Monads and Interaction
Lecture 2

Tarmo Uustalu, Reykjavik University

MGS 2021, Sheffield, UK, 12-16 April 2021

Monad algebras

Monad algebras

@ An algebra of a monad (T,n,) is an object X with a map
& : TX — X such that

X T(TX) > TX
UX\L \ uxi ié
X > x > o x

@ A map between two algebras (Y, x) and (X, &) is a map h such that

TY 7o TXx

|k
y —" > x
@ The algebras of the monad and maps between them form a category

Alg(T), called the Eilenberg-Moore category, with an obvious
forgetful functor U : Alg(T) — C.

Kleisli triple algebras

@ A variation of algebras fitting more smoothly with Kleisli triples is
this.

o A algebra of a Kleisli triple (T,n,(—)*) (a Mendler-style algebra, an
algebra in extension form, no-iteration form) is given by

e an object X,

o a family of maps (—)3 : C(Y,X) — C(TY, X) indexed by Y € |C|
such that

o if f: Y = X, then ffony =f

o ifk:Z—=TY, f:Y = X, then (ffok)" =fTok*: TZ - X

e Naturality of (—)" is not required, it follows.

@ There's also the correct concept of Kleisli triple algebra map.
(Definition omitted.)

Monad algebras = Kleisli triple algebras

@ Algebras of monads/Kleisli triples with the same carrier X are in a
bijection.
@ This is again crucially by the Yoneda lemma.

TX > X
C(Y,X) = C(TY,X) nat.in Y

e From &, one defines (—)* by f* =¢o Tf.
o From (—)*, one defines ¢ by ¢ = id¥.

@ The respective categories are isomorphic.

FP intuition

@ An algebra of a monad T with carrier X is a “handler” of
computations of values of the type X (and only of that type!).

0L TX —» X -

a value of X can be extracted from a computation of values of X

o (4)y:C(Y,X)—=C(TY,X) -

given away f : Y — X to “observe”" values of Y as values of X,
ft:TY — X is a way of observing computations of values of Y

Eilenberg-Moore adjunction

@ In the opposite direction of U : Alg(T) — C there is a functor
L:C — Alg(T) defined by

o LX = (TX, ux),
o Lf =TF: (TY,puy) = (TX,px) for f: Y = X.

@ L is left adjoint to U.

Alg(T e
(TY , uy) — (X,§)
<) Y- X
~~

This says that (TX, ux) is an algebra of the monad T, moreover, it
is the free one.
o U-L=T. Indeed,
o U(LX) = U(TX, ux) = TX,
o if f: Y = X, then U(Lf) = U(Tf) = Tf
The unit of the adjunction is 7.

(]

@ The E-M resolution of a monad is its final resolution.

Algebras of exceptions monads

@ Algebras of the exceptions monad TX = E + X are (by definition)
objects X with a map £ : E + X — X subject to 2 equations.

@ They are in a bijection with pairs of an object X and map E — X.

@ The E-M category of this monad is isomorphic to the coslice
category E/C.

e [FP intuition] These are handlers for exceptional computations!

@ To able to extract a value from any given exceptional computation,
you must know how to deal with the exception case.

Algebras of reader monads
@ Algebras of the reader monad TX = S = X are (by definition)
objects X with a map get : S == X — X such that

o get(As.x) =x
o get(As.get(\s'. fss')) = get(Xs.fss)

Algebras of state monads

The E-M category of the state monad TX =S5 =S x X is
isomorphic to the category of mnemoids.

An algebra of this monad is an object X with a map
getput : S = S x X — X such that
o x = getput (As. (s, x))
o getput (Xs.let (s',g) = fsin (s, getputg)) =
getput (As.let (s',g) =fsings’)

A mnemoid is an object X with maps get : S = X — X and
put : S x X — X such that

o x = get (As. put (s, x))

o put(s,getf) = put(s,fs)

o put (s, put (s',x)) = put (s', x)

From &, one constructs get, put by get f = £ (As. (s, fs)),
put (s,x) = £ (A= (s, x)).
From get, put, one obtains £ by £ f = get (As. put (f 5)).

Algebras of list monads
@ The E-M category of the standard list monad is isomorphic to that
of monoids,

i.e., objects X with maps 1 — X and X x X — X satisfying left and
right unitality and associativity.

@ It is therefore also called the free monoids monad.

@ The E-M category of the alternative list monad is in a bijection with
semigroups with zero.

@ A semigroup with zero is an object X with maps 1 — X and
X x X — X satisfying left and right zeroness and associativity.

Algebras of free functor-algebras monads

@ The E-M category Alg(F*) of the monad F* of free algebras of a
functor F is isomorphic to the category alg(F) of algebras of F

Alg(F*) — = > alg(F

\/

@ For FX = X x X, algebras with carrier X of the monad F* are maps
uZ. X +2Z x Z — X subject to two equations.

@ They are in bijection with algebras with carrier X of the functor F,
which are maps X x X — X subject to no conditions (magmas).

@ A monad with this property is said to be algebraically free on F.

Monad maps

Monad maps

@ A monad map between monads T, T’ on a category C is a natural
transformation 7 : T — T’ satisfying

T mx

X T(TX) 2> T/(TX) —= T/(T'X)

nx)l(ln; Ml lwx

TX—=TX X T'X

TX

@ Monads on C and maps between them form a category Monad(C).

@ Monad(C) is the category of monoids in the (strict) monoidal
category ([C,C], Id¢, -).

Kleisli triple maps

@ A map between two Kleisli triples T, T’ is a family of maps
7x : TX — T'X indexed by X € |C| such that

° Tx 0 Nx = Nk,
o if k: X = TY, then 7y o k* = (7y 0 k)*' o 7x.

@ Naturality of 7 is not required, but it follows.

o Kileisli triples on C and maps between them form a category
isomorphic to Monad(C).

Maps between exceptions, reader, writer monads

@ Monad maps between the exception monads for sets E, E are in a
bijection with pairs of maps 1 — E' + 1 and E — E'.

@ Monad maps between the reader monads for sets S, S’ are in a
bijection with maps between S’, S.

e Monad maps between the writer monads for monoids (P, 0, ®) and
(P’,0', ') are in a bijection with homomorphisms between these
monoids.

Maps between state monads

@ The monad maps between the state monads for S and Sy are in a
bijection with (very well-behaved) lenses.

@ These are pairs of maps coget : Sg — S, coput : Sg x S — Sp such
that
e sy = coput (so, coget o)),
e coget (coput (so,s)) = s,
o coput (coput (s0,5),s’) = coput (s0,5").

Free functor-algebras monads are free

@ The monad F* of free algebras of a functor F (the algebraically-free
monad on F), if it exists, is the free monad on F.

Monad(C)
) 2R
R N F > UR

[c.cl]

@ (Use the full subcategory of [C,C] of those functors for which (—)*
exists.)

@ If a monad T is free on F, it need not be algebraically-free on F.
@ Amonad T is freeon Fiff T= uH.ld+ F - H.

@ It is algebraically free iff TX = uZ. X + F(TX). This is generally a
stronger condition.

Maps to continuation monads

o Let xCntR be the external continuation monad for R
(xCntRX = C(X, R) M R).

@ Monad maps between an arbitrary monad T and the monad xCntF
are in a bijection with algebras of T with carrier R.

@ Yoneda strikes again. :-)
TR—+R
C(X,R) = C(TX,R) nat. in X
TX — C(X,R) M R nat. in X

o Let Cnt be the continuation monad for R, which is strong.

@ Strong monad maps between an arbitrary strong monad T and Cnt®
are in a bijection with algebras T with carrier R.

Monad maps vs. functors between Kleisli categories

@ There is a bijection between monad maps 7: T — T’ and functors
V :KI(T) — KI(T’) such that

KI(T) ——= KI(T")

N

C
@ This is defined by
o VX =X,
o Vk=Y 5 TX 2% T'X fork: Y — TX
and

o = V(TX “X TXx): TX =7 X.

Monad maps vs. functors between E-M categories

@ There is a bijection between monad maps 7: T — T’ and functors
V : Alg(T’) — Alg(T) such that

Alg(T') —— > Alg(T

\/

(Note the reversed direction.)
@ This is defined by
o V(X,8) = (X, TX =5 T'X = X),
e Vh=h:(Y,xor1y)— (X,£o7x) for h:(Y,x)— (X&)
and
o 7x =let (T'X,¢) = V(T'X,ux) in (o Tny.

