
Monads and Interaction
Lecture 2

Tarmo Uustalu, Reykjavik University

MGS 2021, Sheffield, UK, 12–16 April 2021

Monad algebras

Monad algebras

An algebra of a monad (T , η, µ) is an object X with a map
ξ : TX → X such that

X

ηX

��
TX

ξ // X

T (TX)
Tξ //

µX

��

TX

ξ

��
TX

ξ // X

A map between two algebras (Y , χ) and (X , ξ) is a map h such that

TY
Th //

χ

��

TX

ξ

��
Y

h // X

The algebras of the monad and maps between them form a category
Alg(T), called the Eilenberg-Moore category, with an obvious
forgetful functor U : Alg(T)→ C.

Kleisli triple algebras

A variation of algebras fitting more smoothly with Kleisli triples is
this.

A algebra of a Kleisli triple (T , η, (−)?) (a Mendler-style algebra, an
algebra in extension form, no-iteration form) is given by

an object X ,
a family of maps (−)+Y : C(Y ,X)→ C(TY ,X) indexed by Y ∈ |C|

such that

if f : Y → X , then f + ◦ ηY = f
if k : Z → TY , f : Y → X , then (f + ◦ k)+ = f + ◦ k? : TZ → X

Naturality of (−)+ is not required, it follows.

There’s also the correct concept of Kleisli triple algebra map.
(Definition omitted.)

Monad algebras = Kleisli triple algebras

Algebras of monads/Kleisli triples with the same carrier X are in a
bijection.

This is again crucially by the Yoneda lemma.

TX → X

C(Y ,X)→ C(TY ,X) nat. in Y

From ξ, one defines (−)+ by f + = ξ ◦ Tf .

From (−)+, one defines ξ by ξ = id+
X .

The respective categories are isomorphic.

FP intuition

An algebra of a monad T with carrier X is a “handler” of
computations of values of the type X (and only of that type!).

ξ : TX → X –

a value of X can be extracted from a computation of values of X

(−)+Y : C(Y ,X)→ C(TY ,X) –

given a way f : Y → X to “observe” values of Y as values of X ,
f + : TY → X is a way of observing computations of values of Y

Eilenberg-Moore adjunction

In the opposite direction of U : Alg(T)→ C there is a functor
L : C → Alg(T) defined by

LX = (TX , µX),
Lf = Tf : (TY , µY)→ (TX , µX) for f : Y → X .

L is left adjoint to U.

Alg(T)

U

��
a

C

L

CC
LY︷ ︸︸ ︷

(TY , µY)→ (X , ξ)

Y → X︸︷︷︸
U(X ,ξ)

This says that (TX , µX) is an algebra of the monad T , moreover, it
is the free one.

U · L = T . Indeed,

U(LX) = U(TX , µX) = TX ,
if f : Y → X , then U(Lf) = U(Tf) = Tf .

The unit of the adjunction is η.

The E-M resolution of a monad is its final resolution.

Algebras of exceptions monads

Algebras of the exceptions monad TX = E + X are (by definition)
objects X with a map ξ : E + X → X subject to 2 equations.

They are in a bijection with pairs of an object X and map E → X .

The E-M category of this monad is isomorphic to the coslice
category E/C.

[FP intuition] These are handlers for exceptional computations!

To able to extract a value from any given exceptional computation,
you must know how to deal with the exception case.

Algebras of reader monads

Algebras of the reader monad TX = S ⇒ X are (by definition)
objects X with a map get : S ⇒ X → X such that

get (λs. x) = x
get (λs. get (λs ′. f s s ′)) = get (λs. f s s)

Algebras of state monads

The E-M category of the state monad TX = S ⇒ S × X is
isomorphic to the category of mnemoids.

An algebra of this monad is an object X with a map
getput : S ⇒ S × X → X such that

x = getput (λs. (s, x))
getput (λs. let (s ′, g) = f s in (s ′, getput g)) =

getput (λs. let (s ′, g) = f s in g s ′)

A mnemoid is an object X with maps get : S ⇒ X → X and
put : S × X → X such that

x = get (λs. put (s, x))
put (s, get f) = put (s, f s)
put (s, put (s ′, x)) = put (s ′, x)

From ξ, one constructs get, put by get f = ξ (λs. (s, f s)),
put (s, x) = ξ (λ . (s, x)).

From get, put, one obtains ξ by ξ f = get (λs. put (f s)).

Algebras of list monads

The E-M category of the standard list monad is isomorphic to that
of monoids,

i.e., objects X with maps 1→ X and X × X → X satisfying left and
right unitality and associativity.

It is therefore also called the free monoids monad.

The E-M category of the alternative list monad is in a bijection with
semigroups with zero.

A semigroup with zero is an object X with maps 1→ X and
X × X → X satisfying left and right zeroness and associativity.

Algebras of free functor-algebras monads

The E-M category Alg(F ?) of the monad F ? of free algebras of a
functor F is isomorphic to the category alg(F) of algebras of F

Alg(F ?)

U
##

∼= // alg(F)

U
||
C

For FX = X ×X , algebras with carrier X of the monad F ∗ are maps
µZ .X + Z × Z → X subject to two equations.

They are in bijection with algebras with carrier X of the functor F ,
which are maps X × X → X subject to no conditions (magmas).

A monad with this property is said to be algebraically free on F .

Monad maps

Monad maps

A monad map between monads T , T ′ on a category C is a natural
transformation τ : T

.→ T ′ satisfying

X

ηX

��

X

η′X
��

TX
τX
// T ′X

T (TX)
τTX //

µX

��

T ′(TX)
T ′τX // T ′(T ′X)

µ′
X

��
TX

τX
// T ′X

Monads on C and maps between them form a category Monad(C).

Monad(C) is the category of monoids in the (strict) monoidal
category ([C, C], IdC , ·).

Kleisli triple maps

A map between two Kleisli triples T , T ′ is a family of maps
τX : TX → T ′X indexed by X ∈ |C | such that

τX ◦ ηX = η′X ,
if k : X → TY , then τY ◦ k? = (τY ◦ k)?′ ◦ τX .

Naturality of τ is not required, but it follows.

Kleisli triples on C and maps between them form a category
isomorphic to Monad(C).

Maps between exceptions, reader, writer monads

Monad maps between the exception monads for sets E , E ′ are in a
bijection with pairs of maps 1→ E ′ + 1 and E → E ′.

Monad maps between the reader monads for sets S , S ′ are in a
bijection with maps between S ′, S .

Monad maps between the writer monads for monoids (P, o,⊕) and
(P ′, o′,⊕′) are in a bijection with homomorphisms between these
monoids.

Maps between state monads

The monad maps between the state monads for S and S0 are in a
bijection with (very well-behaved) lenses.

These are pairs of maps coget : S0 → S , coput : S0 × S → S0 such
that

s0 = coput (s0, coget s0)),
coget (coput (s0, s)) = s,
coput (coput (s0, s), s

′) = coput (s0, s
′).

Free functor-algebras monads are free

The monad F ? of free algebras of a functor F (the algebraically-free
monad on F), if it exists, is the free monad on F .

Monad(C)

U

��
a

[C, C]

(−)?

CC
F ? → R

F → UR

(Use the full subcategory of [C, C] of those functors for which (−)?

exists.)

If a monad T is free on F , it need not be algebraically-free on F .

A monad T is free on F iff T ∼= µH. Id + F · H.

It is algebraically free iff TX ∼= µZ .X + F (TX). This is generally a
stronger condition.

Maps to continuation monads

Let xCntR be the external continuation monad for R
(xCntRX = C(X ,R) t R).

Monad maps between an arbitrary monad T and the monad xCntR

are in a bijection with algebras of T with carrier R.

Yoneda strikes again. :-)

TR → R

C(X ,R)→ C(TX ,R) nat. in X

TX → C(X ,R) t R nat. in X

Let CntR be the continuation monad for R, which is strong.

Strong monad maps between an arbitrary strong monad T and CntR

are in a bijection with algebras T with carrier R.

Monad maps vs. functors between Kleisli categories

There is a bijection between monad maps τ : T
.→ T ′ and functors

V : Kl(T)→ Kl(T ′) such that

Kl(T)
V // Kl(T ′)

C
J

aa

J′

<<

This is defined by

VX = X ,

Vk = Y
k−→ TX

τX−→ T ′X for k : Y → TX

and

τX = V (TX
idTX−→ TX) : TX →T ′

X .

Monad maps vs. functors between E-M categories

There is a bijection between monad maps τ : T
.→ T ′ and functors

V : Alg(T ′)→ Alg(T) such that

Alg(T ′)
V //

U′

##

Alg(T)

U
||
C

(Note the reversed direction.)

This is defined by

V (X , ξ) = (X ,TX
τX−→ T ′X

ξ−→ X),
Vh = h : (Y , χ ◦ τY)→ (X , ξ ◦ τX) for h : (Y , χ)→ (X , ξ)

and

τX = let (T ′X , ζ) = V (T ′X , µ′X) in ζ ◦ Tη′X .

