Noncommutative spaces.
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Introduction

In commutative geometry, ”spaces” are understood either as

— locally ringed topological spaces (otherwise called geometric spaces), or as

— sheaves of sets on the category of affine schemes endowed with an appropriate
topology. Here appropriate topology varies from the Zariski topology ([DeG, 1.3.11]) to a
flat (fpqc, or fppf) topology. In the case of the fpgc topology, spaces can be identified
with functors X from the category CRings of commutative unital rings to Sets which
preserve finite products and such that the diagram X(R) — X(T) — X X(T®rT) is
exact for any faithfully flat ring morphism R — T'. Respectively, commutative schemes
are defined either as locally ringed spaces which are locally affine, or as sheaves of sets
obtained by glueing affine schemes (i.e. representable functors) for Zariski topology.

Only comparatively few of the known examples of what might be regarded as non-
commutative analogues of schemes, or formal schemes, can be realized as ringed spaces,
like D-schemes of Beilinson-Bernstein [BB], [BD], ”virtual” noncommutative formal spaces
introduced by Kapranov [Ka], and affine noncommutative schemes of P. Cohn [C]. Usually
noncommutative analogues of schemes appear as

— categories (regarded as categories of quasi-coherent sheaves) over a base category,
like the Proj of a graded noncommutative ring (see [M1], [V1], [V2], [A2], [AZ], [OW],
and a number of other works) and the flag variety of a quantized enveloping algebra (see
[LR2], [R3]),

— or functors from the category Algy of associative unital k-algebras to Sets, like
projective spaces introduced in [KR1] and different Grassmannians and flag varieties con-
structed in [KR2].

We study the categorical approach to spaces in [KR3]. The purpose of this paper is
to provide a geometric background for a number of examples of noncommutative spaces of
the second type, i.e. spaces defined as functors Alg, — Sets.

We define the category Aff; of noncommutative affine k-schemes as the category
of representable functors from Algy to Sets. Thus Yoneda imbedding R —— Algi(R, —)
induces an equivalence between Aff), and the category Alg;” opposite to Algy. A flat cover
on Aff, is given by a finite set {A — A; | ¢ € J} of flat algebra morphisms such that the
corresponding morphism A — [T, ; A; is faithful. Flat covers play an important role in
noncommutative setting due to the fact that the flat descent holds in the noncommutative
case providing means for studying categories of quasi-coherent sheaves (this is used in
[KR1]). But, in general, flat covers do not form a pretopology: the invariance under a base
change fails. This leads to a weaker version of a (pre)topology based on the notion of a

U x

Q-category (here 'Q’ stands for 'quotient’). By definition, a Q-category is a pair, AT A,

of functors such that the functor u* is fully faithful and left adjoint to w., which implies
that A is a quotient category of A and u, is a localization functor. Both Grothendieck
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sites and Grothendieck pretopologies can be viewed as Q-categories. For any category C,
we have a Q-category C* = (C4 = C4) of functors on A with values in C. In particular,
we have the Q-category of presheaves on a Grothendieck site, or a pretopology.

The main basic notion in this formalism is the notion of a sheaf: given a Q-category

A= (/_1<:>A), an object x of the category A is called an A-sheaf if the canonical map

A u (@) — A(u(), @), g— ;" oua(g), (1)

is an isomorphism for all j € ObA. Here 7, is an adjunction isomorphism Idy —= u,u*.
In the case of the Q-category of presheaves on a Grothendieck site, or a Grothendieck
pretopology, we recover sheaves in the usual sense.
Flat covers on Affj give a rise to a Q-category, and noncommutative spaces represent
sheaves of sets on this Q-category. Similarly to the commutative case, thus defined ’spaces’

are identified with functors Algy X, Sets which preserve finite products and such that
the natural diagram

X(R) —— X(T) —_ X(T+gT) (2)

is exact for any faithfully flat ring morphism R — T'. Here TxrT is a traditional notation
for the fiber coproduct T'[[, T in the category of associative unital rings. One can show
that all representable functors are spaces, i.e. the category Aff; of noncommutative affine
k-schemes is a full subcategory of the category of ’spaces’.

As in commutative case, fpqc covers are not always the best choice, and there are
noncommutative versions of other types of covers on the category of noncommutative affine
schemes which are used to define other categories of 'spaces’. For instance, smooth covers
seem to be a more sensible choice for a big part of examples we consider (in [KR] and
[KR2]). These covers form a Q-category, but, in general, not a pretopology.

There is another interpretation of Q-categories illustrated by the following example: A
is the category CRings of commutative unital rings, A the category of (commutative) ring
epimorphisms with a nilpotent kernel, the functor A — A maps any ring to the identical
endomorphism of this ring, and A — A maps a ring epimorphism S — R to its target,
R. In this case, sheaves (resp. monopresheaves) on A turn out to be formally étale (resp.
formally unramified) functors CRings — Sets; and epipresheaves (defined in 3.1.4) are
formally smooth functors. This example suggests that Q-categories might be regarded also
as " categories of thickennings”. An appropriate (not quite obvious) choice of a Q-category
produces a noncommutative version of formally étale, formally unramified, and formally
smooth functors.

The paper is organized as follows.

First three sections contain preliminaries on Q-categories. In Sections 1 and 2, we
define a Q-category and morphisms of Q-categories and give a number of examples. In
Section 3, we introduce the notions of a sheaf, a monopresheaf and an epipresheaf in a
Q-category and illustrate these notions using examples of Section 2.

In Section 4, we interpret epipresheaves, monopresheaves and sheaves of sets on a
Q-category as resp. formally smooth, formally unramified, and formally étale functors. In
this case, the Q-category is thought as the Q-category of thickennings.
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Most of Section 5 is dedicated to definition and basic properties, and some examples
of formally smooth, formally unramified and formally étale morphisms of presheaves of sets
on a Q-category. We introduce locally finitely presentable morphisms and define smooth
(resp. unramified, resp. étale) morphisms as locally finitely presentable morphisms which
are formally smooth (resp. formally unramified, resp. formally étale). We define open
immersions as smooth monomorphisms and obtain general properties of open immersion
as a consequence of those of smooth morphisms.

In Section 6, we introduce formally A-infinitesimal morphisms (which might be re-
garded as formal thickenings of spaces) as the dual notion to that of formally A-smooth
morphisms. We make one more step giving a symmetric form to the duality between
formally smooth and formally infinitesimal morphisms. Curiously, this leads to the in-
terpretation of separated (resp. universally closed, resp. proper) morphisms of schemes
as formally unramified (resp. formally smooth, resp. formally étale) morphisms for an
appropriate choice of the class of formally infinitesimal morphisms of schemes.

In Section 7, we discuss closed immersions and separated morphisms.

The second part of the work is dedicated to noncommutative locally affine spaces
and schemes. In Section 8, we introduce locally affine spaces and schemes. With any
Q-category, we associate another Q-category of a topological nature’ called a quasi-cosite.
We define ” A-spaces” as sheaves of sets on the quasi-cosite associated with A. For any
quasi-topology on the category of A-spaces, we define locally affine spaces and schemes
in the most direct way. Starting with another Q-category, A; = (A; = A) (having the
same underlying category A) regarded as a Q-category of thickennings, we define three
natural quasi-topologies in which covers are sets of resp. Aj;-smooth morphisms, A;-étale
morphisms, and A;-open immersions.

In Section 9, we consider basic applications of this formalism. We recover commutu-
tative schemes and algebraic spaces taking as A the Q-category of commutative rings with
fpqc cocovers. This means that A is the category of commutative rings and objects of A
are finite conservative families of flat ring morphisms. And A; is the category of ring sur-
jective morphisms with a nilpotent kernel. An appropriate noncommutative generalization
of this setting produces (via the formalism of Section 8) the notions of noncommutative
schemes and algebraic spaces.

Section 10 is devoted to the noncommutative Grassmannian which is one of important
examples of a noncommutative locally affine space.

The paper has two appendices. The first appendix contains some complementary facts
about Q-categories. In Appendix 2, we discuss finiteness conditions.

A considerable part of this manuscript was written while the second author was visiting
Max-Planck Institute fiir Mathematik in Bonn during the summer of 2001. He would like
to thank the Institute for excellent working conditions.

The work of the second author was partially supported by the NSF grant DMS-
0070921.



I. Q-categories and sheaves.

Q-categories were introduced (initially in [R5]) as a milder version of Grothendieck
sites. We define noncommutative spaces as sheaves on Q-categories. Another interpreta-
tion of Q-categories leads to (a generalization of) the notions of formally smooth, formally
unramified, and formally étale morphisms which play a significant role in this work and
its sequals. We establish, among other things, the following dictionary:

sheaves of sets (on Q-categories) <— formally étale spaces
monopresheaves of sets <+— formally unramified spaces
epipresheaves of sets <+— formally smooth spaces

Thus, formally étale (resp. formally unramified, resp. formally smooth) morphisms might
be regarded as relative versions of sheaves (resp. monopresheaves, resp. epipresheaves) on
a Q-category.

1. Q-categories. A Q-category is a pair of functors A —» A % A such that the
functor w* is fully faithful and left adjoint to u.. We shall regard functors u,, u* as resp.
direct and inverse image functors of a morphism A — A and write this data as A = A.

A morphism from a Q-category A = A to a Q-category A’ = A’ is a triple (®, @, ¢),

where A —23 A’ and A -2 A’ are functors and ¢ is a functor isomorphism ®u, — u’®.
The composition of two morphisms, is defined by

(@', @', ¢') 0 (2, @, 9) = (2D, 0P, P'po¢/P)

For a universum i, we denote by QCaty, or simply by QCat, the category whose
_u _
objects are Q-categories A = A such that A and A belong to Caty.

1.1. Remark. Since the functor u* is fully faithful, the direct image functor w, is

’

a localization. A morphism (®, ®, ¢) from A é Ato A <u:’ A’ is defined uniquely up to

isomorphism by the functor A 2y A’ and the compatibility of ® with the corresponding
localizations (expressed by ¢).

In fact, the isomorphism Pu, N v ® induces an isomorphism ® — v/ ®u*. This
follows from the fact that, since the functor u* is fully faithful, an adjunction morphism
Ids 2 u,u* is an isomorphism. The isomorphism ¢ is equivalent (after replacing ® by
v/, ®u*) to the canonical morphism

ul dutu, — ul P (1)

induced by an adjunction morphism w*u, — Idz. The compatibility of ® with localiza-
tions means exactly that (1) is an isomorphism.

1.2. The 2-category of Q-categories. The category QCat is the category of
1-morphisms of a 2-category, QCat?: given a pair of 1-morphisms (®,®,¢), (¥, V, 1))
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from A é Ato A’ <u:> A’ a 2-arrow from (®,®,¢) — (¥, ¥, 4)) is a pair of morphisms,
d =5 ¥, & % U such that the diagram

¢
du, —— uld

QU l l ula

@ _
W, A

commutes.

1.3. Induced Q-categories. Fix a Q-category A = (A4 = A). Let ®: B — A be

a functor. Let B denote the fiber product of B 2, A & A. Recall that objects of B
are triples (x, a, ), where x € ObB, y € ObA, and « is an isomorphism ®(z) = u.(y).
Morphisms are defined in an obvious way. There are natural projection functors

_ 9 - _ o Ugx

B—— A, (z,a,y)—79y, and B SN B, (z,a,y)— z.
We define a functor B ——s B by x+— (x,17,®(z),u*®(x)). It follows that u,,ou} =
Idp and u} o Uy« (z, o, 7) = (2,7,P(x),u*®(x)). We have a canonical morphism

€up (T, a, ) = (idy, €,(7) o u™ () 1 ul o up«(x, ,§) — (z,0,7)

functorial in (z, a, 7). Hence €y, = {€uy (z,a,J)| (2, a,7) € ObB} is a funcrtor morphism
u; oug,x — Idpg. One can see that €,, and the identical functor Idp — Idp = u,«u
are adjunction morphisms for the pair of functors u,., u’. In particular, the functor

x.
B —"" B is fully faithful.
Notice that u, o ®(x, @, y) = u.(y), and ¢ o uy.(x, a,y) = ®(z). Thus

d(x,0,9) =a: Pouy.(z,0,y) = P(x) —— ®(x) = uy 0 ®(z, 0, §), (7, 0,%) € ObB,

defines a functor isomorphism ® o u,, 25w, 0d.
u

Altogether, we have obtained a Q-category Ay = B = (B = B) induced by the
functor ® and a canonical Q-category morphism (®, ¢, ®): B — A.

_u
1.3.1. Two special cases. Let A = (A = A) be a Q-category. For any object
x of the category A, we have the categories A/z and x\A and the canonical functors
Ajz — A <— z\A. We denote the corresponding induced Q-categories resp. by A/z
and x\A .

1.4. QC°-categories. A QC-category is a pair of functors A —% A “" A such
that the functor u* is fully faithful and a right adjoint to u,. In other words, the data

u*op

< U ut T . Zop Usl Top
A— A — Ais a Q°-category iff the dual data, AP — A°? — AP is a Q-category.
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All facts and constructions on Q-categories (resp. Q°-categories) have their dual versions
which will be used when needed.

2. Examples of Q-categories and Q°-categories. Given a category A, there
are two families of basic examples of Q-categories (resp. Q°-categories) having A as the
underlying category:

— the Q-category of cosieves on A (cf. 2.1) and its Q-subcategories,

— dually, the Q°-category of sieves on A and its Q°-subcategories (among them
Grothendieck sites with the base A);

— the Q-category (resp. the Q°-category) of morphisms in A (see 2.5) and its Q-
subcategories (resp. Q°-subcategories).

Our main class of examples are Q-categories of functors on a Q-category (or Q-
categories of presheaves on a Q°-category) (see 2.6).

2.1. The Q-category of cosieves. Fix a category A. Let SA denote the category
of cosieves on A defined as follows. Objects of SA are pairs (z, R), where z € ObA and R

is a cosieve in x\A. Morphisms from (x, R) to (2, R") are given by arrows x 1 2 such
that R} C R. Here R} is a cosieve in 2\ A whose objects are all pairs (v,{ o f) such that

(v,€) € ObR'. There is a functor A % SA which assigns to each object x of A the pair
(z,x\A). The functor u* is fully faithful and has a canonical right adjoint,

SA —— A, (z,R)r— x.

This defines a Q-category of cosieves, SA = A.

Cosieves in z\ A are in a natural one-to-one correspondence with subfunctors of the
functor A(z, —). Thus the Q-category of cosieves is isomorphic to a Q-category, A = A,
defined as follows. Objects of A are pairs (z, R), where z € ObA, R is a subfunctor of

A(z,—). Morphisms from (x, R) to (y,S) are morphisms x N y such that the functor

A(f’_)
morphism A(y, —) —— A(z, —) induces a morphism S — R of the subfunctors. The

functor u, maps a pair (z, R) to . The functor u* assigns to any object = of A the pair

(l‘, A(:L’, _)>

2.2. Quasi-(co)sites and (co)sites. Let A be a category, and let ¥ be a map
which assigns to every object = of A a set ¥(x) of subfunctors of A(x, —) which contains
A(z, —) itself. We shall identify the pair (A, T) with the full Q-subcategory Az = A of
the Q-category SA = A of cosieves objects of which are all pairs (z, R), where x € ObA
and R € T(z).

We call the pair (A, %) a quasi-cosite if two conditions hold:

(a) for any pair R, R' € T(z), RN R € T(z),

(b) if R € ¥(z) and R’ is a subfunctor of A(z, —) containing R, then R’ € T(x).

Quasi-sites correspond to quasi-cosites on the dual category A°P.

Grothendieck sites are quasi-sites. Recall that a site is a pair (A, %), where ¥ is a
topology, i.e. a map which assigns to each x € ObA a set T(z) of subfunctors of A(—, )
(called refinements of =) satisfying the conditions:

6



(i) for any R € T(z) and any arrow f : y — x, the subfunctor Ry = Rx g 1) A(—,y)
of A(—y) is a refinement of y (i.e. it belongs to T(y).

(i) If R € T(x) and R is a subfunctor of A(—,z) such that Ef € T(y) for any
f € R(y), y € ObA,, then R € T(x).

Q-categories dual to Grothendieck sites are called cosites. The Q-category of cosieves,
(SA 2 A) and its Q-subcategory Agis = (Agis = A), where Ay, is formed by all pairs
(z,x\A), z € ObA, are two extreme examples of cosites.

_u
Cosites might be regarded as a topology in terms of “closed sets”. If (A = A) is a
cosite, then A might be viewed as the category of closed sets of a would-be space.

2.3. A quasi-cosite associated with a Q-category. Fix a Q-category (A= A).
To any y € ObA, we assign the category y\u* of pairs (f,z), where f is a morphism

y — u*(x). The functor u, induces a morphism, ®~ = (®,id,,,Ids), from A = (A = A)
to the cosite SA = A. Here ® is a functor A — SA which assigns to any object y of A

the pair (u.(y), Ry), where Ry denotes the cosieve in u,(y)\ A formed by all (v, u.(y) 5 v)

such that & = 77 (v) o & for some ¥ N u*(v). The quasi-cosite, TA = (Tp = A),
associated with A is the smallest quasi-cosite containing the image of the functor ®. The

triple (Ida, ®,id) is a canonical morphism from A to the Q-category (SA = A) of cosieves
on A.

2.3.1. Note. If A is a quasi-cosite, then TA is naturally isomorphic to A. Dually,
with every Q°-category A, one can associate a quasi-site which is naturally isomorphic to
A if A is a quasi-site.

2.3.2. Proposition. Suppose A has the property:

(*) for any y € ObA and any morphism x 7, u«(y), there exists a morphism & N y
and an isomorphism u,(T) — x such that u.(f) = f o a.
Then the quasi-cosite associated with A is a cosite.

Proof is left to the reader. m

2.4. Quasi-(co)sites and (co)covers. Let 7 be a function which assigns to each

object, x, of the category A a family, 7., of sets of arrows to x which contains {x e x}.
This data defines a category, A, whose objects are all pairs (z,U), where x € ObA, U € T,;

we shall call them covers. Morphisms from (z,U) to (y,V) are morphisms z N y such
that for any arrow x, — x in U there exists an arrow y, — v in V and a morphism

Ty 2% y, such that fowu = vo gy,. The functor A, — A which assigns to every pair

(z,U) the object x and to every morphism (z,U) 7, (y,V) the morphism =z N Yy is a

right adjoint to the fully faithful functor A — A, which maps every object z of A to
(z,{id.}). This defines a Q°-category A, = (A, = A).

Consider the quasi-site TA, associated with A . The functor A, 2, T A, assigns to
every cover (x,U) the pair (z, Ry), where Ry, is the sieve associated with the set of arrows
U: it consists of all arrows to  which factor through some of the arrows of U.
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If for any morphism y 7,z and any U € 7., there exists V € 7, such that f is a
morphism (y, V) — (z,U), then the quasi-site associated with A, is a site. In particular,
if 7 is a Grothendieck pretopology, we obtain this way the site associated with 7.

2.4.1. Covers. Let A = (A = A) be a quasi-site. A set of arrows U = {z; — z| i €
J} in A is called a cover (or an A-cover) of z, if the pair (x, Ry), where Ry is the sieve
associated to U, is an object of A.

It follows from the definition of a quasi-site that

(i) every set of arrows to x which contains a cover is a cover;

(i) if Y and U’ are covers of x, then U x, U' ={zxy, Xy zy — z|ueld, vel'} isa
cover of x, provided the pull-backs x,, X, x, exist for allu e U, v € U’.

2.5. The Q-category and the Q°-category of morphisms of a category. Fix
a category A. Consider the category A2 objects of which are morphisms of the category

A, and morphisms from x i) y to a’ i) y' are commutative squares

g

x —— 2
I |7 (1)
h /
y — Yy
Denote by u* the functor A — A? which assigns to any object x of A the object
z Y 4 and to any morphism f the corresponding commutative square. The functor u*

is fully faithful and has a right adjoint, u,, which maps any object x EN y of A% to x
and any morphism (1) to z % /. In fact, u,u* = Id,, and there is a natural morphism

u*u, —% Id 2 which assigns to any object EN y of the category A? the morphism
id

r —— X
ids | ¥
T L Y

from w*u,(z EN y) to (x EN y). One can see that Ida s w,u* and e, are adjunction
morphisms.

Dually, the functor v* has a natural left adjoint, w, which assigns to any object x 4, Y
of A? the object 3 and to any morphism (1) the morphism y KA Y.

2.5.1. Q-subcategories of (42 = A). Let A be a full subcategory of the category A2
which contains all objects x Yay . Then the functor u* takes values in the subcategory A,

_u
hence it induces a structure of a Q-subcategory, A = (A 2 A), of the Q-category A2 = A
The functor u; : A> — A induces a functor A — A left adjoint to u*.

2.5.2. Q-categories with a functor u; and the Q-category of morphisms.
_u
Let A = (A & A) be a Q-category such that the functor u* has a left adjoint, ;. Then
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. . . T . !
there is a canonical morphism u, —= w equal to the composition u, (1, o €,) o N, u,. Here

Idj BN wru, Ida 2 w,u*, and u*u, — Id z are adjunction morphisms. Thus we have
a canonical morphism (Wy,id,,,Ids) : A —— (A% 2= A), where the functor ¥, assigns

_ tu (Y)
to any object, g, of A the canonical morphism wu,(y) —— w(y).

On the other hand, there is a canonical morphism from the Q-category A to the Q-
category of cosieves SA = A defined in 2.3. Notice that for any § € A, the category 7\u*
is isomorphic to the category ui(y)\A. Two morphisms, gi,92 : w(y) — x define the
same object of the sieve Ry (cf. 2.3) iff the square

tw ()
us(y) —— w(y)

v @) | | o 1)

is commutative. Suppose u (%) ]_[u*(g) w () exists, and let py, p2 be canonical coprojections
w (g) s w(y) I, 5 w(¥). Then the commutativity of (1) means that g; = gop; and

g
g2 = g o po for a uniquely determined morphism w(y) H w(y) —— =x.
u(¥)

The following is one of our main examples of a Q-category with the functor w;.

2.6. The Q-category of infinitesimal algebra epimorphisms. Let A be the
category Algy of associative unital k-algebras, and let A be the full subcategory of the
category Alg? of k-algebra morphisms whose objects are epimorphisms with a nilpotent
kernel.

2.6.1. Note. The commutative version of 2.6 (i.e. A is the category C' Algy of commu-
tative algebras and A is the subcategory of C' Alg? whose objects are commutative algebra
epimorphisms with nilpotent kernel) can be interpreted as the category of infinitesimal
extensions of affine schemes over k.

2.6.2. The Q-category of thickennings of a scheme. A non-affine version of
the example 2.6.1 is the Q-category of thickennings of a scheme. Fix a scheme X. Let A
be the category of (Zariski) open subschemes of X, and A the category of thickennings:
objects of the category A are nilpotent scheme closed immersions U — T, where U is

any open subscheme of X. The fully faithful functor A o A U (U iy, ), is left
adjoint to the functor A == A sending an immersion U — T to U.

_u
2.7. Q-categories of functors. Fix a category C. To any Q-category A = (A = A),

we assign a Q-category C* = (CA = C4). Here C* denotes the category of functors
A — C and C" is a morphism with the inverse image functor

Cvx :C’A—>CA, F+— Fou,,
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and the direct image functor C* : G — G owu*. If C is the category Sets, we shall write

u\/

V _ (AV = AV A _ A S'isu A
AY = (AY = AY) instead of Sets™ = (Sets” = Sets”).
3. Sheaves, monopresheaves and epipresheaves in a Q-category.

3.1. Definitions. Fix a Q-category A = (A é A).

3.1.1. A-sheaves. We call an object x of the category A an A-sheaf if the canonical
map B
A(g, u*(2)) — Auc(g),2), g 15" ou(g), (1)
is an isomorphism for any 3 € ObA. Here 1, is an adjunction (iso)morphism I'd4 — u.u*.
We denote by §A the full subcategory of the category A generated by A-sheaves.

3.1.2. A-monopresheaves. We call an object x of the category A an A-monopresheaf,
or an A-separated presheaf, if the canonical map (1) is injective for any g € ObA. We denote
by 9TA the full subcategory of A formed by A-monopresheaves.

3.1.3. The canonical morphism p,. Let = be an object of the category A such
that the functor A(u,(—),z) is representable, i.e. A(u.(—),z) ~ A(—,u'(x)) for some
u'(z) € ObA. There is a canonical morphism p,(z) : u*(x) — u'(x) corresponding to
the isomorphism 7, !(z) : u,u*(x) — x. It follows from the definitions that x is an A-
monopresheaf iff the morphism p, (z) is a monomorphism. Note, however, that x can be a
monopresheaf without the functor A(u.(—),z) being representable.

3.1.4. A-epipresheaves. We call an object x of A an A-epipresheaf if the functor
A(uy(—), x) is representable and the canonical morphism p, (z) : u*(z) — u'(x) (cf. 3.1.3)
is a strict epimorphism.

We denote by €A the full subcategory of the category A formed by A-epipresheaves.

It follows from 3.1.3 that an object x of A is an A-sheaf iff it is an A-monopresheaf
and an A-epipresheaf.

3.1.5. Dual notions. Let A = (A = A) be a Q°-category. We call an object x
of A a sheaf (resp. a monopresheaf, resp. an epipresheaf) in A if z is a sheaf (resp. a
monopresheaf, resp. an epipresheaf) in the dual Q-category A°P.

3.2. Sheaves and monopresheaves in A". Let A = (4 = A) be a Q-category,

u = (u*,uy). And let AN = (A" = A”™) be the corresponding Q-category of presheaves of

sets. Note that since u, is a right adjoint to u*, the functor A" =5 AN, X — X o uy, is

a right adjoint to u*. Thus, a presheaf A°P X, Sets is a sheaf iff the canonical morphism
u*(X) — u4(X) = X o u, is an isomorphism. That is for any Y € ObA, the canonical
morphism

0 (X)(Y) = ANY, 0 (X)) ~ colimy.eyea)x AN (Y, 0 (V) —— Xun (V) = AN (Y), é’))

is an isomorphism.
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Similarly, a presheaf A°P X, Sets is a monopresheaf iff the canonical morphism
u*(X) — X ou, is a monomorphism. That is for any Y € ObA, the canonical morphism
(1) is a monomorphism.

It follows that an object x of A is a sheaf (resp. a monopresheaf) in the Q-category
A iff the presheaf of sets A(—,z) is a sheaf (resp. a monopresheaf) in A",

3.3. Sheaves and monopresheaves in Q-categories of functors. Fix a Q-

category A = (A 2 A) and a category C. For any pair of functors, A S Cand A5 C,
we have the canonical map

C’A(G’,Fou*) — CMGou*,F), ¢+ Fnjloou*, (1)

(cf. 2.7). By definition, the functor F' is a C*-sheaf (resp. a C*-monopresheaf) iff the
morphism (1) is bijective (resp. injective) for any G.

3.3.1. Note. We shall usually call C*-sheaves (resp. C*-monopresheaves) sheaves
(resp. monopresheaves) on A with values in C.

3.4. Sheaves in A and sheaves on A. The following proposition shows that these
two notions are, in a sense, dual to each other.

_u
3.4.1. Proposition. Let A = (A = A) be a Q-category such that the inverse image
functor u* has a left adjoint, w,. The functor A(x,—) : A — Sets is a sheaf (resp. a
monopresheaf) in AV = Sets™ if and only if = is a sheaf (resp. a monopresheaf) in the

Q°-category Ay = (A u<:’ A).

Proof. We denote the functor A(z,—) by F.
(i) Suppose G = A(y,—) : A — Sets for some object § of A. Then by Yoneda’s
Lemma,
AY(G, Fouy) = F(u.()) = A, u.(y)) ~ A(u"(2),7).

Here AV = Sets”.
(ii) Since the functor u* has a left adjoint, u;, we have G o u* = A(y,u*(—~)) ~
A(uy(y), —), hence
AV(G ou, F) = AV(A(U'(Q>7 _)7 A(QZ? _>)

and by Yoneda’s Lemma, A (A(u(7), —), A(z,—) =~ A(z,w(y)). Thus we have a commu-
tative diagram - -
AV(G,Fou,) —— AY(Gou* F)

| K (1)

AP (g,u*(z)) ——  A%P(w(y), )

in which vertical arrows are canonical isomorphisms. This shows that if the functor A(z, —)
is a sheaf (resp. a monopresheaf) of sets on the Q-category A, the object x is a sheaf in

the Q°-category A, = (4 u<:> A).
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(iii) Any functor A % Sets is a colimit of the diagram hA /G, where h* denotes the
Yoneda’s functor A°? — AV, § — A(y, —). Thus, the canonical morphism

AY(G,Fou,) —— AY(Gou*, F) (2)
is isomorphic to the limit
lim (A7(5,u%(2) — A%(u(7),)). (3)
yeOb(h4/q)

If = is a sheaf in Ay, then all morphisms ay , in (3) are isomorphisms, hence their
limit, (2), is an isomorphism.

Similarly, if « is a monopresheaf in A, then all morphisms ¢y, in (3) are monomor-
phisms, hence their limit, (2), is a monomorphism. =

3.5. The functors u,, and (uc). Suppose the category C has small limits. Then
the functor C*" : CA — C4, G~ Gou*, has a right adjoint, u!c, given for all § € ObA
and any F': A — C by

uc(F)() = lim(F o &), (1)

where & is the functor y\u* — A, (z,y — u*(x)) — x. If C' = Sets, we shall write
' instead of ug,,,

A functor F' is a sheaf (resp. a monopresheaf, resp. an epipresheaf) iff the canonical
morphism F o u, —> u'C(F ) is an isomorphism (resp. a monomorphism, resp. a strict
epimorphism), i.e. for any 3 € ObA, the canonical morphism

Fluy) — | Jm  F(V) @

is an isomorphism (resp. a monomorphism, resp. a strict epimorphism).

3.5.1. Lemma. (a) A functor A L Cisa sheaf (resp. a monopresheaf) on the
Q-category A iff the functor
C(z,F—): A —> Sets
is a sheaf (resp. a monopresheaf) for any z € ObC.
(b) A functor A Iy ¢ is an epipresheaf on A iff ug(F) exists and for any z € ObC,
the functor C(F—,z) : A — Sets is an epipresheaf.

Proof. (a) (i) Suppose first that C' has limits of small diagrams. Since for any z € ObC,
the functor C(z, —) preserves small limits, the morphism 3.5(2) is an isomorphism (resp.
a monomorphism) iff

Ol P(@) — | _Jim  C(zF(V))

is an isomorphism for all z € ObC.
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(ii) In the general case, denote by F” the composition of the functor A L, € with

the Yoneda embedding C My O, The functor F is a sheaf in C* iff F" is a sheaf in
(CM)A. Since C” is a category with limits, the assertion follows from (i).
(b) We leave the argument to the reader. m

3.5.2. The functor (uc),. Fix a Q-category A = (A = A) and a category C.
Suppose the category C has small colimits. Then the functor

Cu .04 —— A Fr— Fou,,
has a left adjoint, (u¢):, given by
(ue)(G)(x) = colim(G © Ty, /o),
where §,,_ /, is the canonical functor u,/z — A, (J,u.(y) = ) —> §.

We shall write uy instead of (ugets):-

3.5.2.1. Special cases. If the functor u, has a right adjoint, u', then (uc); is
isomorphic to the functor G — G o _u!.
If G = A(y, —) for some g € ObA, then wi(G) ~ A(us(y), —).

3.6. Presheaves and sheaves on a Q-category with values in Sets. Let F' be
a functor A — Sets. Then

@) =, Jim | PV) = AY(Apu (). F)

and u*(F)(g) = F ous ~ AV (u.(y), F). Here AV denotes the category of functors from A
to Sets, and u,(y) (as any other object of A) is identified with the corresponding corep-
resentable functor, A(u,(7),—). The canonical morphism A(y, u*(—)) — A(u.(y), —)
induces a morphism

A (A(us(9), =), F) —— AV (A7, u" (), F). (1)
The presheaf F' is a sheaf (resp. a monopresheaf, resp. an epipresheaf) iff the mor-
phism (1) is an isomorphism (resp. a monomorphism, resp. an epimorphism).

3.6.1. Note. The observation above extends to the case of presheaves with values
in a category C having small limits. In this case, the Q-category C* is equivalent to the
Q-subcategory C’ﬁv of the category CAD formed by presheaves on resp. AY and AV
with values in C having a right adjoint (cf. 2.10.2). For any presheaf F'V : (AY)°? — C,
the canonical morphism A(g, u*(—)) — A(u.(%), —) induces a morphism

FY(A(us(g), ) — FY(Ag,u"(-))). (2)

The presheaf FV is a sheaf (resp. a monopresheaf, resp. an epipresheaf) iff the
morphism (2) is an isomorphism (resp. a monomorphism, resp. an epimorphism).
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3.7. Presheaves and sheaves on Q-categories with a functor w,. Let A =

_u
(A = A) be a Q-category such that the functor u* has a left adjoint, uy. For instance,
A is a full Q-subcategory of the Q-category (A2 = A) of morphisms (cf. 2.5 and 2.5.1).
Denote by t, the canonical morphism u, — wuy. For any category C', the functor C* is a

right adjoint to C* . Thus, a functor A L C'is a sheaf (resp. a monopresheaf, resp. an
epipresheaf) on A iff the morphism

F(ru)
Fou, —— Fou (1)

is an isomorphism (resp. a monomorphism, resp. a strict epimorphism).

Denote by ¥, the family {t, (%) : u«(§) — w(y) | § € ObA} of morphisms of A. It
follows that the category of sheaves on A with values in a category C' is isomorphic to the
category of functors ¥;1A — C, where ¥ 1 A is the quotient category by X,.

3.7.1. Sheaves on Q-categories and localizations. Let X be a family of mor-
phisms of a category A containing all isomorphisms of A (or, at least, all identical mor-
phisms). Denote by Ayx, the full subcategory of A% formed by morphisms of ¥. This defines
a Q-subcategory, Ay = (Ax = A) of (A%2 2 A). Sheaves on Ay, with values in a category

C are functors A —— C which transform morphisms of ¥ into invertible morphisms. In
other words, the category of sheaves on Ay, with values in C' is isomorphic to the category
of functors from the quotient category X~'A to C.

3.8. Sheaves on Grothendieck sites. Below we show that (pre)sheaves on a site
can be realized as (pre)sheaves on the Q-category of the form Ay (see 3.7.1) where ¥ is
the class of covers of a pretopology; in particular, it satisfies (left) Ore conditions.

3.8.1. A Grothendieck pretopology associated with a quasi-(co)site. Let

(A, %) be a quasi-cosite. For any functor A X, Sets, we denote by TV(X) the set of all
subfunctors, R, of X such that for any object = of A and any morphism A(x, —) — X, the

subfunctor R xx A(z,—) of A(z, —) belongs to T(z). It follows that X M x belongs to
TV(X) and the function X — ¥V (X) is invariant under a base change: for any morphism
Y — X and any R € TV(X), the subfunctor R x x Y — Y belongs to V(Y’). Thus, the
function TV is a pretopology on the category A of functors A — Sets which we regard as

a Q°-category. Since any cover in this pretopology consists of one arrow, the Q°-category
(TV = AY) is a Q°-subcategory of the Q°-category ((AY)? = AY) of morphisms of AV.

A
If (A, ¥) is a cosite, then the Yoneda embedding, A°P LN AV, determines a Q-category
embedding (T = A) —— (ZV = AY)°P.
Dually, if (A, %) is a site, then the Yoneda embedding, A LEN A’ induces a Q°-
category embedding (¥ & A) —— (T = AM).

3.8.2. Proposition. Let (A,T) be a site, and let C be a category with small limits.
Then the Q-category of presheaves on (A, %) with values in C (which is, by definition,
the Q-category of functors on the Q-category (TP = A°P) with values in C) is naturally
equivalent to the full Q-subcategory of the Q-category of presheaves on (T" = A™) formed
by those presheaves which preserve small limits.
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In particular, A°P T Cisa sheaf (resp. monopresheaf, resp. epipresheaf) iff the
corresponding presheaf on (T" = A™) is a sheaf (resp. monopresheaf, resp. epipresheaf).

Proof. The assertion follows from Proposition 11.1.3 in [GZ] (cf. 2.10.2). Details are
left to the reader. m

3.9. Sheaves on a Q-category and sheaves on the associated quasi-cosite.

Let A = (A é A) be a Q-category, and let TA be the quasi-cosite associated with A (see
2.4). For any category C, the categories of sheaves (resp. categories of monopresheaves,
resp. categories of epipresheaves) on A and on TA with values in a category C are, usually,
quite different.

In fact, suppose the functor u* has a left adjoint, u;. Then sheaves (resp. mono-
presheaves, resp. epipresheaves) on A with values in the category C' are precisely those

functors A — C which map morphisms of ¥, = {t,(7) : u.(y) — w(y) | ¥ € ObA} to
invertible morphisms (resp. to monomorphisms, resp. to strict epimorphisms) (cf. 3.7).
Suppose, in addition, that for any y € ObA, there exists a push-forward

u (y) — w (Y)
tu(7) |

w(@) —— w@) I, g w®)

Then a functor A — C' is a sheaf on TA iff for any i € ObA, the diagram

Flun@) 2 Flu(@) ==, Fu(@) [ w(@) 1)
U ()

is exact (cf. 2.4).

3.9.1. Sheaves on the associated quasi-cosite: the general case. Suppose that
the Q-category A is arbitrary, but the category C has small limits. Then the category C*

)P

can be realised as the Q-subcategory, C’§§ , of the category of presheaves on AV with
\

values in C (cf. 2.10.2). Let (AY)°P I € denote a presheaf corresponding to a functor
A5 e By 3.6.1, F is a sheaf on A iff for any 4 € ObA, the morphism

FY(A(us(g), ) — FY(Ag,u"(-))). (2)

induced by the canonical morphism A(j, u*(—)) — A(u.(%), —) is an isomorphism.
A functor A - C is a sheaf on TA iff for any 7 € ObA, the diagram

FY(Alun(9), ) — FY(Ag,u" (=) S FYAGw (=) [ A@w(-)
Alu(§),-))
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is exact. If follows from the definition of the presheaf F'Y that FY (A(us(7), —)) ~ F(u«(7)).
If the functors A(j, u*(—)) and A(y, u*(—)) H A(y,u*(—)) are representable, the

A(ux(),—))
diagram (3) is equivalent to the diagram (1).
If C = Sets, then FV(X) = Homav (X, F) for any X € ObAY.

3.9.2. Note. Observe that the category of sheaves on A is a (stictly full) subcategory
of the category of sheaves on the associated quasi-cosite, TA.

3.9.3. Sheaves in terms of covers. Let A be a category, and let 7 be a function
which assigns to every object = of A the family, 7, of sets of arrows to x (called covers of
x, cf. 2.4) which contains {id,}. We call T a quasi-pretopology if for any two covers U, V

and any two elements (z, — z) € U and (z, — z) € V, the pull-back z, x, z, exists. We
shall identify the 7 with the corresponding Q°-category A, = (A, = A) (cf. 2.4).

Suppose A = A% = (A, = A)°P for a quasi-pretopology 7. Let § = (y; % yliel)be

an object of A, (i.e. a cover; cf. 2.4.1) and x an object of A. Then A°P(u.(y),z) = A(x,y)
and A% (y,u*(x)) = A ((z e z),y) = [1;e; A(z,y:). Here coproduct is the coproduct in

Sets, i.e. the disjoint union. The canonical morphism

AP (G u*(2) = [[ A, yi) —— AP (u.(y),2) = A=, y)

el

maps each morphism z LN y; to the composition of f; and y; RN y. The equivalence

relation
(TTAG@v)) TI (ITA@.v) < <HA(5C7yi)> I1 (HA(w,yiD

i€l A(z,y) i€l

is defined correspondingly: a morphism x LN y; is equivalent to a morphism x L y; iff
@i o fi = ¢j o f;. It follows that

(ITA@.w) TT (ITAGw)) =TT (A@w) TT A@w) = TT A v <y 5)-
el A(z,y) 1€l 1,j€l A(z,y) 1,j€l
Thus the diagram (2) in the case of a quasi-pretopology is (isomorphic to)
—
IT A=y xy ) —= [T A= w) — A=) (4)
n,jel iel

Let F be any presheaf of sets on A. Then the functor A™(—, F') maps the sequence
(4) to the diagram

—
Fy) — [[Fw) —= I £ <y ). (5)
icl ijel
Thus a presheaf F' is a sheaf on the quasi-site TA, associated with A, iff the functor
A"(—, F) maps the diagram (4) to an exact diagram.
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4. Formally étale, formally unramified, and formally smooth functors.

4.1. Example: (pre)sheaves on the Q-category of infinitesimal epimor-
phisms and formally étale functors. Let A be the category C'Algy of commutative
associative unital k-algebras, A a full subcategory of A? whose objects are k-algebra epi-
morphisms with a nilpotent kernel. We denote by C’Alg,i"f the corresponding full Q-
subcategory of (CAlg? = CAlgy). We call C’Alg,inf the Q-category of commutative in-
finitesimal epimorphisms.

A functor CAlgy I, Sets is formally étale (resp. formally unramified, resp. for-
mally smooth) if the canonical morphism F o u, — F o wy is an isomorphism (resp. a
monomorphism, resp. a strict epimorphism). Comparing with 3.7, we obtain that F is
formally étale (resp. formally unramified, resp. formally smooth) iff it is a sheaf (resp. a
monopresheaf, resp. an epipresheaf) of sets on the Q-category C’Alg,i"f .

4.2. A noncommutative version. Let A be the category Algy of associative
unital algebras over a commutative ring k, A a full subcategory of .Az whose objects are
algebra epimorphisms with a nilpotent kernel. We denote by Alg,znf the corresponding
full Q-subcategory of (Alg: = Algy). We call Alg,i”f the Q-category of infinitesimal
epimorphisms.

4.3. Proposition. Let a functor Algy T, Sets be corepresentable by a k-algebra R.

(a) The functor F' is an epipresheaf on A iff the algebra R is quasi-free in the sense of
Quillen and Cuntz [CQ1]. The latter is equivalent to the condition: the R ®j R°P-module
Q}ﬂk of Keller differentials of R (which is the kernel of the multiplication R ®; R — R)
18 projective.

(b) The functor F is a monopresheaf on A iff Q}ﬂk =0.

Proof. A standard argument shows that F' is an epipresheaf (resp. a monopresheaf)

iff for any k-algebra epimorphism S %% R such that K er(4)? = 0, there exists a splitting

(resp. at most one splitting), that is a k-algebra morphism R %, S such that ¢poh =1idpg.
(a) Thus F is an epipresheaf iff Ext%. (R, M) = 0 for any R°-module M. Here R°
denote the k-algebra R @ R°P. Consider the long exact sequence

... — Exth (R, M) — Btz (R°, M) — Exth.(Qp, M) — Extil (R, M) — ...

corresponding to the short exact sequence 0 — Q}%‘k — R® — R — 0. Since
Extl (R, M) =0 for all i > 1 and all R®modules M, Extt, (Q}ﬂk? M) ~ Ext' T (R, M)
for all i > 1 and all R®modules M. In particular, Ext%.(R,M) = 0 for all M iff
Emt}%e(Q}%‘k,M) = 0 for all M. The latter means precisely that Q}ﬂk is a projective
R¢-module.

(b) Let R ¥y Sbea k-algebra morphism such that ¢ o1 = idgr. It gives a decom-
position of S into a semidirect product of R and an R-bimodule, M, with multiplication
defined by (r,m)(r’,m’) = (rr/,;r-m' +m-r"). Any other splitting, R N S, is (idg, d),
where R -4 M is a derivation sending k to zero. Thus, the set of splittings of ¢ is in
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one-to-one correspondence with Derg,(M). But Derp,(M) ~ Hompge (Q}ﬂk’ M). Hence
¢ is unramified iff Q}ﬂk =0. =

4.4. Formally A-smooth functors. Examples 4.1 and 4.2 suggest the following
interpretation of epipresheaves, monopresheaves and sheaves on a Q-category:

4.4.1. Definition. Let A = (A 2 A) be a Q-category. We say that a functor

A L Sets is formally A-smooth (resp. formally A-unramified, resp. formally A-étale) if
it is an epipresheaf (resp. a monopresheaf, resp. a sheaf) on A; i.e. the canonical morphism

U (F)= Fou, T(F) = li F(V 1
u*(F) ou, — u (F) (v,g)egz?(g\u*) (V) (1)

is a strict epimorphism (resp. a monomorphism, resp. an isomorphism).

4.4.2. A reformulation. One can, using isomorphisms
W(F)(y) = A (A(g,u*(=)), F) and @ (F)(§) = F ou. = AY (u.(§), F)

(see 3.6), reformulate the notion of the formal A-smoothness as follows.

A functor A -2 Sets is formally A-smooth iff the canonical map
Av(u*(g)7F) —)AV(A(Q7U*(_)>7F>7 g'—)go(l/g, (2)

is surjective for all § € ObA. Here u,(7) is identified with its image in AV, i.e. the functor
A(u.(y), —) : A — Sets, and oy denotes the canonical morphism

A u (=) —— Aluu(@), —), h—nu(=)7 o us(h). (3)

A functor A -2 Sets is formally A-unramified (resp. formally A-étale) iff the map
(2) is injective (resp. bijective) for all y € ObA.

4.5. Formally A-smooth, formally A-unramified, and formally A-étale ob-
jects. We say that an object z of the category A is formally A-smooth (resp. formally
A-unramified, resp. formally A-étale) if the functor A(z,—) : A — Sets is formally
A-smooth (resp. formally A-unramified, resp. formally A-smooth).

4.5.1. A-smooth, A-unramified, and A-étale objects. We say that an object
x of A is A-smooth (resp. A-unramified) if it is formally A-smooth (resp. formally A-
unramified) and finitely presented. The latter means that the functor A(z,—) preserves
colimits of filtered diagrams. We call an object = A-étale if it is both A-smooth and
A-unramified.

4.5.2. Example. Let A be the category of associative unital algebras over a com-
mutative ring k, A a full subcategory of A? formed by all algebra epimorphisms. Then for
any projective k-module V', the tensor algebra, Ty (V'), of V is formally A-smooth. It is
A-smooth iff the projective k-module V' is of finite type.

Note that there is only one (up to isomorphism) A-étale algebra: the ring k.
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4.6. Quasi-free and separable algebras. Let A be the category 2Ass; whose
objects are associative k-algebras. Morphisms from a k-algebra R to a k-algebra S are
equivalence classes of algebra morphisms R — S by the following equivalence relation:

f
two algebra morphisms, R X S, are equivalent if they are conjugated, i.e. g(—) =
g

tf(—)t~! for an invertible element ¢ of S. Let A be the full subcategory of A? formed by
the equivalence classes of algebra epimorphisms with a nilpotent kernel. We denote by
lesznf the corresponding full Q-subcategory of (4% = A).

Note that the restriction of the natural functor Ass;, — Assi to the subcategory of
commutative algebras is a strict fully faithful functor (’strict’ means that it is injective on
objects) which induces a strict fully faithful morphism CAl g,i”f — lesznf of Q-categories
(cf. 4.1).

Recall that a k-algebra R is called separable if R is a projective left R¢-module,

R = R®; R°. It follows from the exact sequence of R°-modules
0—Qpp — R — R—0

that if R is separable, then Q}ﬂk is a projective R°-module, i.e. R is quasi-free [CQ1].

4.6.1. Proposition. Let R be an associative k-algebra.
(a) The following conditions are equivalent:

(i) The algebra R is formally lesznf—smooth.

(ii) The left R°-module of Keller differentials, Q}%/k = Ker(R® — R), is projective.
(b) The following conditions are equivalent:

(7ii) R is formally ﬂss;”f—étale.

(iv) R is formally lesznf—unmmzﬁed.

(v) R is separable.

Proof. (a) Let S s Rbea k-algebra morphism such that there exists a k-algebra

morphism R NS right inverse to ¢ in the category 2Ass;. The latter means, in particular,
that ¢ o is conjugate to idg; i.e. there exists an invertible element ¢ of R such that for
any 7 € R, ¢ o(r) = trt~1. The composition, v, of 1 with the inner automorphism
ro— t~lrt is a right inverse to ¢ in the category Algy. This shows that R is formally
Assi™ _smooth iff it is formally Algi™f-smooth (cf. 4.2). The assertion follows from 4.3
(or [CQ1]).

(b) The implication (iii)=-(iv) is true by definition.

(iv)=(v). Let M be an R°-module, S a semiproduct of R and M, S %5 R the
canonical epimorphism. It follows from (a) that any right inverse to ¢ in the sense of 2ssy

is conjugate to a right inverse, R %y 5 to ¢ in the sense of Algy. The morphism ) is of

the form r — r 4+ D(r) for some (any) derivation R 2, M which sends k to zero. If R is

lesznf -unramified, the morphism 1 is equivalent to the morphism R — S, r —— r. This
means that there exists an invertible element u of S such that ¥ (r) = uru™! for all r € R.
The element u can be written as t(1r + z), where 1g is the unit of R, ¢ is an invertible
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element of R, and z € M. Then
uru~t = trt ™t 4 (b2t (trt ) — (trt ) (t2t ) (1)

In particular, ¢ o ¥(r) = trt~! for all r € R. But ¢ o) = idg, hence the element ¢ is
central. Thus ¢(r) = r + 2z — rz;, where z; = tzt~!, i.e. D is an inner derivation. It is
known [CQ1] (and easy to prove) that R is a separable k-algebra iff any derivation of R
i any R°-module M is inner, hence the implication.

(v)=(iii). Let R be a separable k-algebra. Let T 2, S bea k-algebra morphism

with a nilpotent kernel and R L. 5 an arbitrary algebra morphism. It follows from the
argument in [CQ1] that any two liftings of f to a morphism R — T are conjugate by
an element ¢ of T such that 1 — ¢ belongs to the kernel of ¢, in particular it is nilpotent.
Conversely, such a lifting property implies that R is separable. m

5. Formally A-smooth, formally A-unramified, and formally A-étale mor-
phisms. Fix a Q-category A = (A = A). Let X, Y be functors A — Sets.

5.1. Definition. We call a morphism X Ty formally A-smooth if for any § € ObA

and for any pair of morphisms A(u.(7),—) —= Y, A(j,u*(—)) - X such that the
diagram

’

Ag,u' (=) —— X

ay | | f 1)

Alun(g),—) —— Y

commutes, there exists a morphism A(u.(7), —) — X such that yoay = ¢’ and foy = g.
In other words, the diagram

A@gou (=) - X

commutes.

5.2. Definition. We call a morphism X Ly formally A-unramified if for any
7 € ObA and any pair of morphisms, A(u.(7), —) 2y, Ay, u*(—)) 5 X, making the
diagram 5.1(1) commute, there exists at most one morphism, A(u.(7),—) — X, such
that the diagram 5.1(2) commute.

5.2.1. Note. Any monomorphism X Tvis formally A-unramified.

5.3. Definition. We call a morphism X Ty formally A-étale if it is both formally
A-smooth and formally A-unramified.
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5.3.1. A reformulation. Consider the diagram 5.1(1). We have canonical, functorial
in y and X isomorphisms

AV (A, u (=), X) = AV (@ (A(g, -)), X) = AV (A, -), @ (X) = @(X)(7)

and
AV (ua(g), —),Y) 2 Y (ua(7)) = @ (Y)(7)-

The commutative diagram

induces a morphism

W (X) —— T (Y) Xy @ (X) 2)

5.3.1.1. Proposition. (a) A morphism X Loy s formally A-unramified (resp.
formally A-étale) iff (2) is a monomorphism (resp. an isomorphism).

(b) A morphism X Loy s formally A-smooth iff for any ij € ObA, the map
T(X)(G) — @) x4 T (X))(©)

is surjective. In particular, (2) is an epimorphism.
Proof is left to the reader. m

5.3.1.2. Corollary. Suppose Y € ObAY is formally A-étale. Then a morphism
x Lvis formally A-étale iff X is formally A-étale.

Proof. The morphism f is formally A-étale iff the square (1) is cartesian. In particular,
if the right vertical arrow of (1) is an isomorphism (which means exactly that Y is formally
A-étale), then the left vertical arrow of (1) is an isomorphism too, i.e. X is formally A-étale.

Conversely, if both vertical arrows of the square (1) are isomorphisms (i.e. both X
and Y are formally A-étale), then the square (1) is cartesian. m

5.3.2. Formally étale morphisms and A-sheaves. Let % denote the functor
which assigns to all objects of A a one element set — a final object of the category AV.
For any X € ObAY, denote by mx the unique map X — *. It follows that X is formally
A-smooth (resp. formally A-unramified, resp. formally A-étale) iff the map X =% x is
formally A-smooth (resp. formally A-unramified, resp. formally A-étale).

Thus, formally A-étale morphisms might be viewed as relative versions of sheaves of
sets on A .
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5.4. Proposition. (a) The composition of formally A-smooth (resp. formally A-
unramified, resp. formally A-étale) morphisms is formally A-smooth (resp. formally A-
unramified, resp. formally A-étale).

(b) Let X, Y, Z be functors A — Sets, and let X — Y and Y s Z be functor
morphisms.
(i) Suppose h o f is formally A-unramified. Then f 18 formally A-unramified.

(i) Suppose h is formally A-unramified. If X — L 7 s formally A-smooth (resp.
formally A-étale, then f is formally A- smooth (resp. formally A étale).

(c) Let S € ObAY, and let (X,&) — (Y, pu), (X', f) (Y’ i) be morphisms of
objects over S. The morphisms f, f' are formally A-unramified (resp. formally A-smooth,
resp. formally A-étale) iff the morphism f xg f': X xg X' — Y xg Y’ has the respective
property.

Proof. (a) Suppose X Ly formally A-smooth. Let

Agur(-) —~

— X
agl lhof (1)

Alu(g),—) —— Z

be a commutative diagram. Since the morphism h is formally A-smooth, there exists a
morphism A(u,(7), —) - Y such that the diagram
Agur(-)) &% v
ag | S | S (2)

commutes. In particular, 7' oy = f o ¢’, i.e. the diagram

/7

Agour(-) —— X
ay | | s (3)

!

Alun(g),—) —— Y

commutes. Since f is formally A-smooth, there exists a morphism v : A(u.(y), —) — X
such that the diagram

Agur(-) L X
ag l Ay l f (4)
Alun()—) T Y
commutes. Combining (3) and (4), we obtain the commutative diagram
A () - X
s | e
A(u*(y),—) = Z
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Hence h o f is formally A-smooth.

We leave to the reader the checking that if f and h are formally A-unramified (resp.
formally A-étale), then ho f is formally A-unramified (resp. formally A-étale).

(b) (i) Suppose h o f is formally A-unramified, and let

’

A@gou (=) = X

IERE

Alue(y), -) == Y

«

<

be a commutative diagram. Then the diagram

/7

Ag,ur(-) L X
ay |y | hof
Alun(y),—) =% 7

commutes. Since h o f is formally A-unramified, the morphism ~ is uniquely defined.
(ii) Suppose h is formally A-unramified and h o f is formally A-smooth. Let

A ur(m) —
N

N X
~

A(u* (?j), _)

be a commutative diagram. Since h o f is formally A-smooth, there exists a commutative
diagram

/

Ag,ur(-) L X
a l A lhof
Alus(y),—) =% 7

Since h is formally A-unramified, g = f o ~.
(c) The proof of the assertion (c) is left to the reader. m

5.5. Corollary. Let X, Y, Z be functors A — Sets, and let X R Y, Y s 7 be
functor morphisms. Suppose h is formally A-étale. Then ho f is formally A-smooth (resp.
formally A-unramified, resp. formally A-étale) iff f belongs to the same class.

5.6. Proposition. Let A be a Q-category. Let X, Y, Y’ be functors A —> Sets and
v My JLox functor morphisms. If X Ty s formally A-smooth (resp. formally

A-nonramified, resp. formally A-étale), then the canonical projection X Xy Y’ Ly s
formally A-smooth (resp. formally A-unramified, resp. formally A-étale).
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Proof. Set X’ = X Xy Y’ and denote by h’' the canonical projection X' — X.
Consider a commutative diagram

/ !’

A@Gur (=) —— x o x

a | | # | £ (1)

h
Aun(@),—) —— V' sy

(a) Suppose f is formally A-smooth. Then there exists a morphism A(u. (), —) — X

such that the diagram
T/— % h'og’
A@ur (=) — X
o | S| f (2)
_ ho
commutes. By the universal property of the fiber product, there exists a unique morphism

A(7,u*(=)) —— X’ such that the diagram

A (=) % X
a | v | r 3)
Alun(y), =) = Y
commutes. This shows that the projection f’ is formally smooth.

(b) Suppose the morphism X Ty formally A-unramified. And suppose that

there exists a morphism A(u.,(7), —) —— X’ such that the diagram (3) commutes. This
implies that the diagram (2), with v = h’ 04/, is commutative. Since f is formally A-
unramified, the commutativity of (2) determines ~ uniquely. By the universal property of
fiber product, the morphisms ~’ is uniquely determined by the morphisms ~ and h, hence
f’ is formally A-unramified.

(c) It follows from (a) and (b) that if f is formally A-étale, then f’ is formally A-étale
too. m

5.7. Definition. Let A = (A é A) be a Q-category, and let R, S be objects of

A. We call a morphism R ANy formally A-smooth (resp. formally A-unramified, resp.
formally A-étale) iff the corresponding functor morphism, A(¢, —) : A(S,—) — A(R, —),
has the respective property.

5.7.1. A special case. If the functor u* has a left adjoint, w;, one can define
formally A-smooth, formally A-unramified and formally A-étale morphisms of A in terms
of the category A itself:

A morphism R L Sof Ais formally A-smooth iff any § € ObA and a commutative
diagram of the form

oy | i 1)



(where a; is the canonical functorial morphism) extends to a commutative diagram

AR 2
u:(y) +— R

A morphism R Ty 5is formally A-unramified iff for any commutative diagram of

the form (1) there exists at most one morphism S —- w,(7) such that the diagram (2)
commutes.

5.8. Formally smooth and formally étale morphisms of algebras. If A is
the Q-category Alg;nf of 4.2, we call formally A-smooth (resp. formally A-unramified,
resp. formally A-étale) morphisms simply formally smooth (resp. formally unramified,
resp. formally étale). We have the following relative analogue of Proposition 4.6.2:

5.8.1. Proposition. Let R, S be associative k-algebras, and let R 2y S bea
k-algebra morphism.

(a) The morphism ¢ is formally unramified iff the morphism SQrS — S, s®t — st,
is an isomorphism, or, equivalently, le|R = Ker(S®r S — S) =0.

(b) Suppose the k-algebra R is separable. Then the morphism R 2y S is formally
smooth iff Q}g'R is a projective left S¢-module.

Proof. A standard argument shows that R 24 S s formally smooth (resp. formally
unramified) iff for any R-ring epimorphism 7"~ S such that Ker(a)? = 0, there exists

an R-ring morphism (resp. at most one R-ring morphism) S L T such that avo 8 = idg.

(a) Let S 2, Thean R-ring morphism such that ao8 = idg. It gives a decomposition
of T into a semidirect product of S and an S-bimodule, M, with multiplication defined by
(s,m)(s’,m') = (ss’,s-m' +m-s’). Any other right inverse to «, is of the form (idg, D),
where S 25 M is a derivation sending R to zero. The latter means precisely that D is
an R°-module morphism, R® = R ®; R°. Thus, the set of splittings of « is in one-to-one

correspondence with the set Dergr(M) of derivations S L5 M which are R¢-module
morphisms. But Derg r(M) is naturally isomorphic to Homse(Q}glR, M). Hence ¢ is
unramified iff le|R =0.

(b) Suppose the k-algebra R is separable, i.e. R is a projective R°-module. Then the
S¢-bimodule S ®pr S is projective.

In fact, for any S¢-module M, there is a functorial isomorphism Homge (S®p S, M) ~
Hompe (R, ¢.(M)). Here ¢, is the pull-back functor S¢ — mod — R® — mod induced by
the morphism ¢. Since R is a projective R°-module and the functor ¢, is exact, the functor
M —— Hompge(R, ¢.(M)) is exact. Therefore the functor M — Homge(S @ S, M) is
exact, i.e. S ®g S is a projective S¢-module.

By 4.6.1, the algebra R is separable iff it is ss"™f-étale. The latter means that the
morphism k — R is formally 2ss"*f-étale. If follows from 5.4(ii), that the morphism

25



R -2 S is formally Ass™f-smooth iff the composition of k& — R and ¢ is formally
Ass™™f-smooth, i.e. the k-algebra S is formally Ass'™f-smooth. By 4.3 and 4.6.1, the
k-algebra S is formally Ass™/-smooth iff it is formally smooth (i.e. Alg;nf -smooth). On
the other hand, the algebra S is formally smooth iff Ext%. (S, M) = 0 for any S¢-module
M. Consider the long exact sequence

... — Bxtls.(8, M) — Exts.(S®pS, M) — Eatl.(Qg 5, M) — Bt (S, M) — ...

(1)
corresponding to the short exact sequence 0 — Q}g| r—— S®rS — S — 0. Since
S ®pr S is a projective S€-module, E:cti‘ (S®prS, M) =0 for all i > 1 and all S®-modules
M. Therefore ExtiSE(Q}g|R,M) ~ Ext' (S, M) for all i > 1 and all S®-modules M. In
particular, Ext?. (S, M) = 0 for all M iff Ext} e(Q}g‘R, M) = 0 for all M. The latter means

precisely that Qél g is a projective S°-module. =

5.8.1.1. Corollary. Suppose R is a separable k-algebra. Then a k-algebra morphism

R-% S s formally unramified iff it is formally étale.
Proof. By 5.8.1(a), R %4 S is unramified iff Q}glR = 0. By 5.8.1(b), ¢ is formally
smooth iff Q}g| r is a projective S®-module. In particular, ¢ is formally smooth (hence

étale), if le|R =0.m

5.8.2. Proposition. Let R, S be associative k-algebras, and let R N S be a
k-algebra morphism. The following conditions are equivalent:

(i) ¢ is formally unramified and flat.

(ii) ¢ is a flat monomorphism.

(iii) ¢* is an exact localization.
If the conditions above hold, then

(iv) ¢ is formally étale.

Proof. (ii)=(i), because every monomorphism is formally unramified.

(i)=(iii). By 5.8.1(a), the canonical morphism S ®r S — S, s ®t —> st, is an
isomorphism. Since ¢*¢, ~ (S ®r S) ®s — and Ids_meq =~ S ®g —, this means
precisely that the adjunction morphism ¢* ¢, — Idg_0q is an isomorphism. The latter
is equivalent to the full faithfulness of the direct image functor ¢.. By [GZ], Proposition
[.1.3, ¢* is a localization.

(iii)=-(ii) follows from the fact that any morphisms R %, S such that its inverse

image functor, ¢*, is a localization, is an algebra epimorphism.
f1
In fact, let S —< T be a pair of algebra morphisms such that f; oy = fy0¢, i.e. we

f2
have the diagram of algebra morphisms over R:
f1
S __ T
f2
o™\ Ty
R
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Here v = f1 0¢. Applying to (1) first scalar restriction functor and then the functor ¢.¢*,
we obtain the diagram ¢,¢*(R) — ¢+0*¢.(S) 3 ¢+¢*v.(T) which is isomorphic to the
diagram
* B

G« (R) —— ¢x(S) —S7.(T), (2)
because, due to the fact that ¢* is a localization, ¢, is a fully faithful functor, or, equiv-
alently, ¢*¢. ~ Ids_moq. Notice that the morphism ¢.¢*(R) —— ¢.(5) in (2) is an
isomorphism. Since it equalizes the pair ¢.(5) 7«(T'), this pair is trivial. Hence the
initial pair of morphisms is trivial: f; = fs.

{(iii),(i)} =(iv). It suffices to show that if R %, S is an exact localization, then ¢ is
formally smooth. A standard argument shows that a morphism R %, S is smooth iff any
R-ring strict epimorphism (i.e. a surjection) T 2, § such that the square of the kernel of
g is zero, has right inverse. Denote the kernel of g by J. Thus we have an exact sequence

of R-bimodules
0—J—T—S5—0. (3)

Denote by ®* the functor
R¢ —mod —— S —mod, M+— S®r M QgrS.
Notice that this functor is an exact localization having a (necessarily fully faithful) right

adjoint, ®,. In particular, it maps the exact sequence (3) into exact sequence. Applying
the functor ®* to the diagram

0 s J s T > S 0
NS (4)
R

we obtain the diagram

0 —— o*(J) —— ¥(T) —— P*(5) —— 0

N/ ()
o*(R)

Since ®* is a localization, the natural morphism S — ®,®*(.S) is an isomorphism,
®*(R) = S®r S ~ S, and the k-algebra morphism ®*(¢) : ®*(R) — ®*(S5) is an
isomorphism.

Note that J is an S-bimodule. This implies that ®,®*(J) ~ J. Thus we have a
commutative diagram

0 —— J —_— T _ S — 0

| | |

0 —— ®.0(J) — &.(T) —— D,0%(S) — 0  (6)
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whose left and right vertical arrows are isomorphisms. Since both rows are exact sequences,
it follows that the adjunction morphism 7' — ®,®*(7T') is an isomorphism too, hence the
assertion. m

5.9. Formally lesznf -unramified and formally lesznf -étale morphisms. The

following assertion is a relative version of 4.6.1.

5.9.1. Proposition. Let R, S be associative k-algebras, and let R N S be a
k-algebra morphism.
1) The following conditions are equivalent:
(i) The morphism ¢ is formally lesznf—unmmiﬁed.

(ii) Any derivation S Ly M which is an R¢-module morphism s inner.
(iii) The canonical S¢-module epimorphism S ®r S — S has a right inverse.
2) Suppose that the k-algebra R is separable. Then

(a) The morphism R 2y S s formally mssznf—smooth iff les’\R s a projective
S-bimodule.

(b) The following conditions are equivalent:

(iv) The morphism ¢ is formally lesznf—unmmiﬁed.

(v) ¢ is formally mssznf—étale.

(vi) S is a separable k-algebra (i.e. S is a projective S€-module).

Proof. 1) (i)<(ii). Let T' be a semidirect product of S and an S¢-bimodule M, and
let T —%+ S the natural projection, (s, z) — s. Any k-algebra morphism S — T which

is right inverse to « in category RUssy is conjugate to a k-algebra morphism, S Lo ,
which is right inverse to « in Algx. Any such morphism S is of the form s — (s, D(s),

where S 25 M is an S | R-derivation. If R 2 Sis lesznf -unramified, 5 is of the form
s — usu~!. The argument of 4.6.1 shows that this (together with the equality co3 = idg)
implies that D is an inner derivation.

Conversely, if the morphism § 5T is given by s — (s, D(s)), where D is an inner
derivation, i.e. D(s) = s-z—z-s for some element z of M and all s € S, then 3(s) = usu™1!,
where u = 1g — z).

(ii)=-(iii). The functor Dergr : S¢ — mod — Sets, M +—— Dergr(M), is repre-
sentable by the S°-module Q}S\R = Ker(S®r S — 5). The canonical monomorphism

le|R 209 ®pr S induces a map

Homg. (S ®g S, M) —— Homge(Qgp, M) (1)

Notice that Homge (S ®r S, M) ~ Hompge (R, ¢.(M)), and Hompge (R, ¢«(M)) is nat-
urally isomorphic to the center, 3(¢.(M)) = {v € M| r-v = v-r for all r € R}, of the
Rf-module ¢, (M). The composition of the bijection 3(¢.(M)) — Homge(S ®g S, M)
and the map (1) assigns to each central element, z, of ¢.(M) the corresponding inner
derivation, s = s -z — z - 5. Thus, each derivation of Derg g(M) is inner iff the map (1)
is surjective. In the case M = le‘ > this implies the existence of an S°-module morphism
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S®rS L Q}g r such that poiy = id. Or, equivalently, the canonical S°-module morphism
S®pr S — S has a right inverse.

The implication (iii)=-(ii) follows from the argument above.

2) (a) A k-algebra morphism R 2y S s formally 9133;:”1 -smooth iff it is formally
Alg,inf—smooth. By 5.8.1, if R is a separable k-algebra, then ¢ is formally Alg,inf—smooth
iff Q}glR is a projective S°-module.

(b) By the argument of 5.8.1, if R is a separable k-algebra, then the S¢-module
S ®pr S is projective. By 1), the morphism R 5 S is lesznf—unramiﬁed iff the S°¢-
module morphism S ®r S — S has a right inverse. Since S ®g S is projective, the
latter implies that S is a projective S°-module, hence (equivalently) Q}g| R 1s a projective

S¢-module, i.e. the morphism ¢ is formally lesznf -smooth. This proves the implications
(iv)=(v)=(vi)=(v). The implication (v)=-(iv) is true by definition. m

5.9.2. Corollary. The following conditions on a k-algebra morphism R 245 S are
equivalent: '
(a) ¢ is formally lesznf—étale.

(b) The adjunction morphism ¢* . =% Ids_moq has a right inverse.

Proof. (a)=(b). By 5.9.1, the canonical S¢-module epimorphism S ®g S - S has

a right inverse, S m—u; S ®pr S. The morphism 7/ defines a morphism, Ids_moq — ¢* 0.
The equality po7 = idg implies that the composition of 7 with the adjunction morphism,
O* P 20 Idg_ o is the identity morphism.

(b)=-(a). Conversely, any morphism, Ids_mod L/> @* Py, is induced by an S¢-module
morphism, S — S ®g S. The morphism 7 is a right inverse to the adjunction morphism

O* s R ds_moaq iff the composition of the bimodule morphism 7 with the canonical
morphism S ®r S — S equals to idg. m

5.10. Another description of the category 2ssy.

¢
5.10.1. Proposition. Two k-algebra morphisms, R X S, are conjugate iff the
»
d)*

corresponding inverse image functors, R — mod v S —mod, are isomorphic.
P*

Proof. (a) Suppose that 1) and ¢ are conjugate, i.e. there exists an invertible element,
t, of S such that ¥(r) = té(r)t=! for all r € R. For any R-module M = (M, m), we have

a commutative diagram

-t
S M —— S M
w | | v 1)
At
S@ry M —— SQprgeM

Here -t denotes the S-module morphism s ® z —— st ® z for all s € S, z € M; vy, ¢ are
canonical epimorphisms.
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In fact, for any s € S, r € R, z € M, v4(s(r) ® 2) = (s @7 - 2), and (s @7 2) =
StRr - z.

On the other hand, -t(sy(r) ® z) = sY(r)t ® z = std(r) @ z, and y4(sto(r) ® z) =
Ys(st @7 - z). Since 7y, is by definition the cokernel of two maps

¥y
S®rR®r M —2 S®, M, s®r®zlﬂ>s¢(r)®z, and s®r®z»ﬂ>s®r-z,
b

it follows the existence of a (necessarily unique) morphism S ®p M 29w R, M such
that the diagram (1) commutes; i.e. \; is given by 7y (s ® 2) — v4(st ® z).

(b) Conversely, suppose ¢, 1 are k-algebra morphisms such that there is a functorial
isomorphism u : ¢* = ¢*. Identifying both ¢*(R) and *(R) with the left S-module S,
we obtain, in particular, an S-module morphism u(R) : S — S. Since S is a unital ring,

u(R) equals to s Ly st for some t € S. Since u is a functor morphism, for any r € R,
u(R) o p*(-r) = ¢*(-r) o u(R). This means that sy (r)t = stp(r) for any s € S, hence
b(r)=top(r)t". =

5.10.2. Corollary. The category ssy is isomorphic to the category whose objects
are associative k-algebras; morphisms are equivalence classes of k-algebra morphisms with
respect to the following relation: two k-algebra morphisms ¢, : R — S are equivalent iff
the inverse image functors ¢*,¢* : R — mod — S — mod are isomorphic.

5.11. Formally A-open immersions. Let A = (A é A) be a Q-category, X, Y

functors A — Sets. We call a morphism X Tiya formally A-open immersion if it is
a formally A-smooth monomorphism, or, equivalently, a formally A-étale monomorphism.

5.11.1. Proposition. (a) The composition of formally A-open immersions is a
formally A-open immersion.

(b) Let X — Y be a formally A-open immersion. For any morphism T — Y, the
canonical projection T xy X — T 1is a formally A-open immersion.

(c) Let S € ObAY, and let (X,€) N (Y, ), (X',¢) EAN (Y’ i) be morphisms of
objects over S. The morphisms f, f' are formally A-open immersions iff the morphism
fXsf: X xg X —Y xgY’ is a formally A-open immersion.

Proof. The assertions (a), (b), (c) follow from the fact that both monomorphisms and

formally A-étale morphisms are stable under composition, base change, and fiber product
(see 5.4, 5.6). m

f1
5.11.2. Proposition. Let X X Y Yy Zbea diagram of presheaves of sets on

f2
A°P (i.e. functors A — Sets) such that ho fi = ho fo. If the morphism h is A-unramified,
then the morphism Ker(fy, fo) — X is a formally A-open immersion.
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Proof. Consider the diagram

’

Agour(=) —— Ker(fi, f2)
a | | (1)

f1
h
Alw(y),—) ——= X Y —— Z
f2

with commutative square. The diagram

_ fioiog’

A@u (=) — Y
Oég J/ J/ h
hofiog
Alus(y),—-) —— Z

commutes; and since h is unramified, there is at most one morphism A(u, (), —) — Y
such that hoy = ho f; 0og. Since ho f; = ho fs, this uniqueness implies that f;og = fo0g.
Therefore, there exists a unique morphism A(u.(y), —) 2 X such that g = 10 \. This
shows that the monomorphism ¢ is formally A-smooth, hence the assertion. m

5.11.3. Corollary. Any section of a formally A-unramified morphism is a formally
A-open immersion.

Proof. Let Y -5 X be a section of a formally A-unramified morphism X Ty,
Then the morphism s induces an isomorphism Y — Ker(sf,idx). The assertion follows
now from 5.11.2. m

5.11.4. Formally open immersions of affine schemes.

5.11.4.1. Proposition. Let A be the Q)-category Alg,inf of 4.2. Then the following

conditions on a flat k-algebra morphism R 245 S are equivalent:
(i) ¢ is formally A-unramified.
(ii) ¢ is formally A-étale.
(iii) ¢* is a localization.
(iv) ¢ is a formally open A-immersion.

Proof. The equivalence of the first three conditions is the content of 5.8.2. By the
definition of a formally A-open immersion, (iv) = ().

{(#i1), (i1)} = (iv). By definition, R 2y Sisa formally open A-immersion iff the
morphism of functors Algy (¢, —) : Algr(S, —) — Algr(R, —) is a formally étale monomor-
phism, or, equivalently, ¢ is a formally étale algebra epimorphism. It is étale by (ii). And
¢* ~ S ®pr — being a localization, implies that ¢ is an epimorphism (see the argument of
5.8.2, (#ii) = (i)). m

5.11.4.2. Proposition. A flat k-algebra morphism R %, Sisa formally lesznf-
open immersion iff the functor ¢* is a localization.
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Proof. Suppose ¢* is a localization. Then the adjunction morphism ¢* ¢, —> Ids_mod
. f1
is an isomorphism. Therefore, by 5.9.2, ¢ is formally lesznf -étale. Let S —X T be a pair

f2
of algebra morphisms such that f; o ¢ is equivalent to fs o ¢ (i.e. both define the same
morphism in 2Assy). Then, by 5.10.1, (fi00)* ~ (fa0¢)*, or, equivalently, ¢, o f1. =~ ¢.0 fou.
Since ¢, is a fully faithful functor, this implies that fi. >~ fs., hence f; and f; define the
same morphism in 2Assy. .
Conversely, suppose ¢ is a formally %ss;"f -open immersion. In particular, it is a

formally lesznf -smooth morphism. It follows from 4.3 and 4.6.1 that formal lesznf -

f

smoothness is the same as formal Asszn -smoothness. =

5.12. Smooth, étale, and unramified morphisms. Open immersions.

5.12.1. Finitely presentable and locally finitely presentable morphism. Let
C be a category, C” the category of presheaves of sets on C (i.e. functors C°? — Sets).
Fix an object, Y, of C". We call a morphism X Ty locally finitely presentable (resp.
locally of finite type) if for any filtered projective system D 2 /Y, the canonical map

colim C/Y (D, (X, f)) —— CN/Y (lim D, (X, f)) (1)

is bijective (resp. injective). Here C'/Y denotes the full subcategory of the category C"/Y
whose objects are pairs (V,V — Y') with representable V.

A morphism X 5 v is called finitely presentable (resp. of finite type) if for any
filtered projective system D 2, e /Y, the canonical map

colim C/Y (D, (X, f)) —— CN/Y(lim D, (X, f)) 2)

is bijective (resp. injective).
In order to avoid repetitions, we introduce intermediate notions. Fix a full subcategory
€ of the category C” containing all representable functors. Let X, Y be objects of C"*. We

call a morphism X Ty of E-finite type (resp. E-finitely presentable) if for any filtered
projective system D 2 ¢ /Y, the canonical map

colim CM /Y (D, (X, f)) —— C/Y (lim®, (X, f))

is injective (resp. bijective).

5.12.2. Proposition. Let ¥} (resp. ¥2) denote the class of all E-finitely presentable
(resp. of E-finite type) morphisms of the category C™.

(a) Both X2 and X} are closed under composition and contain all isomorphisms.

(b) If the morphism f in the cartesian square

/

x 2, x

| |/

vy L,y
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belongs to X%, then f' belongs to ¥, i =0, 1.
(c) Suppose that X i> Y and Z 5 W are morphisms over S which belong to X&.

fXsh .
Then X xg Z Ny xs W belongs to X%, i =0, 1.
(d) If the composition g o f of two morphisms is E-finitely presentable and g is of
E-finite type, then f is E-finitely presentable.

Proof. (a) Let morphisms X Ty 4z belong to X%. We claim that the composi-

tion X 45 7 belongs to the same class; i.e. for any filtered projective system D 2, &z,
the canonical map

colim C"/Z(D,(X,gf)) —— C"/Z(1imD, (X, gf))

is injective if ¢ = 0 and bijective if ¢ = 1. First, consider the case i = 0.

Let (u,) and (u]) be two inductive systems of arrows ©(v) — (X, gf), v € ObD,
(i.e. gfu, = gful, for all v) such that the compositions of u, and u!, with the canonical
morphism lim® % D(v) are equal. With more reason, (fu,)p, = (fu/)p,. Since
Y -4 Z is of E-finite type, fuu, = fu, for an appropriate p. Replacing ® by the
composition, ®,,, of ® with the canonical functor p\D — D, we can regard (u,) and
(u;,) as inductive systems of arrows ©,(v) — (X, f), v € Obu\D which equalize the

canonical morphism lim® = lim®,, RN D,(v). Since X Ty belongs to £2, there
exists A such that uy = wu); i.e. the systems (u,) and (u,) define the same element of
colim C"/Z(D, (X, gf))-

Suppose now that the morphisms f and g belong to X;. Let D 2, E/Z be a filtered
projective system, and let lim® N (X,gf) be an arbitrary morphism. Consider the

morphism lim © ﬂ) (Y,g). Since Y 257z belongs to 2(15, there exists a unique element,
u, of colim C"/Z(D,(Y,g)) whose image in C"/Z(lim®, (Y, g)) coincides with fh. Let
(uy) be an inductive system of arrows {9, () — (Y, g)} representing the element u; i.e.
the diagrams

h
lim®, — X

pul lf

Uy

D,(v) — Y

commute (here ©,, has the same sense as above). Since X Ly belongs to X%, there is a
unique element of colim C"/Y (D, (X, f)) whose image in C"/Y (im®,,, (X, f)) is given
by h. Here we use that lim®, = lim®.

(b) Suppose that X Ly belongs to ¥}. Let D 2, E/Y' be a filtered projec-
tive system, and let lim® = (V,V % Y’). Fix a morphism (V,v) LN (X', f"). Since f

belongs to X}, the morphism (V, gv) LA (X, f) is the image of a unique element, u, of
colim C"/Y (g9, (X, f)). Here g.®© : D — C"/Y is the diagram obtained by composi-
tion © with g. Let (u,) be an inductive system of arrows {g,.D(v) — (X, f)} representing
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the element u. Then the diagrams

(V,gv) —— (X', fg)

pul lg’

7.Dv) —— (X,f)

commute. By the universal property of cartesian squares, there exists a unique morphism

D(v) —% (X', f') such that u, = g'ul,.
The proof of remaining assertions follows a similar routine. We leave the arguments
to the reader. m

5.12.3. Definitions. Let A = (A = A) be a Q-category. Let X, Y be presheaves of

sets on A°P (i.e. functors A — Sets). We call a morphism X Lo ¥ smooth (resp. étale,
resp. unramified) if it is locally finitely representable and formally smooth (resp. formally
étale, resp. formally unramified).

We call an A-smooth monomorphism an A-open immersion.

6. Formally smooth and formally infinitesimal morphisms. Let A = (4 é A)
be a Q-category. We call a morphism U s T of presheaves of sets on A°P formally

A-infinitesimal if for any formally A-smooth morphism X 5 ¥ and for any commutative
diagram

’

g

U — X
0| | f (1)
YA

there exists a morphism T'—— X such that the diagram

/7
£

7

2

-

N —C
<o
K"J
S

commutes.

6.1. Proposition. (a) Any split monomorphism (in particular, any isomorphism) is
formally A-infinitesimal.
(b) The composition of formally A-infinitesimal morphisms is formally A-infinitesimal.

(c) Let U T e formally A-infinitesimal morphism and U N Ve any morphism.
Then the canonical morphism V.— V [,V is formally A-infinitesimal.

Proof. (a) Obvious.
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(b) Let U T and T -5 S be formally A-infinitesimal morphisms. And let

vo | i

U g—> X
g
S —— Y

be a commutative diagram with f formally A-smooth. Since ¢ is formally A-infinitesimal,
there exists a morphism 7" — X such that the diagram

’

v -2 X
o Al
T 2y

commutes. Since 1 is formally A-infinitesimal, there exists a morphism S — X such that
the diagram
T 5 X
vl A
s Ly
commutes.
(c) Consider a commutative diagram

v Y oy Y x
¢J Jpl lf
g

TLT]_[UV—>Y

in which p;, p2 are canonical projections. Since ¢ is formally A-infinitesimal, there exists
a morphism T — X such that the diagram



determines uniquely a morphism T[], V' 5 X such that the diagram

\%4 g—> X
o | | f
T,V — Y

commutes. m

6.2. The Q-category AY. We denote by AY the full Q-subcategory, (A = AY),
of the Q-category ((AY)* = AY) of morphisms of AV (cf. 2.5), where A) denotes the
full subcategory of (AY)? whose objects are formally A-infinitesimal morphisms. It follows
from 6.1 that A) is a Q-category corresponding to a pretopology.

6.3. General pattern. Fix a category C and a family, 90, of morphisms of C
containing all identical morphisms.

(i) We call a morphism X Jeyimc formally 9M-smooth if any commutative diagram

7 — X
| L1 (1)
s 2. v
such that ¢ € 9 extends to a commutative diagram

7,

T X
o] S 2)
s 4y

(ii) We call X Ty formally 9M-unramified if for any commutative diagram (1) such
that ¢ € 9, there exists at most one morphism S —+ X such that the diagram (2)
commutes.

(iii) We call X Ly formally 9M-étale if it is both formally 9-smooth and formally
M-unramified.

We denote by Mysy, (resp. Myppy, resp. Myer) the class of all formally 9M-smooth
(resp. formally 9-unramified, resp. formally 9i-étale) morphisms.

6.4. J-infinitesimal morphisms. On the other hand, given a class 91 of morphisms
of C, denote by M, ¢ the class of all morphisms T’ %4 S of C such that any commutative

diagram (1) such that X Ly belongs to M extends to a diagram (2). Morphisms of
Mins will be called M-infinitesimal morphisms.

6.5. Remarks. (a) Given a Q-category A = (A é A), take as C the category AV of

Qg

functors A — Sets, and set 91 = My to be the family of morphisms {A(3, u*(—)) —2
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A(u.(y), —) | y € ObA}. Tt follows from definitions that a morphism X — Y is formally
A-smooth (resp. formally A-unramified) iff it is formally 9ts-smooth (resp. formally
M -unramified).

Similarly, the notion of an A-infinitesimal morphism is a special case of a 91-infinitesimal
morphism for an obvious choice of the category C' and the family of morphisms 91; namely,
C = AV, and M is the class of formally A-smooth morphisms.

(b) The main reason to introduce this setting here is the natural ”duality”

ml—>9ﬁfsm, m>—>mmf.

If follows from definitions that 9t C N, iff N C My, In a more symmetric way,
the latter relations can be expressed as follows:
Any commutative diagram

such that ¢ € 9 and f € M extends to a commutative diagram

A

T b'e
AR
S =Y

6.6. Proposition. Let MM be a family of arrows of a category C.

(a) The class Mysm (resp. My, resp. Myper) of formally M-smooth (resp. for-
mally M-unramified, resp. formally IM-étale) morphisms is closed under composition and
contains all isomorphisms of the category C'.

(b) Let X N Y, Y 1% Z be morphisms of C.

(i) If ho f is formally M-unramified, then f is formally M-unramified.

(i) Suppose h is formally M-unramified. If X Uity formally IM-smooth (resp.
formally M- étale) then f is formally N - smooth (resp. formally M-étale).

(c) Let X I LN and Y 08 &y e morphzsms such that there exist

XxgX andY xgY'. Let (X, f) (Y,v) and (X', & ) = (Y, v) be morphisms of objects
over S. The morphisms f, f' are formally MM-smooth (resp. formally M-unramified, resp.
formally M-étale) iff the morphism f xs f' : X xg X' — Y xg Y’ has the respective
property.

(d) Let X L5y " S be such a diagram that there exists a fiber product X xgY.
If f is formally 9M-smooth (resp. formally M-unramified, resp. formally étale), then the

canonical projection X xg T L1 is formally 9MM-smooth (resp. formally IM-unramified,
resp. formally 9M-étale).
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Proof. The argument follows the lines of the proofs of 5.4 and 5.6. m

6.6.1. Corollary. Let X N Y, Y s Z be morphisms of C. Suppose h is formally
M-étale. Then ho f is formally M-smooth (resp. formally M-unramified, resp. formally
M-étale) iff f belongs to the same class.

6.7. Proposition. Let 0N be a family of arrows of C'.
(a) Any split monomorphism (in particular, any isomorphism) belongs to iy .
(b) The class Winy of M-infinitesimal morphisms is closed under composition.

(c) Let T <UL S be morphisms such that there exists T [[,; S. If ¢ belongs to
MNing, then the canonical morphism S — T [, S belongs to My .

Proof. The argument is similar to the proof of 6.1. m

6.8. Example: separated, universally closed, and proper morphisms. Let A
be the category C'Algy of commutative k-algebras. Let A be the category of faithfully flat

k-algebra morphisms, A = (A4 = A) the corresponding full Q-subcategory of (A% = A).
Spaces in the sense of Grothendieck, in particular schemes and algebraic spaces, are sheaves
of sets on the Q-category A.

Let M/ be the family of canonical injections of valuation rings to their fields of frac-
tions; and let 9, denote the image of M) in the category AV of functors A — Sets.

6.8.1. Proposition. Let X Y bea quasi-separated scheme morphism. Then
(a) The morphism f is separated iff it is formally M, -unramified.

(b) The morphism f is universally closed iff it is formally M, -smooth.

(¢) The morphism f is proper iff it is formally 9, -étale.

Proof. The assertions (a) and (c) are equivalent resp. to the Grothendieck’s criterion
of separatedness and properness (see EGA, Ch.II, 7.2.3 and 7.2.8). A proof of the assertion
(b) can be extracted from the argument of Theorem 7.2.8, EGA, Ch.Il. m

Standard properties of separated and proper morphisms become special cases of as-
sertions on formally 9t-unramified and formally 9i-étale morphisms (cf. 5.4 and 5.6):

6.8.2. Corollary. (a) Any monomorphism is a separated morphism.

(b) A composition of two separated (resp. proper) morphisms is separated (resp.
proper).

(¢) Separated (resp. proper) morphisms are stable under base change.

(d) If X v and Y %5 Z are two morphisms such that g o f is separated, then f
1S separated.

(e) If X Ty and Y %5 Z are two morphisms such that g is separated and go f is
proper, then f is proper.

(f) If X sy and X' L5 Y7 are separated (resp. proper) morphisms over S, then
their product, f xg f': X xg X' — Y xgY’, is also separated (resp. proper).

6.8.3. Remarks. (a) One can introduce the notions of formally separated and for-
mally proper morphisms by omitting the condition that the morphism in question is quasi-
compact. In terms of the family 91,, a morphism is formally separated (resp. formally
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proper) iff they are formally 9%,-unramified (resp. formally 9t,-étale). It follows that the
assertions obtained from 6.8.1 and 6.8.2 by dropping the quasi-compactness condition and
inserting 'formally’ at appropriate places, are corollaries of 6.6.

(b) The notions of a (formally) proper morphism and a (formally) separated morphism
make sense for morphisms of arbitrary presheaves of sets on the category A°P, not only
for scheme morphisms, because the notions of a (formally) 9t-smooth and (formally) 99t-
unramified morphisms make sense for morphisms of presheaves of sets on A°P.

(c) At the moment, it is not clear what might be an adequate noncommutative version
of the family 9,,.

7. Affine morphisms. Closed immersions. Separated morphisms and sep-
arated presheaves.

7.1. Representable morphisms. Let P be a class of morphisms of the category A
having the following properties:
(a) A composition of a morphism from P with any isomorphism belongs to P.

(b) If X T visa morphism from P, then for any Z —2» Y, there exists a fiber
product X Xy Z and the projection X xy Z — Z belongs to P.

Let F, G be presheaves of sets. A morphism F — G is called representable by a
morphism of P if for any hx — G, the projection F' X hx — hx is of the form h,, for
a morphism u € P. In particular, the functor F' x4 hx is representable.

Denote by P” the class of all morphisms of A" representable by morphisms of P.
Clearly a morphism hy — hy belongs to P/ iff it is of the form h,, with w € P.

7.1.1. Lemma. The class P" is invariant under the base change: if F — G belongs

to P and H — G is an arbitrary morphism, then the projection H xg F' — H belongs
to P".

Proof is left to the reader. m

7.1.2. Lemma. Let P and Q be classes of morphisms of the category A satisfying
the conditions (a), (b). Then

(i) The intersection P N Q has the properties (a) and (b).
(i1) If P is closed under the composition, then P" has the same property.

Proof is left to the reader. m

7.1.3. Standard examples. 1) The class M = N(A) of all monomorphisms has the
property 7.1(b) and is closed under the composition.
2) Same holds for the class €% = £%(A) of universal epimorphisms. Recall that a

morphism X i> Y is called a universal epimorphism if for any morphism V — Y,
there exists a fiber product X xy V and the canonical projection X xy V — V is an
epimorphism.

7.2. Affine morphisms. Let A be a category with fiber products, and let P be the
class of all morphisms of A. In this case we shall call P-representable morphisms affine.
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It follows that a presheaf morphism F — G is affine iff for any object X of A and any
morphism hx — G, the presheaf F' Xq hx is representable.

7.2.1. Lemma. Let A be a category with finite limits, and let G be a presheaf of sets
on a category A. The following conditions are equivalent:

(a) For any object X of A, any morphism hx — G is affine.

(b) The diagonal morphism G — G x G is affine.

Proof. (a)=(b). Let X be an object of A and hx L. Gx G an arbitrary morphism.

Taking compositions of f with projections G x G = G, we obtain a pair of morphisms
f1

hx :; G. Their fiber product, hx Xg hx, is a part of the cartesian square
f2

Ag
G — Gx@

Tflez

hX XGhX _— hXxhX

The condition (a) implies that hx Xg hx is affine. Since hx — G X G is arbitrary, the
diagonal morphism Ag : G — G x G is affine.

(b)=(a). Let X, Y be objects of A, and let hx — G <— hy be arbitrary morphisms.
Consider the cartesian square

Ag
G — GxG

| T

hX Xghy E— hxxhy

Since A has finite products, hx X hy is representable, hx xhy ~ hxxy. Since by hypothesis
(b) the diagonal morphism A is affine, the presheaf hx X hy is representable too, hence
the assertion. m

7.3. Strict monomorphisms and closed immersions. For a morphism Y i) X
of a category A, denote by Ay the class of all pairs of morphisms u,us : X = V equalizing

f- A morphism Y Ty X is called a strict monomorphism if any morphism g : 7 — X
such that Ay C A, has a unique decomposition g = f o g’. It follows that any strict
monomorphism is a monomorphism. We denote the class of strict monomorphisms of the
category A by Ms(A), or by M. The class E; = E,(A) of strict epimorphisms is defined
dually.

Clearly the composition of a strict monomorphism with an isomorphism is a strict
monomorphism. If the category A has fiber products, then the class 9, = M (A) of strict
monomorphisms of the category A satisfies the condition 7.1(b) too.

In fact, consider the diagram

XxyV —4% v

» | | g (1)

X —_— Y - Z
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where Y = Z is an arbitrary pair of arrows from the class Ay of arrows equalizing f. But
then po is a universal arrow equalizing all pairs Ay o g = {(u1g, u2g)| (u1,u2) € As}.

7.3.1. Note. Suppose a morphism Y T4 X is such that there exists a fiber co-
product X [[y X. Then f is a strict monomorphism iff it is a kernel of the coprojections
Y —X Y ][y Y. In particular, if the category A has fiber coproducts, then strict monomor-
phisms can be defined as morphisms X — Y such that the diagram X — Y — XY [[,Y
is exact.

7.3.2. Lemma. (a) If the composition, gf, of morphisms X Ty 9y Z s a strict
monomorphism, then f is a strict monomorphism.
(b) Any retraction is a strict monomorphism.

Proof. (a) If gf is a universal morphism with respect to the class of arrows

ul
Mgy ={Z23 V [ wmgf = uagf},

then f is universal for the class of arrows Agr 0 g = {(u19,u29)| (u1,u2) € Agr}.
(b) Let X -2 Y is a retraction, i.e. there exists a morphism ¥ — X such that
idX
ep = idx. Then p is a kernel of the pair X —X X.
pe

In fact, if Y T Xisa morphism equalizing the pair (idx, pe), then f = po(ef); and
this decomposition is unique because p is a monomorphism. =

7.3.3. Closed immersions of presheaves of sets. Let I, G be presheaves of sets
on A. We call a morphism F — G a closed immersion if it belongs to M2, i.e. if it is
representable by a strict monomorphism. In particular, a closed immersion hx — hy of

representable functors is of the form h,, where u is a strict monomorphism.

7.3.4. Example. Let A be the category CAf f/k of commutative affine schemes over
Spec(k). Then strict monomorphisms are exactly closed immersions of affine schemes. Let
X and Y be arbitrary schemes identified with the corresponding sheaves of sets on the
category C = CAff/k. Then a morphism X — Y is a closed immersion in the sense of
the definition 7.3.1 iff it is a closed immersion of schemes in the conventional sense.

This example shows in particular that a strict monomorphism of (pre)sheaves is not
necessarily a closed immersion. For instance, if X i> Y is a scheme morphism, the

A
diagonal morphism X —% X Xy X is a kernel of the natural pair of arrows X xy X = X,
hence it is a strict monomorphism of sheaves of sets. But Ay is a closed immersion (in the
sense of 7.3.2) only if the scheme morphism f is separated. Note that, in general, A is
not even affine.
7.3.5. Example. Let R be an associative k-algebra and A the category (R\Algy)°P
of noncommutative affine schemes over R. Let (S, R — S) and (T, R — T) be R-rings

and (S, s) N (T',t) and R-ring morphism. The corresponding morphism of affine schemes
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is a strict monomorphism iff the diagram T'[[¢T = T 1, § is exact. The latter means
that S is the quotient of T by the two-sided ideal Ker(f).

7.4. Separated morphisms and separated presheaves. Let X, Y be presheaves
of sets on a category A. We call a morphism X i> Y separated if the canonical morphism

X i X Xy X is a closed immersion. We say that a presheaf X on A is separated if the
diagonal morphism X — X x X is a closed immersion.

Let e denote the constant presheaf A°? — Sets with values in a one point set. Since
e is a final object of the category of presheaves of sets on A, a presheaf X is separated iff
the (unique) morphism X — e is separated.

II. Locally affine spaces and schemes. Grassmannians.

8. Locally affine spaces.

8.1. Spaces and covers. Fix a Q-category A = (4 é A). Let TA be the associated
quasi-cosite (cf. 2.4). We call (the category of) sheaves of sets on TA (the category of)
A-spaces, or simply spaces if it is clear what is A. We denote by Espy the full subcategory
of AV formed by A-spaces, and by ut the sheafification functor AY — Espy (a left adjoint
to the inclusion functor Espy — AY).

If TA is a cosite, then (and only then) the sheafification functor is exact. Otherwise,
it is only right exact, as any functor having a left adjoint.

We call a space X affine, if X is corepresentable, i.e. X ~ A(x,—) for some = € ObA.
We are particularly interested in the case when the Q-category A is subcanonical, i.e. all
corepresentable functors are A-spaces.

8.2. Remark. In what follows, the Q-category A, or ruther the associated quasi-
cosite TA, is just a device serving to define the subcategory of spaces, £spy. We might
start with choosing somehow a strictly full subcategory, €, of the category A such that
the inclusion functor & < AY has a right adjoint, and declare € the category of Spaces
(cf. A1.10). The requirement that A should be subcanonical means that Ob& contains all
corepresentable functors. Note, however, that this setting is not more general than the one
we started with: if we take as A the Q-category AY = €, the category Espy of A-spaces
coincides with €.

8.3. Affine 7-covers, locally affine 7-spaces, and 7-schemes. Let 7 be a quasi-
topology on the category Espys of A-spaces.

We call a 7-cover {X, — X | u € U} affine, if all X,, are affine (i.e. corepresentable).

We call an A-space X 7-locally affine if it has an affine 7-cover.

We call the cover {X, = X | u € U} 2-affine if it is affine and for any u,v € U, the
space X, Xx X, has an affine 7-cover.

A 7-cover {X, = X | u € U} will be called a Zariski affine 7-cover if it is affine and
consists of monomorphisms.

We call an A-space X a 7-scheme if it has a Zariski affine 7-cover.

A 7-cover {X, = X | u € U} will be called Zariski 2-affine if it is Zariski affine and
for any u,v € U, the space X, X x X, has a Zariski affine T-cover.
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We denote by LA, - the full subcategory of £spy whose objects are 7-locally affine
A-spaces, and by Schy ; the full subcategory of £spa whose objects are 7-schemes.

8.3.1. Note. Let {X, = X |u € U} be a 2-cover, and let {X . 28 Xyxx Xy | u,v €
U, v e Ty} be an affine cover of X, xx X, u,v € U. We can associate with this data
the following diagram formed by affine spaces and their morphisms:

X
VAN (1)
Xu X, u,v €U, vVE Ty

Suppose the quasi-pretopology 7 is such that all covers {X, — X | u € U} are strictly
epimorphic families of arrows, i.e. [[,, Xu — X is a strict epimorphism. Then the
space X is a colimit of the diagram (1). In particular, the space X can be reconstructed
from the local affine data given by the diagram (1).

8.4. Semiseparated and weakly separated covers and spaces. We call a cover
(X, 5 X |uel}

— weakly separated if X,, and the pull-back X, x x X, are affine (i.e. corepresentable)
for all u,v € U,

— semiseparated if the space X, and the morphism X, — X are affine for all u.

Clearly semiseparated covers are weakly separated, and weakly separated covers are
2-covers; i.e. a space which has a weakly separated cover is locally affine. We call a
space which has a semiseparated (resp. weakly separated) affine cover semiseparated (resp.
weakly separated).

_u
8.4.1. Proposition. Suppose that A = (A = A) is subcanonical (i.e. all corepre-
sentable functors A — Sets are A-spaces), and A has products. Then every separated
locally affine A-space is T-semiseparated.

Proof. Let X be any separated A-space, not necessarily locally affine. By definition,

X is separated iff the diagonal morphism Ax : X — X x X is a closed immersion,

i.e. it is representable by strict monomorphisms. The latter means that for any pair of
P1

morphisms 7 —< X with T affine, the canonical morphism Ker(p;,pz) — T is a strict

p2
monomorphism of affine spaces (i.e. corepresentable functors; cf. 7.4). In particular, the

diagonal morphism A x is affine. Let T', V' be affine A-spaces and T’ Jox V arbitrary
morphisms. Consider the cartesian square

X 2 xxx
T | fog (2)

TxxV —]> TxV

Since A has products, the product of corepresentable functors 7" and V' is a corepresentable
functor. Since A is subcanonical, this product is an affine A-space. In particular, it
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coincides with the product 7' x V' in the diagram (2) (taken in the category of A-spaces).

j
Since T' x V is affine, the morphism T xx V —— T x V is a strict monomorphism of
affine A-spaces. In particular, T' x x V is affine. This shows that any morphism from an
affine A-space to X is affine, hence the assertion. m

8.4.2. Example: semiseparated schemes and algebraic spaces. Let X be a
(commutative) scheme, or an algebraic space. An affine cover {U; % X | i € J} is called
semiseparated if each morphism U; % X is affine. A scheme (or algebraic space) is called
semiseparated if it has a semiseparated cover.

8.5. Natural quasi-topologies on £sps. Let P be a class of morphisms in Espy
which contains all identical arrows and is closed under the composition (that is P is a
subcategory of £sp, having same objects as Espy). We call a set of arrows {X, — X |u €
U} from a P-cover of X if

(i) it is strictly epimorphic;

(ii) all arrows of U belong to P.

"Strictly epimorphic’ means that the corresponding morphism [, ., X — X is a
strict epimorphism. This defines a quasi-topology, 77, on Espa. It remains to choose the
class P.

Let A; = (A; 2 A) be another Q-category with the same underlying category A
(thought as the Q-category of thickennings). Then we have the following choices:

— the class Pgq (resp. Pjgq) of (resp. formally) A;-étale morphisms,

— the class Psy, (resp. Prem) of (resp. formally) A;-smooth morphisms,

— the class P.qr (resp. Py.qr) of (resp. formally) Aj-open immersions (cf. 5.12.3).
We denote the corresponding quasi-topologies resp. by 744, Teéty Tsms Tfsms Tzars and
Tfzar and call them resp. étale, formally étale, smooth, formally smooth, Zariski and
formally Zariski quasi-topology.

We call 7,4,-locally affine A-spaces A-schemes.

8.6. Remark. Each of the classes, Pgi, Psm, and P, is stable under a base
change. But, strict epimorphisms fail, in general, to be invariant under a base change,
hence 744, Tsm, and 7.4 are not topologies usually. Same holds for formal versions of
these quasi-pretopologies.

Let P be closed under base change. We define a 7, -cover as a universally strictly
epimorphic set of arrows {X, — X | u € U} contained in P. This means that for any
morphism Y — X, the set of arrows {X, xx Y — Y | u € U} is a 77-cover (i.e. is
strictly epimorphic). It follows that 77-covers form a pretopology, and the corresponding
topology is the topology coinduced by 7, i.e. it is the strongest among those topologies

which are coarser than 7.

P

9. Commutative and noncommutative schemes and algebraic spaces.

9.1. Commutative schemes and algebraic spaces. Let A be the category C Algy
of commutative k-algebras, A; the full subcategory of A% formed by k-algebra epimor-
phisms with nilpotent kernels, A the full subcategory of A2 formed by faithfully flat
morphisms. Then A-spaces are sheaves of sets on affine schemes endowed with the flat
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topology, i.e. spaces in the Grothendieck’s sense. And A;-schemes are usual commuta-
tive schemes. If 7 = 74, then locally affine (resp. separated) spaces are Artin’s (resp.
separated) algebraic spaces.

9.2. Noncommutative schemes. Let A be the category Algy of associative k-
algebras, A; the full subcategory of A2 formed by k-algebra epimorphisms with nilpotent
kernels, A the full subcategory of A2 formed by faithfully flat morphisms. The notion of
an Aj-scheme is a natural noncommutative version of a scheme. If 7 = 74 (cf. 8.5), then,
by 5.11.4.1, locally affine A-spaces are, precisely, schemes (in the sense of 8.5).

9.3. Noncommutative algebraic spaces. Let A be the category Ass; of as-
sociative k-algebras with morphisms defined up to conjugation (cf. 4.6). Let A be the
full subcategory of A% formed by equivalence classes of faithfully flat algebra morphisms,
and let A; be the full subcategory of A% formed by equivalence classes (with respect to
conjugation, see 4.6) of k-algebra epimorphisms with nilpotent kernels. If 7 is the étale
quasi-topology (cf. 8.5), then locally affine A-spaces in this setting seem to be an adequate
noncommutative version of Artin’s algebraic spaces.

Schemes and locally affine spaces with respect to the smooth quasi-topology are same
in the settings of 9.2 and 9.3.

9.4. Remark. The definition of Artin’s algebraic space obtained in 9.1 is more
general than the ones usually used. Usually some finiteness restrictions are imposed. For
instance, Knutson considers only quasi-compact quasi-separated algebraic spaces. And in
[A1], algebraic spaces are separated.

Similarly, in the noncommutative case, one can impose finiteness conditions, for ex-
ample consider quasi-compact and quasi-separated locally affine spaces and schemes (see
definitions in 8.2 and Appendix 2).

10. Vector fibers and Grassmannians.

Fix an associative unital k-algebra R. Let A be the category R\ Algy of associative
k-algebras over R (i.e. pairs (S, R — 5), where S is a k-algebra and R — S a k-algebra
morphism) which we call for convenience R-rings. We denote by R® the k-algebra R®y R°.

10.1. Vector fiber associated with a bimodule. Let M be a left R°-module.
We denote by V(M) the ’spectrum’ of the tensor algebra T, (M) = @nZOMm of the
Re-module M. Here M®” = R and M®"" = M Rr M for n > 0.

10.1.1. Lemma. For any unital ring morphism R —= S, there is a natural isomor-
phism

SpecS [ Va(M) = V(" (M)
SpecR

over SpecS. Here *(M)) =S @r M ®pr S.

Proof. Consider arbitrary commutative square

SpecA —— V_ (M)

| |

SpecS —— SpecR
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or, the corresponding commutative square of k-algebra morphisms

T.M) —— A

I T i

R L S

The algebra morphism 7', (M) — A is uniquely determined by an R°-module morphism
M — A. The commutativity of the diagram (1) implies that the pair of morphisms
M — A +— S defines an S°-module morphism ¢* (M) = S°®p. M — A which, in turn,
uniquely determines a k-algebra morphism T, (¢p*(M)) — A. Therefore T, (g*(M)) ~
T,.(M)x, S as algebras over S; hence the assertion. m

10.1.2. Proposition. Let M be a left R°-module. The space Vr(M) is locally of
finite type (resp. locally finitely presentable) over R iff the R°-module M is of finite type
(resp. locally finitely presentable).

Proof. Let A = R\ Algy, and let D 2, A be a filtered inductive system. Then we
have a commutative diagram of canonical morphisms

colim Hom 4 (T,,(M),D) AN Hom (T, (M), colim D)
| K )

)
colim Hompge (M, Pr®D) —— Hompe(M, Pr(colim D))

Here A 2% R¢—mod is the functor which maps a R-ring (S, R — 5) to the left R°-module
S. The functor ®p is a right adjoint to the functor

T
R® —mod % A, M+— (T,(M),R— T,(M).

The functor ® r preserves colimits of filtered inductive systems, i.e. the canonical morphism
colim ® R — P p(colim D) is an isomorphism. Thus, the map A in (2) is the composition
of a canonical map

~

)
colim Hompe (M, Pr®) —— Hompe (M, colim ®PrD)

and an isomorphism Hompe (M, colim ®zD) ——— Homp: (M, ®r(colim D)). Together
with the commutativity of (2), this means that A is injective (resp. bijective) iff N is
injective (resp. bijective). Therefore, the morphism V(M) — Spec(R) is locally of
finite type (resp. locally finitely presentable) if the R°-module M is of finite type (resp.
locally finitely presentable).

Let now D — R¢ — mod be a filtered inductive system. Let £xp denote the functor
R® — mod — A = R\ Algy, denote the functor which assigns to every left R°-module £
the pair (Lr, R — Lg), where L is the extension R by L. Then for every R®-module L,
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the composition ® 5 o Ex transfers £ into R & L. Taking in (2) © = Exp 0 D, we obtain
(from the following (2) discussion) a commutative diagram

colim Homy (T, (M), D) L) Hom(T,, (M), colim D)
| L ®)

~

)
colim Hompe (M, Pr®) —— Hompge(M,colim ®PrD)

If VR(M) is locally of finite type (resp. locally finitely presentable) over R, then the
map A in (3) is injective (resp. bijective). And A is injective (resp. bijective) iff A has the
same property. Since there are natural isomorphisms

colim Hompe (M, ®zD) ~ colim Hompe(M, R @ D)
~ Homp: (M, R) & colim Homp (M, D)

and ~
Hompge (M, colim ®g®) ~ Hompge (M, colim (R & D)

~ Hompe (M, R) ® Hompe (M, colim D)

compatible with the map A in (3), \ is injective (resp. bijective) iff the canonical map
colim Hompe(M,®) —— Hompe (M, colim D) is injective (resp. bijective). This
shows that if Vz(M) is locally of finite type (resp. locally finitely presentable) over R,
then the R°-module M is of finite type (resp. locally finitely presentable). m

10.2. é note on a base change. Fix an object S of a category &£. Let £/5 ELNY;
and EM/S ﬁ> EN be the forgetful functors. The functor fg induces a functor
&N —(E/9)", X+ Xofg, (1)
The functor f; has a right adjoint
fo. 1 EN—EMNS, Xr— (X xS8,X xS —89). (2)
For every presheaf X on &£, there is a natural isomorphism

F4(X) = Hom,,  (h3(=), fs. (X)), (3)

where the functor £/S h—s> EM/S is induced by the Yoneda embedding. In other words,
the functor f%(X) is the restriction to £/S of a functor representable in £"/S.

If a presheaf X on & is representable by an object X, and there exists a product X x S
in &€, then the presheaf f(X) on £/S is representable by the object (X x S, X x S — 9).
This situation is illustrated by 10.1.1. In the general case, we shall identify £/S with a
full subcategory of £ /S and omit the embedding h*°.
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10.3. Inner hom. Let M, V be left R-modules. Consider the functor

H,(M,V): R\Alg, — Sets

which assigns to each algebra R %, S over R the set Homg(¢* (M), p*(V)).
10.3.1. Proposition. Let M and V' be left R-modules. For any unital ring morphism

R 25 S, there is a natural isomorphism

SpecS [[ Hn(M,V) = H (" (M),*(V))
SpecR

over SpecS (cf. 10.2(5)).

Proof. Consider a commutative square

3
SpecA —— H,, .,

dl l

¢
SpecS —— SpecR

The morphism £ corresponds to an element of H,, , (R — A), i.e. to an A-module epi-
morphism A ®g M — A ®gr V. Since A ®p — ~ A ®g (S ®g —), this epimorphism
defines an element of H (S — A) which uniquely determines a morphism

SpecA Y

¢* (M), ¢* (V)

o* (a0).0% (v OVET SpecS. This implies the assertion. m

10.3.2. Lemma. IfV is a projective R-module of finite type, then the functor
H (M, V) is representable.

Proof. In fact, for any algebra R 24 S over R, we have:
Hom (¢p*(M),¢*(V) ~ Hom (M, ¢*(V)) = Hom,(M,S @r V).

If V is a projective R-module of finite type, then S @z V ~ Hom®(VV,S), where V'V
is the right R-module dual to V, i.e. VV = Hom,(V,R); and Hom®(—, —) denotes the
functor of right R-module morphisms. Thus,

Hom,(M,S®g V)~ Hom,(M,Hom"(V¥,8)) ~ Hom . (M @, V", S)

and
Hom,,. (M ®j VY. S) ~ R\Algp(Tr(M ®, V), S),

hence the assertion. m

10.3.3. Corollary. Let M be a left R-module and V a projective left R-module of
finite type. Then, for any unital ring morphism R - S, there is a natural isomorphism

SxprTp(M@p VY) = Ty(p" (M) @k ¢ (V)Y)
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over S. Here ¢*(V)Y = Hom(¢*(V),S) ~ Hom,(V,S).

Proof. By 10.3.2, the functor H , (M, V') is representable by the tensor algebra Tr (M ®j,
V) of the R®-module M ®; VV. In particular, the functor H,(p*(M),p*(V)) is repre-
sented by the tensor algebra of S°-module

O (M), o*(VY)=S@r M@, VY Qp S~ 5@, (M, V).

The assertion follows now from 10.1.1 (see also 10.2.1). m

10.3.4. Corollary. Let M be a left R-module and V a projective left R-module of
finite type. If the R-module M 1is locally of finite type (resp. locally finitely presentable),
then the functor H,,(M,V) is locally of finite type (resp. locally finitely presentable) over
R. If V is a generator of the category R — mod, then the converse holds; i.e. the functor
H,(M,V) is of finite type (resp. finitely presentable) over R iff the R-module M is of
finite type (resp. finitely presentable).

Proof. By 10.3.2, the functor H , (M, V') is representable by the tensor algebra Tr (M ®j,
VV) of the R®-module M @3 V"V, ie. H,(M,V) ~Vg(M®,V"). If the R-module M is of
finite type (resp. finitely presentable), then the R®-module M ®; V'V is of finite type (resp.
finitely presentable). If V' is a generator of the category R —mod (that is Homp(V,—) is a
faithful functor), then the R¢-module M ®j; V'V is of finite type (resp. finitely presentable)
iff the R-module M has this property. The assertion follows now from 10.1.2. m

10.4. The functor Gr,, . Let A = R\Algy. Let M be a left R-module and V'
a projective left R-module. Consider the functor Gr, ,, : A — Sets which assigns
to any R-ring (S, R > S) (an object of A) the set of isomorphism classes of S-module
epimorphisms s*(M) — s*(V) (here s*(M) = S ®zr M) and to any R-ring morphism
(S,R>9) N (T, R % T) the map

Gry (S, 8) —— GTyr v (T,t)

induced by the inverse image functor S — mod P mod, N — T @g N.

10.4.1. The functor G, . Denote by G, |, the functor A — Sets which assigns
to any R-ring (S, R > S) the set of pairs of morphisms s*(V) = s*(M) = s*(V) such
that wowv = idy-(y) and acts naturally on morphisms. Since V' is a projective module, the
map

T="Tyy Gy, (5 8) —— Gr, ,(S,s), (v,u)— [u], (1)

is a (strict) functor epimorphism.

10.4.2. Relations. Denote by R, |, the ”functor of relations” G, |, H G- By

GTM,V

definition, R,, ,, is a subfunctor of G, ,, x G, ,, which assigns to each R-ring, (S, R > 8),
the set of all 4-tuples (uy,v1;uz,v2) € G,,,, X G, such that the epimorphisms w1, us :
s*(M) — s*(V) are equivalent. The latter means that there exists an isomorphism
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@ :5*(V) — s*(V) such that us = ¢ o uy, or, equivalently, ¢~ ouy = u;. Since u; ov; =

id, i = 1,2, these equalities imply that ¢ = us o v; and ¢~ = u; o vy. Thus R,y (S, 8) is
a subset of all (u1,vi;uz,v2) € Gy, ., (S,8)[[G,, . (S, s) satistying the following relations:

Uy = (’U,QO'Ul)O'U,l, Uy = (ulovg)ou2 (2)
in addition to the relations describing G, .. (S, s) [[ G, (S, 5):
uy 0 vy = idgg v = U O V2 (3)

Denote by p1, p2 the canonical projections R, |, s G, - It follows from the

surjectivity of G, |, — Gr,, . that the diagram

r1
Emm—
%M,V - GM,V

P2

s Gry,y (4)

is exact.

10.4.3. Proposition. If both M and V' are projective modules of a finite type, then
the functors G, ., and R,, . are corepresentable.

Proof. (a) Suppose the R-module V is finite. For any algebra morphism ¢ : R — S,
we have the following functorial isomorphisms:

Homg(¢* (M), 9" (V) ~ Homp(M, ¢p.0" (V) = Homp(M,S @ V) ~

Homp(M, Hom®(VV,8)) ~ Hompge (M ®;, V", S) ~ R\Alg,(Tr(M @, V"), S)

Here Hom®(VV,S) is the (left) R-module of right R-module morphisms from V" to S,
R® = R®y R°?, and Tr(M ®; VV) is the tensor algebra of the R-bimodule M ®; V.
(b) The set G, . (S5) is the kernel of the pair of morphisms

Homs(¢" (M), ¢"(V)) x Homs(¢*(V),¢"(M)) __3 Homs(¢"(V),6"(V))  (5)

where one arrow assigns to each pair (u,v) the composition, u o v, of morphisms u and
v, and the other one maps each pair (u,v) to the identity morphism, idg«(1y. Since the
modules M and V are finite, we have canonical functorial isomorphisms:

Homs(¢™ (M), ¢*(V)) x Homs(¢*(V), ¢*(M)) ~

Hompe(M @, VY, S) x Hompge(V @ MY, S) ~
Hompe(M @, VY@V @, MY,S) ~ R\Algp(Tr(M @, VY &V @ MY), S)

and
Homs(¢™(V),¢"(V)) =~ R\Algy(Tr(V @5 V"), 5)
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Thus, to the diagram (1), there corresponds a diagram

Tr(V @r VY) T2 Tar(M e, VYoV, MY) (6)

of algebra morphisms. The cokernel, G,, ., of the pair of morphisms (6) corepresents the
kernel of the pair of morphisms (5). This proves the corepresentability of G, |, .

(c) A similar argument proves the corepresentability of R,, . Details are left to the
reader. m

10.4.3.1. Proposition. If M and V are projective R-modules of a finite type, then
the functors G, .., Ry, ., and Gr,, ., are locally finitely presentable over R.

Proof. 1t follows from the argument of 10.4.3 that G
of a pair of arrows

a.v 18 isomorphic to the kernel

VR(M @, VY@V @, MY) _i Vr(V @ V) (7)

(see (6)). Since the R-modules M and V are projective of finite type, the R°-modules
V@ VY and M@, VYOV ®, MY are projective of finite type; in particular, they are finitely
presentable. Therefore, by 10.1.2, both functors in (7) are locally finitely presentable over
R. The kernel of a pair of arrows between locally finitely presentable over R functors is
locally finitely presentable over R; hence G, . is locally finitely presentable over R. By
a similar reason the functor of relations R, |, is locally finitely presentable over R. Since
Gr,, , is a cokernel of a pair of arrows between locally finitely presentable over R functors
(see 10.4.2(4)), it is locally finitely presentable too. m

10.4.4. Universality with respect to the base change.
10.4.4.1. Proposition. Let M, V be R-modules. For any unital k-algebra morphism

R-% 5 , there is a natural isomorphism between the diagram

P1

SpecS H (R _; Gy — Gry.) (1)
SpecR P2
and the diagram
P1
R G — Gyt e ) (2)

¢ (M), p* (V) —— ¢* (M), 6™ (V)
P2

In particular, SpecS H Gr,,y 18 isomorphic to Gr
SpecR

$* (M), 6% (V) *
Proof. Consider a commutative square

€
SpecA —— Gr,,,

dl l

¢
SpecS —— SpecR

51



The morphism § corresponds to an element of Gr,, ,, (R — A), i.e. to the equivalence class
of an A-module epimorphism A ® g M — A®pr V. Since A @p — ~ A ®g (S ®r —),

this epimorphism defines an element of Gr,. . ¢*(V)(S — A) which corresponds to a

morphism SpecA L Gr over SpecS. The latter means that the diagram

¢* (M), > (V)

3
SpecA —— Gr . ) oo (v)

Y\
SpecS
commutes. This implies that SpecS H Gr,, 1s isomorphic to G7 . ./ o« (- Simi-
SpecR
larly, one can show that SpecS H G, isisomorphic to G . . 4., - It follows from
SpecR

the universality of these constructions that the isomorphisms can be chosen in such a way
that the diagram

SpecS [[ Gnv ——— SpecS [ Gr,.
SpecR SpecR
J l (3)
G e (a0y6+ (v — 5 GT o aty, 0 (v)

commutes. Notice that the functor SpecS HSpec r — preserves fibered products. Since

Ryuv =Gy H G, v, the diagram (3) induces an isomorphism

GrMy

M,V

SpecS H Ry, — R
SpecR

P* (M), p*(V)*

Hence the assertion. =

10.4.4.2. Proposition. Let M and V be projective left R-modules of finite type. And
let G,, . be a k-algebra representing the functor G, ., and R,,, a k-algebra representing

the functor R,, ... Then, for any unital k-algebra morphism R N S, there is a natural
1somorphism between the k-algebras

S*R QM’V — G and S*R RM,V —— R

¢* (M), > (V) ¢*(M),6*(V)* (4)

Proof. By the part (b) of the argument of 10.4.3, the functor G is the kernel of a

pair of arrows

Ho (M, V) x H (VM) T H(V,V). (5)
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By 10.4.4.3.2 and 10.4.4.3.3, all functors in this diagram are representable and satisfy the
desired property with respect to a base change. This implies the first isomorphism (4).
We leave to the reader establishing the second isomorphism. m

10.5. Smoothness.

10.5.1. Proposition. Let M, V be projective R-modules of finite type. Then all
functors and all morphisms of the canonical diagram

P1
—_ ™
%M,V — GM,V ’ GTM,V (1)
P2

are smooth.

Proof. By 10.4.3.1, all functors in the diagram (1) are locally finitely presentable over
R. Tt follows from 5.12.2(d) that all morphisms of the diagram (1) are locally finitely
presentable. It remains to show that all functors and all morphisms of the diagram (1) are
formally smooth.

Fix an R-ring epimorphism 7" — S with a nilpotent kernel.

(a) By Yoneda’s lemma, a morphism Spec(S) — G is uniquely defined by an
element of G, |, (5), i.e. by a pair of S-module morphisms

M,V

SOprV LSO M 5 S®pV (2)

such that h o g = id. Since M and V are projective modules and the algebra morphism
T — S is an epimorphism, the diagram (2) can be lifted to a commutative diagram

/ h/
TORV — TOpM —— T@pV

|

h
S®rV L) SRrM — SRrV

Since V is a module of finite type and the kernel of the morphism 7" — S is nilpotent,
in particular it is contained in the Jacobson’s radical of T', the fact that the composition
h o g is an isomorphism implies (by Nakayama’s Lemma) that h’ o ¢’ is an isomorphism.
Set g =g’ and h = (W og’)"* o /. It follows that ho g = idrg,v. Hence G,, , is formally
smooth.

(b) A morphism Spec(S) — Gr,,,, is given by an element, &, of Gr,, ,,(S). Since
the map G, ,(S) — Gr,,,, (S) is surjective, the element { is the image of an element,
¢, of G, (5). By (a), the element £ can be lifted to an element, &7, of G, , (T'). The
image of £ in Gr,, ,, (T) is a preimage of .

(c) A morphism Spec(S) — R,,, is given by a pair of elements, (ui,v1), (u2,v2)
of G, (5) satisfying the following relations:

ug = (ugowvy)ouy, up = (u30vy)ouy (3)
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in addition to the relations describing G, ., (5):
Ulovlzid:'LLQng (4)

(cf. 10.4.2). By (a), each of the pairs can be lifted to an element of G, |, (T'), resp. (u},v])
and (ub,v5). Set ¢’ =ubov] : T®R®RrV — T @ V. It follows that uf = ¢’ o uj. Since
S @7 ¢ = ug o vy is invertible and the kernel of T' — S is nilpotent, ¢’ is invertible too.
This shows that the functor of relations, R, |, is formally smooth.

(d) Consider the commutative diagram

™
M,V GTM,V

| [ 9

G

g
¢

SpecS —— SpecT

in which ¢ is the morphism corresponding to a ring epimorphism ¢ : T — S with a
nilpotent kernel. The morphism g; in (5) is uniquely defined by an element of Gr,, ., (R —
T), i.e. by a T-module epimorphism T'®r M —5 T ®r V. By the same Yoneda’s lemma,
the morphism g in (5) is uniquely determined by an element of G, |, (S, s), i.e. a pair of
S-module morphisms

SOpV S Sop M- SopV

such that u’ o v’ = id. The commutativity of the diagram (5) is equivalent to the commu-
tativity of the diagram

TRpV TOrM —s TRV
dv l dum l l dv (6)

’

S®rV v—) S®r M L) S®RrV

in which the vertical arrows correspond to the ring epimorphism 7' LN S, hence they are
epimorphisms. Since T®pgV is a projective T-module and ¢,; is a T-module epimorphism,
there exists a T-module morphism T ®r V — T ®g M such that the diagram

T®rV BN T®rM SN T®rV
ov | o | ov (©)

’

S®RrV v—) S®r M L) S®RrV

commutes. Since T'®grV is a projective T module of finite type, it follows from Nakayama’s
Lemma that u o w is an isomorphism. Set v = w o (uow)~™!. Then uov = id and the
diagram

T®RV E— T®RM E— T®RV

ov J oM J l v (6")

’

S®rV v—) S®r M L) S®RrV
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commutes. The pair of arrows
TorV 5T@rM -5 TerV (7)

is an element of G, ,, (R — T') which corresponds to a morphism SpecT’ = Gy
Since the pair (7) is a preimage of the element T®r M — T®rV of Gr,, , (R — T)

corresponding to the morphism SpecT AN Gr,, . (by definition of the morphism ), we
have the equality: 7o~y = g;. The commutativity of the diagram (6”) means exactly that
the diagram

Gy
9 7 R
é
SpecS —— SpecT’

commutes.
(e) Since the morphism 7 in the cartesian square

p1
%M,V ? GM,V

nl [

™
Ghv — Gry,

M,V

is formally smooth, the morphisms p; and py are formally smooth (see 5.6). m
We need a slightly stronger version of a part of Proposition 10.5.1:

10.5.2. Proposition. All morphisms of the canonical diagram (1) are coverings for
the smooth topology.
Proof. Let T LN Gr,, , be a morphism with affine T". Since the presheaf morphism

G - Gr is surjective, there exists a morphism T £, Gr,,, such that mo§ =

&. This implies that the canonical projection T Xar, o Gy ~ T has a splitting; in

M,V M,V

particular, it is surjective. Since by 10.5.1, 7 is a smooth morphism, the projection 7’ is
smooth too, hence the assertion. m

10.6. A-Grassmannians. Let A = (A é A) be a Q-category, where A is the
category R\ Algy of R-rings. We denote by Grﬁ  the A-space associated with Gr,, ... We

call the functor Grﬁ’v an A-Grassmannian of the type (M, V). In particular, Gr,, , is the
A-Grassmannian, where A corresponds to the discrete cotopology.

Suppose M and V' are projective modules of finite type. Let G,, |, and R, be k-
algebras corepresenting the functors resp. G, and R, . And let p;, i = 1,2, be the
morphisms G,, , —< R,,, corresponding to the projections R,, , —X G, ..

If A is subcanonical, then the exact diagram (4) induces an exact diagram of A-spaces

G

mM,V R B— Grﬁ,v' (7)

M,V

55



10.6.1. Note. If A is a Q-category corresponding to a Grothendieck (pre)topology,
Grﬁvv(S, s) might be described as the set of equivalence classes of quotients of S ®pr M
which are locally isomorphic to S ®z V. Here equivalence is also understood as a local
isomorphism. If A does not correspond to a (pre)topology (more precisely, it is not stable
under an arbitrary base change), a naive interpretation of this description produces a map
from R-rings to Sets which, in general, is not functorial.

10.6.2. The Grassmannians Gr?\; - Let M, V be projective left R-modules of

finite type. Let A be the category R\Algy; and suppose that A C A? consists of all
faithfully flat algebra morphisms. We shall write in this case Gr;;’ . instead of Grﬁyv. The
canonical morphisms p; : G,,, — R,,,, @ = 1,2, are faithfully flat. One can show that
the A-Grassmannian Gr;‘/ is a locally affine A-space.

10.6.3. Noncommutative projective spaces. We shall write NPP,; instead of

Gr; - and call it the noncommutative projective space of the R-module M. Here R!

denotes the free R-module of the rank one. This space was introduced and described in
[KR1] in the case when R is a field, hence M is a finite-dimensional vector space over R.

10.7. Smooth topology and Grassmannians. We denote by Gr;:‘/ the associated
with Gr,, |, sheaf of sets for the smooth topology (cf. 8.6). It follows from 10.5.1 and 10.5.2
that the exact diagram (1) in 10.5.1 induces an exact diagram of sheaves

p1
EE—
9{M,v —_ GM,V

p2

— Gr,,, (1)

whose arrows are covers in the smooth topology (see 10.5.2). In particular, Gr;ﬂv is a
locally affine space with respect to the smooth pretopology.

10.8. Affine Zariski subschemes of a Grassmannian. Noncommutative Grass-
mannians are not schemes. But they have affine Zariski subschemes (constructed below)
which being restricted to commutative algebras produce a Zariski affine cover of the cor-
responding commutative Grassmannian (when it is not empty).

Fix an R-module morphism V' %5 M. For any R-ring (S, R - S), consider the set
Fy.0r.v (S, s) of equivalence classes of all morphisms s*(M) — V' such that v o s*(¢) is

an isomorphism. Here two morphisms, s*(M) — V' and s*(M) —— V" are equivalent
iff v/ =1 o v for some S-module isomorphism V'’ Ly,

10.8.1. Proposition. (a) The map (S,s) —> Fypr v (S, s) is naturally extended to
a subfunctor, Fy.npy @ R\Algr, — Sets, of the functor Gr,, ...

(b) Suppose that the R-module V' is projective of finite type. Then the functor Fy. v
is representable by an affine scheme and the morphism Fy.p vy — Gry, s affine.

Proof. (a) (i) Fix an object (S,R = S) of R\Algy. If s*(M) — V' belongs to
Fy.nr,v (S, s), i.e. vos*(¢) is an isomorphism, then for any morphism (.5, s) LN (T,t), the
composition h*(v) o h*s*(¢) is an isomorphism, and h*s*(¢) ~ t*(¢). There is a natural
morphism Fy. v — GTy, .
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(ii) Note that one can identify Fy,ar,v (S, s) with the set of all S-module epimorphisms
s*(M) —= s*(V)) such that v o s*(¢) = ids«(y). In fact, if s*(M) s V" is such that
w = v os*(¢) : s*(V) — V' is an isomorphism, then v = w™! o v/ has the required
property.

(iii) One of the consequences of the observation (ii) is that the canonical morphism
Fy.nmv — Gry, 18 @ monomorphism.

(b) There are two maps,

s

Homg(s* (M), s*(V)) : Homg(s*(V),s"(V)),

Bs

defined by v =% v o s*(¢), v LEN idg-(vy. The maps ag and fg are functorial in (S, s),
hence they define morphisms, resp. a and 3, from the functor

S +—— Homg(s*(M),s*(V)) ~ Homgr(M, s.s*(V)) = Homgr(M,S ®r V)
to the functor
S +—— Homg(s*(V),s"(V)) ~ Homg(V,s.s"(V)) = Homgr(V,S®@gr V).

(iv) Suppose now that V' is a projective R-module of finite type. Then, by 10.3.2, the
first functor is representable by the vector fiber Vi(M ® V) of the left R®-module M ®j,
V'V, and the second one is representable by the vector fiber Vg (V ®; V) of the projective
R¢-module of finite type V ®; VV. Let o/ and ' be morphisms from Vz(M ®; V) to
Vr(V ®, VV) corresponding to resp. a and . The functor Fy v is the kernel of the
pair (a, ), hence it is representable by the kernel, F .57y, of the pair (¢/, 5').

(v) The functor morphism Fy.nrv — Gr,, ., is representable by an affine morphism;

i.e. for any R-ring (S, R > S) and any functor morphism hs,sy — Gr the functor

M,V

R\Algy — Sets, (T,t) — Forv(T,t) [ heso(Tot)
Gryy oy (Tt)

is representable by an affine subscheme of SpecS.
In fact, by the Yoneda’s lemma, any morphism h(g s — Gr,, , is uniquely de-
termined by an element of Gr,, . (S,s), i.e. by the equivalence class, [v], of a locally

split epimorphism s*(M) — V’. The corresponding map hs s (T, t) — Gr,, , (Tt)

sends any morphism (S5, s) N (T,t) to the equivalence class [f*(v)]. The fiber product

Fonmv(T,t) H h(s,s)(T,t) consists of all pairs (w,v), where v € hg 4 (T,t) and
Grop v (T0t)

[T ®r M - T ®;, V] are such that w o (T ®p ¢) = idre, v and w = v*(v). Since v and ¢

here are fixed, the fiber product Fiy.ar,v (T, 1) H h(s,s)(T,t) can be identified with
GrMyv(T,t)
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the set of all morphisms (S,s) — (T,t) of R\Algy (i.e. k-algebra morphisms S —= T
satisfying t = yos) such that v*(vo(T'®y ¢)) = idrg,v. In other words, this fiber product
is identified with the kernel of the pair of morphisms

*(T,t)

h(s’s)(T, t) — Homp(T@r V, T ®rV)
Br,b

defined by

/B(T,t) Ly — Zdt*(V) = idT®kV7 Of(T’t) Y ")/* (’U) o (T ®k~ ¢>

The morphisms Sry), a(ry are functorial in (7,t), and Homp(T @ V,T @ V) ~
Vr(V®r VY)(T,t). Hence the morphisms 8 = (B(r4)), a = (a(ry)) define a pair of arrows

!

R
!
8 GrMyv(T,t)

is representable by the kernel of the pair (o/,3"). m

SpecS ! Vr(V @i VV), and the functor (T,t) — Fyarv (T, 1) H h(s,s(T,1)

10.8.2. Proposition. Let M N V' be an R-module morphism, and let V be a
projective R-module of finite type. If M is a finitely presentable R-module (resp. an R-
module of finite type), then Fy. v is locally finitely presentable (resp. locally of finite
type) over R.

Proof. By the part (iv) of the argument of 10.8.1, the functor Fy. s,y is isomorphic
to the kernel of a pair of arrows Vg(M @5 V) —X Vi(V @, VY) over R. By 10.3.4,
Vr(V @k VV) is locally finitely presentable over R, and Vz(M ®y V') is locally finitely
presentable (resp. locally of finite type), if the R-module M is finitely presentable (resp. of
finite type). The kernel of a pair of morphisms between locally finitely presentable functors
(resp. functors locally of finite type) is locally finitely presentable (resp. locally of finite
type); hence the assertion. m

10.8.2.1. Corollary. Suppose M and V are projective R-modules of finite type.
Then the canonical morphism Fy. v — Gry, . 1s locally finitely presentable.

Proof. By 10.4.3.1, Gr,, ,, is locally finitely presentable over R, and by 10.8.2, Fy. s, v
has the same property. By 5.12.2(d), the morphism Fy. v — Gr is locally finitely
presentable. m

M,V

10.8.3. Proposition. Let M be a projective R-module and V a projective R-
module of finite type. Then Fy.n v is formally smooth over R and the canonical morphism
Fy.nmv — Gry, o, s a formally open immersion.

If M s a projective module of finite type, then Fy.nry s smooth over R and the

morphism Fy.nryv — Gr,, ., is an open immersion.

Proof. (a) Let M be a projective R-module. Since by 10.5.1, Gr,, ., is formally smooth
over R and the composition of formally smooth morphisms is formally smooth, the formal

smoothness of Iy v over R is a consequence of the formal smoothness of the canonical
morphism Fy. v — GTy,
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Fix an R-ring epimorphism (7T',t) — (S, s) with a nilpotent kernel which is a part of
a commutative diagram
hissy — Fymy

o] l <1>

h(T,t) —_— GTM,V
By Yoneda’s lemma, the morphism h(g sy — Fy;ar,v in (1) is uniquely defined by an

element of Fy. 5 v, i.e. by an S-module morphism s*(M) — s*(V) such that v’ o s*(¢)) =
idg~(vy and morphism, and the morphism h(r; — Gr,,, is uniquely defined by an
element of Gr,, ,(T,t). The commutativity of (1) is equivalent to the commutativity of

the diagram

t*(¢) u
T®RV E— T®RM E— T®RV

ay l Qg l l ay (2)

s™(¢) u’
SrV —— S®rM —— SQrV
whose vertical arrows are induced by the ring epimorphism 7 -2+ S, hence they are
epimorphisms. Since T'®pr V is a projective T module of finite type and the kernel of
T -2+ S is nilpotent, it follows from Nakayama’s lemma that u o t*(¢) is an isomorphism.
Set &= (uot*(¢))~! ou. Then %o t*(¢) = ids (v and the diagram

t*(¢) u
TRrV —— TR®rM — TRgrV
ay l N l l ay (3)

5™ () u’
SRrV —— S®rM — S®rV

commutes. The pair of arrows

T or M-S TopV (4)

T®rV
is an element of Fy v (T,t) which corresponds to a morphism A SRAN Forv. It
follows from the construction that adjoining the morphism v to the diagram (1) makes a
commutative diagram. This shows that the canonical monomorphism Fy,ryv — Gy,
is formally smooth, hence a formally open immersion.

(b) Suppose now that M is a projective R-module of a finite type. Then by 10.8.2,
the functor Fy. s,y is locally finitely presentable over R, and by 10.8.2.1, the morphism
Fy.mv — Gry, , is locally finitely presentable. Therefore, Fy ps,v is smooth over R and
Fy.nmv — Gy, 18 an open immersion. m

10.8.4. Projective completion of a vector bundle. Let M’ = M & V, and

let V2% M’ be the canonical morphism. The functor F}, . v is isomorphic to the
functor which assigns to any R-ring (S, R > S) the set Homg(s*(M),s*(V) (cf. (i) and
(b) in the argument of 10.8.1). The latter functor is representable by the vector bundle
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Vr(M @, VV). If the R-modules M and V' (hence M’) are projective of finite type, then,
by 10.8.3, we have a canonical affine open immersion V(M @ V) — Gry -

In particular, if R = k, than taking V = R! = k', we obtain a canonical immersion
V(M) — Ppgri. The projective space Ppra gt can be regarded (as in the commutative
case) as the projective completion of the vector bundle Vg (M).

10.8.5. Zero section and the hyperplane at infinity. Let M, V be R-modules.
Set M/ = M &V, and let V ARV oV P M be canonical projections. The projection
p, determines a canonical section SpecR — Grpp v which (following the commutative

tradition) will be called the zero section. The projection M’ Py A induces a closed
embedding Gr,, ,, — Gryp v called the hyperplane at infinity.

10.9. Grassmannians are separated. Recall that a presheaf of sets X on a
category C'is separated if the canonical morphism Ax : X — X x X is a closed immersion
(cf. 7.3, 7.4). Here C is the category Affy/SpecR of affine k-schemes over R for some
associative k-algebra R. In other words, C' = (R\ Algx)°P.

10.9.1. Proposition. For any pair M, V of projective R-modules of finite type, the
presheaf Gr,, . : (Aff;/SpecR)” = R\Algr, —— Sets is separated.

ul

Proof. Let (S,R > S) be an R-ring, and let hssy —1 Gr,., be a pair of
u2

morphisms over R. The claim is that the kernel of the pair (uj,us) is representable by a
closed immersion of affine schemes.

Let s*(M) LN s*(V') be an epimorphism corresponding to u;, i = 1,2. Since s*(V)
is a projective S-module, there exists an S-module morphism s*(V) —= s*(M) such that
§ivi = idg-(vy. Set p; = 1;§;. Then the diagram

is exact. Consider the pairs of morphisms

£1 §2

s* (M) : s*(V) and s*(M) : s* (V). (1)

There exists a universal R-ring morphism (S, s) N (T, t) such that the image by *
of each of the pairs (1) belongs to the diagonal. We leave to the reader arguing that the
morphism 1 is a closed immersion. m
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Appendix 1: Complements on Q-categories.

Al1.1. A Q-category and a Q°-category associated with a fully faithful
functor. Let G : A — B be a fully faithful functor.

A1.1.1. Denote by A the full subcategory of B objects of which are all y € ObB
such that the functor B(G(—),y) : A°? — Sets is representable. Denote by u* the
corestriction of G to the subcategory A. Assigning to each y € ObA an object, u,(y),
which represents the functor B(G(—),y), determines a functor u, : A — A right adjoint
to u*.

A1.1.2. Dually, let A be the full subcategory of B whose objects are all z € ObB
such that the functor B(z,G(—)) : A — Sets is corepresentable. Let u* denote the
corestriction of G to A. The functor u* has a left adjoint, w,. The pair of functors u*, wu,
defines a Q°-category A = A.

A1.1.3. Example. Fix a small category D. Let B be the category D4 of functors
D — A. For any x € ObA, denote by i2 the constant functor D — A, i2(a) = id, for
all morphisms « of D. The map 2 — i defines a fully faithful functor, i¥, from A to D4.
The category A of A1.1.1 is the full subcategory of D4 formed by all functors D :D— A
such that lim(D) exists. The functor u, : A — A, a right adjoint to u* = iP|4, assigns
to each functor D of A its limit.

Dually, the category A of A1.1.2 is the full subcategory of D4 formed by all functors

D' : D 2 A such that colim(D’) exists. The functor u,, a left adjoint to u* = iP|4,
assigns to each functor D’ of A its colimit.

If the category A has limits and colimits of functors D — A, then A = D4 = A.
In this case, we write u instead of u,. The canonical morphism t, : u, — w (cf. 2.5)
assigns to any functor D : D — A the natural morphism lim D — colim D.

The simplest example of such situation is D = (- — -) and A an arbitrary category.

We recover the Q-category (A% = A) of morphisms of A (cf. 2.5).

A1.1.4. Example. Let A be a category. Denote by A= the category of functors
(-=-) — A. Let u* denote the functor A — A=, x —— (z = x), where both arrows
are identical. Suppose that the category A has kernels of pairs of morphisms. Then the
functor «* has a right adjoint, u, : (x = y) — Ker(z = y). If the category A has
cokernels of pairs of arrows, u* has a left adjoint, u : (z = y) — Cok(x = y).

A1.2. Fully faithful functors and presheaves of sets. For a category A, let A"
denote the category of presheaves of sets on A, i.e. the category of contravariant functors
from A to Sets. Let ¢g* : A — B be a functor. The functor ¢*" : B — A", X
X o g*, admits a right and a left adjoint, resp. g, and g*.

(i) The composition of g* with canonical embedding A < A" is isomorphic to g*. For
any presheaf X € ObA”, we have:

g (X)(Y) =~ colimyg)ea/x B(Y, g*(V)). (1)
If the functor g* has a left adjoint, ¢, then g* ~ ¢ : Y — Y o g1.
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(ii) The functor g* is fully faithful iff the functor g* is fully faithful.

~

Thus, if (and only if) ¢g* is fully faithful, the pair of functors A" 2+ B" 2% A" forms
a Q-category.

(iii) Note that if the functor g* is fully faithful and has a left adjoint, g, we recover a
special case of Al.1, when C' = Sets.

A1.2.1. The dual picture. Let g* : A — B be a fully faithful functor. Applying
to the dual functor, g*? : A°? — B°P the considerations of Al.1, we obtain a Q°-category
(AY = AY) = (AY = AY).

— u
A1.3. The Q-category of presheaves of sets. Let A = (A = A) be a Q-
category, u = (u*, u,). It follows from A1.2 that the functor u* determines a Q-category

AN = (AN = A"), where u = (u*,u.). We call A" the Q-category of presheaves of
sets on A. The canonical (Yoneda) embeddings A < A", A < A" define a Q-category
embedding, hy : A — A, which we call Yoneda embedding too.

A1.3.1. The Q-category of presheaves of sets and the Q-category of func-
tors. Let C be a category with small colimits. For any category, B, the composition with
the Yoneda embedding, hp : B — B”, induces an equivalence between the category C'?
of functors B — C and the category CB " of functors B — C having a right adjoint

(see [GZ], Proposition I1.1.3). In particular, for any Q-category A = (A = A), the Yoneda
embedding hy : A — A” induces an equivalence between the Q-category of functors
C* and the Q-category CA" = (CA" = CA”) formed by functors resp. A" —s C and
A" — C having a right adjoint.

A1.3.2. The dual realization of the Q-category of functors. Suppose C' is a
category with small limits. The category C® of functors B — C is isomorphic to the
category (C°P)B”". By (the dual version of) Proposition I1.1.3 in [GZ], the composition
with the Yoneda embedding h® : B°? — (B°P)" = BY induces an equivalence between
the category CP and the category (C’(’p)iBv of functors (BY) — C° having a right
adjoint. The category (Coff’)ﬁBv is naturally isomorphic to the category ng 7 of functors
(BY)°P — C (i.e. presheaves on BY with values in the category C) having a left adjoint.

It follows that for any Q-category A = (A é A), the Yoneda embedding h* : AP —
AY induces an equivalence between the Q-category of functors C* and the Q-category
C’c(?v)op = (C’c(flv)op = Cﬁg“v)"p) formed by presheaves on resp. AY and AV with values in
C having a left adjoint.

A1.4. The functor «' and the Q-category A'. Denote by A' the full subcategory
of the category A whose objects are all z € ObA such that the category wu,/x has a final
object, u'(x). The map z — u'(x) is extended to a functor, u' : A' — A, defined uniquely
up to isomorphism. If A' = A, then v' is a right adjoint to the functor w,.

In the general case, let A' denote the full subcategory of A whose objects are all Z € A
such that u.(z) € ObA'. Since the adjunction arrow 7, : Ida — u,u* is an isomorphism,
u*(A') € A'. Thus we have a Q-subcategory, A' = (A' é A"), of the Q-category A such
that the functor u* has a right adjoint, u' = u'.
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A1.4.1. Proposition. The functor u' is fully faithful, or, equivalently, a canonical
morphism €, : u,u' — Jq is an isomorphism. Here Jy denotes the inclusion functor
A — A,

Proof. Passing to the Q-subcategory A', we can assume that A' = A, hence .J,: is the
identical functor A — A. The functor w, is a localization (since it has a fully faithful left

adjoint). Therefore the functor u', being a right adjoint to a localization, is fully faithful
(IGZ],1.4). m

A1.5. Sheaves in A'. There is a canonical morphism p, : u*| 4 — u' corresponding
to the isomorphism 7, ! : u,u* — Ids. By definition, FA is the full subcategory of A'
whose objects are all x € ObA' such that the canonical morphism u*(x) — u'(z) is an
isomorphism. In particular, the category A coincides with the category FA' of sheaves in
the Q-subcategory A' of A.

A1.5.1. Lemma. The following conditions are equivalent:

(i) §A = A.

(ii) The functor u, has a right adjoint, u', and the canonical morphism u* — u' is an
1somorphism.

(iii) The functor u* has a left adjoint, wy, which is isomorphic to ..

Proof. The equivalence of (i) and (ii) follows from definitions.

(ii) < (441). The isomorphism u* — ' induces an isomorphism of the corresponding
left adjoint functors, u, — w (in particular, it induces the existance of a left adjoint, w,
of u*). Conversely, if u* has a left adjoint, uy, and the latter is isomorphic to wu,, then,
obviously, u* is a right adjoint to us, i.e. u* ~u'. m

A1.6. Note. Set (FA = u;'(FA). The Q-subcategory, (FA = FA), of A induced by
the inclusion functor FA — A enjoys the equivalent properties of A1.5.1.

A1.7. The functor H,. Fix a Q-category A = (A é A) such that the functor
u* has a left adjoint, w;, and the functor u, has a right adjoint, u'. Denote by H, the
functor wmu' : A — A. Let 7, : Ids — H, be the composition of the isomorphism
Idy — wu®, the inverse to the adjunction isomorphism, 7o : wu* — Id4, and the
morphism u(p,) @ wu* — wu' = H,, where Pu @ U —> u' is the canonical morphism
(cf. AL5).

A1.7.1. Proposition. The following conditions on x € ObA are equivalent:
(a) x is an A-sheaf.

(b) The canonical morphism p,(x) : u*(x) — u'(x) is an isomorphism.

(c) u'(x) ~ u*(y) for some y € ObA.

(d) The morphism 7(x) : © — Hy(z) is an isomorphism.

Proof. (a)<(b) follow from definitions.

(b)=(c) is obviously true.

(c)=(b). If u'(z) ~ u*(y), then u,u'(x) ~ u.u*(y) ~ y. By Al.4.1, the adjunction
morphism Id4 — u,u' is an isomorphism. In particular, z ~ u*u!(aj), hence = ~ y.

(b)=(d) by definition of the morphism 7,.
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(d)=(b). One can check that u*(7,) = A, © p, and u't, = p,H, o A\,u'. Here
Ay : Idsz — v'u, is an adjunction morphism. Since 7,(z) is an isomorphism, it follows
from the first equality that p,(x) is a strict monomorphism, and from the second one, that
puHy (), hence p,(x), is a strict epimorphism. Thus p,(x) is an isomorphism. =

A1.7.2. Proposition. 1) Suppose u, has a right adjoint, u'. Then the following
conditions on x € ObA are equivalent:

(a) x is an A-monopresheaf.

(b) The canonical morphism p,(x) : u*(x) — u'(x) is a monomorphism.

(c) There exists a monomorphism, & : u*(x) — u'(y), for some y € ObA.

2) Suppose both functors, u' and wy, exist. If the morphism 7(x) : x — Hy,(x) is a
monomorphism, then x is an A-monopresheaf. The converse is true under the condition
that the functor wy maps monomorphisms to monomorphisms.

Proof. 1) (a)<(b)=-(c) follow from definitions.

(¢)=(b). The morphism & decomposes uniquely as the canonical morphism p,(z) :
u*(x) — = and a morphism ¢ : x — y. Since the composition g o p,(z) is a monomor-
phism, p,(x) is a monomorphism.

2) Since u* is left exact (as a functor having a left adjoint), u*(7,(z)) is a monomor-
phism, if 7,(z) is a monomorphism. But u*(7,(z)) = Au(z) o pyu(x), hence p,(z) is a
monomorphism.

By definition, 7, = (n/*) "' ocwi(pu) (cf. A1.7). Thus, if p,(x) is a monomorphism and
w) maps monoarrows to monoarrows, 7, (z) is a monomorphism too. m

A1.7.3. Lemma. If x is an A-epipresheaf (i.e. py(z) : u*(x) — vu'(x) is a strict
epimorphism, cf. 3.1.4), then 1,(x) : © — H,(x) is a strict epimorphism.

Proof. The functor u; maps strict epimorphisms to strict epimorphisms (as any functor
having a right adjoint). In particular, if p,(z) is a strict epimorphism, then 7,(x) =

nt(z) ! o w(pu(x)) is a strict epimorphism. m

A1.8. Sheafification functors. Let A = (A é A) be a Q-category, FA the category
of A-sheaves. A sheafification functor is a left adjoint to the inclusion functor FA — A (if
any). We are interested here in the case of Q-categories C* and mostly for C = Sets. We

shall denote by F(A, C) the category of sheaves on a Q-category A with values in C. And
we shall write FAV in the case C' = Sets.

A1.8.1. Existence.

_u
A1.8.1.1. Lemma. Let A = (A= A) be a Q-category such that u* preserves limits
of certain type. Then the subcategory FA of sheaves in A is closed under limits of this type
(taken in A).

Proof. This follows from the characterization of objects of FA as those x € ObA for
which the canonical morphism u*(z) — u'(x) is an isomorphism and the fact that the
functor u' (defined on a full subcategory, A', of A) preserves all limits (taken in A) of all
small diagrams D — A'. =

64



A1.8.1.2. Lemma. Let A = (A = A) be a Q-category such that A has small limits
and the functor u* preserves small limits. Suppose, in addition that for any object x of A,
there exists an A-sheaf, y, and a morphism x — y. Then the inclusion functor §A — A
has a left adjoint.

Proof. The assertion follows from A1.8.1.1 and the Freyd’s criterion of the existence
of a left adjoint functor to an inclusion functor (cf. [GZ]). m

A1.8.1.3. Corollary. Let A = (A é A) be a Q-category such that the functor u*
has a left adjoint, uy, and A has small limits and a final object (the latter follows from the
existence of small limits if A is equivalent to a small category). Then there exists a left
adjoint to the inclusion functor §A — A.

Proof. The existence of a left adjoint, u; to the functor u* garantees that u* preserves
limits. Let e denote the final object to the category A. Notice that any functor having a
left adjoint maps a final object to a final object. In particular, u*(e) is a final objects of
A. This implies that u*(e),n,(e) is a final object of the category u. /e, i.c. ®is an A-sheaf.
Since, by definition, any object of A has a morphism to e, the conditions of A1.8.1.2 are
fulfilled, hence the assertion. m

A1.8.1.4. Proposition. Let C be a category with small limits and a final object
(for instance, C' = Sets, or C = k — mod for some ring k). Then for any Q-category

A = (A= A), the inclusion functor F(A,C) < C* has a left adjoint.

Proof. Let e denote the final object of the category C. For any category B, the
constant functor with value in e is a final object of the category B¢ of functors from B to
C. The functor u* : F' —— F o u, preserves small limits and maps the final object of the
category C4 to the final object of C4. This implies, in particular, that the final object of
C# is a sheaf on A. The assertion follows from A1.8.1.2 and (the argument of) A1.8.1.3. m

A1.8.2. Construction. The functor H, is used to construct a sheafification functor.
We need the following technical fact.

A1.8.2.1. Proposition. Let A = (A é A) be a Q-category, such that both functors,
w and u' exist. Let T, : Idy — H, = wu' be the canonical morphism (cf. A1.7.1). Then
H,7, =71.,H,.

Proof. There is a commutative diagram of canonical morphisms

wn,u*

wu* —— Hyu,u*
s l T Hony
IdA L} Hu (1)

€2 T l Nt

1
| Us Ty U

U —— U u Hy,

1

The upper diagram follows from the definition of 7, (in A1.7.1), 7, = wip, o (7,)~!, and

the equality p, = u'n; ! o n*u*. The diagram (1) provides two formulas for 7,:
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(a) Ty =0 " Hy 0wy’ o (€)~

(b) 7 = Hung 0wt o (n)) .

Applying H, from the left to the first expression and from the right to the second
one, we obtain respectively:

(a)) Hyry = Hyng ' Hy o wy(u'u,t,u' o u'e =) = Humleu o u(u'u Au' oniut =

Hyn7 Hy 0wy (u'ug Ay 0 m)u' since u!e = 77

(b") 7y Hy = Hyng YHy, o (wniu*w o ni tu)u' = Hyng VHy, o (wnlu*uy 0wty )u' =

Hung Hy, o wy(nfu*uy o A\, )u' since 7 'uy = wt,. Thus the right hand sides of (a’)
and (b’) coincide as claimed. m

A1.8.2.2. Corollary. Under conditions of A1.8.2.1, H't,H™ = 7, H"™™ for any
nonnegative integers m, n.

1
1

We call functors which map monomorphisms to monomorphisms monofunctors.

A1.8.2.3. Corollary. (a) Suppose H, is a monofunctor and x € ObA is such that
Tu(x) is a monomorphism. Then 7,(H,(z)) is a monomorphism.

(b) Let wy be a monofunctor. Then the subcategory MA — A of A-monopresheaves is
H,(x)-invariant.

Proof. The assertion (a) is a consequence of the equality H,7, = 7, H,.
(b) Since uy is a monofunctor, H, = wu' is a monofunctor too. By A1.7.2, an object
x is an A-monopresheaf iff 7,(z) is a monomorphism, hence the assertion. m

We set 7} = 7, and define morphisms 77 : Idq — H", n > 2, by 77" = H,7"" L.
Let H, denote the functor N — A, n+—— H (n — m)+— H}7"~". The colimit of
H7 (z) (when it exists) will be denoted by HZ°.

A1.8.2.4. Proposition. Let A = (A é A) be a Q-category such that there exist
functors wy and u'.

(a) Suppose u' commutes with colimits of functors N — A. Then object x of A has
an associate A-sheaf iff the object H°(x) = colimH, exists. In the latter case, HX° is an
A-sheaf associated to x.

(b) Let u' commute with colimits of monofunctors N — A. Then an A-monopresheaf
x has an associate sheaf iff the H°(x) exists. In this case, H2°(x) is an A-sheaf associated
to x.

Proof. (a) Suppose H°(x) exists. By hypothesis, the functor u' preserves the colimit
of functors N — A, in particular u' preserves the colimit of the functor H.*(z). But then,
since u preserves all colimits, the functor H, preserves colimit of H.’(x); i.e. the canonical
morphism colim(H, o H,'(x) — H,(colimH,’) is an isomorphism. But, obviously, the
colimit of H, o H;’(x) is naturally isomorphic to H5°(x). This implies that the canonical
morphism 7,(H°(z)) : H®(x) — H,(H{°(z)) is an isomorphism. By A1.7.1, this means
that H.°(z) is an A-sheaf.

Let z 5 y be an arbitrary morphism of A such that y is an A-sheaf. By A1.7.1,

the canonical morphism 7,(y) : y — H,(y) is an isomorphism. This implies that H:°(y)
exists and the canonical morphism 75°(y) : y — H{°(y) is an isomorphism. Thus, the
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morphism x N y is uniquely represented as the composition of 7°°(z) : © — H°(x)
and a morphism HZ°(x) — y. Therefore H°(z) is an A-sheaf associated to x.

(b) Suppose H{°(x) exists. Since z is an A-monopresheaf, the morphism 7,(z) is
a monomorphism (cf. A1.7.2). It follows from A1.8.2.2 that all morphisms H,'7,"~" :
H"(x) — H™(z) are monomorphisms. By hypothesis, the functor u' preserves the colimit
of monofunctors N — A, in particular u' preserves the colimit of the functor H*(x).
Since uy preserves all colimits, the functor H, = wu' preserves colimit of H} (z); i.e. the
canonical morphism colim(H,, o H.'(x) — H,(colimH’) is an isomorphism. A colimit
of H, o H;’(x) is naturally isomorphic to H{°(z). By the argument (a) above, the object
H?>(x) is an A-sheaf associated to z. m

A1.8.2.5. Proposition. Let A = (A = A) be a cosite. And let C' be the category
Sets, or the category k — mod of k-modules. Then

(a) For any functor A £, C, the functor H~(F) is an A-monopresheaf.
(b) If F is a monopresheaf, then H~(F) is a sheaf associated with F'.

In particular, for any functor A N C, the functor H%(F) is a sheaf associated with
F.

Proof. In the case A is a cosite, the functor H~ is isomorphic to the Heller-Row
functor, otherwise called ”+-construction” for which the assertion is a known fact. m

A1.9. Subcanonical Q°- and Q-categories. We call a Q°-category A = (A = A)
subcanonical if every representable presheaf on A is a sheaf on the associated quasi-site.
A Q-category is called subcanonical if its dual Q°-category is subcanonical.

A1.9.1. Classical examples of subcanonical pretopologies. One of the most
important examples is the category of (commutative) affine schemes with the Zariski, or
étale, or fpqc pretopology. Recall that fpqc covers are families of affine scheme morphisms
{¢i : Spec(R;) — Spec(R)| i € J} such that all inverse image functors ¢} : R — mod —
R; —mod are exact, and the family {¢}|i € J} contains a finite conservative (i.e. reflecting
isomorphisms) subfamily. In the case of Zariski topology, rings R; are localizations at
finitely generated multiplicative sets and ¢; universal morphisms. In the case of étale
pretopology, all morphisms ¢; are étale.

It is well known that the fpqc topology is subcanonical. In particular, Zariski and
étale topologies are subcanonical.

A1.9.2. A standard noncommutative example. Fix an associative ring k£ and
take as A the category of rings over k, i.e. (unital) ring morphisms k& — R. Objects of
the category A are faithfully flat morphisms, i.e. morphisms ¢ : R — T of rings over k
such that the inverse image functor ¢* : R — mod — T — mod is exact and faithful. The

functor u, : A — A is defined by (R N T) — R.
For a Q-category A, let TA denote the quasi-cosite associated with A (cf. 2.4 and
3.9).

A1.9.2.1. Proposition. (a) The Q-category A defined above is subcanonical.
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(b) For any iy € ObA, the canonical morphism t, : u.(y) — w(y) induces a strict
epimorphism of the corresponding A-spaces.

Proof. The assertions follow from [R4], Proposition 4.3.2. =

A1.9.3. Subcanonical Q°-categories in terms of covers. Consider a Q°-category
A, . We say that 7 is subcaninical if A is subcanonical.

Let 7 be a subcanonical quasi-pretopology. Then (4) is an exact diagram of sheaves
of sets. Taking in (5) F' = A(—, z), we obtain the diagram

Aly,s) — [[Awi2) — ] Awi xyu5.2). (6)
el i,5€l

Since T is subcanonical, the presheaf A(—,z) is a sheaf for any x € ObA, i.e. the diagram
(6) is exact for any x € ObA. But this means that the diagram (4) is an exact diagram of
sheaves for any y € ObA..

A1.9.3.2. Note. Suppose the object ¥ = (y; — y| i € I) of A, is such that there
exist coproducts [[,.;y; and Hi,je[ Y; Xy yj. Then the diagram (6) is isomorphic to the
diagram

—
il ijel

In this case, the condition “7 is subcanonical” implies the that the diagram

—
Ivixewi —= [[vi— v (8)
t,j€l i€l

is exact. Conversely, if for any ¥ = (y; — y| i € I) in T, the coproducts [[,.; y; and
[1; jer vi Xy y; exist and the diagram (8) is exact, then 7 is subcanonical.

A1.10. Q-categories and sites.

A1.10.1. Topologies on a given category. Let A be a category. Consider the set
A2 of strictly full subcategories B of A" (strictly means that any object of A” isomorphic
to an object of B belongs to B) such that the inclusion functor B <— A" has a left adjoint,
i, which is left exact, i.e. it preserves finite limits. Since i}; preserves all colimits, it is
exact. Recall the latter means that i3 is a localization functor at a class of morphisms
which admit left and right fractions [GZ, 1.3.4].
On the other hand, denote by Top/A the set of topologies on A. There is a canonical
map
VA —— Top/A (1)

defined as follows. To each subcategory B of A" such that the inclusion functor i, : B <
A" has an exact left adjoint, i* : A® — B, U assigns a topology T such that for any
object X of A, Tp(X) consists of all subobjects R of A(—X) such that i*(R — A(—, X))

is an isomorphism.
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A1.10.2. Theorem (Giraud) The map (1) is a bijection. The inverse map assigns
to each topology T on A the corresponding subcategory of sheaves of sets on the site (A, T).

Proof. See [SGA4, Exp.II|, Theorem 5.5. m
A1.10.3. The case of arbitrary Q-categories. Denote by A’  the set of all

strictly full subcategories of A" such that the inclusion functor B < A" has a (not
necessarily exact) left adjoint, i;. Let B be a subcategory from A’ . To any X € ObA,
we assign the set Ap(X) of all subfunctors R of A(—, X) such that il (R — A(—X))
is an isomorphism. Denote by Ap the category whose objects are pairs (X, R), where
R € Ap(X). Morphisms from (X, R) to (X', R") are given by morphisms f : X — X’ such

that there is a commutative diagram

R — X
gl lf
R — X

(with uniquely defined arrow g). The composition is defined in an obvious way. There is
a natural fully faithful functor A — Ap, X +— (X, X), which is right adjoint to the
functor Ap — A, (X, R) — X. This defines a Q-category Ap = (A} = A°P).
The map B —— Ap defines a functor
Uy AN

rex

— 5 QCat /A% (1)

Here QCat/A is the category whose objects are Q-categories of the form (A = A°P)
(with fixed A) and morphisms are morphisms of Q-categories identical on A°P.

Let A = (A 2 A°) be a Q-category. The map which assigns to the Q-category A the
subcategory Spy of A" formed by A-spaces defines a functor

O, QCat/AP —— A (2)

A1.10.4. Proposition. The functor ® 4 is left adjoint to V4, and P a0V 4 = Iday -
Proof. The functor ¥ 4 o ® 4 assigns to any Q-category A = (A = A°P) the Q-category
associated with the category of A-spaces. The adjunction morphism,

IdQCat/Aop — Wy 0dy

assigns to each Q-category A = (A = A°) the canonical morphism A — W4 (Spy)
which is identical on A and sends each y € A to the image of the canonical morphism

Ay, u(=)) — A(ux(y),—). =
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Appendix 2: Finiteness conditions.

In (commutative) algebraic geometry, there are essentially two notions of ”global
finiteness”: the notion of a quasi-compact morphism and the notion of a quasi-separated
morphism. These are derivatives of the notion of a quasi-compact object. In noncommu-
tative geometry, there is more than one meaningful interpretation of quasi-compactness
(like there is more than one meaningful interpretation of smoothness). By this reason,
we discuss here a relative version of a quasi-compact and a quasi-separated morphisms.
"Relative” means that they depend on a subcategory, P, thought as a category of ” quasi-
compact objects”. Notice that this relative version is mentioned in [SGA4, Expose VI,
Remarque 1.9.1].

A2.1. Setting. Fix a category 28 and its subcategory P such that any object of B
isomorphic to an object of P belongs to P. We shall sometimes assume that the following
condition holds:

(#) IfY Ty Xisa split monomorphism in B (i.e. go f = idy for some X -5 Y)
and X € P, then f € P.

A2.2. Examples.
A2.2.1. Objects of finite type and finitely presentable objects. Suppose B

has colimits of filtered inductive systems. An object X of a category 5 is said to be of

finite type (resp. finitely presentable) if for any filtered inductive systeme D 2, B, the
canonical map
colim®B(X,D) —— B(X, colimD) (1)

is injective (resp. bijective).

We denote by B¢ the full subcategory of B formed by objects of finite type and
by By, its full subcategory formed by finitely presented objects. The following assertion
shows that the subcategories B, and By, satisfy the condition A2.1(#).

A2.2.1.1. Lemma. Any retract of an object of finite type (resp. of a finitely pre-
sentable object) is of finite type (resp. finitely presentable).

Proof. Let X be of finite type, and let Y be a retract of X; i.e. there exist morphisms

Y %5 X and X %5 Y such that Yop =1idx. Let D 2, 9 be a filtered inductive system.
Consider the commutative diagram

coimB(Y,D) —— B(Y,colimD)

ve | | v 2)
colim®B(X,D) —— B(X,colimD)

in which vertical arrows are given by functor morphism

BY. ) —y B(X,—), g go

Since 1 0 ¢ = idy, de ©Pe = idy(y,—). In particular, vertical arrows in (2) are injective.
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(a) If X is of finite type, the lower horizontal arrow is injective. Therefore, the
canonical morphism colim®B(Y, D) — B(Y, colimD) is injective, i.e. Y is of finite type.

(b) Suppose X is finitely presentable. Note that Y is a cokernel of the pair of mor-
phisms idx, ¢ o : X = X. Thus we have a commutative diagram

coimB(Y,D) —— B(Y,colimD)
v | | v
colim®B(X,D) —— B(X,colimD)

1l i

colimB(X,D) —— B(X,colimD)

such that the vertical diagrams - — - = - are exact and two (lower) horizontal arrows
are isomorphisms. Therefore, the canonical morphism colimB(Y, D) — B(Y, colimD) is
bijective, i.e. Y is finitely presentable. m

A2.2.2. Example: quasi-compact objects of a site and quasi-compact ob-
jects of a topos. Let B be a site. An object X of B is called quasi-compact if for any
cover {X; — X| i € J}, there exists a finite subset I of J such that {X; — X|i € I} is
still a cover.

Let B~ denote the topos of sheaves of sets on B, and let h™ : B — B~ be the
composition of the Toneda embedding B — B”", X —— B(—, X), and the sheafification
functor B — B~.

A2.2.2.1. Proposition. An object X of B is quasi-compact iff its image, h*(X),
in the topos B~ 1is of finite type (in the sense of A2.2.1).

Proof. The fact follows from [SGA4], Exp.VI, Proposition 1.2 and Theorem 1.23. =

Notice that if B itself is a topos with the canonical topology, then the functor A™ is
a category equivalence. Therefore quasi-compact objects of a topos are exactly objects of
finite type.

It follows from A2.2.2.1 and A2.2.1.1 that for any site B, the class B, of quasi-
compact objects of 9B satisfies the condition A2.1(#).

A2.3. Weakly P-representable, P-quasi-separated, and P-coherent mor-

phisms. We call a morphism X Ty yvof B weakly P-representable if for any commutative

diagram
S

A —_ X
'] L1
g
T — Y
with T' € P, there exist a commutative diagram
7 s X
v L1
g
T — Y



and a morphism v : Z — Z' such that ' € P, s=s' oyand t =t o~.
We denote the class of all weakly P-representable morphisms of B by X7.

A2.3.1. Proposition. Suppose fiber products exist in B and the subcategory P

satisfies A2.1(#). Then a morphism X Ly belongs to X7 iff for any morphism T — Y
such that T € P, the projection X xy T — T belongs to P. In other words, X7 is the
class of P-representable morphism.

Proof. Suppose (X N Y) € P, and let g: T — Y be a morphism with 7" € P. By
definition, there exists a commutative diagram

’

7 2, X

v | L1

T L> Y

and a morphism v : X xy T — Z’ such that ¢’ € P, s = s oy and t = t' o~. Here
s, t denote the canonical projections T' +— X Xy T — X . By the universal property
of fiber products, there exists a unique morphism ¢ : Z/ — X xy T such that s’ = so ¢
and t' =to¢. Thus s =so¢ovy and t =t o ¢ oy which implies that ¢ o v = id. By (#),
X xy T — T is a composition of two morphisms of P, hence it belongs to P. m

A2.3.2. P-quasi-separated morphisms. We call a morphism X i) Y P-quasi-
separated if for any pair of morphisms t1,t; : T — X such that T € P and fot; =
f otg, any morphism g : Z — T which equalizes t1, ty factorizes through a morphism
(¢ : Z/ — T) € P such that t; 0 g’ =t 04"

Denote by E?;S the class of all P-quasi-separated morphisms.

A2.3.3. Propostion. (a) Any monomorphism of B is P-quasi-separated.
(b) Suppose the P has the property A2.1(#) and X Xy X exists. Then f € E?;S iff the
diagonal morphism, Ax,y : X — X xy X belongs to xP.

Proof. (a) If X — Y is a monomorphism, then the morphism Ax/y : X — X xy X
is an isomorphism, hence the assertion.
(b) The argument is similar to that of A2.3.1. m

A2.3.4. P-coherent morphisms. We call a morphism P-coherent if it belongs to
the class ©7, =7 N ZZ;S.

A2.3.5. Proposition. (a) Any isomorphism is P-coherent.
(b) The classes XF and E?;S are closed under composition. In particular 3
under composition.

(c) Let X oY and g:T — Y be morphisms such that X xy T exists. If f € X7
(resp. f € 2(7;37 resp. f € Efoh), then the canonical projection X Xy T — T belongs to
the same class.

(d) Let X N Y, Y - Z be morphisms.
(i) Ifgo f € XT  then f € EZ])S.

qs’

P

Lo s closed
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(ii) Suppose g € EZ;S. Ifgof € X7 (resp. gof € X¥ ), then f € X7 (resp. f € X7, ).
Proof. (a) Obvious.

(b) (i) Let X Ly % 7 Shea diagram such that f,g € ¥ and S € ObP.
Let

w2, x
M lgf
s 5 z

be a commutative diagram. Since g € X7, there exists a commutative diagram

w2 x
¢ | |7
T 1,y
Wl lg

s - Zz
such that ¢ o € = and T € P. Since f € X%, there exists a commutative diagram

w — X
¢ | | s
T % Y
and a morphism v : W — W’ such that £ = & oy, ¢ = ¢ oy and W’ € P, hence the

assertion.
(ii) Suppose morphisms X Loy and Y %5 Z are P-quasi-separated. Let

h t
W — T — X

al t | o1 0

t f
T Xg—>Z

be a commutative diagram such that 7" € P. Consider instead of (1) the commutative
diagram

wo o, o Iy
A fts | | g (1)
r I y 2. 2z

Since g € 2(7;5, the morphism h : W — T is a composition of a morphism (b’ : § —
T) € P such that fot; oh' = fotyoh’ and a morphism £ : W — S. Since h equalizes
t1,te, the morphism £ equalizes t| =t; o b’ and t}, =t o h'. Since f is P-quasi-separated,
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¢ factors through a morphism (¢ : U — S) € P such that ¢} o ¢’ = t}, o &’. Thus
t10(h o&) =tyo(h' o), hence the assertion.

(c) Let X BN Y, g : T — Y be morphisms such that X xy T exists. Suppose
f € ¥P. Consider a commutative diagram

ol t
W —— XxyT —s X

v | fi| | f (3)
s s 7 sy

such that the right square is cartesian and S € P. Since f € X%, there exists a commutative
diagram

W Xy T s X

v | |/ (4)
s s T v

with ¢’ € P and a morphism ~ : W — W’ such that ¢ = ¢’ oy, ¥ = ¢’ o. If follows
from the universal property of fiber products that the diagram

’

t
W — XxyT —s X

v | fi | |7
s t
S — T — Y
commutes.
The remaining assertions are proved in a similar way. Details are left to the reader. m

A2.4. P-quasi-separated and P-coherent objects.

A2.4.1. Definition. We call an object X of B P-quasi-separated if any morphism
T — X with T € P, belongs to X.7.

A2.4.2. Definition. We call an object X P-coherent if it is P-quasi-separated and
belongs to P. We denote by P, the full subcategory of P formed by P-coherent objects.

A2.4.3. Proposition. Let X TV bea morphism of B.

(a) If Y € P and f € X7, then X € P.

(b) If Y is P-quasi-separated and X € P, then f € ¥F.

(c) If Y is P-coherent, then f € X¥ iff X € P.

(d) If Y € P (resp. Y is P-quasi-separated, resp. Y is P-coherent) and if f € XF
(resp. [ € EZIDS, resp. f € XL, ) then X € P (resp. X is P-quasi-separated, resp. X is
P-coherent).

Proof. (a) Since Y € P, X ~ X xy Y € P (see A2.3.1).

(b) Follows from definition.

(c) Follows from (a) and (b).
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(d) (i) Let Y and X oY be P-quasi-separated. Let S -2 X be a morphism with
S € P. Since Y is P-quasi-separated and S € P, the composition f o g belongs to ¥7. By
A2.3.5(d)(ii), g € X7, hence X is P-quasi-separated.

Suppose Y and X i) Y are P-coherent. Then by (i), X is P-quasi-separated and by
(¢), X € P, hence X is P-coherent. m

A2.4.4. Proposition. Subobjects of P-quasi-separated objects are P-quasi-separated.

Proof. Let Y Iy X bea monomorphism, and let X be a P-quasi-separated object.
Let

¢
Z — S
v ] s
t
T — Y
be a commutative diagram such that 5,7 € P. Since X is P-quasi-separated, there is a

commutative diagram
¢/
z —— S
l fos

v |
fot
T — X

with ¢ € ¥7 and a morphism Z s 7' such that ¢ =¢ oh, p =" oh. Since f is a
monomorphism, the diagram

’

zZ! —— 8
v | s
T vy

is commutative. m

A2.5. P-constructible objects. Suppose the category B has a final object. An
object X of B is called constructible if it is coherent over a final object. We denote by
Bp_cons the full subcategory of B formed by P-constructible objects.

A2.6. Finiteness conditions in a Q-category. Fix a Q-category A = (A = A).

A2.6.1. Lemma. Let 3j € ObA be such an object that uy(y) ewists. If j is of finite
type (resp. finitely presentable), then ui(y) has the same property.

Proof. Let D : D — A be a filtered inductive system. We have a commutative

diagram
colimA(w(y), D) ——  A(w(y),colimD))

| | M)

colimA(y,u* o D) —— A(y, colim(u* o D))

Here the right vertical arrow is the composition of the canonical morphism

A(y, colim(u* o D)) — A(y, u*(colimD)) (2)
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and the isomorphism A(y, u*(colimD)) — A(u(y), colimD). Since u* has a right adjoint,
it preserves colimits. In particular, the morphism (2) is an isomorphism. If g is of finite
type (resp. finitely presentable), the lower horizontal arrow is injective (resp. bijective),
hence the upper one is injective (resp. bijective). m

A2.7. Quasi-compact spaces and quasi-separated morphisms. Let A = (4 é
A) be a Q-category, and let 7 be a quasi-topology on the category Espa of A-spaces (cf.
8.1 and 8.2). We call an A-space X T7-quasi-compact if any T-cover of X has a finite
subcover. Denote by K, the full subcategory of the category £spa whose objects are 7-
quasi-compact spaces. Applying to the subcategory &, the formalism presented above, we
obtain the notions of weakly K, -representable, T-quasi-separated, and T-coherent morphisms
and spaces (see A2.3, A.2.3.2, A2.3.4, A2.4).

A2.7.1. Proposition. (a) Any isomorphism is T-coherent.

(b) The class of weakly R, -representable morphisms and the class of T-quasi-separated
morphisms are closed under composition and base change. In particular, the class of T-
coherent morphisms (which is the intersection of other two) is closed under composition
and base change.

(c) Suppose the composition go f of morphisms is a weakly K, -representable morphism
(resp. a T-quasi-separated morphism). Then f is weakly K, -representable (resp. T-quasi-
separated). In particular, if g o f is T-coherent, then f is quasi-coherent.

Proof. The assertion is a special case of A2.3.5. m

A2.7.2. Proposition. (i) Let X LY be an A-space morphism. IfY is T-
quasi-compact (resp. Y is T-quasi-separated, resp. Y is T-coherent) and if f is weakly
R, -representable (resp. f is T-quasi-separated, resp. f is T-coherent), then X is T-quasi-
compact (resp. X is T-quasi-separated, resp. X is T-coherent).

(ii) Subspaces of T-quasi-separated A-spaces are T-quasi-separated.

Proof. The assertion (i) is a special case of the assertion (d) in A2.4.3. The assertion
(ii) is a specialization of A2.4.4. m
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