,t

r → Es+r,t+r−1
r )

such that

Es,t
2 = Exts,t

Ap
(H∗(X,Fp)),H∗(Y,Fp)) ⇒ [Y, X ∧ Ŝ(p)]

is conditionally convergent in the colimit sense.

Definition 4.2.5. A map f : X → Y has Adams filtration ≥ s, if it can be
factorized as

X
f1 // W1

f2 // W2
// · · · // Ws−1

fs // Y.

such that HZ/(p)∗(fi) = 0 for all i.

4.3 Properties of the E2-term of the Adams spec-
tral sequence

In this section, we state some results of the E2-term of the Adams spectral
sequence of prime 2. For primes p > 2, the results are similar and can be found
in [Rav86].

Theorem 4.3.1. 1. HomA2(F2,
∑tF2) =

{ F2 if t = 0
0 else

2. Ext1A2
(F2,

∑tF2) =
{ F2 if t = 2ifor some i

0 else

Proof. Compute directly.

Denote hi 6= 0 ∈ Ext1A2
(F2,

∑2i

F2).

Theorem 4.3.2. 1. ExtsA2
(F2,

∑tF2) = 0 for (s, t) such that t− s < 0.

2. ExtsA2
(F2,

∑sF2) = F2 generated by h0
s.

3. ExtsA2
(F2,

∑tF2) = 0 for all (s, t) such that 0 < s < t < U(s), where
U(s) is the following numerical function: U(4s) = 12s − 1,U(4s + 1) =
12s + 2,U(4s + 2) = 12s + 4,U(4s + 3) = 12s + 6.
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Proof. See [Ada66b].

We call this theorem Adams edge theorem.Roughly speaking, we say there
is a vanishing line.

Theorem 4.3.3. Ext2A2
(F2,

∑∗F2) = 0 is generated by hihj satisfying the re-
lations hihj = hjhi,hihi+1 = 0.

Remark 4.3.4. 〈h0, h1, h0〉 = h2
1,〈h1, h0, h1〉 = h0h2.

Theorem 4.3.5. Ext3A2
(F2,

∑∗F2) = 0 is generated by hihjhk and ci satisfying
the relations hih

2
i+2 = 0,h2

i hi+2 = h2
i+1,ci = 〈hi+1, hi, h

2
i+2〉.

Remark 4.3.6. d2hi = hi−1h
2
0.

Remark 4.3.7. h4
0h3 = 0. If x ∈ Es,t

2 such that h4
0x is above the vanishing

line, then we get the Massey product 〈x, h4
0, h3〉.

Theorem 4.3.8. When (s + 4, t + 4) is above the vanishing line,

〈•, h4
0, h3〉 : ExtsA2

(F2,
∑t

F2) → Exts+4
A2

(F2,
∑t+12

F2)

is an isomorphism.

Proof. See [Ada66b].

Remark 4.3.9. h2n

0 hn+1 = 0, for n > 1. Similarly, near the vanishing line, we
have 〈•, h2n

0 , hn+1〉 as an isomorphism. This is a line of slope 1
5 .

4.4 The May spectral sequence

In this section, citing a differential in 24-stem, we follow Tangora’s method to
compute the E∞ term of the May spectral sequence up to 29-stem at prime 2.
He actually computed through dimension 70 in [Tan70a].

Theorem 4.4.1. There exists a spectral sequence (Eu,v,t
r , dr), called the May

spectral sequence, converging to the E2 term of the Adams spectral sequence,
where each dr is a homomorphism of the tri-graded algebra: dr : Eu,v,t

r →
Eu+r,v−r+1,t

r as a derivation with respect to the algebra structure. The E2 term
of this spectral sequence is generated by the following generators in the range
t − s ≤ 31 and s < 3 in Table 4.1 below subject to the relations(at least) in
Table 4.2 below.

Proof. See [May65a, May65b, May66].

Remark 4.4.2. In the tri-graded algebra Eu,v,t
2 , u is the filtration degree, v

is the complementary degree, t is associated with the degree in the Steenrod
algebra, and homological degree s = u + v, which is the same as in Adams
Spectral Sequences.



40

Table 4.1: Generators of E2 for t− s ≤ 31

t− s s Name u v t
0 1 h0 0 1 1
1 1 h1 0 1 2
3 1 h2 0 1 4
4 2 b02 −2 4 6
7 1 h3 0 1 8
7 2 h0(1) −2 4 9

10 2 b12 −2 4 12
12 2 b03 −4 6 14
15 1 h4 0 1 16
16 2 h1(1) −2 4 18
22 2 b22 −2 4 24
26 2 b13 −4 6 28
28 2 b04 −6 8 30
31 1 h5 0 1 32

Table 4.2: Relations in E2 for t− s ≤ 31

hihi+1 = 0 (i ≥ 0)
h2b02 = h0h0(1)
h0b12 = h2h0(1)
h0(1)2 = b02b12 + h2

1b03

h3h0(1) = 0
h1h1(1) = h3b12

h3h1(1) = h1b22

b02h1(1) = h1h3b03

h0(1)h1(1) = 0
b02b22 = h2

0b13 + h2
3b03

b22h0(1) = h0h2b13
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There are some quick observations from the theorem above.

Remark 4.4.3. We have dr(hi) = 0 for any hi (i ≥ 0) and dr (r ≥ 2) and
dr = 0 for r odd by dimension reasons.

Remark 4.4.4. If x ∈ E2 and hix 6= 0, then hn
i x 6= 0 for any n > 0, at least

in the range of t − s ≤ 31. Any nonzero element in E2 cannot be of the form
hiy and hi+1z at the same time.

Remark 4.4.5. If d2x = y in E2 and that hix and hiy are nonzero, then hi
nx

and hn
i y are nonzero, and d2(hi

nx) = hi
ny. Therefore, all of these elements

disappear in E3.

Since there are many generators, E2 becomes large very soon. A basic tech-
nique offered in [Tan70a] to simplify this issue is to make use of the remark
above. We call d2x is hi-stable and these elements involved is a hi-ladder. Then
when we compute E2 term stem by stem, we throw out all these ladders, that
is, quotient these acyclic complexes, to make later stems in E2 smaller. Doing
this will not change E3 term, however, we need to be careful in later stems of
E2 since the d2 of certain elements will not contain only one element. Details
will be discussed as follows.

0-stem: We have hs
0, s ≥ 0.

1-stem: We have h1. Since h1 is a permanent cycle, hn
0 survive.

2-stem: We have h2
1. By Leibnitz’s rule, di(h2

1) = 0. Therefore h1 survives.
3-stem: We have h3

1 and hs−1
0 h2, s ≥ 1. These are permanent cycles by

direct computation. Therefore h2
1 survives.

4-stem: We have h4
1 and hs−2

0 b02, s ≥ 2. h4
1 is a permanent cycle.

Theorem 4.4.6. d2(b02) = h3
1 + h2

0h2.

Proof. By dimension reasons, we can assume d2(b02) = ah3
1 + bh2

0h2, where
a, b = 0, 1 to be decided. By Adams edge theorem, hs

0h2 cannot survive for
large s. Since hs

0h2 is a cycle, it is also a boundary. Then hs
0h2 is in the image

of dr(hs−2
0 b02) for some r since this is the only possible element in position.

The filtration degree u of hs
0h2 and hs−2

0 b02 are 0 and −2 respectively, hence
we have r = 2. Then we have d2(hs−2

0 b02) = hs−2
0 d2(b02) = hs

0h2, so b = 1.
Also by Adams edge theorem and ”slope” reasons, hs

1 cannot survive. Then
we have hs

1 = dr(h1x) for some x. (Otherwise, if hs
1 = dr(h0x), then 0 =

dr(h1h0x) = h1dr(h0x) = hs+1
1 , which is a contradiction.) The only possibility

is that d2(hs3
1 b02) = hs

1. Therefore a = 1.

Remark 4.4.7. This conclusion can also be obtained by using the result h3
1 =

h2
0h2 of Adams in the E2 term of Adams spectral sequence or computing directly

in bar complex.

Notice that d2(hib02) is hi-stable, i = 0, 1, then we can throw these two
ladders away.

5-stem: Nothing is left after throwing out these two ladders above containing
h5

1, and h1b02. Therefore, there is no survivors in 4-stem and 5-stem.
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6-stem: We have h2
2. For simplicity, we don’t mention those factored already

and h0-multiplies any more.
7-stem: We have h3 and h0(1). h3 is a permanent cycle.

Theorem 4.4.8. d2(h0(1)) = h0h
2
2.

Proof. One way to see this is to use the relation h2b02 = h0h0(1). Then
h0d2(h0(1)) = d2(h0h0(1)) = d2(h2b02) = h2

0h
2
2. Therefore d2(h0(1)) 6= 0. Then

the only possibility is that d2(h0(1)) = h0h
2
2. Another way is using Adams

edge theorem for hs−2
0 h2

2 and filtration degree u for differential dr to decide the
equality.

This differential is h0-stable. Therefore only h2
2 survives in 6-stem.

8-stem: We have h1h3, h1h0(1) and b2
02. h1h3 is a permanent cycle. d2(h1h0(1)) =

h1d2(h0(1)) = h1h0h
2
2 = 0. Since the filtration degree u of h1h0(1) is −2, we

get h1h0(1) is a permanent cycle. Denote h1h0(1) by c0. d2(b02) = 0.

Theorem 4.4.9. d4(b2
02) = h4

0h3.

Proof. For large n, hn
0h3 cannot survive, then we must have dr(b2

02) = h4
0h3.

Since the filtration degree u of b2
02 and h4

0h3 are −4 and 0 respectively, we get
r = 4.

This differential is h0-stable. Therefore only hi
0h2, 0 ≤ i ≤ 3 survives in

7-stem.
9-stem: We have h3

2, h2
1h3, h2

1h0(1) and h3
2. These are all permanent cycles.

Therefore the survivors of 8-stem is h1h3 and c0 = h1h0(1).
10-stem: We have h3

1h3, h2
1b

2
02, h3

1h0(1) and b12. First three elements are
permanent cycles.

11-stem: We have h3b02, b02h0(1), h4
1h3, h3

1b
2
02, h4

1h0(1) and h1b12.
12-stem: We have b03, h4

2, b3
02, h1h3b02, h1b02h0(1), h5

1h3, h4
1b

2
02, h5

1h0(1) and
h2b12.

Theorem 4.4.10. d2(b12) = h3
2 + h2

1h3, d2(b03) = h1b12 + h3b02.

Proof. For dimension reasons, we can assume that d2(b12) = A1h
3
2 + A2h

2
1h3

and d2(b03) = A3h1b12 + A4h3b02, where Ai = 0, 1, i = 1, 2, 3, 4. To kill hn
0h3

2,
only possibility is hn

0 b12, then we get A2 = 1. To kill hn
0h3b02, only possibility

is hn
0 b03, then we get A3 = 1. 0 = d2d2(b03) = d2(h3b02) + A4d2(h1b12) =

h3
1h3 + A1A4h

3
1h3, then we must have A1 = A4 = 1.

d2(hib12), d2(hib03) are hi-stable for i = 0, 1, so we can throw four ladders
away. Therefore, in 9-stem, there are survivors h2

1h3 = h3
2, h2

1h0(1) = h1c0 and
h1b

2
02.

Remark 4.4.11. We denote P 1h1 = h1b
2
02, and generally P kx = b2k

02x, where
P is short for periodicity, for reasons discussed in the last chapter.
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In 11-stem, d2(b02h0(1)) = b02d2(h0(1))+d2(b02)h0(1) = b02h0h
2
2+h0(1)(h3

1+
h2

0h2). Since h2b02 = h0h0(1), we have d2(b02h0(1)) = h3
1h0(1) = h2

1c0. d2(h2b
2
02) =

0. This is h1-stable. Since the filtration degree u of h2
1b

2
02 and h2b

2
02 are −4 and

−4 respectively, h2b
2
02 is a permanent cycle. Therefore the only survivor in

10-stem is h2
1b

2
02 = P 1h2

1.
In 12-stem, d2(b3

02) = b2
02d2(b02) = h2

0h2b
2
02 + h3

1b
2
02 and it is hi-stable for

i = 0, 1. Then we can throw two ladders away. Therefore, in 11-stem, there
are survivors hi+1

0 b02h0(1) = hi
0h2b

2
02 = P 1hi

0h2 for i = 0, 1, 2, where P 1h2
0h2 =

P 1h3
1.
13-stem: We have only h2b12. d2(h2b12) = h2d2(b12) = h2(h2

1h3 + h3
2) = h4

2.
This is h0-stable. We can throw this ladder away. Therefore, there are no
survivors in 12-stem and 13-stem.

Remark 4.4.12. It should be mentioned that this differential is also h2-stable.
We will also throw this h2-ladder away, such as d2(h2

2b12) = h5
2 and their related

h0-ladder together.

For now, the above process can be shown by the Table 4.3 below. We use
very short lines to denote h0 and h1-stable derivations, see d2(b02) = h2

1 + h2
0h2

as an example.
Therefore, we have the E∞ term of the May spectral sequence in the range

of t− s ≤ 13 in Table 4.4 below.
We move on.
14-stem: We have h2

3 and b02b12. (We have the relation h0(1)2 = b02b12 +
h2

1b03, so we don’t need to consider h0(1)2 since h2
1b03 is already thrown away in

the quotient complex.) Since 13-stem is already empty, these are all permanent
cycles. It should be mentioned that b02b12 is not actually a cycle, but equivalent
to a cycle h0(1)2 in the quotient complex. We denote d0 = b02b12.

15-stem: We have h4, h2b03, h3b
2
02, h0(1)b2

02 and some h1-multiplies. For
simplicity, we do not mention these h1-multiplies explicitly from now on, since
they can be viewed directly in the table. d2(h2b03) = 0 d2(h0(1)b2

02) = h0h
2
2b

2
02 =

h3
0d0. This is h0-stable. All these are d2-cycles.

Remark 4.4.13. Since hn
0h2

3 in 14-stem cannot be killed by d2 as discussed
above, by Adams edge theorem, it must be killed by dr, r ≥ 4. For this purpose,
we need to discuss which d2-cycles in 15-stem can survive in E4 term. Therefore
we move to 16-stem.

16-stem: We haveb4
02, b03b02 and h1(1).

Theorem 4.4.14. d2(h1(1)) = h1h
2
3.

Proof. For dimension reasons, we can assume d2(h1(1)) = A1h1h
2
3 + A2h

2
0h4 +

A3h2b03, where A1, A2, A3 = 0, 1. The filtration degree u of d2(h1(1)), h1h
2
3, h2

0h4

and h2b03 are −2, 0, 0 and −4 respectively. Then we get A3 = 0. By relation
h0h1(1) = 0, we get 0 = d2(h0h1(1)) = A2h

3
0h4, hence A2 = 0. By relation

h1h1(1) = h3b12, we get A1h
2
1h

2
3 = d2(h1h1(1)) = h2

1h
2
3, hence A1 = 0.
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Table 4.3: Quotient complex of E2 in the range of t− s ≤ 13
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Table 4.4: E∞ term of the May spectral sequence in the range of t− s ≤ 13
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This is h1-stable. d2(b4
02) = 0. d2(b03b02) = b02d2(b03)+ b03d2(b02) = h1d0 +

h3b
2
02 + h2

0h2b03 + h3
1b03. Therefore, we have E3 term of 15-stem and h3b

2
02

remains nonzero. Then d4(h3b
2
02) = h3d4(b2

02) = h4
0h

2
3.

Theorem 4.4.15. d4(h2b03) = h2
0h

2
3.

Proof. Since d2(hn
0 b03b02) = hn

0h3b
2
02+hn+2

0 h2b03, hn
0h3b

2
02 and hn+2

0 h2b03 repre-
sent the same element in E4. Therefore d4(h3

0h2b03) = d4(h0h3b
2
02) = h5

0h
2
3.

Therefore, the survivors of 14-stem are h2
3, h0h

2
3 and hi

0d0 for i = 0, 1, 2.

Theorem 4.4.16. d8(b4
02) = h8

0h4.

Proof. The only opportunity to kill hn
0h4 is b4

02, then we have dr(b4
02) = h8

0h4.
The filtration degree u of b4

02) and h8
0h4 are −8 and 0 respectively, so we get

r = 8.

Therefore, the survivors of 15-stem are hi
0h4 for 0 ≤ i ≤ 7 and h1d0.

Remark 4.4.17. Since d2(b03b02) = h1d0 + h3b
2
02 + h2

0h2b03 in the quotient
complex, we use h3b

2
02 +h2

0h2b03 to kill h0-ladder of b03b02. Remaining elements
could be viewed as h1d0 and one of h3b

2
02 and h2

0h2b03 equivalently, and the later
is killed by d4. Hence we get only h1d0 in 14-stem.

17-stem: We have only h0(1)b12 since we don’t mention h1-multiplies any-
more. d2(h0(1)b12) = h0(1)d2(b12) + b12d2(h0(1)) = h3

2h0(1) + b12h0h
2
2 = 0.

Therefore, the survivors of 16-stem are h1h4, h2
1d0 and h1h0(1)b2

02 = P 1c0.

Remark 4.4.18. We denote e0 = h0(1)b12.

18-stem: We have h2h4, h2
2b03, h2

3b02 and b2
02b12. d2(h2h4) = 0. d2(h2

2b03) =
h2

2d2(b03) = 0. d2(h2
3b02) = h2

3d2(b02) = h3
1h

2
3 ∼ 0. d2(b2

02b12) = b2
02d2(b12) =

h3
2b

2
02 + h2

1h3b
2
02 ∼ h3

0e0 + h3
1d0. d2(hib

2
02b12) is hi-stable for i = 0, 1. Therefore,

the survivors of 17-stem are h2
1h4, hi

0e0 for 0 ≤ i ≤ 3, h1P
1c0 and h1b

4
02 = P 2h1,

where h3
0e0 = P 1h3

2 ∼ h3
1d0.

Remark 4.4.19. We denote f0 = h2
2b03.

19-stem: We have h2h1(1), h4b02, h3b03, h0(1)b03, h3b
3
02 and h0(1)b3

02. d2(h2h1(1)) =
0. d2(h4b02) = h4d2(b02) = h3

1h4 + h2
0h2h4, and d2(hih4b02) is hi-stable for

i = 0, 1. d2(h3b03) = h3d2(b03) = h2
3b02 + h1h3b12 ∼ h2

3b02, and it is hi-stable
for i = 0, 1. d2(h0(1)b03) = h0(1)d2(b03) + b03d2(h0(1)) = h1e0 + h0h

2
2b03, and

d2(hih0(1)b03) is hi-stable for i = 0, 1. d2(h3b
3
02) = h3d2(b3

02) = h3
1h3b

2
02 ∼ 0.

d2(h0(1)b3
02) = b2

02d2(h0(1)b02) = h2
1P

1c0, and it is h1-stable. Therefore, the
survivors of 18-stem are hi

0h2h4 for 0 ≤ i ≤ 2, hj
0h

2
2b03 for j = 0, 1 and P 2h2

1,
where h2

0h2h4 ∼ h3
1h4 and h1e0 ∼ h0f0.

Remark 4.4.20. We denote c1 = h2h1(1).

Remark 4.4.21. In the quotient complex, we have d2(h3b03) = h2
3b02. This is

also h3-stable. Therefore we can throw this h3-ladder away together with related
hi-ladders for i = 0, 1. We do not draw this differential in Table 4.5 below.
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20-stem: We have b2
12, b5

02 and b2
02b03. d2(b2

12) = 0. d2(b2
02b03) = b2

02d2(b03) =
h3b

2
02+h1b

2
02b12 ∼ h3b

2
02 and this is hi-stable for i = 0, 1. d2(b5

02) = b4
02d2(b02) =

P 2h3
1 + P 2h2

0h2, and d2(hib
5
02) is hi-stable for i = 0, 1. Therefore, the survivors

of 19-stem are c1 = h2h1(1) and hi
0P

2h2 for 0 ≤ i ≤ 2, where h2
0P

2h2 ∼ P 2h3
1.

Remark 4.4.22. In the quotient complex, we have d2(b2
02b03) = h3b

3
02. This is

also h3-stable. Therefore we can throw this h3-ladder away together with related
hi-ladders for i = 0, 1.

21-stem: We have h2
2h4, h3

3, h3
2b03 and d0h0(1). d2(h2

2h4) = 0. d2(h3
3) = 0.

d2(h3
2b03) = h3

2d2(b03) = 0. d2(d0h0(1)) = d0d2(h0(1)) = h0h
2
2d0 ∼ h3

0b
2
12 and

this is h0-stable. Therefore, the survivors of 20-stem are hi
0b

2
12 for 0 ≤ i ≤ 2,

where h0b
2
12 = h2e0.

Remark 4.4.23. We denote g = b2
12.

22-stem: We have b22, h2
2h1(1) = h2c1, h2

3b
2
02, b3

02b12 = P 1d0, b12b03 and
h4h0(1). d2(h2c1) = 0. d2(h2

3b
2
02) = 0. d2(P 1d0) = 0. d2(b12b03) = b12d2(b03) +

b03d2(b12) = h1b
2
12 + h3

2b03, where we use relations b02h1(1) = h1h3b03 and
h3b12 = h1h1(1). d2(hib12b03) is hi-stable for i = 0, 1. d2(h4h0(1)) = h4d2(h0(1)) =
h0h

2
2h4 and it is h0-stable. Citing the result d2(b22) = h2

2h4 + h3
3 from Theorem

4.4.23 below, the survivors of 21-stem are h2
2h4 ∼ h3

3 and h1g ∼ h2f0 = h3
2b03.

Remark 4.4.24. d2(hib22) is hi-stable for i = 0, 1. As in the case of d2(h2b12)
in Remark 4.4.12, d2(h2b22) is also h2-stable, hence we can throw this h2-ladder
away together with related h0-ladder. What’s more, d2(h3b22) is also h3-stable,
hence we can throw this h3-ladder away together with related h0, h1-ladders.

For now, the above process can be shown by the Table 4.5 below.
Therefore, we have the E∞ term of the May spectral sequence in the range

of 14 ≤ t− s ≤ 21 in Table 4.6 below.

Theorem 4.4.25. d2(b22) = h2
2h4 + h3

3.
d2(b13) = h4b12 + h2b22.
d2(b04) = h4b03 + h1b13.

Proof. By dimension reasons, the six elements are all we can expect. We need
to determine the coefficients. Firstly, by resulting the calculations done above
of 22-stem, the only hope to kill hn

0h3
3 is hn

0 b22, therefore the coefficient of
h3

3 in d2(b22 is 1. Secondly, we assume the coefficient of h4b03 is 0, and we
conclude that there is a contradiction. Under this assumption, d2(h0b04) = 0.
Since the filtration degree u of h0b04 is −6, we need some element in 29-stem
with u less than −8 to kill hn

0 b04. We only have b03b12h0(1) = b03e0 with
u = −8 and b3

02b12h0(1) = b3
02e0 with u = −10. d2(h0b03e0) = h0e0d2(b03) = 0,

hence cannot kill hn
0 b04. d2(h0b

3
02e0) = h3

0h2P
1e0, hence d4 cannot kill hn

0 b04.
By dimension reasons, d4(h0b04) = 0. d6(h0b04) = 0. Therefore, hn

0 b04 is
a permanent cycle, which contradicts to Adams edge theorem. At last, by
0 = d2(d2(b04)) = d2(h4b03 + Ah1b13) = h1h4b12 + Ah1d2(b13), we get A = 1,
that is, d2(b04) = h4b03 + h1b13 and the coefficient of h4b12 in d2(b13) is 1. By
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Table 4.5: Quotient complex of E2 in the range of 14 ≤ t− s ≤ 21

-

6
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5

6

7
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9
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11

s
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Table 4.6: E∞ term of the May spectral sequence in the range of 14 ≤ t−s ≤ 21

-

6

1

2

3

4

5

6

7

8

9

10

11

s

13 14 15 16 17 18 19 20 21 t-s

r

r

r

r

r
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r

r

r

r
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r

r
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�

r

r
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r

r

r

r

r

r

r

r
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�
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�
��

r

r

r
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r

r

�
�
�

r

r
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�
�
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�
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r

r

r
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r
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r

r
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r

r

r

g
�
�
�

r

r
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0 = d2(d2(b13)) = d2(h4b12 + Bh2b22) = h3
2h4 + Bh2d2(b22), we get B = 1, that

is, d2(b13) = h4b12 + h2b22 and the coefficient of h2
2h4 in d2(b22) is 1.

Remark 4.4.26. d2(hib04) is hi-stable for i = 0, 2. Therefore we can throw
these two ladders away together with another h0-ladder related to d2(h2b04).

23-stem: We have P 1h4, P 2h3, P 2h0(1), h2g, h3b02b03 and h0(1)b02b03.
d2(P 1h4) = 0. d2(P 2h3) = 0. d2(P 2h0(1)) = b2

02d2(P 1h0(1)) = P 1h3
0d0. This

is h0-stable. d2(h2g) = 0. d2(h3b02b03) = h3d2(b02b03) ∼ P 1h2
3 and this is hi-

stable for i = 0, 1. d2(h0(1)b02b03) ∼ h1h
3
0(1) and this is h1-stable. Therefore,

the survivors of 22-stem are h2
2h1(1) = h2c1 and hi

0P
1d2 for 0 ≤ i ≤ 2.

Remark 4.4.27. In the quotient complex, we have d2(h3b02b03) = P 1h2
3. This

is also h3-stable. Therefore we can throw this h3-ladder away together with
related hi-ladders for i = 0, 1.

24-stem: We haveb6
02, b03b

3
02, b02b

2
12, b2

03 and h4
2b03. d2(b6

02) = 0, d4(b6
02) =

b4
02d4(b2

02) = P 2h4
0h3 and this is h0-stable. d2(b03b

3
02) = P 1d2(b03b02) = h1P

1d0+
P 2h3 + h3

0h0(1)b02b03, and hid2(b03b
3
02) is hi-stable for i = 0, 1. d2(b02b

2
12) ∼

h2
0h2b

2
12 and this is h0-stable. d2(b2

03) = 0. d2(h4
2b03) = 0.

Theorem 4.4.28. d4(b2
03) = h2b

2
12 + h4b

2
02.

Proof. To kill hn
0P 1h4, we need an element with u ≤ −8, which could only be

b2
03. Therefore we get the coefficient of h4b

2
02 is 1. For the other coefficient, we

need to use calculations in the range of 42 ≤ t− s ≤ 44, see [Tan70a].

Remark 4.4.29. d4(hib
2
03) is hi-stable for i = 0, 1. Actually, some hn

1 b2
03 and

hn
1P 1h4 will not survive to E4 in that they will be killed by hm

1 h4b
3
02 and hm

1 b02b
2
03

respectively with n = m + 3 as discussed later.

Therefore, the survivors of 23-stem are h4c0, h2g ∼ P 1h4, h0h2g, h1P
1d0 and

hi
0i for 0 ≤ i ≤ 5, where i = h0b02b03h0(1) = P 1h2b03 and h2

0i ∼ P 2h3+h1P
1d0.

25-stem: We have h2b12b03, h4b12, h2
2c1 and P 1e0. d2(h2b12b03) = h2d2(b12b03) =

h4
2b03 and this is h0-stable. d2(h4b12) ∼ 0. d2(h2

2c1) = 0. d2(P 1e0) = 0. There-
fore, the survivors of 24-stem are P 2c0, h2

1P
1d0 and h1h4c0.

Remark 4.4.30. d2(h2b12b03) is also h2-stable. Therefore we can throw this
ladder away together with its related h0-ladder.

26-stem: We have b13, b12h1(1), h2
3b03, b02b22 = h2

0b13 + h2
3b03, h4b02h0(1),

d0b03, P 2b12 and h2
2g. d2(b13) ∼ h4b12 as in Theorem 4.4.24 and it is hi-stable

for i = 0, 1. d2(b12h1(1)) = h2
2c1. d2(h2

3b03) = h3
3b02 has already been thrown

in Remark 4.4.21. d2(h4b02h0(1)) = h3
1h4h0(1) = h2

1h4c0 and it is h1-stable.
d2(d0b03) ∼ h1P

1b02 and it is h1-stable. d2(P 2b12) = P 1d2(P 1b12) = h3
1P

1d0 +
h3

0P
1e0 and d2(hiP

2b12) is hi-stable for i = 0, 1. d2(h2
2g) = 0. Therefore,

the survivors of 25-stem are h1P
2c0, P 3h1 and hi

0P
1e0 for 0 ≤ i ≤ 3, where

h3
1P

1d0 ∼ h3
0P

1e0.
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Remark 4.4.31. In the quotient complex, d2(h2b13) = h2h4b12 is h2-stable and
so is d2(b12h1(1)). Therefore we can throw these two ladders away together with
their related h0-ladders.

27-stem: We have h4b
3
02, P 1h0(1)b03, h3b

5
02, h0(1)b5

02, h4b03, h2b
2
03 and

h0(1)g. d2(h4b
3
02) = h3

1P
1h4 + h2

0P
1h2h4 = h3

1P
1h4 + h3

0h4b02h0(1) and it is
hi-stable for i = 0, 1. We should mention that h3

1P
1h4 has not been quo-

tient yet since it is killed by h1-stable elements of d4(b2
03). d2(P 1h0(1)b03) ∼

h1P
1e0 + h3

0d0b03, and d2(hiP
1h0(1)b03) is hi-stable for i = 0, 1. d2(h3b

5
02) =∼

0. d2(h0(1)b5
02) = h2

1P
2c0, and it is h1-stable. d2(h4b03) = h1h4b12 ∼ 0.

d2(h0(1)g) = h0h
2
2g and it is h0-stable. d2(h2b

2
03) = 0. By checking filtra-

tion degree u of corresponding dimension in 28-stem, we know that h2b
2
03 can

not be killed by d2. Then we have d4(h2b
2
03) = h2d4(b2

03) = P 1h2h4 + h2
2g and

it is h0-stable. d2(h0(1)g) = h0h
2
2g and it is h0-stable. Therefore, the survivors

of 26-stem are h2
2g ∼ P 1h2h4, P 3h2

1 and hi
0j for 0 ≤ i ≤ 3, where j = h0d0b03,

h0j = h2i = P 1f0 and h2
0j ∼ h1P

1e0.

Remark 4.4.32. d4(h2b
2
03) is also h2-stable. Therefore we can throw this ladder

away together with its related h0-ladder.

28-stem: We have P 2b03, b7
02, b04, h1(1)b03, b02b

2
03 and P 1g = d2

0. d2(P 2b03) =
h3b

5
02 and it is hi-stable for i = 0, 1. d2(b7

02) = P 3h3
1 + h2

0P
3h2 and hib

7
02

is hi-stable for i = 0, 1. d2(b04) ∼ h4b03 as proved in Theorem 4.4.25 and
it is hi-stable for i = 0, 1. d2(h1(1)b03) = h1(1)d2(b03) + b03d2(h1(1)) ∼
h1h1(1)b12 = h3g and it is h1-stable. d2(b02b

2
03) = b2

03d2(b02) = h3
1b

2
03 + h2

0h2b
2
03

and d2(hib02b
2
03) is hi-stable for i = 0, 1. d2(P 1g) = 0. Therefore, the survivors

of 27-stem are hi
0P

3h2 for 0 ≤ i ≤ 2 where h2
0P

3h2 ∼ P 3h3
1.

29-stem: We have P 1d0h0(1), h0(1)b12b03, h2d0b03 and h4d0. d2(P 1d0h0(1)) =
P 1d2(d0h0(1)) = h3

0P
1g and it is h0-stable. d2(h0(1)b12b03) = e0d2(b03) =

h1e0b12 = h1h0(1)g and it is h1-stable. d2(h2d0b03) = h2d2(d0b03) ∼ 0. d2(h4d0) =
0. Therefore, the survivors of 28-stem are hi

0P
1g for 0 ≤ i ≤ 2 where P 1g = d2

0.

Remark 4.4.33. We denote k = h2d0b03.

30-stem: We only mention that d2(b02b13) = b13d2(b02) + b02d2(b13) ∼ h4d0

and it is hi-stable for i = 0, 1. d2(P 1b12b03) = P 1d2(b12b03) = P 1h1g +
P 1h3

2b03 ∼ P 1h1g + h2
0k and d2(hiP

1b12b03) is hi-stable for i = 0, 1. There-
fore, the survivors of 29-stem are hi

0k for 0 ≤ i ≤ 2 where h0k = h2j and
h2

0k ∼ h1P
1g.

By now, the process above can be shown by the Table 4.7 below.
Therefore, we have the E∞ term of the May spectral sequence in the range

of 22 ≤ t− s ≤ 29 in Table 4.6 below.
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Table 4.7: Quotient complex of E2 in the range of 22 ≤ t− s ≤ 29

-

6
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Table 4.8: E∞ term of the May spectral sequence in the range of 22 ≤ t−s ≤ 29

-
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4.5 Differentials in the Adams spectral sequence

Theorem 4.5.1. In the Adams spectral sequence, all differentials in the range
of 0 ≤ t − s ≤ 29 are the following: d2(h4) = h0h

2
3, d3(h0h4) = h0d0,

d3(h2
0h4) = h2

0d0, d2(e0) = h2
1d0, d2(f0) = h2

0e0, d2(h0f0) = h3
0e0, d2(i) =

h0P
1d0, d2(h0i) = h2

0P
1d0, d2(P 1e0) = h2

1P
1d0, d2(hn

0 j) = hn+1
0 P 1e0 for

n = 0, 1, 2, d2(k) = h0P
1g, d2(h0k) = h2

0P
1g and d3(r) = h2

0k.

Proof. See [Rav86].

Remark 4.5.2. The is a nontrivial extension at the 23-stem. This must be
proved using some other methods. For example, one can compare it with the
Adams–Novikov spectral sequence, see [Rav86] for details.

Since there are no differentials in the range of 0 ≤ t − s ≤ 13, the E2-term
and E∞-term of Adams spectral sequence will be just the same as Table 4.4.
The differentials in the above theorem can be viewed in Table 4.9 and Table 4.10
below.
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Table 4.9: differentials of the Adams spectral sequence in the range of 14 ≤
t− s ≤ 21

-
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1

2
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r
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�
�
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r

r
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A
A
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A
A
A
AAK A
A
A
AAK

r

r

r

r

r

r

r

r

A
A
A
A
AAK

B
B
B
B
B
B
B
BBM

d3

B
B
B
B
B
B
B
BBM

d3

h4

�
�
�
�
�
�
�
��

r

r

r

h2h4

r

r

�
�
�

r

r

P 1c0

�
�
�
�
�
�

r

r

r

P 2h2

r
P 2h1

r

r
c1

r

r

r

g
�
�
�

r

r
h3

3
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Table 4.10: differentials of the Adams spectral sequence in the range of 22 ≤
t− s ≤ 29

-
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A
A
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�
�
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r
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r
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r
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r

r

r

r

r

r
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h2g

A
A
A
A
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A
A
A
A
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i

�
�
�

r

�
�
�

r

r
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�
�
�
�
�
�

r

r

r
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r
P 3h1

r

r

r

r

P 1g
�
�
�

r

r

r
k

A
A
A
AAK A
A
A
AAK

r
r

B
B
B
B
B
B
BM

d3
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Therefore, we have the E∞-term of the Adams spectral sequence as in Ta-
ble 4.11 and Table 4.12 below.

Table 4.11: E∞ term of the Adams spectral sequence in the range of 14 ≤ t−s ≤
21
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Table 4.12: E∞ term of the Adams spectral sequence in the range of 22 ≤ t−s ≤
29
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Therefore, we have the first 29 stable homotopy groups of spheres at prime
2 listed in Table 4.13 below.

Table 4.13: 2-component of πk(S) for k ≤ 29

k 0 1 2 3
πk(S) Z(2) Z/2 Z/2 Z/8

π4+k(S) 0 0 Z/2 Z/16
π8+k(S) Z/2⊕ Z/2 Z/2⊕ Z/2⊕ Z/2 Z/2 Z/8
π12+k(S) 0 0 Z/2⊕ Z/2 Z/2⊕ Z/32
π16+k(S) Z/2⊕ Z/2 Z/2⊕ Z/2⊕ Z/2⊕ Z/2 Z/2⊕ Z/8 Z/2⊕ Z/8
π20+k(S) Z/8 Z/2⊕ Z/2 Z/2⊕ Z/2 Z/2⊕ Z/8⊕ Z/16
π24+k(S) Z/2⊕ Z/2 Z/2⊕ Z/2 Z/2⊕ Z/2 Z/8
π28+k(S) Z/2 0
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Chapter 5

Cobordism Theory

5.1 Bordism and Cobordism

The theory of cobordism is important in algebraic topology for many reasons.
Primarily, it gives a classification of manifolds, which is computable by the tools
of homotopy theory. This classification, though very coarse, is surprisingly use-
ful since many things, such as the Chern numbers and Pontrjagin numbers, the
signature, even things so complicated as the index of elliptic operators and the
existence of metrics with positive scaler curvature, are invariant under certain
kind of cobordisms. Also, as shown in chapter 2, the homotopy group of spheres
is a special kind of cobordism group. Further more, the theory of complex cobor-
dism gives deep insights into homotopy theory, which will be discussed in detail
later.

Different kind of cobordism theory are characterized by a G-structure, where
G is a group with a morphism µ : G → O, the infinite orthogonal group. (Pre-
cisely speaking, we should regard both G and O as Ind-objects of the category of
compact Lie groups, but all we need in the following is a fibration ν : BG → BO,
so we do not discuss the details of the groups here.) Roughly speaking, a G-
structure of a vector bundle V is a G-principle bundle P together with a iso-
morphism from the associated O-bundle P ×G O to the one corresponding to
the stabilization of V .

Definition 5.1.1. Suppose f : X → BO is a map classifying a stable vector
bundle U (or a virtual vector bundle of dimension 0), then a G-structure on U
is a lifting of f to BG, and two liftings are regarded as the same if they are
homotopic relative to ν.

The space BO is an H-space with the addition induced by direct sum. This
has a homotopy inverse, so BO is an H-group. Fix a choice of homotopy inverse
ζ : BO → BO. If M is a manifold and f : M → BO classifies its stable tangent
bundle, then ζ ◦f classifies its normal bundle (in fact we may choose this as the
definition of the normal bundle).
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Definition 5.1.2. A manifold with a G-structure (abbreviated as G-manifold),
is a compact manifold with a G-structure on its normal bundle.

Definition 5.1.3. A G-cobordism between compact G-manifolds X and X ′ is a
compact G-manifold with boundary Y such that ∂Y = X ∪X ′ as G-manifolds.

The cobordism class of G-manifolds form a group, with the addition induced
by disjoint union, and the inverse induced by changing the orientation, which
means the following:

Definition 5.1.4. Let f : M → BO be a map and g : M → BG a lifting
of f . Since the fundamental group acts trivially on BO, we have a map F :
M × [0, 1] → BO such that F |M×0 = F |M×1 = f and F |p×[0,1] represents the
nontrivial element in the fundamental group for every p ∈ M . F lifts to a map
G : M × [0, 1] → BG with G|M×0 = g. Define the map G|M×1 to give the
reverse orientation of g.

If BG is an H-group with ν : BG → BO a morphism of H-groups, then
the cobordism group has a ring structure induced from cartesian product. We
assume this from now on.

We can generalize the preceding definition to give a generalized homology
and cohomology theory.

Let T be a space. Then MG∗(T ) is the cobordism group of maps from G-
manifolds to T . Precisely, we call to maps f : X → T and f ′ : X ′ → T from
compact G-manifolds X and X ′ to T cobordant if there is a compact G-manifold
Y with boundary X∪X ′ as G-manifolds and a map from Y to T which restricts
to f and f ′ on the boundary. The group MGk(T ) is formed from the set of maps
from compact k-dimensional G-manifolds to T modulo the relation generated
by cobordism. This is the bordism group. It is a generalized homology theory.

Remark 5.1.5. The boundary map in the Mayer-Vietoris sequences is defined
as follows:

Let T = U ∪ V with U , V open, and λ : X → T represent an element of
MG∗(T ). Choose a smooth function f : T → R such that the support of |f |−1 is
contained in λ−1(U ∩V ) and f takes the value −1 outside V and value 1 outside
U . Further, we may suppose 0 is not a critical value of f . Then f−1(0) is a
manifold with G-structure contained in λ−1(U∩V ), and define ∂[λ] = [λ|f−1(0)].

To define the corresponding cohomology theory, we work in the category of
compact manifolds. It can be easily generalized to noncompact manifolds to
give the definition of a generalized cohomology theory with compact support.
We will give the definition for a general space in the next section.

Definition 5.1.6. Let f : X → Y be a map between manifolds. Then a G-
structure on f is a G-structure on the virtual bundle [f∗(TY )]− [TX].

So a G-structure on a manifold M is the same as a G-structure on the
map from M to one point. Also observe that the composition of maps with
G-structure has a specified G-structure.
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Let M be a manifold of dimension m. The cobordism group, MGk(M), is the
cobordism classes of maps with G-structure from compact (m− k)-dimensional
manifolds to M .

To define the pullback along maps, let f : M → N be a map, and ν : X → N
a representative of an element of MGk(N). By suitable choice, we can make f
and ν intersect transversely so that W = X ×N M is a smooth manifold. Let
µ : W → M and σ : W → X be the projection, then we have [µ∗TM ]− [TW ] =
σ∗([ν∗TN ]− [TX]). Let µ have the induced G-structure and define f∗[ν] to be
the cobordism class of µ. One verifies this is well defined.

Remark 5.1.7. For manifolds with boundary, we can define the cobordism
groups to be cobordism classes of maps with G-structure from manifolds with
boundary which maps the boundary into boundary. If one extends the defini-
tion further to manifolds with corners, then there would be a quite satisfactory
cohomology theory.

For a vector bundle V with a G-structure, there is a MG-orientation with
the Thom class given by the cobordism class of the zero section map.

If M is an m-dimensioanl G-manifold, then it is MG-oriented, so we have
Poincaré duality. In fact, by composition with the map to one point, we see a
map f : X → M has a G-structure if and only if X itself has a G-structure, so
MG(m− k)(M) ∼= MGk(M).

Let f : M → N be a map with G-structure, then the map f! : MGk(M) →
MGk−t(N) is defined by composition with f , where t is the dimension of M
minus the dimension of N .

If λ : X → M represents an element of MG∗(M), then p! ◦ λ∗ defines the
pairing of bordism and cobordism MGk(M) ×MGt(M) → MGk−t(pt) where
p : X → pt is the map to one point.

If ν : X → M and µ : Y → N represent element of MGk(M) and
MGt(N) respectively, then ν × µ : X × Y → M × N represents their prod-
uct in MGk+t(M × N). The cup product is defined by pulling this product
along the diagonal map.

Summarizing, we define a pair of productive generalized homology and co-
homology theory (defined for manifolds for now), and a manifold (or vector
bundle) is MG-orientable if (in fact only if) it has a G-structure.

5.2 The Pontrjagin–Thom Construction

The computation of the cobordism groups are possible because we can define
spectra with homotopy groups isomorphic to the cobordism groups. In the pre-
ceding section, we constructed homology theories MG∗ with coefficient group
the cobordism group. By the Brown representability theorem, there exist spec-
tra representing these homology theories. It is a remarkable fact that these
spectra can be constructed in concrete ways by the Pontrjagin–Thom construc-
tion, making the tools in homotopy theory available in computations.



64

First define the notion of Thom spectra. For a finite dimensional vector
bundle, the Thom space is the space obtained from the total space of the
vector bundle by adding one point at infinity. Now let V be a virtual vec-
tor bundle of dimension n over X with classifying map ν : X → BO. The
space BO has a filtration BO(0) ⊂ BO(1) ⊂ · · · ⊂ BO(k) ⊂ · · · ⊂ BO.
This induces vector bundles V0, V1, . . . , Vk, . . . of dimension 0, 1, . . . , k, . . . over
ν−1(BO(0)), ν−1(BO(1)), . . . , ν−1(BO(k)), . . . classified by the restriction of ν
to these spaces.

Definition 5.2.1. The Thom spectrum of V is obtained from the prespcec-
trum {Wk}, where Wk is the Thom space of Vk+n if k + n ≥ 0 and one
point otherwise, and the map ΣWk → Wk+1 is induced from the isomorphism
Vk ⊕ R ∼= Vk+1|ν−1(BO(k)).

Definition 5.2.2. The spectrum MG is defined to be the Thom spectrum of the
virtual vector bundle of dimension 0 induced from ν : BG → BO.

We will show that the spectrum MG represents the homology theory MG∗
and the cohomology theory MG∗, justifying the notation.

Now let X be a t-dimensional G-manifold. Embed it into some euclidian
space Rn+t. Then the normal bundle has a G-structure. The classifying map
for the normal bundle induces a map from the Thom spectrum of t − [TX] to
MG. The tubular neighborhood N of X in Rn is homeomorphic to the normal
bundle, so Rn+t/(Rn+t \N) is homeomorphic to the Thom space, and we get a
map ΣtS→ MG by composing the quotient map to Rn+t/(Rn+t \N) with the
map between Thom Spectra.

Conversely, given a map ΣtS→ MG, we can realize it as a map from Sn+t

to the Thom space of the vector bundle Vn classified by ν−1(BO(n)) → BO(n)
for some n and the preimage of some generic section of Vn is a G-manifold
embedded in Rn+t.

One shows these maps give an isomorphism between the cobordism groups
and the homotopy groups of MG.

For a map λ from a G-manifold X to a space T representing some element
of MG∗(T ), and an embedding of X in Rn+t with normal bundle N , we can
define a map from M , the Thom space of N , to the space M ∧ T+ where T+ is
the disjoint union of T and a base point. When p ∈ N , then map p to the point
p∧ λ ◦ π(p) where π : N → M is the projection to the base, and send the point
at infinity to the base point. One verifies this is indeed continuous.

This give a homomorphism from MG∗(T ) to π∗(MG∧T+), which is a mor-
phism between homology theories. Since it induces an isomorphism between
coefficient groups, it is an isomorphism of homology theories. So we get the
following:

Theorem 5.2.3. The homology theory MG∗ and cohomology theory MG∗ are
represented by the Thom spectrum MG.
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5.3 The computation of various cobordism groups

5.3.1 The unoriented cobordism ring

Setting G = O, we get the unoriented cobordism. The unoriented cobordism
ring was first calculated in [Tho54]. After that, more and more cobordism rings
are calculated by more and more elaborated methods.

The main step in calculating the unoriented cobordism ring is to show that
the cohomology ring of MO is free over the Steenrod algebra, so that it is a
cartesian product of Eilenberg-MacLane spectra.

Since every element of the unoriented cobordism group has order 2, we will
work with the cohomology group with coefficient F2 only.

The cohomology of the space BO(n) is a polynomial ring generated by the
Stiefel-Whitney classes {w1, . . . , wn}. By Thom isomorphism, the Thom space
of the universal bundle, MO(n), has the same cohomology as a group. The zero
section map BO(n) → MO(n) induces a map between cohomology by sending
the Thom class ξ to the Euler class wn, so we can identify H̃∗(MO) as the ideal
in H∗(BO(n)) generated by wn. The map (RP1)n → BO(n) classifying the
product of the tautological bundle, identifies the cohomology of BO(n) as the
subalgebra of the symmetric polynomials in F2[t1, . . . , tn], where ti corresponds
to the generator of the cohomology of the ith component of (RP1)n, And wi

corresponds to the ith elementary symmetric polynomial.

Lemma 5.3.1. When I runs over the set of admissible sequences of total degree
h ≤ n (see 3.1.10 for the definition of admissability), the classes SqI(t1t2 . . . tn)
in H∗((RP1)n) are linearly independent symmetric functions in ti.

Proof. See [Tho54].

So the classes SqI(ξ) with I admissible of total degree h ≤ n, are also
independent. Letting n →∞, we see that the map A(2)∗ → H∗(MO) induced
by the map MO → HF2 defined by the Thom class, is injective. Dually, the
map H∗(MO) → A(2)∗ is surjective. One also verifies the map MO → HF2

preserves multiplication (at least up to homotopy). The following theorem of
Milnor and Moore shows that these suffice to show the freeness of the action of
the Steenrod algebra on H∗(MO).

Theorem 5.3.2. Let Σ be a commutative graded connected Hopf algebra over
a field K. Let M be a K-algebra and a right Σ-comodule. Let C = M �Σ K

(defined by the exact sequence 0 → M �Σ K → M
ψ−M⊗η−−−−−→ M ⊗ Σ, where ψ

denotes the comodule structure map of M and η the unit map of Σ). If there is
a surjection f : M → Σ which is a homomorphism of algebras and Σ-comodules,
then M is isomorphic to C⊗Σ simultaneously as a left C-module and as a right
Σ-comodule.

Proof. See [MM65] or [Rav86], Appendix A1.

By comparing dimensions, we get the following:
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Theorem 5.3.3. The homology group of the spectrum MO is isomorphic to
F2[xn : n 6= 2i − 1]⊗A(2)∗ as an A(2)∗-comodule.

Thus the spectrum MO is a product of Eilenberg-MacLane spectra by results
in the preceding chapters.

Theorem 5.3.4. The unoriented cobordism ring is isomorphic to F2[xn : n 6=
2i − 1].

5.3.2 The oriented cobordism ring

The oriented cobordism is the case G = SO. In this case, an SO-structure is the
same as an orientation. We will also call a map with SO-structure an oriented
map.

The rank of the free part of the oriented cobordism group is easy to compute,
since π∗(MSO)⊗Q is isomorphic to the rational homology.

Recall the cohomology of BSO.

� H∗(BSO,Q) = Q[p1, p2, . . . ], dim(pi) = 4i

� H∗(BSO,Fp) = Fp[p1, p2, . . . ] for p odd, dim(pi) = 4i

� H∗(BSO,F2) = F2[w2, w3, . . . ], dim(wi) = i

The cohomology of MSO follows from Thom isomorphism.
The calculation of the multiplication of the homology ring is deduced from

the multiplicative properties of the Pontrjagin numbers and Stiefel-Whitney
numbers. In particular, for the rational case, we have:

Theorem 5.3.5. π∗(MSO) ∼= Q[x1, x2, . . . ] where xi can be chosen to be the
class of CP2i.

Proof. See [Tho54].

The structure of the odd component of the oriented cobordism ring can be
calculated by the Adams spectral sequence. Fix an odd prime p.

Let t1, t2, . . . be indeterminates, and set pi to correspond to the ith elemen-
tary symmetric polynomial of the ti. Define vω =

∑
tq1
1 tq2

2 . . . be a symmetric
polynomial, where ω = (q1, . . . , qs) is a sequence of nondecreasing positive in-
tegers. Then the vω can be expressed by a polynomial in pi, and we can cor-
respond them to elements in H∗(BSO,Fp). These form a basis for the group.
Let Vω ∈ H∗(MSO,Fp) be the image of vω under the Thom isomorphism. Call
ω p-adic if at least one of the summands is equal to pi−1

2 .

Theorem 5.3.6. The Bockstein operation acts trivially on H∗(MSO,Fp). When
ω runs over all non-p-adic sequences (including the empty one), and I runs
over all admissible sequences, the Vω’s together with the PIVω’s form a basis for
H∗(MSO,Fp).

Proof. See [Nov62].
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This meas the cohomology group of MSO is free over the algebra generated
by P i, which is the quotient of the mod p Steenrod algebra by the two sided ideal
generated by the Bockstein operation. The calculation of the Adams spectral
sequence of this kind of A(p)∗-modules will be done in the next section. In
particular, it follows that π∗(MSO) has no p-torsion.

A complete calculation with the Adams spectral sequence gives the ring
structure of the free part of the oriented cobordism ring, which was calculated
in [Mil60].

Theorem 5.3.7. The quotient ring of π∗(MSO) by the torsion part is isomor-
phic to the ring of polynomials with generatord ui of dimension 4i for i ≥ 1.

Proof. See [Nov62].

Remark 5.3.8. The generators xi = [CP2i] has the property that modulo de-
composables, xi = (2i + 1)ui if 2i + 1 6= pk for any p and xi = 2i+1

p ui if
2i + 1 = pk for some p.

The computation of the 2-component is more difficult. It is calculated in
[Wal60]. It turns out that after localization at the prime 2, the spectrum MSO
becomes a product of Eilenberg-MacLane spectra, so in principle we can try to
prove that the cohomology of MSO is a sum of the A(2)∗-modules A(2)∗ and
A(2)∗/A(2)∗(Sq1). This needs some work in algebra, see [Pen82a].

In the rest of this chapter, all coefficients of cohomology will be F2.
To avoid the complication of algebra, one starts with the exact sequence

π∗(MSO) ×2−−→ π∗(MSO) → π∗(MO) due to V. A. Rokhlin. Here we give the
argument in [Ati61a].

First observe MO−k(pt) = MSO2N−k(RP2N ) for some N À k. For any
manifold M , the first Stiefel-Whitney class of its tangent bundle is classified by
a map M → RP∞, and this map descends to some map φ : M → RP2N , unique
up to homotopy. Since the first Stiefel-Whitney class of RP2N is the nontrivial
element in H1(RP2N ,F2), the map φ is always orientable, and the orientation is
irrelevant since the action of π1(RP2N ) reverses the orientation. Reversely, any
oriented map M → RP2N from a k-dimensional manifold necessarily preserve
the first Stiefel-Whitney class.

Define Wk = MSO2−k(RP2,RP0). Since RP2N/RP2N−2 ∼= RP2/RP0, Wk
∼=

MSO2N−k(RP2N ,RP2N−2).
From the triad (RP2,RP1,RP0), observing RP2/RP1 ∼= S2 and RP1/RP0 ∼=

S1, we get an exact sequence

. . . → Wk+1
∂−→ MSO−k(pt)

ψ−→ MSO−k(pt) ι−→ Wk → . . . (5.3.9)

The map ψ is induced by the map which attaches the 2-cell of RP2 to its 1-
skeleton, so ψ is multiplication by 2.

From the triad (RP2N ,RP2N−2, ∅), we get the exact sequence

. . . → Wk → MO−k(pt)
ξ−→ MO−(k−2)(pt) → . . .
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The map ξ is induced by taking the preimage of RP2N−2 ⊂ RP2N for the map
classifying w1.

The most technical step is the following construction. Let f : M → RP2N−2

be the map classifying w1. Denote by N the normal bundle of RP2N−2 in
RP2N . Define Q to be the projective bundle of f∗(N ) ⊕ R, which is a fibre
bundle over M with fibre the projective plane associated with the affine plane
f∗(N )|x over any point x ∈ M . Fix a projective line L ⊂ RP2N which do
not intersect RP2N−2. For any point y ∈ RP2N−2, the projective plane passing
through y and L can be identified with the projective plane associated with
Ny, with L the line at infinity. We have a map from W to RP2N mapping
the fibre at x to the projective plane passing through f(x) and L by the above
identification.

One sees the preimage of RP2N−2 in W is just M , so the above construction
gives a right inverse to ξ : MO−(k−2)(pt) → MO−k(pt), so the long exact

sequence splits and we get a split exact sequence 0 → Wk → MO−k(pt)
ξ−→

MO−(k−2)(pt) → 0 identifying Wk with a direct summand of πk(MO), and
Rokhlin’s exact sequence is proved in view of the sequence 5.3.9.

Remark 5.3.10. One may want to have a explicit construction, for any ori-
ented manifold X bounding a not necessarily oriented manifold Z, of a oriented
manifold whose boundary is X∪2Y for some Y . In the following, transversality
is assumed whenever necessary. Let f : (Z,X) → (RP2N , pt) be the map clas-
sifying w1(Z, X). Denote by M the inverse image of RP2N−2. Apply the above
construction to M , we obtain a manifold W and a map ν : W → RP2N such
that ν−1(RP2N−1) = M . Let T be a sufficiently small tubular neighborhood of
RP2N−2. Cut out f−1(T ) from Z and paste ν−1(RP2N \ T ) in (This can be
done whenever T is sufficiently small since then f−1(T ) is the disk bundle of
f∗(N )), then we get a manifold U with boundary X and the classifying map for
w1(U,X) lies in RP2N \ RP2N−1. Since RP2N \ RP2N−2 is homotopic to RP1,
we have a map g : (U,X) → (RP1, pt) classifying w1(U,X). Let p ∈ RP1 be a
generic point. Then g−1(p) is an orientable manifold with trivial normal bundle
in U . Define V to be the manifold obtained by cutting U along g−1(p). Then
V is orientable and has boundary X ∪ 2g−1(p). The induced orientation on X
may not be the original one, but this is irrelevant modulo 2.

Remark 5.3.11. The group Wk = MSO2−k(RP2,RP0) can be identified with
MSO2−k

c (RP2\RP0), the cohomology with compact support. So it is represented
by manifolds whose classifying map for w1 lies in RP2 \RP0 which is homotopic
to RP1. Hence they are manifolds with w1 coming from cohomology with integral
coefficients. The map Wk

∂−→ πk−1(MSO) can be described as follows. Let M
be a manifold with w1 integral, so it is classified by a map M → S1 and the
preimage of a generic point is the desired orientable manifold.

Next we need the explicit basis for π∗(MO) introduced in [Dol56].
First define an action of Z/2 on Sm ×CPn by the formula (x, y) 7→ (−x, ȳ).

This is a free action and define Pm,n to be the quotient. This can also be
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regarded as the quotient of Sm × S2n+1 by the action of O(2) defined by

g(x, z) =


det(g)x,




g
g

. . .
g


z




We have a fibration CPn → Pm,n → RPm induced by the projection to Sm.
When m,n →∞, the space Pm,n approximates BO(2), which has cohomology
ring F2[w1, w2]. By the naturality of the Serre spectral sequence, we see all the
differentials in the Serre spectral sequence of the fibration CPn → Pm,n → RPm

vanishes, so H∗(Pm,n) is isomorphic to F2[c, d]/(cm+1, dn+1) as a module over
H∗(RPm) where c, d correspond to the generator of H∗(RPm) and H∗(CPn)
respectively. Moreover, since the Z/2 action preserve any hyperplane in CPn,
the class of the quotient of Sm×H for any hyperplane H is the Poincaré dual
of d. Since the intersection of n + 1 hyperplanes is empty, we see dn+1 = 0, so
H∗(Pm,n) ∼= F2[c, d]/(cm+1, dn+1) as a ring.

The Steenrod squares on Pm,n is the pull back of that on BO(2), so by
Wu formula, Sq1(d) = cd and others are determined by the axioms and Cartan
formula. Once the Steenrod squares are calculated, the Stiefel-Whitney classes
of Pm,n follows by a calculation using Wu’s theorem.

Theorem 5.3.12. The Stiefel-Whitney classes of Pm,n is given by

W (Pm,n) = (1 + c)m(1 + c + d)n+1

Proof. See [Dol56].

Remark 5.3.13. Alternatively, we can argue as follows. The manifold Pm,n,
as a bundle over RPm, has tangent bundle the direct sum of the vertical part and
the horizontal part. The horizontal part is simply the pull back of the tangent
bundle of RPm so has Stiefel-Whitney class (1 + c)m+1. The vertical part can
be described as in the case of CPn. The vertical part for the tangent bundle
of Sm × CPn is just (n + 1)γ − C where γ is the tautological bundle. This
descends to the quotient. γ turns out to correspond to the pull back of the
universal bundle over BO(2), so has Stiefel-Whitney class (1 + c + d), and
the trivial bundle C, since the action is conjugation, goes to the determinant
bundle of that pulled back from BO(2) so has Stiefel-Whitney class 1 + c. Thus
w(Pm,n) = (1 + c)m(1 + c + d)n+1.

By a calculation with Stiefel-Whitney numbers, we obtain a set of generators
for π∗(MO).

Theorem 5.3.14. For any integer i not of the form 2k − 1, define numbers
s, r by the formula i + 1 = 2r(2s + 1). Define Pi = RPi if i is even, and
Pi = P2r−1,s2r if i is odd. Then π∗(MO) = F2[[P2], [P4], [P5], . . . ].

Proof. See [Dol56].
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The manifolds P2i+1 are all orientable. Also the action of Z/2 on Sm×CPn

defined by (x, y) 7→ (x̃, y) where x̃ = (x0, . . . , xm−1,−xm) if x = (x0, . . . , xm−1, xm),
descends to an action on Pm,n. This action reverses the orientation of P2i+1.
Thus P2i+1 defines a class in π∗(MSO) of order 2.

Next we will investigate the structure of Wk. It is easy to see the product of
two manifolds with integral w1 still have w1 integral, so

∑
k Wk is a subring of

π∗(MO), though this one is not induced from MSO∗(RP2).
We can show that in π∗(MO), [CPk] = [RPk]2 by comparing Stiefel-Whitney

numbers. So the set {[P2i−1], [C4j ]} where C4i = CP2i generates a polynomial
subalgebra of π∗(MO) in the image of the map π∗(MSO) → π∗(MO).

If X represents an element in π∗(MSO) of order 2, then their is a cobordism
Z from X ∪ X to the empty set. Pasting together the two copies of X we
get a manifold W with ∂(W ) = X where ∂ is defined in 5.3.9. Applying this
construction to the P2i−1 we get manifolds Q2i in W∗ with ∂(Q2i) = P2i−1.

The manifolds {[Qε
2kPs

2i+1C
t
4j ]} with ε ∈ {0, 1}, s, t nonnegative integers

and k, i, j positive integers such that k ≥ 2, k, i 6= 2r, are linearly independent
in W∗ because we have shown the monomials in {[P2i−1], [C4j ]} are linearly
independent and [Q2k] = [RP2k] mod decomposables as shown in [Wal60]. (In
fact H∗(Qm,n) = F2[c, d, x]/(cm(c + x), dn+1, x2), where c, d comes from Pm,n

and x comes from S1. w(Qm,n) = (1 + x + c)(1 + c)m−1(1 + c + d)n+1. Here
m = 2r − 1, n = s2r.) By comparing dimensions, we can see these are indeed a
basis for Wk.

Now we can determine the additive structure of 2-component of π∗(MSO).
The sequence 5.3.9 is a kind of Bockstein sequence. We have the Bockstein
operation ∂1 defined by ∂1 = ι ◦ ∂.

One can also show that the map ∂1 is a derivation. In fact, if f : X → S1

and g : Y → S1 classify w1 of X and Y , then µ ◦ (f × g) : X ×Y → S1 classifies
w1(X × Y ) where µ : S1 × S1 → S1 is the group multiplication. ∂(X × Y ) is
(µ ◦ (f × g))−1(pt) = (f × g)−1(µ−1(pt)). One show by direct construction that
µ−1(pt) is cobordant in S1×S1 to {pt}×S1 +S1×{pt}, so (f × g)−1(µ−1(pt))
is cobordant to f−1(pt)× Y + X × g−1(pt) = ∂(X)× Y + X × ∂(Y ).

Give W∗ a decreasing filtration by letting Qε
2kPs

2i+1C
t
4j have filtration ε +

s + 4t. Then [Q2k]2 have filtration 4. The spectral sequence in calculating the
homology of ∂1 with this filtration has E1-term the tensor product of the poly-
nomial algebras F2[C4j ] and F2[P2k−1] ⊗ Λ[Q2k] where the differential on the
former is trivial, and on the latter is given by ∂̃1(Q2k) = P2k−1 so has homol-
ogy F2 concentrated in degree 0. The E2-term is thus the F2[C4,C8, . . . ] which
consists of permanent cycles. So the homology of ∂1 is F2[C4,C8, . . . ]. Because
the homology of ∂1 has generators corresponding to generators of the free part,
the higher Bockstein operations vanish. So the torsion part of π∗(MSO) have
order 2, and {C4,C8, . . . } generates the free part of the 2-component. (Indeed
this is used in the proof of theorem 5.3.7 if one do not want to calculate the
mod 2 Adams spectral sequence.)

Corollary 5.3.15. Two manifolds are oriented cobordant if and only if thay
have the same Stiefel-Whitney numbers and Pontrjagin numbers.
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Proof. See [Wal60].

Remark 5.3.16. One can show that the 2-localization of MSO is a product of
Eilenberg-MacLane spaces. This is not true for the localization of MSO at an
odd prime.

The ring structure of π∗(MSO) can be deduced from these. Define h4k to
be the generators for the free part, and gω = ∂(Q2a1Q2a2 . . .Q2ar ) where ω
is the unordered sequence (a1, a2, . . . , ar) with ai pairwise unequal and not a
power of 2. One can show these are indecomposable and any torsion element
of π∗(MSO) can be put into the form Σ(

∏
h4a)(

∏
gb)gω where b denoted the

sequence (b).

Theorem 5.3.17. The ring π∗(MSO) is generated by {h4k, gω}, with relation
2gω = 0,

∑
i gωi

gai
= 0 where ω = (a1, . . . , ar) and ωi = (a1, . . . , âi, . . . ), and

relations of the type gφgψ = Σ(
∏

h4a)(
∏

gb)gω.

Proof. See [Wal60].

5.3.3 Spin cobordism

The spin cobordism is defined by taking G = Spin. This is considerably subtler
than the unoriented and oriented cobordism.

Unlike the cases before, there are non-nullcobordant spin manifolds with all
characteristic numbers zero. For example, the circle with the nontrivial spin
structure, or the torus with the spin structure obtained from the left invariant
framing.

Fortunately, we do have characteristic classes in KO-theory which detect
them. The most important is the Atiyah-Bott-Shapiro construction. This can
be described in many ways.

Firstly, for any n-dimensional spin manifold, there is the Dirac operator on
it. Its index gives an element in πn(KO), which can be shown to be cobordism
invariant.

Secondly, by the Atiyah-Singer index theorem, the index of the Dirac op-
eration can be computed using KO-theory. As shown in [ABS64], the spin
representation gives a specified KO-orientation of Spin-bundles, i.e. a functo-
rial KO-Thom class for Spin-bundles, so a spin manifold is KO-oriented, and
the index of the Dirac operator is simply p!(1) ∈ KO−n(pt) where p is the
map to one point and 1 is the KO-class represented by the trivial bundle of
dimension 1. This construction can be extended to a morphism between gen-
eralized cohomology theories. An element of MSpin∗(M) is represented by a
map f : X → M with a Spin-structure of [f∗(TM)] − [TX], so we have the
map f! and F!(1) ∈ KO∗(M) defines a morphism from MSpin∗ theory to KO
theory.

Thirdly, on the spectrum level, the universal bundle over BSpin is KO-
oriented and the KO-Thom class of MSpin gives a map ν : MSpin → KO
which is the morphism constructed before.
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This map can be used to calculate the spin cobordism groups in low dimen-
sions. Since MSpin is 0-connected, the map ν lifts to a map µ : MSpin → bo
where bo is the 0-connected cover of KO.

The first few spaces of the spectrum bo (i.e. the infinite loop spaces Ω∞−n(bo))
can be described quite explicitly: the 0th space is Z×BO of course. The 1st one
is U/SO and the 2nd Sp/U . The 3rd is Sp, 4th BSp, 5th SU/SP . The 6th space
is Spin/SU induced from the lift of the limit of the maps SU(n) → SO(2n).
The 7th space is less classic, the 3-connected cover of Spin. This object, a priori
an E∞-space, has now acquired a name, the String group, for reasons apparent
from the name. And the 8th space is just BString.

The infinite loop spaces of MSpin cannot be so easily described, but it
comes form a prespectrum with the n-th space MSpin(n). So the map µ can be
approximated by the maps MSpin(n) → Ω∞−n(bo). These map can be studied
with little effort, at least up to the 4th term.

We know Spin(4) ∼= Sp(1) × Sp(1). Let G1, G2, G3 be three copies of the
group Sp(1) (identified with the unit ball in H), and H12,H13,H23 be three
copies of H, such that Gi ×Gj acts on Hij by the formula (s, t)h = sht−1, and
the remaining group acts trivially. BSpin(4) is identified with BG1 × BG2.
Then the action of G1×G2 on H12,H13 defines two vector bundles M1,M2 over
BSpin(4), and the action of G3 makes them H-vector bundles. The action of
G1×G2 on H12 defines a vector bundle V over BSpin(4) which is the same as the
one pulled back from BSO(4). The G1×G3-equivariant map H12×G2H23 → H13

defines a map γ : V ×BSpin(4)M2 → M1 preserving the H-structure. The Atiyah-
Bott-Shapiro construction in this case is a sequence 0 → p∗(M2)

µ−→ p∗(M1) → 0
of H-vector bundles over V which is exact outside the 0-section, where p : V →
BSpin(4) is the projection and µ is the map γ(x) at a point x ∈ V . This

gives a class [ν] ∈ K̃Sp(MSpin(4)) = K̃O
4
(MSpin(4)) which is the KO-Thom

class. So the map MSpin(4) → BSp is given by this virtual bundle. We know
H∗(BSp,Z) is a polynomial ring Z[c2, c4, . . . ], and if α = c2(M1), β = c2(M2),
then H∗(BSpin(4),Z) = Z[α, β]. The reduced cohomology of MSpin(4) can be
identified with the ideal in H∗(BSpin(4),Z) generated by the Euler class of V ,
which is α − β. The pull back along the 0-section of the KO-Thom class [ν]
is the virtual bundle [M2] − [M1] so its total Chern class is c([M2] − [M1]) =
1+β
1+α , in particular, c1([M2] − [M1]) = β − α and c2([M2] − [M1]) = α2 − αβ,
and from this we see the map MSpin(4) → BSp induces an isomorphism of
cohomology groups up to dimension 8. Since these groups have no torsions,
the map of homology is also isomorphism up to dimension 8. From this follows
πi(MSpin(4)) ∼= πi(BSp) for i = 1, 2, 3. Since πi(MSpin(4)) → πi(MSpin) is
an isomorphism for i = 1, 2, epimorphism for i = 3, we get:

Theorem 5.3.18. π0(MSpin) ∼= Z, π1(MSpin) ∼= Z/2, π2(MSpin) ∼= Z/2
and π3(MSpin) ∼= 0.

In fact one can prove that the Atiyah-Bott-Shapiro map MSpin → bo induce
an isomorphism on homotopy groups up to dimension 7, by either calculating
further with the above method, or apply the calculation of H∗(bo) in [Sto63].
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The compete calculation of the spin cobordism group is done in [ABP67]. To
state their results, one needs to define more KO-valued characteristic classes.

Let ξ be a finite dimensional vector bundle. Define λi(ξ) to be its ith exterior
power. Let t be an indeterminate and λt(ξ) =

∑
i≥0 λi(ξ). Let s = t

(1+t)2 as a

formal power series. Define $s(ξ) = λt(ξ)
(1+t)n where n is the dimension of ξ. One

verifies $s(n) = 1 for n a trivial bundle. $s has constant term 1 and satisfies
$s(ξ ⊕ η) = $s(ξ)$s(η) so $s extends to a natural transformation KO(X) →
KO(X)[[s]] for X finite CW-complexes. This can be further extended to give
a class $s ∈ KO(BSO)[[s]] which can be regarded as $s(ν) where ν is the
universal virtual bundle over BSO (of any dimension). Let $s =

∑
i≥0 $is

i.
Define $J = $j1$j2 . . . $jk

where J = (j1, j2, . . . , jk) is a sequence of integers
with ji > 1. Define n(J) = j1 + j2 + · · ·+ jk. The $J ’s pull back to classes in
KO(BSpin) and will be denoted by the same symbols.

Define BO〈n〉 to be the n-connected cover of KO.

Theorem 5.3.19. The map $J : BSpin → KO can be lifted to a map $̃J :
BSpin → BO〈l(J)〉 where l(J) = 4n(J) if n(J) is even and l(J) = 4n(J)− 2 if
n(J) is odd.

Proof. See [ABP67].

The Atiyah-Bott-Shapiro map MSpin → bo gives a bo-orientation, and since
BO〈k〉 are bo-module spectra, we have Thom isomorphisms. Denote by fJ ∈
BO〈l(J)〉∗(MSpin) to be the image of $̃J under the Thom isomorphism.

Theorem 5.3.20. There exist elements {zj} ⊂ Hsj (MSpin,F2) for certain
sj such that the map F : MSpin → ∏

BO〈l(J)〉 × ∏
ΣsjHF2 given by F =∏

fJ ×
∏

zj induces an isomorphism on cohomology with coefficient F2.

Proof. See [ABP67].

Remark 5.3.21. The cohomology of MSpin can be calculated from that of
BSpin by Thom isomorphism, and H∗(BSpin,F2) = H∗(BSO,F2)/I ∼= F2[yi :
i 6= 1, 2h+1], where I is the ideal generated by the regular sequence w2,Sq1w2,Sq2Sq1w2,
. . . ,Sq2h

Sq2h−1
. . . Sq1w2,. . . . This can be deduced from the Serre spectral se-

quence for BZ/2 → BSpin → BSO. (See [Qui71b] for the calculation of
H∗(BSpin(n)).)

The cohomology of BO〈n〉 is calculated in [Sto63] as follows: H∗(BO〈n〉) ∼=
A(2)∗/A(2)∗(Sq1, Sq2) if n ≡ 0 mod 8 and H∗(BO〈n〉) ∼= A(2)∗/A(2)∗(Sq3) if
n ≡ 2 mod 8. Here A(2)∗(Sq1, Sq2) is the left ideal generated by Sq1, Sq2 and
similar for A(2)∗(Sq3).

When the cohomology groups are calculated, the dimensions of the zj can be
deduced by dimension counting,

Remark 5.3.22. The spin cobordism group has no odd torsion as the oriented
case, see [Mil60]. So the above theorem determines the spin cobordism group.

Corollary 5.3.23. Let M be a spin manifold. Then it bounds a spin manifold if
and only if $J(M) = 0 for all J and all Stiefel-Whitney numbers of M vanish.
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5.4 Complex cobordism and the Adams–Novikov
spectral sequence

The complex cobordism theory correspond to the case G = U . This was first
studied in [Mil60] and [Nov60]. It is important because it is not only a gen-
eralization of the ordinary cobordism theory, but also gives a powerful tool
in investigating the homotopy groups, and reveals fine structures in homotoy
theory, which will be discussed in detail in the next chapter.

The computation of the complex cobordism group can be achieved by the
Adams spectral sequence.

Fix a prime p, and let all homology groups in the following calculations have
coefficients Fp.

The cohomology of BU(n) is a polynomial algebra Fp[c1, . . . , cn]. And as
in the case of unoriented cobordism, MU(n), the Thom space of the universal
bundle, has cohomology the ideal in H∗(BU(n)) generated by cn. The map
(CP1)n → BU(n) classifying the product of the tautological bundle identifies
H∗(BU(n)) with the subalgebra of symmetric polynomials in Fp[t1, . . . , tn] as
before. The Bockstein operation (Sq1 if p = 2) acts trivially on these spaces
for dimensional reasons. Consider the algebra P ∗ which is the quotient of the
Steenrod algebra by the ideal generate by the Bockstein operation. Denote by
P i = Sq2i if p = 2.

Lemma 5.4.1. When I runs over the set of admissible sequences of total degree
h ≤ 2n (see 3.1.10 for the definition of admissibility), the classes PI(t1t2 . . . tn)
in H∗((CP1)n) are linearly independent symmetric functions in ti.

So by letting n → ∞, the classes P I(η), where η is the Thom class in
H∗(MU) and I runs over all admissible sequences are linearly independent.

Dually, the homology ring of the ring spectrum MU is a comodule over P∗,
the subalgebra of A(p)∗ generated by ξ1, ξ2, . . . for p > 2 and ξ2

1 , ξ2
2 , . . . for

p = 2. And we have a epimorphism H∗(MU) → P∗. Applying theorem 5.3.2,
and counting dimensions, we obtain:

Theorem 5.4.2. H∗(MU) = Fp[ui : i 6= pk − 1] ⊗ P∗ as an A(p)∗-comodule,
where dim(ui) = 2i.

In calculating Ext groups, we can simplify the ring whenever it is free over
something. In this case, we have:

Theorem 5.4.3. ExtA(p)∗(H∗(MU)) = ExtA(p)∗⊗Fp
(C), where C = Fp[ui :

i 6= pk − 1] has trivial coaction.

Proof. See [Rav86], chapter 3.

The algebra A(p)∗ ⊗ Fp is a primitively generated exterior algebra, so its
Ext group is a polynomial algebra by direct calculation in the cobar complex.

Theorem 5.4.4. ExtA(p)∗(H∗(MU)) = Fp[ui : i 6= pk − 1] ⊗ Fp[a0, a1, . . . ],
where ai ∈ Ext1,2pi−1.
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Proof. See [Rav86], chapter 3.

The following picture shows the generators of Exts,t
A(2)∗

(H∗(MU)) for p = 2.

-

6

0 2 4 6 8 10 12 14 16 18 t-s

1

s

sa0 sa1 sa2 sa2

su2 su4 su5 su6 su8 su9

All the differentials in the Adams spectral sequence for MU vanish because
of dimensional reasons. Since π0(MU) ∼= Z, the multiplication of a0 correspond
to multiplication by p in π∗(MU). So the complex cobordism ring is:

Theorem 5.4.5. π∗(MU) ∼= Z[x1, x2, . . . ] with dim(xi) = 2i.

Remark 5.4.6. The preceding calculation gives the Hurewicz map h : π∗(MU) →
H∗(MU,Z). We have H∗(MU,Z) ∼= Z[b1, b2, . . . ] and modulo decomposables

h(xi) =
{ −pbi i = pk − 1 for some p
−bi otherwise

Unlike the case of oriented, unoriented and spin cobordism, (at the prime
2), complex cobordism do not split into a product of simple pieces as ordinary
cohomology or KO-theory. As a new cohomology theory, it can give information
unknown before. In fact, ordinary cohomology theory and complex K-theory
are module spectra over MU , so in principle, complex cobordism always gives
more information.

S. P. Novikov first observed in [Nov67] that in the Adams spectral sequence,
the role of the ordinary cohomology theory can be replaced by complex cobor-
dism theory. The resulting spectral sequence is now known as the Adams–
Novikov spectral sequence.

Theorem 5.4.7. Let X be a connective spectrum. There is a spectral se-
quence converging to π∗(X) with E2-term ExtAU (MU∗(X),MU∗(S)) where
AU = MU∗(MU) is the ring of operations in complex cobordism theory, or
dually, with E2-term ExtMU∗MU (MU∗,MU∗(X)) calculated in the category of
comodules over the Hopf algebroid (MU,MU∗MU).

Proof. See [Nov67] or [Rav86], chapter 2.

To use this spectral sequence to calculated the homotopy groups, one needs
to know the structure of the Hopf algebroid (MU,MU∗MU). This is most
conveniently described in terms of formal groups, which will be given in section
6.1.

In calculating stable homotopy group of spheres, for the 2-component, the
Adams–Novikov spectral sequence gives information complementary to that in
the classic Adams spectral sequence, and for odd primary components, the
Adams–Novikov spectral sequence always gives more information. Also, the
Adams–Novikov spectral sequence shows a more regular pattern, which will be
explained in the next chapter.
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Chapter 6

Chromatic Homotopy
Theory

6.1 Formal groups

The connection between complex cobordism theory, first appeared in the sixties,
has deeply influenced homotopy theory, especially after D. Quillen’s discovery
that complex cobordism in fact gives the universal formal group law. Since then,
the theory of formal groups, well studied by algebraic geometers, was applied in
homotopy theory leading to deep insight into the structure of homotopy theory.
Also the study of homotopy theory reveals new structures of classical objects in
algebraic geometry.

Definition 6.1.1. Let R be a ring. A (commutative 1-dimensional) formal
group law over R is a formal power series f(x, y) = x¢y = x+y+

∑
i,j≥1 ai,jx

iyj ∈
R[[x, y]] satisfying the following:

1. x ¢ y = y ¢ x

2. (x ¢ y) ¢ z = x ¢ (y ¢ z)

In other words, a formal group law is a group object in the category of for-
mal schemes over R, together with an isomorphism from its underlying formal
scheme to Spf(R[[x]]).

Remark 6.1.2. Since x ¢ y = x + y mod (x, y)2, the existence of an inverse
is automatic.

Definition 6.1.3. Let γ : R → S be a morphism of rings, and f(x, y) =
x+y+

∑
i,j≥1 ai,jx

iyj ∈ R[[x, y]] a formal group law over R. Then the pullback of
f along γ is defined to be the formal group law γ∗(f) = x+y+

∑
i,j≥1 γ(ai,j)xiyj

over S.
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Definition 6.1.4. Let f, f ′ be two formal group laws over R. A morphism
between f and f ′ is a formal power series g(x) ∈ R[[x]] such that f ′(g(x), g(y)) =
g(f(x, y)).

Definition 6.1.5. A strict isomorphism between formal group laws is a homo-
morphism g of the form x +

∑
i≥2 eix

i.

Definition 6.1.6. A logarithm of a formal group law is a formal power series
log(x) = x +

∑
i≥2 bix

i such that log(x ¢ y) = log(x) + log(y), i.e. an strict
isomorphism to the additive one

Remark 6.1.7. Over R⊗Q, the logarithm exists and unique. In the following
logarithms are always understood to be over R⊗Q.

In homotopy theory, a formal group law is associated with any complex
oriented cohomology theory.

Definition 6.1.8. A complex orientation of a multiplicative generalized coho-
mology theory E∗ is a class x ∈ E2(CP∞) such that the restriction of x to
CP1 = S2 equals the suspension of the unit 1 ∈ E∗(pt).

A complex oriented cohomology theory is a multiplicative cohomology theory
together with a complex orientation.

Remark 6.1.9. One can show that in this case, any complex vector bundle has
a specified E∗-orientation, i.e. a functorial Thom class in E∗ theory for every
complex vector bundle. Moreover, if W = U ⊕ V , then the Thom class of W
is the pull back along the diagonal of the exterior product of those of U and V .
This is equivalent to a multiplicative homomorphism from MU∗ to E∗.

Reversely, given such an E∗-orientation of complex vector bundles, a com-
plex orientation of E∗ is obtained by taking the Thom class of the tautological
bundle over CP∞, since in this case the Thom space is homotopic to CP∞. One
verifies this gives a bijection between complex orientations of E∗ and multiplica-
tive homomorphisms from MU∗ to E∗.

Given a complex oriented cohomology theory E∗ with orientation x, a calcu-
lation using Atiyah-Hirzebruch spectral sequence shows E∗(CP∞) ∼= E∗(pt)[[x]]
and E∗(CP∞ × CP∞) ∼= E∗(pt)[[x, y]]. The tensor product of complex line
bundles induce a map m : CP∞ × CP∞ → CP∞, and this gives a map m∗ :
E∗(pt)[[x]] → E∗(pt)[[x, y]]. Since the tensor product is commutative and asso-
ciative, m∗ makes Spf(E∗(pt)[[x]]) into a commutative group object. So there
is a formal group law over E∗(pt).

In the special case E∗ = MU∗, the identity map on MU gives MU∗ a
canonical complex orientation, and for any complex oriented cohomology theory
E∗, the homomorphism from MU∗ to E∗ preserves complex orientation, so the
formal group law over E∗(pt) is the pull back of the canonical one over MU∗(pt).
This shows the formal group law over MU∗(pt) is universal among formal group
laws coming from complex oriented cohomology theories.

In fact, it is the universal formal group law.
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Definition 6.1.10. A formal group law F over some ring L is called universal if
for ever formal group law over a ring R, there exists one and only one morphism
of rings γ : L → R such that the formal group law over R is the pullback of F
along γ.

One sees that a universal formal group law exists and unique up to isomor-
phism, and the ring L can be easily described by generators and relations. Its
structure was determined by M. Lazard, so the universal ring of formal group
laws is called the Lazard ring.

Theorem 6.1.11. The universal ring of formal group laws is isomorphic to
Z[x1, x2 . . . ]. Moreover, if its logarithm over Q[x1, x2, . . . ] is log(x) = x +∑

i≥2 mi−1x
i, then the generators can be chosen so that:

mi =
{ −xi

p i = pk − 1 for some p
−xi otherwise

Proof. See [Laz55].

The definition of the universal property of the Lazard ring L gives a mor-
phism L → MU∗. This morphism can be computed explicitly once we have the
formula for the formal group law over MU∗.

This can be described quite explicitly. The pullback of x ∈ MU∗(CP∞), the
complex orientation of MU∗, to CPn is the class of a hyperplane CPn−1 ⊂ CPn.
The map classifying the tensor product is the limit of the Segre embedding
CPr × CPt → CPN defined by m : (a0, . . . , ar) × (b0, . . . , bs) → (. . . , aibj , . . . )
where N = rs + r + s. So the pullback of x along this map is a hypersurface
in CPr ×CPt of bidegree (1, 1). Denote the hyperplane class in MU∗(CPs) and
MU∗(CPt) by X and Y respectively. We want to express m∗(x) in terms of X
and Y . Let m∗(x) =

∑
ai,jX

iY j . It is computed that p!(XiY j) = [CPs−i ×
CPt−j ] ∈ MU∗(pt) where p is the map to one point. Also p!(XiY jm∗(x)) =
[Hs−i,t−j ] ∈ MU∗(pt) where Hi,j is the hypersurface in CPi × CPj of bidegree
(1, 1). So we have the equation [Hs−p,t−q] =

∑
[CPs−i−p×CPs−j−q]ai,j . Letting

s, t →∞, we obtain the formula for the formal group law over MU∗.

Theorem 6.1.12. The formal group law F (x, y) over MU∗ is defined by the
formula

F (x, y) =
x + y +

∑
i,j≥1[Hi,j ]xiyj

(1 +
∑

i≥1[CP
i]xi)(1 +

∑
j≥1[CP

j ]yj)

Proof. See [BMN71].

Corollary 6.1.13. The logarithm of F (x, y) is log
MU

(x) =
∑

n≥0
[CPn]
n+1 xn+1.

This gives the morphism L → MU∗, from which we deduce the theorem of
D. Quillen:

Theorem 6.1.14. The homomorphism from the Lazard ring to MU∗ is an
isomorphism.
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Proof. See [Qui69a].

This theorem shows a close connection between the theory of formal groups
and the theory of complex cobordism. The structure of complex cobordism can
be studied more easily with the aid of the theory of formal groups.

We can describe the structure of the Hopf algebroid (MU∗,MU∗MU) in
terms of formal groups as follows:

First define a contravariant functor Ms
FG from the category of affine schemes

to grouproids. Let R be a ring, then Ms
FG(Spec(R)) is the groupoid with objects

formal group laws over R and morphisms the strict isomorphism between formal
group laws.

Remark 6.1.15. The functor Ms
FG is similar to the moduli stack of formal

groups except that in the latter case we take all isomorphism as morphisms in
the groupoid associated with Spec(R).

It is readily seen that the functor is represented by the Hopf algebroid
(L,LB) where L is the Lazard ring and LB ∼= L⊗Z[b1, b2, . . . ], since a strict iso-
morphism is completely determined by a formal group law and a formal power
series of the form g(x) = x + b1x

2 + b2x
3 + . . . . The structure of the Hopf

algebroid can be calculated from the above description:
Recall that the generators of L ∼= Z[x1, x2, . . . ] can be chosen so that if we

set

mi =
{ −xi

p i = pk − 1 for some p
−xi otherwise

then log(x) = x +
∑

i≥1 mix
i+1.

Counit ε(bi) = 0.

Left unit ηL is the inclusion L → L[b1, b2, . . . ].

Right unit
∑

i≥0 ηR(mi) =
∑

i≥0 mi(
∑

j≥0 c(bj))i+1, where m0 = b0 = 1 and
c is the conjugation.

Conjugation
∑

i≥0 c(bi)(
∑

j≥0 bj)i+1 = 1 and c(mi) = ηR(mi).

Coproduct
∑

i≥0 ∆(bi) =
∑

j≥0(
∑

i≥0 bi)j+1 ⊗ bj .

See [Rav86], appendix A2 for details.
Now suppose E∗ is a multiplicative generalized cohomology theory and x, y

two complex orientations of E∗. They give two formal group laws F x, F y. Any
cohomology class in E∗(CP∞) can be expressed in a formal power series in x.
Since the restriction of x and y to CP1 equal to the suspension of the unit, we
have y = x +

∑
i≥1 bix

i. This gives a strict isomorphism between F x and F y.
Over MU ∧MU , there are two complex orientations induced from the mor-

phism MU = MU ∧ S id∧η−−−→ MU ∧MU and MU = S ∧MU
η∧id−−−→ MU ∧MU

where η : S → MU is the unit map for the ring spectrum MU . And there is a
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strict isomorphism between the two formal group laws F l and F r. So there is
a morphism of rings LB → MU ∧MU .

Since the left and right unit of the Hopf algebroid (MU∗,MU∗MU) is in-
duced from the maps id ∧ η and η ∧ id, the map (L,LB) → (MU,MU∗MU)
preserves left and right unit. Moreover, the coproduct of (MU,MU∗MU) is

induced from the map MU ∧MU = MU ∧ S∧MU
id∧η∧id−−−−−→ MU ∧MU ∧MU .

There are three complex orientations of MU ∧MU ∧MU corresponding to the
three factors, and there are three formal group laws F l, Fm, F r. The isomor-
phism constructed above is functorial so the composition of the morphisms from
F l to Fm and from Fm to F r is just that from F l to F r. This means the map
(L,LB) → (MU∗,MU∗MU) also preserves coproduct. In fact, it is a morphism
between Hopf algebroids. By direct calculation we conclude:

Theorem 6.1.16. There is a canonical of Hopf algebroids (L,LB) ∼= (MU∗,MU∗MU).

Proof. See [Rav86], chapter 4.

6.2 The Brown-Peterson spectrum

When localized at a prime p, the theory of formal groups can be simplified so
that one can concentrate on a particular type of formal group laws. Similarly,
the complex cobordism theory, after localization at a prime p, can be simplified
to the Brown-Peterson cohomology theory.

First we describe Cartier’s theory of typical formal group laws.

Definition 6.2.1. Let F be a formal group law over a ring R. Call a power
series f ∈ R[[x]] without constant term a curve in the formal group defined by
the law. The set of curves forms an abelian group with addition (f ¢ g)(x) =
F (f(x), g(X)).

Define the operators:

([r]f)(x) = f(rx) where r ∈ R (6.2.2)
(Vnf)(x) = f(xn) for n ≥ 1 (6.2.3)

(Fnf)(x) =
n∑

i=1

F f(ζix
1
n ) for n ≥ 1 (6.2.4)

Here
∑

F ai = a1 ¢ a2 ¢ · · ·¢ an, and ζi are the nth roots of unity.

Now fix a prime p.

Definition 6.2.5. Let R be an algebra over Z(p). Then a curve f is said to be
typical if Fqf = 0 for any prime q 6= p.

Remark 6.2.6. If R is torsion-free then this is equivalent to the series l(f(X))
over R⊗Q having only terms of degree a power of p, where l(x) is the logarithm
of the formal groups law F .



82

Definition 6.2.7. The group law F is said to be a typical formal group law, if
the curve x ∈ R[[x]] is typical.

Any formal groups law can be transformed into a typical one by a canonical
change of coordinates.

Theorem 6.2.8. Let cF be the curve

c−1
F =

∑

(n,p)=1

µ(n)
n

VnFnx (6.2.9)

where µ(n) is the Möbius function. Then the formal group law (c∗F F )(x, y) =
cF (F (c−1

F (x), c−1
F (y))) is typical.

Proof. See [Car67].

It is not hard to see that there is a universal typical formal group law, over
a Z(p) algebra V . we have a ring homomorphism π∗(MU) → V by the universal
property of π∗(MU), and this extends to π∗(MU)⊗Z(p) → V since V is a Z(p)

algebra.
Applying the above theorem to the universal formal group law over π∗(MU),

we get a typical formal group law over π∗(MU) ⊗ Z(p). This induces a ring
homomorphism V → π∗(MU)⊗ Z(p).

One checks that these make V a direct summand of π∗(MU)⊗ Z(p).
All the above works topologically. These maps lift to an idempotent natural

transformation from MU(p) to itself, and defines a generalized homology theory,
the Brown-Peterson homology, abbreviated by BP , whose coefficient ring is just
V , the universal ring of typical formal group laws.

Theorem 6.2.10. There is a ring spectrum BP for each prime number p, such
that:

1. π∗(BP ) = Z(p)[v1, v2, ...] with vi in dimension 2(pi − 1).

2. BP is a direct summand of MU(p).

3. MU(p) is a direct sum of suspensions of BP ’s.

4. BP∗BP ∼= BP∗[t1, t2, ...].

Proof. See [BP66] or [Qui69a].

Remark 6.2.11. We can also construct BP by using the Landweber exact
theorem. Or killing the regular ideal (xi : i 6= pk−1) in π∗(MU), see [EKMM97].

Remark 6.2.12. The higher multiplicative structure of BP is complicated. It
is not known by the authors of this report whether BP has an E∞ structure.
But it is proved that there is no map BP → MU of commutative S-algebras, see
[HKM01].



83

Remark 6.2.13. As in the case of MU , the Hopf algebroid (BP∗, BP∗BP ) rep-
resents the functor from the category of affine schemes over Z(p) to the category
of groupoids, which sends Spec(R) to the groupoid with objects typical formal
group laws over R and morphisms the strict isomorphisms.

Remark 6.2.14. One can show that all the prime ideals of BP∗ which is also
a sub BP∗BP -comodule are of the form (p, v1, . . . , vn) or (p, v1, v2, . . . ). This
enable one to prove the Landweber exact theorem. See [Rav86] for details.

6.3 The Morava K-theories

To summarize the preceding two sections, we can say that the Hopf algebroid
(MU∗,MU∗MU) represents the moduli stack of formal groups, and (BP∗, BP∗BP )
represents the moduli stack of formal groups localized at a prime p. As these
geometric objects can be studied by investigating their ”points”, the complex
cobordism theory and the Brown-Peterson theory can be studied using the more
simple Morava K-theories.

When we study formal groups over a finite field K of characteristic p, the
formal groups can be classified by their height. Roughly speaking, the height is
the first k for which the image of vk ∈ BP∗ is nonzero under the map BP∗ → K
classifying some typical coordinate. A example of a formal group with height n
is the formal group law over Fp classified by the map BP∗ → Fp sending vn to
1 and other vi’s to 0.

The Morava K-theory corresponding to the formal group law over Fp with
height n is constructed from BP , with coordinate ring Fp[vn, v−1

n ]. This is
achieved by taking quotients.

In general, Let R be a ring spectrum, and M a module spectrum over
it. Let a ∈ π∗(R) such that the map of multiplication by a in π∗(M) is
a monomorphism. There is a map â : M → M defined by the composi-
tion M ∼= S ∧ M

a∧id−−−→ R ∧ M → M. Construct the distinguished triangle
. . . → M

â−→ M → N → ΣM → . . . . Using the long exact sequence one veri-
fies that π∗(N) ∼= π∗(M)/aπ∗(M). Applying this iteratively, one can take the
quotient by a regular ideal.

So when we take the quotient of BP by the regular ideal (p, v1, . . . , vn−1, vn+1, . . . ),
and invert vn, we get the spectrum K(n) of the Morava K-theory. See [EKMM97]
for details of this construction.

Remark 6.3.1. The Morava K-theory can also be constructed using other meth-
ods, such as the Sullivan-Baas construction using cobordism of singular mani-
folds.

The Morava K-theories has many good properties. They are much simpler
than the Brown-Peterson cohomology, and also have Künneth formulae. See
[Wür91] for a more detailed survey of Morava K-theories.
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6.4 The chromatic spectral sequence

Using the filtration of BP given by the height of formal groups, we can con-
struct the chromatic spectral sequence introduced in [MRW77], converging to
the Adams–Novikov spectral sequence, and revealing many structures of the
latter spectral sequence.

To begin with, we know a formal group law of height n is something like
taking the quotient of BP∗ by (p, v1, . . . , vn−1), and inverting vn.

Definition 6.4.1. Define BP∗BP -comodules inductively as follows:

N0
n = BP∗/(p, v1, . . . , vn−1)

Assuming Ns
n is already defined, define Ms

n = v−1
n+sN

s
n. Let Ns+1

n = Ms
n/Ns

n.

We can write the definition simply as:

Ns
n = BP∗/(p, v1, . . . , vn−1, v

∞
n , . . . , v∞n+s−1) (6.4.2)

Ms
n = v−1

n+sBP∗/(p, v1, . . . , vn−1, v
∞
n , . . . , v∞n+s−1) (6.4.3)

Patching up the short exact sequences 0 → Ns
n → Ms

n → Ns+1
n → 0 we get

resolutions:
BP∗/(p, . . . , vn−1) → M0

n → M1
n → . . . (6.4.4)

This resolution gives the chromatic spectral sequence, with E1-term Ext∗,∗BP∗BP (Ms
n),

converging to ExtBP∗BP (BP∗/(p, . . . , vn−1)).

Remark 6.4.5. The exact sequence 0 → Ns
n → Ms

n → Ns+1
n → 0 can also be

used to calculate the Ext groups of Ms
n’s from the Ext groups of K(n)∗’s, which

is much easier to deal with.

6.5 Nilpotence and periodicity

To describe the geometric explanation of chromatic filtration, we should first
state two theorems of Hopkins and his collaborators.

Theorem 6.5.1. Let X be a finite spectrum. Then f : ΣqX → X is nilpotent
under composition if and only if MU∗(f) : MU∗(X) → MU∗(X) is nilpotent.

Proof. See [DHS88].

This striking result fills the gap between homotopy and homology under the
meaning of nilpotence and when X = S, this theorem recovers the Nishida nilpo-
tence theorem, which states that every element is nilpotent in πst

∗ (S). Based on
this nilpotence theorem, they give another periodicity theorem.

Theorem 6.5.2. Let X be a p-torsion finite spectrum and f : ΣqX → X.
f is called a ”vn-map” if the induced map of Morava K-theory K(i)∗(f) :
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K(i)∗(X) → K(i)∗(X) is an isomorphism for i = n and nilpotent for i 6= n.
Then

(i)X has a vn-map f .(We call X have type n.)
(ii)f is unique after iterating sufficient times and under homotopy equiv-

alence and f can be chosen such that K(i)∗(f) is multiplication by a unit in
K(i)∗(pt) for i = n or zero for i 6= n.

Proof. See [DHS88].

If we say complex bordism is the right theory to detect nilpotence, then
Morava K-theory is the right one to detect periodicity. A significant application
is as follows.

Let p be an odd prime and V (0) = Sn∪pe
n+1, called Moore space, the cofiber

of the degree p map between Sn with n ≥ 3, then V (0) has type 1. It is shown
by Adams and Toda that there is a v1-map ΣqV (0) → V (0), where q = 2(p−1).
Denote the cofiber of this map by V (1), then V (1) has type 2 by the long exact
sequence of Morava K-theory. It is showed by Smith and Toda that when p ≥ 5,
there is a v2-map of V (1). V (2) is defined similarly and is showed to have a
v3-map for p ≥ 7. All these can be recovered by the periodicity theorem. The
importance of these maps is that associated to these maps, we can have some
periodic families in πst

∗ (S). For example, associated to V (0), the composition of
these obvious maps

Sn+qi → ΣiqV (0) → · · · → ΣqV (0) → V (0) → Sn+1

gives a map Sn+qi → Sn+1, which represents an nontrivial element in πst
qi−1(S)⊗

Z/(p). The same construction is valid also for V (1) and V (2). In general, any
periodic map should lead to a nontrivial element in πst

qi−1(S)⊗Z/(p) under some
constructions a little complex than above, and this gives the geometric aspect
of the chromatic filtration.

6.6 J-homomorphism and the K(1)-local sphere

The theory for phenomenon of low chromatic filtration is more or less well
understood now. For chromatic filtration one, it corresponds to K-theory, which
gives a v1-periodic theory, and detects the image of the J-homomorphism. The
theory of topological modular forms correspond to phenomenon of chromatic
filtration two, and can be used to study the K(2)-local sphere.

The J-homomorphism is a homomorphism from π∗(O) to π∗(S). The study
of the J-homomorphism was classic in algebraic topology. In [Ada66a], it was
shown that the image of the J-homomorphism was detected by K-theory. To-
gether with the Adams conjecture proved in [Qui71a, Sul74], the order of the J-
homomorphism could be determined. This part of homotopy groups correspond
to the chromatic filtration one part of the Adams–Novikov spectral sequence,
since they are detected by K-theory.

First we define the J-homomorphism. For any map l : Sn → BO, there
correspond to a virtual vector bundle T over Sn of dimension 0. Let M be its
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Thom space. Sn has two cells e0, en. The Thom space of T |e0 is simply S, and
the Thom space of T |en is Σ∞en, because they are trivial bundles. This gives a
cell decomposition of M into S∪f CΣn−1S where CΣn−1S is the cone of Σn−1S
and f is the attaching map Σn−1S → S. The J-homomorphism is defined by
J(l) = f . Analogously, one can also define the complex J-homomorphism using
U instead of O.

Remark 6.6.1. We can also define the J-homomorphism as follows. Since the
normal bundle of Sn is trivial, any map l : Sn → O gives a stable framing for
Sn. Then J(l) is defined to be the cobordism class of Sn with this framing.

As shown in [Ada66a], the image of J-homomorphism is detected by K-
theory by investigating the extension of K∗K comodules defined by the cofibre
sequence S→ M → ΣnS. Essentially, this is the part corresponding to the term
ExtBP∗BP (M1

0 ) in the chromatic spectral sequence.
ExtBP∗BP (M1

0 ) can be computed directly, and the relevant differentials in
the chromatic spectral sequence can also be determined. To simplify the case,
we discuss the odd primary components. The case for p = 2 can be found in
the references.

Theorem 6.6.2. For p an odd prime,

Exts,t
BP∗BP (M1

0 ) =





Q/Z(p) if (s, t) = (0, 0)
Z/pi+1 if (s, t) = (0, rpiq)
Q/Z(p) if (s, t) = (1, 0)
0 otherwise

Where q = 2p− 2 and r is some integer not divisible by p.

Proof. See [Rav86], chapter 5.

Using this, the groups Ext1(BP∗) can be computed:

Theorem 6.6.3. Ext1(BP∗) is generated by the groups Ext0,t(M1
0 ) for t > 0.

Proof. See [Rav86], chapter 5.

These elements give invariants for elements of the homotopy groups of spheres
of filtration one in the Adams-Novikov resolution. These are essentially the e-
invariant in [Ada66a], so we call them also e-invariant here. We can compute
these invariants for the elements J(l).

In fact, we have a commutative diagram

S //

²²

T //

λ

²²

ΣnS

²²
MU

²²

B̄P

µ

²²
S // BP //

99ssssssssss
BP ∧ B̄P
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Here λ is induced from l : Sn → BO and µ is induced from the unit S → BP .
The bottom line is the first stems in the canonical Adams-Novikov resolution of
S.

Taking the BP homology, the bottom line is the bar complex, so the com-
posite ΣnS → B̄P → BP ∧ B̄P gives the above mentioned e-invariant. Calcu-
lation shows that for p an odd prime, the image of J-homomorphism can take
arbitrary values of the e-invariant, so that these elements in the E2-term of
Adams–Novikov spectral sequenceare permanent cycles. Moreover, the results
in [Ada66a] show that there are no group extension for these elements.

Theorem 6.6.4. When localized at an odd prime p, the elements in Ext1(BP∗)
are permanent cycles. They detect the image of J-homomorphism, and have the
order indicated in the Adams–Novikov spectral sequence.

Proof. See [Rav86], chapter 5.

These can also be studied using the notion of localization. The general
notion of localization with respect to a spectrum can be found in [Bou75]. The
point is that when we want to study the information given by a particular
type of generalized cohomology theory E, we invert all the maps which induce
an isomorphism on E-homology. This can be achieved using model category
techniques, and we get a functor LE , localization with respect to E, which
assigns every spectrum an E-local spectrum whose E-homology is isomorphic
to the original one, and the isomorphism is induced by a natural transformation
Id → LE . Here a spectrum X being E-local means that for any spectrum Y
with E∗(Y ) = 0 we have [Y, X] = 0.

When studying the homotopy groups, we can use the localization functor
LK(n), localization with respect to Morava K-theory, to concentrate on phe-
nomenon of chromatic filtration n.

Define Ln = LHQ∨K(1)∨···∨K(n), then it is proved that LnS approximates S
as n →∞. So the study of LnS for small n is the first step towards a systematic
understanding of the homotopy groups of spheres.

When n = 1, L1 is the same as the localization with respect to K-theory.
The homotopy groups of L1S is computed and they are essentially the image of
J-homomorphism.

Theorem 6.6.5. For p an odd prime,

πi(L1S) =





Z(p) if i = 0
Q/Z(p) if i = −2
Z/pj+1 if j = rpjq − 1
0 otherwise

Here q = 2p− 2 and r is some integer not divisible by p.
Moreover, the positive dimensional part of π∗(L1S) is isomorphic to the sub-

group of π∗(S) detected by Ext1BP∗BP (BP∗) in the Adams–Novikov spectral se-
quence.
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Proof. See [Rav84].

There is another description of the K(1)-local sphere.

Theorem 6.6.6. There is a fibre sequence

LK(1)S→ KOp
ψN−1−−−−→ KOp

Where ψN is the Adams operation with N a topological generator of Z×p .

Proof. See [Rav84].

Remark 6.6.7. In fact, K-theory suffices at odd prime, but we must use KO-
theory at the prime 2.

6.7 Topological modular forms and the K(2)-
local sphere

The theory for phenomenon of chromatic filtration two is considerably more
complex. There are extensive computations of the Ext(M2)-term in the chro-
matic spectral sequence, and computations of the K(2)-local sphere. To under-
stand these results, one uses the topological modular forms, which is a ring spec-
trum, generalizing the ring of the classical modular form. In particular, there is
a finite resolution of the K(2)-local sphere by topological modular forms, so the
structure of the chromatic filtration two part of the homotopy groups of spheres
if understood by this method.

For the sake of simplicity, we work with the prime 3 in the rest of this section,
so all thing are assumed to be 3-local.

The homotopy groups of the K(2)-local sphere is as follows:

Theorem 6.7.1.

π∗(LK(2)S) = (Z3 ⊕ A+)⊗ Λ(ζ2)⊕G1 ⊕G2

Where Z3 is the ring of 3-adic numbers and

A+ = Z3{α3is/i+1 : α3is/i+1 ∈ A, s > 0}

with
A =

∑

i≥0

Z/3i+1 < α3is/i+1 : s ∈ Z not divisible by 3 >

and
G1 = B⊕ C⊕ CI⊕B∗ ⊕ (B1 ⊕ C)ζ2

G2 = Ĝ⊕ Ĝ∗ ⊕ ĜZ⊕ ĜZ
∗
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with

B = Z3{β3ns/3im,i+1 : n ≥ 0, s ∈ Z not divisible by 3, i ≥ 0;

1 ≤ m < 4 · 3n−2i−1 with m not divisible by 3 or m ≥ 4 · 3n−2i−2}
B1 = Z3{β3ns/3im,i+1 : β3ns/3im,i+1 ∈ B, (s + 1) not divisible by 3,m divisible by 3,

or s = 3k+2t− 1 with k ≥ 0, t not divisible by 3 and i 6= k + 1}
C = C1 ⊕ C2

C1 = Z3{α̃1β3n(3t+1)/3im+1,i : 0 < i ≤ n, 2 · 3n−i < 3im ≤ 2 · 3n−i+1}
C2 = Z3{α̃1β3n(9t−1)/3im+1,i : 0 < i ≤ n, 2 · 3n−i−1 < 3im− 8 · 3n ≤ 2 · 3n−i}
CI = CI0 ⊕ CI1 ⊕ CI2 ⊕ CI3

CI0 = Z3{c3ns : n ≥ 0, s = 3t + 1 or s = 9t− 1, t ∈ Z}
CI1 = Z3{α̃1β3n(3t+1)/3im+1,i+1 : 0 ≤ i ≤ n, 2 · 3n−i−1 < 3im ≤ 2 · 3n−i,m not divisible by 3}
CI2 = Z3{α̃1β3n(9t−1)/3im+1,i+1 : m not divisible by 3 and m ≤ 8 · 3n−i,

0 ≤ i < n, i < k + 1 when t is divisible by 3k}

CI3 = Z3{α̃1β3n(9t−1)/3nm+1,i : i =





n + 1 if m = 1, 3, 4, 6, 7
n + 2 if m = 2, 8
n + 3 if m = 5, n < k + 1 when t is divisible by 3k

}

B∗ = Z3{β(n)∗3n+ls/3im,i+1 : s ∈ Z not divisible by 3, i ≥ 0, n ≥ 0, 0 < 3im ≤ 4 · 3n,

l > i and l > i + 1 when (s + 1) is divisible by 3}

and

Ĝ =
∑

t∈Z
(B5{β9t+1} ⊕B4{β9t+1β6/3} ⊕B3{β9t+7α1} ⊕B2{β9t+1α1, [β9t+2β

′
1], [β9t+5β

′
1]})

⊕B1{[β9t−1/2β
′
1]}

Ĝ∗ =
∑

t∈Z
(B5{χ1

9t+1} ⊕B4{χ0
9t+3} ⊕B2{β(0)∗9t+1, β6/3β(0)∗9t+1, β6/3β(0)∗9t+4}

⊕
∑

n≥1

(B3{β(0)∗3n+2t+9u+3 : u ∈ Z \ I(n)} ⊕B2{β(0)∗3n+2t+9u+3 : u ∈ I(n)}))

ĜZ =
∑

t∈Z
(B5{ζβ9t+1} ⊕B3{ζβ9t+1β6/3} ⊕B2{ζβ9t+7α1, ζβ9t+1α1, ζ[β9t+2β

′
1], ζ[β9t+5β

′
1]})

ĜZ
∗

=
∑

t∈Z
(B5{ζ2χ

1
9t+7} ⊕B4{ζ2χ

0
9t+3} ⊕B2{ζ2β(0)∗9t+1} ⊕B1{ζ2β6/3β(0)∗9t+1, ζ2β6/3β(0)∗9t+4}

⊕
∑

n≥1

(B3{ζ2β(0)∗3n+2t+9u+3 : u ∈ Z \ I(n)} ⊕B2{ζ2β(0)∗3n+2t+9u+3 : u ∈ I(n)}))

Here
Bk = Z/3[β1]/(βk

1 )
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I(n) = {x ∈ Z : z =
3n−1 − 1

2
or x = 5 · 3n−2 +

3n−2 − 1
2

}
The degree and order of the generators are as follows:

generator degree order generator degree order
αa/b 4a− 1 3b β′1 11
βa/b,c 16a− 4b− 2 3c ca 16a− 7 3n+1 if a = 3ns

α̃1βa/b,c 16a− 4b + 1 3c β(a)∗b/c,d 16b− 8 · 3a − 4c− 4 3d

χ0
a 16a + 7 3 χ1

a 16a + 15 3
ζ2 −1

In the above table s is not divisible by 3.
The following abbreviation is adopted: αa = αa/1, βa/b = βa/b,1, βa = βa/1,

α̃1βa/b = α̃1βa/b,1, α̃1βa = α̃1βa/1, β(a)∗b/c = β(a)∗b/c,1, β(a)∗b = β(a)∗b/1.

Proof. See [SW02a].

To understand the structure of this complicated groups, one can take a
similar procedure as in the end of last section and try to find a finite resolution
of the K(2)-sphere by some spectra with more regular behavior.

To do this, we need the construction of the K(n)-local spheres as a homotopy
fixed point spectrum.

First we introduce the ring spectrum En. The formal groups over a finite field
are completely classified by their height. And the theory of deformation of a for-
mal groups of height n is given by the Lubin-Tate theory, which asserts that the
deformation can be classified by the ring (En)∗ = W (Fpn)[[v1, . . . , vn−1]][vn, v−1

n ],
where W (Fpn) is the ring of Witt vectors with coefficients in Fpn . There is a
formal group law over (En)∗ which is the universal deformation of the height n
formal group, so there is a map MU∗ → (En)∗. The Landweber exact theorem
gives a spectrum En with coefficient (En)∗.

The action of the automorphism group of the height n formal group, the
Morava stabilizer group Sn, lifts to an action on the universal deformation.
There is a deep theorem that the spectrum En is an E∞ spectrum in a essentially
unique way, and the action lifts to an action of Gn = Sn oGal(Fpn/Fp) on En.
See [GH04] for details.

Theorem 6.7.2. The K(n)-local sphere is the homotopy fixed point spectrum
of the action of Gn on En.

Proof. See [DH04].

The spectra En are analogues of complex K-theory for higher chromatic
filtration. The main features of 6.6.6 is a resolution of the K(1)-local sphere by
spectrum which are homotopy fixed points of finite subgroups of G1. Since G1

have a maximal elementary abelien subgroup Z/2, the Krull dimension of the
ring of its cohomology with coefficient F2 is one, so we need to use fixed point
spectrum of the action of Z/2 which turns out to be KO when working with
the prime 2.
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At the chromatic filtration 2, there is a similar situation. For example, at
the prime 3, there is also a finite resolution of the K(2)-local sphere.

We need some finite subgroups of the Morava stabilizer group. This can
be done with the help of elliptic curves, since supersingular elliptic curves are
natural sources of formal groups of height two. There is only one supersingular
elliptic curves at the prime 3, which can be represented by the equation over F3

y2 = x3 − x (6.7.3)

It gives a height two formal group, and the automorphism group of this elliptic
curve gives a finite subgroup of S2. It turns out the automorphism group of this
elliptic curve consists of pairs (s, t) with t ∈ F3 and s ∈ F9

× satisfying s4 = 1,
and the action being {

x 7→ s2x + t
y 7→ sy

This is a finite group G12 of order 12. And we have a subgroup G24 =
G12 oGal(F9/F3) ⊂ G2. Denote the homotopy fixed point of this group acting
on E2 by EG24

2 .
We also need another subgroup of G2. Let ω ∈ F9

× be a generator of this
cyclic group. dilation by ω, though not an automorphism of the elliptic curve,
is nonetheless an automorphism of the height two formal group. And taking
semi-product with the Galois group Gal(F9/F3) gives a subgroup SD16 ⊂ G2

of order 16. Denote the homotopy fixed point of this group acting on E2 by
ESD16

2 .

Theorem 6.7.4. There is a resolution of the K(2)-local sphere

LK(2)S→ EG24
2 → EG24

2 ∨Σ8ESD16
2 → Σ8ESD16

2 ∨Σ40ESD16
2 → Σ40ESD16

2 ∨Σ48EG24
2 → Σ48EG24

2

meaning there is a finite resolution

LK(2)S // X3
// X2

// X1
// EG24

2

Σ44EG24
2

OO

Σ45EG24
2 ∨ Σ37ESD16

2

OO

Σ6ESD16
2 ∨ Σ38ESD16

2

OO

Σ7ESD16
2 ∨ Σ−1EG24

2

OO

Proof. See [GHMR05].

Since this resolution is finite, the main structure of π∗(LK(2)S) is controlled
by π∗(EG24

2 ) and π∗(ESD16
2 ).

This is the local point of view. We can also take a global point of view.
Instead of taking a single supersingular elliptic curve, we consider all the elliptic
curves, which are arranged as the moduli stack of elliptic curves, Mell. There
is a sheaf ω over Mell, with the fibre over any point of Mell being the set of
invariant differentials over the elliptic curve represented by that point. Let Ω⊗

be the sheaf of rings ⊕n∈Z ω⊗n.



92

As shown in [HM99], the sheaf of rings Ω⊗ lifts to a sheaf of A∞-ring spectra
(it seems that it is well-known to be a sheaf of E∞-ring spectra, though no
reference of this fact is available to the authors of this report). This means
roughly that any kind of elliptic curve is associated to a ring spectrum, which in
the old day called elliptic cohomology. The spectrum EG24

2 is the ring spectrum
of sections over the formal neighborhood of the point in Mell corresponding to
the supersingular curve 6.7.3.

We can also take the global section of this sheaf, and obtain the ring spectrum
of topological modular forms, TMF . And we can define tmf to be the (−1)-
connected cover of TMF . This spectrum is important in many applications. For
example, there is a string orientation MString → tmf where MString means
cobordism theory of manifolds with String-structure (See section 5.3.3 for the
definition of String). This is quite alike the Atiyah-Bott-Shapiro orientation
MSpin → KO, so in a sense tmf is a chromatic two analogue of KO-theory,
which is also indicated by the resolution 6.7.4. See [AHR] for details of this
orientation.



Appendix A

Table of the Homotopy
Groups of Spheres

The following is a table of the 2-component of the homotopy groups of spheres.
The data come from [Tod62, MT63, Mim65, MMO74]. Further results can be
found in [Oda77a, Oda77b]. In the table, the numbers 2, 4, . . . ,∞ correspond to
a direct summand Z/2,Z/4, . . . ,Z(2) respectively, and the corresponding gener-
ators are listed on the right. Only the first stem in the stable range is listed.
The generators with the same Greek letter and different subscript are related by
suspensions, and if α ∈ πn+k(Sn), the symbol αm means α◦Σkα◦· · ·◦Σ(m−1)kα.

The meaning of the generators are as follows:

� η2 is the map with Hopf invariant
one coming from C

� ν′ ∈ < η3, 2ι4, η4 >1

ν4 is the map with Hopf invariant
one coming from H

� σ′′′ = < ν5, 8ι8, ν8 >
σ′′ satisfies 2σ′′ = Σσ′′′

σ′ satisfies 2σ′ = Σσ′′

σ8 is the map with Hopf invariant
one coming from the octonions

� ε3 = < η3,Σν′, ν7 >1

� ν̄6 ∈ < ν6, η9, ν10 >

� µ3 ∈ < η3,Σν′, 8ι7, ν7 >1

� ε′ = < ν′, 2ν6, ν9 >3

� µ′ ∈ < η3, 2ι4, µ4 >1

� ζ5 ∈ < ν5, 8ι8,Σσ′ >1

� θ′ ∈ < σ11, 2ν18, η21 >1

θ ∈ < σ12, ν19, η22 >1

� κ7 ∈ < ν7, η10, 2ι11, ε11 >1

� ε̄3 ∈ < ε3, 2ι11, ν
2
11 >6

� ρiv ∈ < σ′′′, 2ι12, 8σ12 >1

ρ′′′ ∈ < σ′′, 4ι13, 4σ13 >1

ρ′′ ∈ < σ′, 8ι14, 2σ14 >1

ρ′ ∈ < σ9, 16ι16, σ16 >1

ρ13 satisfies 2ρ13 = Σ4ρ′ and
Σ∞ρ13 ∈ < σ, 2σ, 8ι >

� ζ ′ ∈ < σ′′, ε13, 2ι21 >1

� ω14 satisfies H(ω14) = ν27

� η∗′ ∈ < σ15, 4σ22, η29 >1

η∗16 ∈ < σ16, 2σ23, η30 >1

93
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� ε̄′ satisfies 2ε̄′ = η2
3 ◦ ε̄5 and

Σε̄′ = Σν′ ◦ κ7

� µ̄3 ∈ < µ3, 2ι12, 8σ12 >1

� ε∗12 satisfies H(ε∗12) = ν2
23 and

Σ2ε∗12 = ω14 ◦ η30

� ν∗16 ∈ < σ16, 2σ23, ν30 >1

λ satisfies Σ3λ−2ν∗16 = ±∆(ν33)
and H(λ) = ν2

25

λ′ satisfies Σ2λ′ = 2λ and
H(λ′) ≡ ε21 mod η21 ◦ σ22

λ′′ satisfies Σλ′′ = 2λ′ and
H(λ′′) ≡ η19 ◦ ε20 mod η2

19 ◦ σ21

� ξ12 ∈ < σ12, ν19, σ22 >1

ξ′ satisfies Σξ′− 2ξ12 = ±∆(σ25)
and H(ξ′) = ν̄21 +ε21 = η21 ◦σ22

ξ′′ satisfies Σξ′′ = 2ξ′ and
H(ξ′′) = ν3

19+η19◦ε20 = η2
19◦σ21

� µ̄′ ∈ < µ′, 4ι14, 4σ14 >1

� ζ̆5 ∈ < ζ5, 8ι16, 2σ16 >1

� σ̄6 ∈ < ν6, ε9 + ν̄9, σ17 >1

� ω′ satisfies Σ2ω′ = 2ω14 ◦ν30 and
H(ω′) ≡ ε23 mod η23 ◦ σ24

� κ̄′ ∈ < ν6, η9, η10 ◦ κ11 >

� κ̄9 ∈ < ν9, η12, 2ι13, κ13 >

� β′ satisfies 2β′ = ±∆(ζ21) and
H(β′) = ζ19

β′′ satisfies Σβ′′ = ∆(µ25) and
H(β′′) = η21 ◦ µ22

β′′′ satisfies Σ2β′′′ = 8∆(σ29)
and H(β′′′) = µ23

� β̄ satisfies Σβ̄ = ∆(η41) and
H(β̄) = η2

37
¯̄β satisfies Σ ¯̄β = ∆(ι43) and
H( ¯̄β) = η39

� α ∈ < ν2
5 , 2ι11, κ11 >

� σ∗′′′ ∈ < σ12, ν19, ζ22 >1

σ∗′′ ∈ < σ14, 8σ21, σ28 >1

σ∗′ ∈ < σ15, 4σ22, σ29 >1

σ∗ ∈ < σ16, 2σ23, σ30 >1

� ᾱ ∈ < ε3, 2ι11, κ11 >1

� ρ̄′′′ ∈ < ρiv, 2ι20, 8σ20 >1

ρ̄′′ ∈ < −ρ′′′, 4ι21, 4σ21 >1

ρ̄′ ∈ < ρ′′, 8ι22, 2σ22 >1

ρ̄9 ∈ < ρ′, 16ι24, σ24 >1

� φ5 ∈ < ν5, 2ν8, ε11 + ν̄11, σ19 >1

with 2φ5 = 0

� ψ10 ∈ < σ10, ν̄17 + ε17, σ25 >4

� ε̄∗′ satisfies Σε̄∗′ = ∆(ε33) and
H(ε̄∗′) = η29 ◦ ε30

ε̄∗16 ∈ < σ2
16, 2ι30, ε30 >1

� ν̄∗′ satisfies Σν̄∗′ = ∆(ν̄33) and
H(ν̄∗′) = ν3

29

ν̄∗16 = ε̄∗16 + η∗16 ◦ σ32

� δ3 ∈ < ε3, ε11 + ν̄11, σ19 >1

� σ̄′6 ∈ < ν̄6, ε14 + ν̄14, σ22 >1

� ζ̆ ′6 ∈ < ζ ′, 8ι22, 2σ22 >1

� ε̃10 ∈ < σ10, ε̄17, η32 >5

� ζ∗ satisfies Σ2ζ∗ = ∆(η33 ◦ ε34)
and H(ζ∗) ≡ ζ27 mod 2π38(S27)

� µ∗′ satisfies Σµ∗′ = ∆(µ33) and
H(µ∗′) = η29 ◦ µ30

µ∗16 ∈ < σ2
16, 2ι30, µ30 >1

� η̃ satisfies Ση̃ = ∆(ι51) and
H(η̃) = η47

η̃′ satisfies Ση̃′ = ∆(η49)±2η̃ and
H(η̃′) = η2

45
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Table A.1: 2-component of πn+k(Sn) with generators

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
n=2 ∞ η2 2 η2

2 2 η3
2 4 η2 ◦ ν′ 2 η2 ◦ ν′ ◦ η6 2 η2 ◦ ν′ ◦ η2

6

n=3 2 η3 2 η2
3 4 ν′ 2 ν′ ◦ η6 2 ν′ ◦ η2

6 0
n=4 2 η2

4 ∞ ν4 2 ν4 ◦ η7 2 ν4 ◦ η2
7 8 ν2

4

4 Σν′ 2 Σν′ ◦ η7 2 Σν′ ◦ η2
7

n=5 8 ν5 2 ν5 ◦ η8 2 ν5 ◦ η2
8 2 ν2

5

n=6 0 ∞ ∆(ι13) 2 ν2
6

n=7 0 2 ν2
7

n=8 2 ν2
8
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Table A.2: 2-component of πn+k(Sn) with generators

k = 7 k = 8 k = 9 k = 10 k = 11 k = 12
n=2 0 0 2 η2 ◦ ε3 2 η2

2 ◦ ε4 4 η2 ◦ ε′ 4 η2 ◦ µ′

2 η2 ◦ µ3 2 η2
2 ◦ µ4 2 η2 ◦ ν′ ◦ ν̄6

2 η2 ◦ ν′ ◦ ε6

n=3 0 2 ε3 2 µ3 4 ε′ 4 µ′ 2 ν′ ◦ µ6

2 η3 ◦ ε4 2 η3 ◦ µ4 2 ε3 ◦ ν11 2 ν′ ◦ η6 ◦ ε7

2 ν′ ◦ ε6

n=4 0 2 ε4 2 ν3
4 8 ν4 ◦ σ′ 2 ν4 ◦ σ′ ◦ η14 2 ν4 ◦ σ′ ◦ η2

14

2 µ4 4 Σε′ 2 ν4 ◦ ν̄7 2 ν4
4

2 η4 ◦ ε5 2 η4 ◦ η5 2 ν4 ◦ ε7 2 ν4 ◦ µ7

4 Σµ′ 2 ν4 ◦ η7 ◦ ε8

2 ε4 ◦ ν12 2 Σν′ ◦ µ7

2 Σν′ ◦ ε7 2 Σν′ ◦ η7 ◦ ε8

n=5 2 σ′′′ 2 ε5 2 ν3
5 8 ν5 ◦ σ8 8 ζ5 2 ν4

5

2 µ5 2 η5 ◦ µ6 2 ν5 ◦ ν̄8 2 ν5 ◦ µ8

2 η5 ◦ ε6 2 ν5 ◦ ε8 2 ν5 ◦ η8 ◦ ε9

n=6 4 σ′′ 8 ν̄6 2 ν3
6 8 ν6 ◦ σ9 8 ζ6 16 ∆(σ13)

2 ε6 2 µ6 2 η6 ◦ µ7 4 ν̄6 ◦ ν14

2 η6 ◦ ε7

n=7 8 σ′ 2 σ′ ◦ η14 2 σ′ ◦ η2
14 8 ν7 ◦ σ10 8 ζ7 0

2 ν̄7 2 ν3
7 2 η7 ◦ µ8 2 ν̄7 ◦ ν15

2 ε7 2 µ7

2 η7 ◦ ε8

n=8 ∞ σ8 2 σ8 ◦ η15 2 σ8 ◦ η2
15 8 σ8 ◦ ν15 8 ζ8 0

8 Σσ′ 2 Σσ′ ◦ η15 2 Σσ′ ◦ η2
15 8 ν8 ◦ σ11 2 ν̄8 ◦ ν16

2 ν̄8 2 ν3
8 2 η8 ◦ µ9

2 ε8 2 µ8

2 η8 ◦ ε9

n=9 16 σ9 2 σ9 ◦ η16 2 σ9 ◦ η2
16 8 σ9 ◦ ν16 8 ζ9 0

2 ν̄9 2 ν3
9 2 η9 ◦ µ10 2 ν̄9 ◦ ν17

2 ε9 2 µ9

2 η9 ◦ ε10

n=10 2 ν̄10 ∞ ∆(ι21) 4 σ10 ◦ ν17 8 ζ10 4 ∆(ν21)
2 ε10 2 ν3

10 2 η10 ◦ µ11

2 µ10

2 η10 ◦ ε11

n=11 2 ν3
11 2 σ11 ◦ ν18 8 ζ11 2 θ′

2 µ11 2 η11 ◦ µ12

2 η11 ◦ ε12

n=12 2 η12 ◦ µ13 ∞ ∆(ι25) 2 θ

8 ζ12 2 Σθ′

n=13 8 ζ13 2 Σθ

n=14 0
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Table A.3: 2-component of πn+k(Sn) with generators

k = 13 k = 14 k = 15 k = 16
n=2 2 η2 ◦ ν′ ◦ µ6 2 η2 ◦ ν′ ◦ η6 ◦ µ7 2 η2 ◦ ε3 ◦ ν2

11 2 η2 ◦ ε̄3

2 η2 ◦ ν′ ◦ η6 ◦ ε7

n=3 2 ν′ ◦ η6 ◦ µ7 2 ε3 ◦ ν2
11 2 ε̄3 2 µ3 ◦ σ12

2 η3 ◦ ε̄4

n=4 8 ν2
4 ◦ σ10 2 ε4 ◦ ν2

12 2 ε̄4 2 ν2
4 ◦ σ10 ◦ ν17

2 ν4 ◦ η7 ◦ µ8 8 ν4 ◦ ζ7 2 µ4 ◦ σ13

2 Σν′ ◦ η7 ◦ µ8 2 ν4 ◦ ν̄7 ◦ ν15 2 η4 ◦ ε̄5

n=5 2 ν5 ◦ σ8 ◦ ν15 2 ν5 ◦ ζ8 2 ρiv 2 µ5 ◦ σ14

2 ν5 ◦ η8 ◦ µ9 2 ν5 ◦ ν̄8 ◦ ν16 2 ε̄5 2 η5 ◦ ε̄6

n=6 2 ν6 ◦ σ9 ◦ ν16 4 σ′′ ◦ σ13 4 ρ′′′ 8 ζ ′

2 ν̄6 ◦ ν2
14 2 ε̄6 2 µ6 ◦ σ15

2 η6 ◦ ε̄7

n=7 2 ν7 ◦ σ10 ◦ ν17 8 σ′ ◦ σ14 8 ρ′′ 2 σ′ ◦ µ14

4 κ7 2 σ′ ◦ ν̄14 2 Σζ ′

2 σ′ ◦ ε14 2 µ7 ◦ σ16

2 ε̄7 2 η7 ◦ ε̄8

n=8 2 σ8 ◦ ν2
15 16 σ2

8 2 σ8 ◦ ν̄15 2 σ8 ◦ ν3
15

2 ν8 ◦ σ11 ◦ ν18 8 Σσ′ ◦ σ15 2 σ8 ◦ ε15 2 σ8 ◦ µ15

4 κ8 8 Σρ′′ 2 σ8 ◦ η15 ◦ ε16

2 Σσ′ ◦ ν̄15 2 Σσ′ ◦ µ15

2 Σσ′ ◦ ε15 2 Σ2ζ ′

2 ε̄8 2 µ8 ◦ σ17

2 η8 ◦ ε̄9

n=9 2 σ9 ◦ ν2
16 16 σ2

9 16 ρ′ 2 σ9 ◦ ν3
16

4 κ9 2 σ9 ◦ ν̄16 2 σ9 ◦ µ16

2 σ9 ◦ ε16 2 σ9 ◦ η16 ◦ ε17

2 ε̄9 2 µ9 ◦ σ18

n=10 2 σ10 ◦ ν2
17 16 σ2

10 16 Σρ′ 16 ∆(σ21)
2 κ10 2 σ10 ◦ ν̄17 2 σ10 ◦ µ17

2 ε̄10

n=11 2 θ′ ◦ η23 16 σ2
11 16 Σ2ρ′ 2 σ11 ◦ µ18

2 σ11 ◦ ν2
18 2 κ11 2 ε̄11

n=12 2 θ ◦ η24 16 σ2
12 16 Σ3ρ′ 2 σ12 ◦ µ19

2 Σθ′ ◦ η24 2 κ12 2 ε̄12

4 ∆(ν25)
n=13 2 Σθ ◦ η25 16 σ2

13 32 ρ13 2 σ13 ◦ µ20

2 κ13 2 ε̄13

n=14 ∞ ∆(ι29) 8 σ2
14 32 ρ14 8 ω14

2 κ14 2 ε̄14 2 σ14 ◦ µ21

n=15 0 4 σ2
15 32 ρ15 2 η∗′

2 κ15 2 ε̄15 2 ω15

2 σ15 ◦ µ22

n=16 2 σ2
16 32 ρ16 2 η∗16

2 κ16 2 ε̄16 2 Ση∗′

∞ ∆(ι33) 2 ω16

2 σ16 ◦ µ23

n=17 32 ρ17 2 η∗17
2 ε̄17 2 ω17

2 σ17 ◦ µ24

n=18 2 ω18

2 σ18 ◦ µ25
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Table A.4: 2-component of πn+k(Sn) with generators

k = 17 k = 18 k = 19 k = 20
n=2 2 η2 ◦ µ3 ◦ σ12 4 η2 ◦ ε̄′ 4 η2 ◦ µ′ ◦ σ14 4 η2 ◦ µ̄′

2 η2
2 ◦ ε̄4 2 η2 ◦ µ̄3 2 η2 ◦ ν′ ◦ ε̄6 2 η2 ◦ ν′ ◦ µ6 ◦ σ15

2 η2
2 ◦ µ4 ◦ σ13 2 η2

2 ◦ µ̄4

n=3 4 ε̄′ 4 µ′ ◦ σ14 4 µ̄′ 2 ν′ ◦ µ̄6

2 µ̄3 2 ν′ ◦ ε̄6 2 ν′ ◦ µ6 ◦ σ15 2 ν′ ◦ η6 ◦ µ7 ◦ σ16

2 η3 ◦ µ4 ◦ σ13 2 η3 ◦ µ̄4

n=4 8 ν4 ◦ σ′ ◦ σ14 8 ν4 ◦ ρ′′ 2 ν4 ◦ σ′ ◦ µ14 2 ν4 ◦ σ′ ◦ η14 ◦ µ15

4 ν4 ◦ κ7 2 ν4 ◦ σ′ ◦ ν̄14 2 ν4 ◦ Σζ ′ 2 ν2
4 ◦ κ10

4 Σε̄′ 2 ν4 ◦ σ′ ◦ ε14 2 ν4 ◦ µ7 ◦ σ16 2 ν4 ◦ µ̄7

2 µ̄4 2 ν4 ◦ ε̄7 2 ν4 ◦ η7 ◦ ε̄8 2 ν4 ◦ η7 ◦ µ8 ◦ σ17

2 η4 ◦ µ5 ◦ σ14 4 Σµ′ ◦ σ15 4 Σµ̄′ 2 Σν′ ◦ µ̄7

2 Σν′ ◦ ε̄7 2 Σν′ ◦ µ7 ◦ σ16 2 Σν′ ◦ η7 ◦ µ8 ◦ σ17

2 η4 ◦ µ̄5

n=5 4 ν5 ◦ κ8 8 ζ5 ◦ σ16 8 ζ̆5 2 ν2
5 ◦ κ11

2 µ̄5 2 ν5 ◦ ε̄8 2 ν5 ◦ µ8 ◦ σ17 2 ν5 ◦ µ̄8

2 η5 ◦ µ6 ◦ σ15 2 η5 ◦ µ̄6 2 ν5 ◦ η8 ◦ µ9 ◦ σ18

n=6 2 ∆(Σθ) 2 ∆(Σθ) ◦ η23 8 ζ̆6 32 ∆(ρ13)
2 ν6 ◦ κ9 8 ζ6 ◦ σ17 32 σ̄6 4 κ̄′

2 µ̄6 2 η6 ◦ µ̄7

2 η6 ◦ µ7 ◦ σ16

n=7 2 σ′ ◦ η14 ◦ µ15 8 ζ7 ◦ σ18 8 ζ̆7 8 κ̄7

2 ν7 ◦ κ10 2 η7 ◦ µ̄8 2 σ̄7

2 µ̄7

2 η7 ◦ µ8 ◦ σ17

n=8 2 σ8 ◦ η15 ◦ µ16 8 σ8 ◦ ζ15 8 ζ̆8 8 κ̄8

2 Σσ′ ◦ η15 ◦ µ16 8 ζ8 ◦ σ19 2 σ̄8

2 ν8 ◦ κ11 2 η8 ◦ µ̄9

2 µ̄8

2 η8 ◦ µ9 ◦ σ18

n=9 2 σ9 ◦ η16 ◦ µ17 8 σ9 ◦ ζ16 8 ζ̆9 8 κ̄9

2 ν9 ◦ κ12 2 η9 ◦ µ̄10 2 σ̄9

2 µ̄9

2 η9 ◦ µ10 ◦ σ19

n=10 2 σ10 ◦ η17 ◦ µ18 8 8 ζ̆10 8 κ̄10

2 ν10 ◦ κ13 2
λ′′, ξ′′

2 σ̄10 8 β′

2 µ̄10 2 η10 ◦ µ̄11

n=11 2 σ11 ◦ η18 ◦ µ19 8 2 λ′ ◦ η29 8 κ̄11

2 ν11 ◦ κ14 4
λ′, ξ′

2 ξ′ ◦ η29 2 θ′ ◦ ε23

2 µ̄11 2 η11 ◦ µ̄12 8 ζ̆11 2 β′′

2 σ̄11
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Table A.5: 2-component of πn+k(Sn) with generators

k = 17 k = 18 k = 19 k = 20
n=12 2 ε∗12 32 ξ12 2 ω′ 8 κ̄12

2 σ12 ◦ η19 ◦ µ20 4 2 ξ12 ◦ η30 2 Σθ′ ◦ ε24

2 ν12 ◦ κ15 4
Σλ′, Σξ′

2 Σλ′ ◦ η30 2 ∆(µ25)
2 µ̄12 2 η12 ◦ µ̄13 2 Σξ′ ◦ η30 2 θ ◦ ε24

8 ζ̆12 2 θ ◦ ν̄24

2 σ̄12 2 β′′′

n=13 2 ε∗13 8 ξ13 2 Σω′ 8 κ̄13

2 σ13 ◦ η20 ◦ µ21 8 λ 2 ξ13 ◦ η31 2 Σθ ◦ ε25

2 ν13 ◦ κ16 2 η13 ◦ µ̄14 8 ζ̆13 2 Σθ ◦ ν̄25

2 µ̄13 2 σ̄13 2 Σβ′′′

n=14 2 ε∗14 8 ξ14 4 ω14 ◦ ν30 16 ∆(σ29)
2 σ14 ◦ η21 ◦ µ22 8 Σλ 8 ζ̆14 8 κ̄14

2 ν14 ◦ κ17 2 η14 ◦ µ̄15 2 σ̄14

2 µ̄14

n=15 2 η∗′ ◦ η31 8 ξ15 2 ω15 ◦ ν31 8 κ̄15

2 ε∗15 8 Σ2λ 8 ζ̆15

2 σ15 ◦ η22 ◦ µ23 2 η15 ◦ µ̄16 2 σ̄15

2 ν15 ◦ κ18

2 µ̄15

n=16 2 η∗16 ◦ η32 8 ν∗16 2 ω16 ◦ ν32 8 κ̄16

2 Ση∗′ ◦ η32 8 ξ16 8 ζ̆16

2 ε∗16 8 Σ3λ 2 σ̄16

2 σ16 ◦ η23 ◦ µ24 2 η16 ◦ µ̄17

2 ν16 ◦ κ19

2 µ̄16

n=17 2 η∗17 ◦ η33 8 ν∗17 2 ω17 ◦ ν33 8 κ̄17

2 ε∗17 8 ξ17 8 ζ̆17

2 σ17 ◦ η24 ◦ µ25 2 η17 ◦ µ̄18 2 σ̄17

2 ν17 ◦ κ20

2 µ̄17

n=18 ∞ ∆(ι37) 8 ν∗18 8 ζ̆18 8 κ̄18

2 ε∗18 4 ν∗18 + ξ18 2 σ̄18 4 ∆(ν37)
2 σ18 ◦ η25 ◦ µ26 2 η18 ◦ µ̄19

2 ν18 ◦ κ21

2 µ̄18

n=19 2 ε∗19 8 ν∗19 8 ζ̆19 8 κ̄19

2 σ19 ◦ η26 ◦ µ27 2 ν∗19 + ξ19 2 σ̄19 2 β̄

2 ν19 ◦ κ22 2 η19 ◦ µ̄20

2 µ̄19

n=20 8 ν∗20 ∞ ∆(ι41) 8 κ̄20

2 η20 ◦ µ̄21 8 ζ̆20 2 ∆(η41)
2 σ̄20 2 ¯̄β

n=21 8 ζ̆21 8 κ̄21

2 σ̄21 2 ∆(ι43)
n=22 8 κ̄22
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Table A.6: 2-component of πn+k(Sn) with generators

k = 21 k = 22 k = 23 k = 24
n=2 2 η2 ◦ ν′ ◦ µ̄6 2 η2 ◦ ν′ ◦ η6 ◦ µ̄7 2 η2 ◦ ε3 ◦ κ11 4 η2 ◦ ᾱ

2 η2 ◦ ν′ ◦ η6 ◦ µ7 ◦ σ16

n=3 2 ν′ ◦ η6 ◦ µ̄7 2 ε3 ◦ κ11 4 ᾱ 2 δ3

2 µ̄3 ◦ σ20

2 ε′ ◦ κ13

n=4 8 ν4 ◦ ζ7 ◦ σ18 8 ν4 ◦ ζ̆7 8 ν4 ◦ κ̄7 2 ν4 ◦ η7 ◦ κ̄8

2 ν4 ◦ η7 ◦ µ̄8 2 ν4 ◦ σ̄7 4 Σᾱ 2 ν4 ◦ σ′ ◦ κ14

2 Σν′ ◦ η7 ◦ µ̄8 2 ε4 ◦ κ12 2 δ4

2 µ̄4 ◦ σ21

2 Σε′ ◦ κ14

n=5 2 α 2 ν5 ◦ ζ̆8 8 ν5 ◦ κ̄8 2 ν5 ◦ η8 ◦ κ̄9

2 ν5 ◦ η8 ◦ µ̄9 2 ν5 ◦ σ̄8 2 ρ̄′′′ 2 ν5 ◦ σ8 ◦ κ15

2 ε5 ◦ κ13 2 φ5 2 δ5

2 µ̄5 ◦ σ22

n=6 2 η6 ◦ κ̄7 4 ρ′′′ ◦ σ21 8 ν6 ◦ κ̄8 2 ν6 ◦ σ9 ◦ κ16

2 ν̄6 ◦ κ14 4 ρ̄′′ 2 δ6

2 ν6 ◦ σ̄9 2 φ6 2 µ̄6 ◦ σ23

2 ε6 ◦ κ14 8 8 ζ̆ ′6
4

∆(λ), ∆(ξ)
2 σ̄′6
2 ∆(λ ◦ η31)
2 ∆(ξ13 ◦ η31)

n=7 2 η7 ◦ κ̄8 8 σ′ ◦ ρ14 8 ν7 ◦ κ̄10 2 ν7 ◦ σ10 ◦ κ17

2 σ′ ◦ κ14 2 ν̄7 ◦ κ15 8 ρ̄′ 2 δ7

2 ν7 ◦ σ̄10 2 φ7 2 µ̄7 ◦ σ24

2 ε7 ◦ κ15 2 κ̄7 ◦ ν27 − ν7 ◦ κ̄10 2 ζ̆ ′7
2 σ′ ◦ σ14 ◦ µ21 2 σ̄′7
2 σ′ ◦ ω14 2 σ′ ◦ µ̄14

2 σ′ ◦ ω14 ◦ η30

n=8 4 σ3
8 32 σ8 ◦ ρ15 2 σ2

8 ◦ µ22 2 σ8 ◦ µ̄15

2 σ8 ◦ κ15 2 σ8 ◦ ε̄15 2 σ8 ◦ ω15 2 σ2
8 ◦ η22 ◦ µ23

2 η8 ◦ κ̄9 8 Σσ′ ◦ ρ15 2 σ8 ◦ η∗′ 2 σ8 ◦ ν15 ◦ κ18

2 Σσ′ ◦ κ15 2 ν̄8 ◦ κ16 8 ν8 ◦ κ̄11 2 σ8 ◦ ε∗15
2 ν8 ◦ σ̄11 8 Σρ̄′ 2 σ8 ◦ η∗′ ◦ η31

2 ε8 ◦ κ16 2 φ8 2 ν8 ◦ σ11 ◦ κ18

2 κ̄8 ◦ ν28 − ν8 ◦ κ̄11 2 δ8

2 Σσ′ ◦ σ15 ◦ µ22 2 µ̄8 ◦ σ25

2 Σσ′ ◦ ω15 2 ζ̆ ′8
2 σ̄′8
2 Σσ′ ◦ µ̄15

2 Σσ′ ◦ ω15 ◦ η31

n=9 2 η9 ◦ κ̄10 16 σ9 ◦ ρ16 2 σ2
9 ◦ µ23 2 σ9 ◦ µ̄16

2 σ9 ◦ κ16 2 σ9 ◦ ε̄16 2 σ9 ◦ ω16 2 σ2
9 ◦ η23 ◦ µ24

2 σ3
9 2 ν9 ◦ σ̄12 16 ρ̄9 2 σ9 ◦ ν16 ◦ κ19

2 ε9 ◦ κ17 8 ν9 ◦ κ̄12 2 σ9 ◦ ε∗16
2 φ9 2 δ9

2 κ̄9 ◦ ν29 − ν9 ◦ κ̄12 2 µ̄9 ◦ σ26

2 σ̄′9
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Table A.7: 2-component of πn+k(Sn) with generators

k = 21 k = 22 k = 23 k = 24
n=10 2 η10 ◦ κ̄11 16 σ10 ◦ ρ17 16 ρ̄10 2 δ10

2 σ10 ◦ κ17 2 ν10 ◦ σ̄13 8 ν10 ◦ κ̄13 2 µ̄10 ◦ σ27

2 σ3
10 2 ε10 ◦ κ18 2 φ10 2 σ̄′10

2 κ̄10 ◦ ν30 − ν10 ◦ κ̄13 4 ε̃10

4 ψ10 32 ∆(ρ21)
n=11 2 η11 ◦ κ̄12 16 σ11 ◦ ρ18 16 ρ̄11 2 δ11

2 σ11 ◦ κ18 2 ν11 ◦ σ̄14 8 ν11 ◦ κ̄14 2 µ̄11 ◦ σ28

2 σ3
11 2 ε11 ◦ κ19 2 φ11 2 σ̄′11

2 θ′ ◦ µ23 2 ψ11 4 ε̃11

n=12 2 η12 ◦ κ̄13 32 σ∗′′′ 16 ρ̄12 2 δ12

2 σ12 ◦ κ19 4 σ12 ◦ ρ19 ± 2σ∗′′′ 8 ν12 ◦ κ̄15 2 µ̄12 ◦ σ29

2 σ3
12 2 ν12 ◦ σ̄15 2 φ12 2 σ̄′12

2 Σθ′ ◦ µ24 2 ε12 ◦ κ20 2 ψ12 2 ε̃12

2 θ ◦ µ24

n=13 2 η13 ◦ κ̄14 16 ρ13 ◦ σ28 16 ρ̄13 2 δ13

2 σ3
13 2 ν13 ◦ σ̄16 8 ν13 ◦ κ̄16 2 µ̄13 ◦ σ30

2 Σθ ◦ µ25 2 ε13 ◦ κ21 2 φ13 2 σ̄′13
4 λ ◦ ν31 2 ψ13 2 ε̃13

n=14 2 η14 ◦ κ̄15 16 σ∗′′ 16 ρ̄14 2 δ14

2 σ3
14 2 ω14 ◦ ν2

30 8 ν14 ◦ κ̄17 2 µ̄14 ◦ σ31

4 Σλ ◦ ν32 2 ν14 ◦ σ̄17 2 φ14 2 σ̄′14
2 ε14 ◦ κ22 2 ψ14 2 ε̃14

8 ζ∗

n=15 2 η ◦ κ̄16 16 σ∗′ 16 ρ̄15 2 δ15

2 σ3
15 2 ω15 ◦ ν2

31 8 ν15 ◦ κ̄18 2 µ̄15 ◦ σ32

2 Σ2λ ◦ ν33 2 ν15 ◦ σ̄18 2 φ15 2 σ̄′15
2 ε15 ◦ κ23 2 ψ15 2 ε̃15

2 ε̄∗′ 2 Σζ∗

2 ν̄∗′ 2 µ∗′

n=16 2 η16 ◦ κ̄17 16 σ∗16 16 ρ̄16 2 δ16

2 σ3
16 16 Σσ∗′ 8 ν16 ◦ κ̄19 2 µ̄16 ◦ σ33

2 Σ3λ ◦ ν34 2 ω16 ◦ ν2
32 2 φ16 2 σ̄′16

2 ν∗16 ◦ ν34 2 ν16 ◦ σ̄19 2 ψ16 2 ε̃16

2 ε16 ◦ κ24 2 Σε̄∗′ 2 Σ2ζ∗

2 Σν̄∗′ 2 Σµ∗′

2 ε∗16 2 µ∗16
2 ν̄∗16 2 η∗16 ◦ ε32

2 η∗16 ◦ ν̄32

n=17 2 η17 ◦ κ̄18 16 σ∗17 16 ρ̄17 2 δ17

2 σ3
17 2 ω17 ◦ ν2

33 8 ν17 ◦ κ̄20 2 µ̄17 ◦ σ34

2 ν∗17 ◦ ν35 2 ν17 ◦ σ̄20 2 φ17 2 σ̄′17
2 ε17 ◦ κ25 2 ψ17 2 µ∗17

2 ε̄∗17 2 η∗17 ◦ ε33

2 ν̄∗17 2 η∗17 ◦ ν̄33

n=18 2 η18 ◦ κ̄19 16 σ∗18 16 ρ̄18 2 δ18

2 σ3
18 2 ν18 ◦ σ̄21 8 ν18 ◦ κ̄21 2 µ̄18 ◦ σ35

2 ν∗18 ◦ ν36 2 ε18 ◦ κ26 2 φ18 2 σ̄′18
2 ψ18 16 ∆(σ37)
2 ε̄∗18
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Table A.8: 2-component of πn+k(Sn) with generators

k = 21 k = 22 k = 23 k = 24
n=19 2 η19 ◦ κ̄20 16 σ∗19 16 ρ̄19 2 δ19

2 σ3
19 2 ν19 ◦ σ̄22 8 ν19 ◦ κ̄22 2 µ̄19 ◦ σ36

2 ν∗19 ◦ ν37 2 ε19 ◦ κ27 2 φ19 2 σ̄′19
2 β̄ ◦ η39 2 ψ19

n=20 2 η20 ◦ κ̄21 16 σ∗20 16 ρ̄20 2 δ20

2 σ3
20 2 ν20 ◦ σ̄23 8 ν20 ◦ κ̄23 2 µ̄20 ◦ σ37

2 Σβ̄ ◦ η40 2 ε20 ◦ κ28 2 φ20

2 ¯̄β ◦ η40 4 ∆(ν41) + 2σ∗20 2 ψ20

n=21 2 η21 ◦ κ̄22 8 σ∗21 16 ρ̄21 2 δ21

2 σ3
21 2 ν21 ◦ σ̄24 8 ν21 ◦ κ̄24 2 µ̄21 ◦ σ38

2 Σ ¯̄β ◦ η41 2 ε21 ◦ κ29 2 φ21

2 ψ21

n=22 ∞ ∆(ι45) 4 σ∗22 16 ρ̄22 2 δ22

2 η22 ◦ κ̄23 2 ν22 ◦ σ̄25 8 ν22 ◦ κ̄25 2 µ̄22 ◦ σ39

2 σ3
22 2 ε22 ◦ κ30 2 φ22 4 ∆(ν45)

n=23 2 η23 ◦ κ̄24 2 σ∗23 16 ρ̄23 2 δ23

2 σ3
23 2 ν23 ◦ σ̄26 8 ν23 ◦ κ̄26 2 µ̄23 ◦ σ40

2 ε23 ◦ κ31 2 φ23 2 η̃′

n=24 2 ν24 ◦ σ̄27 ∞ ∆(ι49) 2 δ24

2 ε24 ◦ κ32 16 ρ̄24 2 µ̄24 ◦ σ41

8 ν24 ◦ κ̄27 2 Ση̃′

2 φ24 2 η̃

n=25 16 ρ̄25 2 δ25

8 ν25 ◦ κ̄28 2 µ̄25 ◦ σ42

2 φ25 2 Ση̃

n=26 2 δ26

2 µ̄26 ◦ σ43
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The generators have the following relations (though we do not list all the
relations):

η3
3 = 2ν′

Σ2ν′ = 2ν5

η3 ◦ Σν′ = 0

ν6 ◦ η9 = 0

Σσ′′′ = 2σ′′

Σσ′′ = 2σ′

Σ2σ′ = 2Σσ8

σ10 ◦ η17 = ν̄10 + ε10

η2
3 ◦ ε5 = 2ε′

Σ2ε′ = ±2ν5 ◦ σ8

ν5 ◦ Σσ′ = 2ν5 ◦ σ8

σ′ ◦ ν14 =?(2k + 1)ν7 ◦ σ10

ν7 ◦ σ10 =?(2k + 1)σ′ ◦ ν14

ν9 ◦ σ12 =?(4k + 2)σ9 ◦ ν16

σ12 ◦ ν19 = 0

ε3 ◦ ν11 = ν′ ◦ ν̄6

ε′ ◦ η13 = ν′ ◦ ε6

η3 ◦ Σε′ =?kη2
3 ◦ µ5

η2
3 ◦ µ5 = 2µ′

ν5 ◦ Σσ′ ◦ η15 =?4kζ5

ε5 ◦ ν13 = 0

Σ2µ′ = ±2ζ5

ν7 ◦ ε10 = 2ν̄6 ◦ ν14

ν6 ◦ ν̄9 = 2ν̄6 ◦ ν14

ν̄10 ◦ ν18 = 0

η3 ◦ Σµ′ = 0

ν5 ◦ Σσ′ ◦ η2
15 = 0

ν4
6 = 0

ν6 ◦ µ7 = 8∆(σ13)

Σ2θ = 0

ν2
5 ◦ σ11 = 0

ν6 ◦ ζ9 = 2σ′′ ◦ σ13

ν̄7 ◦ ν2
15 = 2κ7+?4kσ′ ◦ σ14

Σρiv = 2ρ′′′

Σρ′′′ = 2ρ′′

Σ2ρ′′ = 2ρ′

Σ4ρ′ = 2ρ13

σ10 ◦ ν̄17 = σ10 ◦ ε17

σ11 ◦ ν̄18 = 0

ν2
5 ◦ σ11 ◦ ν18 = 0

Σζ ′ = σ′ ◦ η14 ◦ ε15

ν5 ◦ σ8 ◦ ν2
15 = η5 ◦ ε̄6

ε2
3 = ε3 ◦ ν̄11 = η3 ◦ ε̄4 = ε̄3 ◦ η18

σ10 ◦ ν3
17 =?kµ10 ◦ σ19

σ10 ◦ η16 ◦ ε17 =?kµ10 ◦ σ19

µ10 ◦ σ19 = σ10 ◦ µ17 + ∆(8σ21)

Σ2η∗ =? ∈ Σ3π30(S14)

Ση∗17 =? ∈ Σ3π31(S15)

η2
3 ◦ ε̄5 = 2ε̄′

Σε̄′ = Σν′ ◦ κ7

ν5 ◦Σσ′ ◦σ15 =?(2k+1)Σ2(ε′ ◦σ13) =?

η10 ◦ µ11 ◦ σ20 = σ10 ◦ η17 ◦ µ18
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η3 ◦ Σε̄′ = 0

ν5 ◦ Σρ′′ =?

ν6 ◦ ε̄9 = 0

ζ9 ◦ σ20 =?(4k + 2)σ9 ◦ ζ16

σ10 ◦ ζ17 =? ∈ 2π28(S10) \ 4π28(S10)

Σλ′′ = 2λ′

Σξ′′ = 2ξ′

Σ2λ′ = 2λ

Σ2ξ′ = 2ξ12

σ12 ◦ ζ19 = 8∆(σ25) = 16ζ12

Σ4λ = 2ν∗17

ξ20 = −ν∗20

η2
3 ◦ µ̄5 = 2µ̄′

ν5 ◦ Σσ′ ◦ µ15 = Σ2(ε′ ◦ µ13) =?

ν5 ◦ Σ2ζ ′ = Σ2(ε′ ◦ η13 ◦ ε14) =?

ν5 ◦ η8 ◦ ε̄9 = Σ2(ε′ ◦ ν3
12

Σ2µ̄′ = 2ζ̆5

ν6 ◦ µ9 ◦ σ18 = 16σ̄6

Σ2λ′ ◦ η31 = 0

Σ2ξ′ ◦ η31 = 0

ξ14 ◦ η32 = 0

Σ2ω′ = 2ω14 ◦ ν30

ω18 ◦ ν34 = 0

η3 ◦ Σµ̄′ = 0

ν2
6 ◦ κ12 = 2κ̄′

Σκ̄′ = ±2κ̄7

Σβ′ = θ′ ◦ ε23

2ᾱ = η3 ◦ ε4 ◦ κ12

4ζ̆9 = η2
9 ◦ µ̄11

2ε̃10 = σ10 ◦ ν17 ◦ κ20
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The Hopf invariants of the generators are:

H(η2) = ι3

H(ν′) = η5

H(ν4) = ι7

H(σ′′′) = η3
9

H(σ′′) = η2
11

H(σ′) = η13

H(σ8) = ι15

H(ε3) = ν2
5

H(ν̄6) ≡ ν11 mod 2ν11

H(µ3) = σ′′′

H(ε′) = ε5

H(µ′) = µ5

H(ζ5) = 8σ9

H(θ′) = η2
21

H(θ) = η23

H(κ7) =?

H(ε̄3) ≡ ν5 ◦σ8 ◦ ν15 mod ν5 ◦ η8 ◦µ9

H(ρiv) = η2
9 ◦ µ11 = 4ζ9

H(ρ′′′) = η11 ◦ µ12

H(ρ′′) ≡ µ13 mod {ν3
13}+ {η13 ◦ ε14}

H(ρ′) = 8σ17

H(ρ13) = η3
25 = 4ν25

H(ζ ′) ≡ ζ11 mod 2ζ11

H(ω14) = ν27

H(η∗′) = η2
29

H(η∗16) = η31

H(ε̄′) =?

H(µ̄3) = ρiv

H(ε∗12) = ν2
23

H(λ′′) ≡ η19 ◦ ε20 mod η2
19 ◦ σ21

H(ξ′′) = ν3
19 + η19 ◦ ε20 = η2

19 ◦ σ21

H(λ′) ≡ ε21 mod η21 ◦ ε22

H(ξ′) = ν̄21 + ε21 = η21 ◦ σ22

H(ξ12) ≡ σ23 mod 2σ23

H(λ) = ν2
25

H(ν∗16) ≡ ν31 mod 2ν31

H(µ̄′) ≡ µ̄5 mod Σ3π19(S2)

H(ζ̆5) = 8ρ′

H(σ̄6) ≡ σ2
11 mod 2σ2

11

H(ω′) ≡ ε23 mod η23 ◦ σ24

H(κ̄′) =?

H(κ̄7) =?

H(β′) = ζ19

H(β′′) = η21 ◦ µ22

H(β′′′) = µ23

H(β̄) = η2
37

H( ¯̄β) = η39

H(α) = ν9 ◦ κ12

H(σ∗′′′) ≡ ζ23 mod 2ζ23

H(σ∗′′) = ν3
27 + η27 ◦ ε28
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H(σ∗′) = ν̄29 + ε29

H(σ∗16) ≡ σ31 mod 2σ31

H(ᾱ) = α

H(ρ̄′′′) = 4ζ̆9

H(ρ̄′′) = η11 ◦ µ̄12

H(ρ̄′) ≡ µ̄13 mod σ13 ◦ η20 ◦ µ21

H(ρ̄9) = 16ρ17

H(φ5) = σ̄9

H(ψ10) = σ2
19

H(ε̄∗′) = η29 ◦ ε30

H(ν̄∗′) = ν3
29

H(ε̄∗16) = ε31

H(ν̄∗16) = ν̄31

H(δ3) ≡ ν5 ◦ σ̄8 mod ν5 ◦ ζ̆8

H(σ̄′6) ≡ σ̄11 mod ξ′ ◦ η29

H(ζ̆ ′6) ≡ ζ̆11 mod 2ζ̆11

H(ε̃10) = ε̄19

H(ζ∗) ≡ ζ27 mod 2π38(S27)

H(µ∗′) = η29 ◦ µ30

H(µ∗16) = µ31

H(η̃′) = η2
45

H(η̃) = η47
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topie. Séminaire de Henri Cartan, 1954/55. 1955.



109

[Car67] P. Cartier. Modules associés à un groupe formel commutatif.
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