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1 Introduction

Many problems in topology can be formulated abstractly as extension problems

A E

X

-f

?

i p p p p p
p p�h

or lifting problems

E

X B
?

pp p p p p
p p�h

-
g

Here the solid arrows represent maps that are given, and the problem is to find a map
h commuting in the diagram. Usually the map i is an inclusion, and p is some kind of
“bundle map” such as a local product. Note the special cases: (i) if i is an inclusion, E = A,
and f = 1A, then the extension problem asks whether A is a retract of X; and (ii) if p is
surjective, X=B, and g = 1B, the lifting problem asks whether p admits a section.

More generally, one can combine the two diagrams into one:

A E

X B

-f

?

i

?

pp p p p p
p p�h

-
g

Here the problem is to find a map h such that both triangles commute. This situation
arises, for example, when a section of a bundle is given on a subspace and we attempt to
extend it to a global section. Note that we recover the extension problem by taking B to be
a point, and the lifting problem by taking A to be the empty set. The map h (if it exists)
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is often called a filler or solution to the diagram. It is a map that simultaneously extends f
and lifts g.

Now from a homotopy-theoretic perspective, all of these problems are ill-posed. For
example, suppose that in the extension problem we have a map f ′ : A −→ E homotopic to
f , and f ′ extends. Then it does not follow that f extends. Similarly, if the map g in the
lifting problem is homotopic to a map that lifts, it does not follow that g itself lifts. The
reader can easily supply counterexamples in both cases. One motivation for fibrations and
cofibrations is simply this: If i is a cofibration and f is homotopic to a map that extends,
then f extends; if p is a fibration and g is homotopic to a map that lifts, then g lifts.

The dual concepts cofibration and fibration reflect a more general duality that is pervasive
in homotopy theory. We will not attempt to formulate this duality precisely. Thus the word
“dual”, as used in these notes, has no technical meaning and should be implicitly placed in
quotation marks. On the other hand, the duality is extremely useful for intuitive purposes,
and the reader is urged to become familiar with it.

Note: Examples can be found in section 6, which should be read simultaneously with the
previous sections.

2 Definitions and basic properties

Let p : E −→ B be a map of spaces. We say that p has the homotopy lifting property with
respect to a space X if for all commutative diagrams

X E

X × I B

-f

?

io

?

pp p p p p
p p p p p�H

-
G

the filler H exists. Here I is the unit interval and i0 is the inclusion x 7→ (x, 0). We are given
a homotopy G into B and an initial map f into E; the homotopy lifting property says that
we can always lift G to a homotopy H that starts with f . Note that replacing i0 by i1 would
not change the definition.

The map p has the relative homotopy lifting property with respect to a pair of spaces
(X,A), if, whenever we are given a diagram as above and a lift HA already defined on A× I,
the lifted homotopy H can be taken to agree with HA on A × I. In other words, there is a
filler H in the diagram

X ∪ (A× I) E

X × I B

-f∪HA

?

io∪i
?

pp p p p p p p p
p p p p3H

-
G

The map p is a Hurewicz fibration if it has the homotopy lifting property with respect to
all spaces X, and is a Serre fibration if it has the homotopy lifting property with respect to
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all CW-complexes X. Note that any global product X × F −→ X is a Hurewicz fibration
and hence also a Serre fibration.

Theorem 2.1 Let E −→ B be a local product, and suppose B is paracompact Hausdorff.
Then E is a Hurewicz fibration.

For the proof see [May], p. 49. Much easier is to show that any local product is a Serre
fibration; see below.

The following properties are easily verified:

Proposition 2.2 Any composition of Hurewicz fibrations [Serre fibrations] is a Hurewicz fi-
bration [Serre fibration ]. Any pullback of a Hurewicz fibration [Serre fibration ] is a Hurewicz
fibration [Serre fibration].

Theorem 2.3 Let p : E −→ B be a map. Then the following are equivalent:
a) p is a Serre fibration;
b) p has the homotopy lifting property with respect to all n-discs Dn;
c) p has the relative homotopy lifting property with respect to all pairs (Dn, Sn−1);
d) p has the relative homotopy lifting property with respect to all CW-pairs (X,A).

Proof: a) ⇒ b): This is immediate from the definitions.
b) ⇒ c): It is visually obvious, and not hard to prove, that the pair (Dn × I,Dn × 0 ∪

Sn−1 × I) is homeomorphic to the pair (Dn × I,Dn × 0). The desired implication follows
easily from this.

c)⇒ d): Suppose that a lift H ′ is already given on A×I. We extend H ′ over Xn×I∪A×I
by induction on n. At the inductive step, we reduce to constructing a filler in a diagram of
the form

Dn × 0 ∪ Sn−1 × I E

Dn × I B

-

? ?p p p p p p p p
p p p p p p p p3

-

Such a filler exists by assumption (c).
d) ⇒ a): This is immediate, taking A = ∅.

Taking B to be a point in (d), we have incidentally proved:

Corollary 2.4 Any CW-pair (X,A) has the homotopy extension property.

Remark: Note that the proof of the theorem actually proves slightly more: Call p : E −→ B
an m-Serre fibration if p has the homotopy lifting property with respect to all CW-complexes
of dimension at most m. Define relative m-Serre fibrations in the analogous way. Then the
theorem remains valid when all four conditions are replaced by their evident m-analogues.
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Theorem 2.5 Consider a diagram

A E

X B

-f

?

i

?

pp p p p p
p p�h

-
g

in which (X,A) is a CW-pair and p is a Serre fibration. Then
a) If g is homotopic rel A to a map g′ such that a filler h′ exists for g′, then a filler h

exists in the original diagram;
b) If f is fibrewise homotopic to a map f ′ such that a filler h′ exists for f ′, then a filler

h exists in the original diagram.

Proof: a) The assumption is that (i) there are maps g′, h′ such that f = ih′ and ph′ = g′; and
(ii) there is homotopy G : X× I −→ B such that G0 = g′, G1 = g, and G(i(a), t) = gi(a) for
all a ∈ A and all t. Since G is constant on A, it can be lifted on A to the constant homotopy
HA(i(a), t) = f(a). Now extend HA to a lift H, as in part (d) of Theorem 2.3. Then h = H1

is the desired filler.
b) By a fibrewise homotopy we mean a homotopy F that is only allowed to move f around

within its fibre p−1p(f(a)). More precisely, we require that the diagram

A× I E

A B

-F

?

πA

?

p

-
pf

commute. (This notion is dual to relative homotopy.) Now consider the diagram

X × 0 ∪ A× I E

X × I B

-h′∪F

? ?

pp p p p p p p p
p p p p p p3H

-
G

where F is a fibrewise homotopy that starts with h′ and ends with f , and G(x, t) = f(x).
Note that the square commutes because F is a fibrewise homotopy. Then the filler H exists,
and h = H1 is the desired filler for the original diagram.

Note the following special cases:
(i) Take A = ∅ in (a). Then if g is homotopic to a map that lifts, g itself lifts.
(ii) Take B=point in (b). Then if f is homotopic to a map that extends, f itself extends.

This is in fact true with i replaced by any cofibration.
In case (ii) the fibrewise homotopies of the theorem are just ordinary homotopies, so this

is really a result about cofibrations. While we’re on the subject, here is another important
result on CW-pairs:
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Theorem 2.6 Let (X,A) be a CW-pair, with inclusion map i : A −→ X. Then
a) If A is a homotopy retract of X, then A is a retract of X.
b) If i is a weak equivalence, then A is a deformation retract of X.

Proof: a) This part holds for any pair (X,A) having the homotopy extension property. By
“homotopy retract” we mean that there is a map r : X −→ A such that ri is homotopic to
the identity. Now apply Theorem 2.5, part (b), with B=point, f = 1A, and f ′ = ri.

b) By Whitehead’s theorem, i is a homotopy equivalence. In particular, A is a homotopy
retract of X, and so is an actual retract by part (a). Furthermore, if r is the retraction,
then ir is homotopic to the identity of X. The remaining problem is to show that there
is a homotopy rel A. For a proof see [Spanier], p. 31, Theorem 11 (note that his “strong
deformation retract” is my “deformation retract”), or prove it yourself. (Hint: Start from
a homotopy ir ∼ 1X that may not be a homotopy rel A, and use the homotopy extension
property to construct a homotopy of homotopies ending with the desired homotopy rel A.
Here you only need the homotopy extension property for the pair (X×I,X×0∪A×I∪X×1);
this is automatic for in the case of a CW-pair.)

3 Remarks on path-components

If X is an arbitrary topological space, with path-components Xα, then the natural map
f :

∐
Xα −→ X is a continuous bijection, but not in general a homeomorphism. For

example, if X is totally disconnected (e.g., the Cantor set), then
∐
Xα is just X with the

discrete topology. To get a homeomorphism we would need the path-components of X to
be open sets; this is true notably when X is locally path-connected. On the other hand, it
is clear that f is always a weak equivalence.

Now suppose that p : E −→ B is a Serre fibration. Let {Bα} denote the path-components
of B, and let {Eαβ} denote the path-components of p−1Bα for each fixed α. Then there is a
pullback diagram

∐
α,β

Eαβ E

∐
α

Bα B

-

?
?

p

-

in which the horizontal maps are weak equivalences (homeomorphisms if E and B are locally
path-connected) and each individual map Eαβ −→ Bα is a Serre fibration. In this way, most
questions about Serre fibrations are easily reduced to the case of a path-connected base and
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path-connected total space. We cannot assume the fibres are connected, however—think of
a covering map, for example.

Note also that for any space B, the unique map from the empty set to B is a Hurewicz
fibration and hence also a Serre fibration. This shows that fibrations need not be surjective.
But if p is a Serre fibration and b is in the image of p, then the entire path-component of
b must be in the image; this follows immediately from the definition, interpreting paths as
homotopies of a point.

4 The exact homotopy sequence of a Serre fibration

A pointed Serre fibration is a Serre fibration p : E −→ B equipped with basepoints e0 ∈ E,
b0 ∈ B such that p(e0) = b0. In this case we refer to F = p−1b0 as the fibre of p, and write
i : F −→ E for the inclusion.

Theorem 4.1 Let p : E −→ B be a pointed Serre fibration with fibre F. Then there is a
natural long exact sequence

−→ πnF
i−→ πnE

p−→ πnB
∂−→ πn−1F −→

Remarks: a) This is a long exact sequence of groups as far as π1E. The sequence ends with

π1E −→ π1B −→ π0F −→ π0E −→ π0B

which is exact as pointed sets. Note that the last map need not be onto, since B could
have path-components Bα such that p−1Bα is empty. Frequently, however, E and B are
path-connected, or at least we can easily reduce to that case by considering one component
at a time. Hence the sequence typically ends with π1B −→ π0F −→ 0. For n ≥ 1, only the
basepoint components of B and E are relevant.

b) The sequence is natural in the sense that a commutative diagram

E B

E ′ B′

-p

? ?
-

p′

leads to a commutative ladder of long exact sequences.

We will derive this sequence from the long exact sequence of a pair, so we begin by
constructing the latter. Let In denote the n-cube, and for n ≥ 2 let bIn ⊂ ∂In denote
∂In − U , where U is the interior of the “bottom” face xn = 0. In other words, bIn is like a
cardboard box with the bottom cut out but with top and sides left intact. For n = 1 we set
bI1 = {0}. Now let (X,A) be a pointed pair. This means that X is pointed, A is a subspace
of X, and the basepoint lies in A. The basepoint is denoted ∗, although it will be omitted
from the notation entirely when no confusion can arise.

Now define the relative homotopy set πn(X,A) for n ≥ 1 by
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πn(X,A) = [(In, ∂In, bIn), (X,A, ∗)]

In other words, we take homotopy classes of maps of triples (In, ∂In, bIn) −→ (X,A, ∗),
where the homotopies are required to keep ∂In in A and bIn at the basepoint. For n = 0 we
define π0(X,A) = π0X/π0A. Observe that πn(X, ∗) is just the usual πn(X, ∗).

Note that π1(X,A) consists of homotopy classes of paths that start at ∗ and end in A. The
homotopies must keep the initial point of the path at ∗ at each stage, but the endpoint is free
to move around inside A. It should be clear that there is no reasonable way to concatenate
such paths; thus π1(X,A) is only a pointed set, not a group.

If n ≥ 2, on the other hand, we can define a product structure by the usual formula

(f ∗ g)(x1, ..., xn) =

{
f(2x1, ..., xn) x1 ≤ 1/2
g(2x1 − 1, ..., xn) x1 ≥ 1/2

It is easy to check that this formula gives a map of triples as required. The reader should
also check to see why it doesn’t work for n = 1.

Proposition 4.2 The product f ∗ g is well-defined on homotopy classes in πn(X,A) for
n ≥ 2, and gives πn(X,A) a group structure with identity element the constant map. This
group structure is abelian for n ≥ 3.

Proof: The proof of the first statement is identical to the corresponding proof for the fun-
damental group, since all the action takes place in the first coordinate. The proof of the
second statement is identical to the proof that πn(X, ∗) is abelian for n ≥ 2. Note that the
latter argument requires two degrees of freedom; we need n ≥ 3 in the relative case because
xn is tied down by its special role in the definition of πn(X,A).

It is clear that πn(−,−) defines a functor from pointed pairs to sets (if n ≥ 0), to groups
(if n ≥ 2), and to abelian groups (if n ≥ 3). Note in particular that we have maps of pairs
i : (A, ∗) −→ (X, ∗) and j : (X, ∗) −→ (X,A).

Given a map of triples f : (In, ∂In, bIn) −→ (X,A, ∗), the restriction of f to the bottom
face xn = 0 is a map of pairs (In−1, ∂In−1) −→ (A, ∗). We denote this map by ∂f . It is
immediate on inspection that the assignment f 7→ ∂f is well-defined on homotopy classes,
yielding a map πn(X,A) −→ πn−1A for which the same notation will be used. Furthermore,
it is immediate that for n ≥ 3, ∂(f ∗ g) = ∂f ∗ ∂g on the nose—that is, no homotopies are
required. Thus ∂ is a group homomorphism for n ≥ 3.

Theorem 4.3 There is a long exact sequence of groups (pointed sets for n ≤ 1)

−→ πnA
i−→ πnX

j−→ πn(X,A)
∂−→ πn−1A −→

This sequence is natural with respect to maps of pointed pairs.

Proof: The maps in the sequence have already been defined, and it is obvious that ∂ is
natural with respect to maps of pointed pairs. What remains to be shown is the exactness.
This is not hard, but somewhat tedious since there are so many things to check. We will
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sketch what is needed and leave further details to the reader. We recommend that the reader
try to prove the theorem herself before even looking at the sketch.

Consider first the exactness of

πn(X,A)
∂−→ πn−1A

i−→ πn−1X

A map of triples (In, ∂In, bIn) −→ (X,A, ∗) is the same thing as a map of pairs g :
(In−1, ∂In−1) −→ (A, ∗) together with a nullhomotopy of ig. Hence the exactness at πn−1A
is immediate from the definitions.

Next, consider the segment

πnX
j−→ πn(X,A)

∂−→ πn−1A

Then for any f we have (∂j)f = ∗ on the nose; no homotopies are required. Now suppose
f : (In, ∂In, bIn)(X,A, ∗) and ∂f is nullhomotopic. Let F be a nullhomotopy of ∂f . By the
homotopy extension property, we can extend F to a homotopy G : In × I such that G ≡ ∗
on bIn× I. Hence [f ] = [G1] in πn(X,A). Since G1(∂In) = ∗, this shows that Ker ∂ ⊂ Im j.

Finally, consider the segment

πnA
i−→ πnX

j−→ πn(X,A)

In this case we will need a simple lemma. Consider the (n + 1)-cube In × I and single
out the three faces A0, A1, B defined by xn+1 = 0, xn+1 = 1, and xn = 0 respectively. If one
pictures the case n = 3 in xyz-space, with the usual orientation of the axes and viewed from
the positive x-axis, these are respectively the bottom, top and back faces of the cube. Thus
a homotopy between two maps f, g : (In, ∂In) −→ (X, ∗) is a map of the (n + 1)-cube that
has f on the bottom face, g on the top face, and ∗ on all remaining faces.

Lemma 4.4 f and g are homotopic if and only if there is a map F : In× I −→ X that has
f on the back face, g on the bottom face, and ∗ on all remaining faces.

This is visually obvious, and not hard to prove rigorously. Now suppose given a map
f : (In, ∂In) −→ (A, ∗). Since f is homotopic to itself we can find F as in the lemma,
with g = f . Then F is a nullhomotopy of ji(f), proving that ji = 0. Conversely, suppose
f : (In, ∂In) −→ (A, ∗) and we are given a nullhomotopy F of jf . On the back face F maps
(In, ∂In) −→ (A, ∗). Hence by the lemma, f is homotopic to a map into A. In other words,
Ker j ⊂ Im i. This completes the proof of the theorem.

We now turn to the proof of Theorem 4.1. Modulo noise in low degrees, this theorem
follows from Theorem 4.3 and the following lemma:

Lemma 4.5 For n ≥ 1, the natural map p∗ : πn(E,F ) −→ πnB is an isomorphism.

Proof: Suppose α ∈ πnB, and represent α by a map of pairs f : (In, ∂In) −→ (B, b0). Then
there is a filler g in the diagram

8



bIn E

In B

-e0

? ?p p p p p
p p p�g

-

where the top map is the constant map. Since g maps the bottom face into F by construction,
g defines an element of πn(E,F ) that maps to α. Hence p∗ is onto.

Now suppose given β0, β1 ∈ πn(E,F ) with p∗β0 = p∗β1. Represent βi by a map of triples
hi : (In, ∂In, bIn) −→ (E,F, e0). Then by assumption there is a homotopy G : In × I −→ B
from pβ0 to pβ1, keeping ∂In × I at the basepoint. Choose a filler H in the diagram

W E

In × I B

-f

? ?p p p p p
p p p p p�H

-

where W = In × 0 ∪ In × 1 ∪ bIn × I, f = hi on In × i, and f is constant on bIn × I. Then
H is a homotopy showing β0 = β1. Hence p∗ is one-to-one. This completes the proof of the
lemma.

In view of Theorem 4.3, this yields the exact sequence of Theorem 4.1 except for the
segment

π0F −→ π0E −→ π0B.

This case is clear because if x ∈ E and p(x) can be joined by a path to b0, then a lift of this
path with initial point x gives a path from x to some point of the fibre. (Note, however,
that π0(E,F ) need not biject to π0B; thus the last map may not be onto.)

We next take a closer look at the boundary map π1B −→ π0F . Note that the image of
π1E in π1B need not be a normal subgroup, and that π0F is only a set.

Proposition 4.6 Suppose E and B are path-connected. Then the boundary map ∂ : π1B −→
π0F induces a bijection π1B/p∗π1E ∼= π0F . (Here π1B/p∗π1E denotes the set of cosets.)

Proof: Unravelling the definitions, we find that ∂ is defined as follows: Given α ∈ π1B,
choose a loop λ : I −→ B representing it. By the homotopy lifting property there is a lift
λ̃ : I −→ E starting at the basepoint. Then ∂α is the path-component of λ̃(1).

Notice that this is exactly how one defines the action of π1 on a fibre in covering space
theory. The only difference is that in covering space theory the lift λ̃ is unique; here it is
not. In any event, the rest of the proof also resembles covering space theory, and is left to
the reader.

As an application we prove:
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Proposition 4.7 Suppose given a commutative diagram of pointed spaces

E E ′

B B′

-g

?

p

?

p′

-
f

with all four spaces path-connected and p, p′ Serre fibrations. Let h : F −→ F ′ denote the
induced map on fibres. Then if any two of f, g, h are weak equivalences, so is the third.

Proof: (If the fibres are also path-connected, this follows immediately from the long exact
homotopy sequence and the 5-lemma. In the general case, more care is needed.)

Suppose that f and g are weak equivalences. Consider the commutative diagram

π1E π1B π0F ∗

π1E
′ π1B

′ π0F
′ ∗

-

?

∼=

-∂

?

∼=

-

?

π0h

- -∂ -

Note that the maps ∂ and π0h are only maps of sets, so we must be careful about applying
the 5-lemma. It is clear that π0h is onto, but without further structure there is no reason that
π0h should be one-to-one. (The problem can be traced to the following simple fact: If a group
homomorphism has trivial kernel, then it is one-to-one, but this is false for maps of pointed
sets.) Fortunately, however, we do have the further structure provided by Proposition 4.6.
It follows that π0h is bijective. The 5-lemma then shows that with any choice of basepoints,
πnh is an isomorphism for all n ≥ 1. Thus h is a weak equivalence.

The other two cases of the proposition are left to the reader (use the 5-lemma, but with
caution).

Theorem 4.8 Let p : E −→ B be a map, and suppose B path-connected. Then
a) If p is a local product and B is locally path-connected, then any two fibres of p are

homeomorphic;
b) If p is a Hurewicz fibration, any two fibres of p are homotopy equivalent;
c) If p is a Serre fibration, any two fibres of p are weakly equivalent.

The proof of (a) is an easy exercise. For (b), see [Spanier], p. 101, Corollary 13. For (c),
note that by pulling back over a path I −→ B, we reduce at once to the case B contractible.
Then the long exact homotopy sequence shows that for any fibre p−1b, the inclusion p−1b ⊂ E
is a weak equivalence. Hence any two fibres are weakly equivalent.
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5 The main lifting theorem

We now come to a particularly elegant lifting/extension theorem. By a subcomplex inclusion
we mean the inclusion map of a subcomplex of a CW-complex.

Theorem 5.1 In the diagram

A E

X B

-f

?

i

?

pp p p p p
p p�h

-
g

suppose that p is Serre fibration and i is a subcomplex inclusion. Then if either i or p is a
weak equivalence, the filler h exists.

Proof: Suppose first that p is a weak equivalence. We will construct h inductively over
Xn ∪ A. The case n = 0 is easy, since X0 is discrete. At the inductive step, we reduce to
the special case

Sn−1 E

Dn B

-fα

?

i

?

pp p p p p
p p p p�hα

-
gα

Here gα = g ◦ φα and fα = hn−1 ◦ ψα, where φα, ψα are respectively the characteristic
map and attaching map for a typical n-cell enα.

Now any map Dn −→ B is homotopic rel Sn−1 to a map that is constant on Dn(1/2), the
disc of radius 1/2. In view of Proposition 2.5, we may therefore assume that gα(Dn(1/2)) ≡ b0

for some b0 ∈ B. Let W denote the annulus consisting of {x ∈ Dn : 1/2 ≤| x |≤ 1}. Then W
is homeomorphism to Sn−1 × I. Since p is a Serre fibration, there is a lift h′α defined on W.
Now observe that h′α maps the sphere of radius 1/2 into the fibre p−1b0. Since p is a weak
equivalence, the long exact homotopy sequence shows that this fibre is weakly contractible.
Hence h′α extends to a map hα : Dn −→ E, and by construction it lifts gα. This completes
the proof in the case p is a weak equivalence.

Now suppose i is a weak equivalence. Then by Theorem 2.6, A is a deformation retract
of X. Let r denote the retraction. Since ir ∼ 1X rel A, gir ∼ g rel A. But gir clearly admits
a lift in the diagram—namely, fr—and hence g lifts by Proposition 2.5.

Corollary 5.2 Let p : E −→ B be a nonempty Serre fibration, with base space B a con-
tractible CW-complex. Then p admits a section.

Proof: Take X = B, g = 1B, A a point of B, and f any map. Then h is the desired section.

Remark: As one might expect, a much stronger statement holds: If the base is contractible
then the fibration itself is fibre-homotopy equivalent to the trivial fibration B × F −→ B.
See [Spanier], p. 102, Corollary 15.
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Corollary 5.3 Let p : E −→ B be a Serre fibration with base space B a CW-complex, and
suppose the fibre F is weakly contractible. Then p admits a section s. Furthermore, if A is
a subcomplex of B and a section sA is already given on A, s can be chosen to extend sA.

Proof: Since F is weakly contractible, the long exact homotopy sequence shows that p is a
weak equivalence. Now take X = B and g = 1B.

Note that Theorem 5.1 also contains the very definition of a Serre fibration, by taking
the left-hand vertical map to be the inclusion i0 : X −→ X × I. Further exploration of
special cases is left to the reader.

6 Examples

Theorem 6.1 A local product is a Serre fibration.

Proof: We sketch the proof and let the reader supply the details. Suppose p : E −→ B is a
local product. By Theorem 2.3, it is enough to show that p has the homotopy lifting property
with respect to all n-discs. We proceed by induction on n. At the inductive step we can
assume (see the Remark following Theorem 2.3) that p has the homotopy lifting property
with respect to all CW-complexes of dimension less than n. Using this together with the
Lebesgue covering lemma, one can reduce to showing that a global product U × F −→ U
has the relative homotopy lifting property with respect to the pair (Dn, Sn−1). This in turn
amounts to showing that the extension h always exists in the diagram

Dn × 0 ∪ Sn−1 × I F

Dn × I

-

? p p p p p p p p
p p p p p p p p3h

But clearly Dn × 0 ∪ Sn−1 × I is a retract of Dn × I (hang a lightbulb above the center
of the cylinder and follow its rays). Hence the extension h exists, completing the proof.

One can also produce fibrations by starting from a cofibration and taking function spaces:

Proposition 6.2 Suppose X is a locally compact Hausdorff space and A ⊂ X is a cofibra-
tion. Then for any space Y , the restriction map F (X, Y ) −→ F (A, Y ) on function spaces is
a fibration.

Proof: Exercise. The compact-open topology is compatible with precomposition in the first
variable (and postcomposition in the second; the proof is easy); in particular the restriction
map is continuous. Now note that A is necessarily closed (cf. [Hatcher], p. 14) and hence
locally compact Hausdorff. The homotopy lifting property can then be deduced directly
from the homotopy extension property, using Proposition A.14b from Hatcher.
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The next general example does not arise as a local product. Let Y I denote the path-
space of the space Y; that is, the set of all continuous maps I −→ Y , equipped with the
compact-open topology. Given a map f : X −→ Y , define Nf by the pullback diagram

Nf Y I

X Y

-

?

q

?

e0

-
f

where e0 denotes evaluation at 0. Thus Nf is the space of pairs (x, λ) with x ∈ X and λ a
path in Y that starts at f(x); this construction is dual to the mapping cylinder construction.
Now define a map p : Nf −→ Y by p(x, λ) = λ(1).

Proposition 6.3 p : Nf −→ Y is a Hurewicz fibration.

Proof: There is a pullback diagram

Nf Y I

X × Y Y × Y

-

?

(q,πY )

?

(e0,e1)

-
f×Id

The map (e0, e1) is a fibration by Proposition 6.2, since it is just restriction to {0, 1} ⊂ I.
Hence (q, πY ) is a fibration, and therefore so is p since it is the composition Nf −→ X×Y −→
Y .

As an important special casse, note that the fibre over a chosen basepoint y0 is the space
of pairs (x, λ) that start at f(x) and end at y0. In particular, taking X to be a point and f
the inclusion of the basepoint, we obtain the path-loop fibration PY −→ Y . In this case, the
fibre over the basepoint is the loop-space of Y, denote ΩY .

The dual construction starts from a map g : X −→ Y and forms the cofibration X −→
Mg, where Mg is the reduced mapping cylinder. The cofibre is then the reduced mapping
cone. Taking Y to be a point, the dual of the path-space is the reduced cone on X, and the
dual of the loop space is the reduced suspension of X.

Proposition 6.4 The projection map q : Nf −→ X is a pointed homotopy equivalence. A
homotopy inverse s : X −→ Nf is given by s(x) = (x, α(x)), where α(x) is the constant path
at f(x).

The proof is an easy exercise: Clearly qs is actually equal to the identity, while a homotopy
from sq to the identity is obtained by following each λ out to time t.

Corollary 6.5 Any map f : X −→ Y can be factored in the form

X
j−→ X ′

p−→ Y

with j a homotopy equivalence and p a Hurewicz fibration.

13



Proof: Take X ′ = Nf , j = s, p as above.

We recall here that there is a result dual to the last corollary:

Proposition 6.6 Any map f : X −→ Y can be factored in the form

X
i−→ Y ′

r−→ Y

with i a cofibration and r a homotopy equivalence.

Here one takes Y ′ the mapping cylinder of f , i the obvious inclusion at one end of the
cylinder, and r the obvious deformation retraction onto Y.

Remark: In the late 60’s Quillen introduced an axiomatic approach to homotopy theory.
The idea is to start with a category C equipped with three distinguished classes of morphisms,
called weak equivalences, fibrations and cofibrations. These classes are subject to certain
axioms, the most significant of these being modeled on Theorem 5.1 (with i replaced by
any distinguished cofibration), Corollary 6.5, and Proposition 6.6. The category C, together
with the three classes as morphisms,constitutes a model category. In the category of spaces
there are several different interesting model category structures. For example, one can take
the weak equivalences to be the homotopy equivalences, the fibrations to be the Hurewicz
fibrations, and the cofibrations to be the closed maps that are cofibrations in the usual
sense. Another model category structure on spaces, more relevant for our purposes, takes
the weak equivalences to be the weak equivalences in the usual sense, the fibrations to
be the Serre fibrations, and the cofibrations to be all maps that are retracts of cellular
cofibrations. Without defining the latter class precisely, we remark that it includes all
subcomplex inclusions, and is contained in the class of all ordinary cofibrations. Theorem 5.1
remains valid if i is replaced by one of these more general cofibrations.

This axiomatization has been applied applied to other categories having nothing to do
with topological spaces per se. For example, there is a model category structure on the cate-
gory of chain complexes in which the weak equivalences are the so-called quasi-isomorphisms;
that is, the maps inducing an isomorphism on homology.

For a nice introduction to model categories, see [Dwyer-Spalinski].

7 Homotopy-fibres

All spaces, maps and homotopies in this section are pointed.

Let f : X −→ Y be an arbitrary pointed map. Then the fibre f−1y0 is somewhat
irrelevant from a homotopy-theoretic standpoint, because it is not homotopy-invariant. More
precisely, suppose we are given a commutative diagram

X Y

X ′ Y ′

-f

?

g

?

h

-
f ′
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with g and h homotopy-equivalences. Then it does not follow that the induced map on
fibres f−1y0 −→ f−1y′0 is a homotopy equivalence, or even a weak equivalence. A dramatic
illustration is provided by

∗ X

PX X

-

? ?

=

-

Here the fibre of the top map is just a point, while the fibre of the bottom map is the loop
space ΩX. To make matters worse, if the given diagram is only homotopy-commutative
then there is no induced map on fibres at all. What we need here is a homotopy-invariant
replacement for the geometric fibre p−1y0. In fact such a replacement is already at hand.
Given f : X −→ Y , define the homotopy-fibre Lf as the geometric fibre of the Hurewicz
fibration Nf −→ Y . This definition is motivated by two key points: (i) Nf is homotopy-
equivalent to X, and (ii) as already shown in Proposition 4.7, geometric fibres of fibrations
are homotopically well-behaved.

For example, the homotopy-fibre of ∗ −→ Y is ΩY . In general, Lf is the space of pairs
(x, λ) ∈ X ×PY such that λ starts at f(x) and ends at the basepoint y0. It follows that for
any space W , a map W −→ Lf is the same thing as a map φ : W −→ X together with a
nullhomotopy of f ◦ φ.

Theorem 7.1 Suppose given a homotopy-commutative diagram

X Y

X ′ Y ′

-f

?

g

?

h

-
f ′

Then there exists a map α : Lf −→ Lf ′ such that the diagram

Lf X

Lf ′ X ′

-q

?

α

?

g

-
q′

is homotopy commutative. Furthermore
(a) If g, h are homotopy equivalences, then α is a homotopy equivalence;
(b) If g, h are weak equivalences, then α is a weak equivalence.

Proof: Form the diagram
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Nf Y

Nf ′ Y ′

-p

?

ḡ

?

h

-
p′

where ḡ is the composite

Nf
q−→ X

g−→ X ′
s′−→ Nf ′ .

It follows from the hypothesis and the definitions that this diagram is also homotopy-
commutative. Since p′ is a Hurewicz fibration, we can replace ḡ by a homotopic map g̃
such that the new diagram

Nf Y

Nf ′ Y ′

-p

?

g̃

?

h

-
p′

is strictly commutative. We define α : Lf −→ Lf ′ to be the induced map on geometric fibres.
Now consider the diagram

Lf Nf X

Lf ′ Nf ′ X ′

-

? ?

g̃

-

?

g

- -

The first square strictly commutes by definition. The second square is homotopy-commutative
because it is strictly commutative when g̃ is replaced by ḡ. Hence the outer rectangle is
homotopy-commutative, as desired.

We omit the proof of (a), since we are in any case willing to work up to weak equivalence.
Part (b) follows from Proposition 4.7.

Example 1. In a few cases Lf can be identified (up to weak equivalence at least) in more
geometric terms. A striking example is the map of classifying spaces BH −→ BG associated
to a subgroup H ⊂ G. If H is sufficiently nice subgroup (e.g., a closed subgroup of a Lie
group G), one can show that Lf is weak equivalent to the homogeneous space G/H. This
is very useful for various purposes; e.g., (i) we get long exact sequence on homotopy groups
with π∗G/H in the fibre slot; and (ii) we can use spectral sequences to relate the cohomology
of G/H, BH, and BG. For details and specific examples, see Notes on principal bundles.

Suppose given spaces X, Y, Z and maps X −→ Y −→ Z. Two such gadgets are said
to be weakly equivalent if they are equivalent under the equivalence relation generated by
commutative diagrams
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X Y Z

X ′ Y ′ Z ′

-

?

∼=

-

?

∼=

?

∼=

- -

Call X −→ Y −→ Z a fibre sequence if it is weakly equivalent to some F −→ E
p−→ B

with p a pointed Serre fibration and F the fibre of p. More generally, any sequence of maps
... −→ X1 −→ X2 −→ ... −→ Xn −→ ... (with or without initial/end terms) is a fibre
sequence if any three consecutive terms give a fibre sequence in this sense. Note that if
X −→ Y −→ Z is a fibre sequence, then we get a long exact sequence

... −→ πnX −→ πnY −→ πnZ −→ πn−1X −→ ...

To be continued...

8 Appendix: Whitehead’s theorem

In this section we use Theorem 5.1 to give a very slick proof of Whitehead’s theorem (I
believe this proof is due to Quillen). We need to be careful to avoid a circular argument
here, because we used Whitehead’s theorem to prove half of Theorem 5.1—the case when i
is a weak equivalence. But in the proof below we only use the other case, when p is a weak
equivalence. The proof of this case did not involve Whitehead’s theorem.

Theorem 8.1 Suppose Y and Z are CW-complexes, and f : Y −→ Z is a weak equivalence.
Then f is a homotopy equivalence.

This theorem follows from (and in fact is equivalent to):

Theorem 8.2 Suppose Y and Z are arbitrary spaces, and f : Y −→ Z is a weak equivalence.

Then if X is any CW-complex, f induces a bijection [X, Y ]
∼=−→ [X,Z]

The deduction of Theorem 8.1 from Theorem 8.2 is pure (and trivial) category theory.
For in any category C, a morphism f : Y −→ Z is an isomorphism if and only if for all

objects X, f induces a bijection HomC(X, Y )
∼=−→ HomC(X,Z). Here we take C to be the

homotopy category of CW-complexes.

Proof of Theorem 8.2: By Proposition 6.5 we can factor f as a homotopy equivalence
followed by a Hurewicz fibration: Y −→ Y ′ −→ Z. We therefore reduce at once to the case
that f is both a weak equivalence and a Hurewicz fibration (hence also a Serre fibration).
Applying Theorem 5.1 to the diagram

∅ Y

X Z

-

? ?p p p p p
p p�
-
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then shows that [X, Y ] −→ [X,Z] is surjective. Now suppose g, h : X −→ Y and there is a
homotopy F from fg to fh. Applying Theorem 5.1 to the diagram

X × {0}
∐
X × {1} Y

X × I Z

-g
∐
h

? ?p p p p p p p p
p p p p p p p p

p3

-
F

shows that g is homotopic to h. Hence [X, Y ] −→ [X,Z] is also injective.
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