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1. Introduction 

There is a rich mathematical structure attached to the cobordism invariants of 
manifolds. In the cases described by the index theorem, a generalized cohomology 
theory is used to express the global properties of locally defined analytic objects. 
Hirzebruch's theory of multiplicative sequences gives an expression for these in­
variants in terms of characteristic classes, and brings to focus their remarkable 
arithmetic properties. Quillen's theory of formal groups and complex oriented co­
homology theories illuminates the generalized cohomology theories themselves. 

Around eight years ago a new invariant, the elliptic genus, was introduced 
[17]. It is a cobordism invariant of oriented manifolds that takes its values in a 
certain ring of modular forms. Witten [23], [22] proposed an analytic interpreta­
tion of the elliptic genus using analysis on loop spaces. Landweber, Ravenel, and 
Stong [13] constructed a corresponding cohomology theory (elliptic cohomology), 
and it is believed that there is an "index" theorem relating analysis on loop space 
to elliptic cohomology. So far, a satisfying mathematical theory is lacking. 

In the same papers [23], [22] Witten introduced a variant of the elliptic genus, 
now known as the Witten genus. The Witten genus takes its values in modular 
forms when applied to Spin manifolds with ^ = 0. The cohomological significance 
of this invariant has remained unclear. 

The point of this note is to describe a generalization of theories of Hirzebruch 
and Quillen to the cobordism of Spin manifolds with ^ = 0. It turns out that 
in the presence of an elliptic curve there is a canonical cobordism invariant. This 
invariant coincides with the Witten genus in the case where the elliptic curve is 
the Tate curve, though it is most natural to consider all elliptic curves at once. 
This leads to a cohomological expression for the modular invariance of the Witten 
genus (of a family), and to a new generalized cohomology theory. The coefficient 
ring of this new cohomology theory is the ring of topological modular forms. It is 
related to the ring of modular forms over Z, but is not torsion free. The torsion 
groups in this ring represent new invariants of Spin manifolds with ^- = 0, and it 
would be interesting to describe these invariants in terms of geometry and analysis. 

Most of this paper represents joint work with Matthew Ando and Neil Strick­
land. The construction and computations with the new cohomology theory are 
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joint work with Mark Mahowald and Haynes Miller. Some of the results described 
here represent work in progress. 

2. Genera and their characteristic series 

Let R be a commutative ring. An R-valued genus is a ring homomorphism $ from 
some type of cobordism ring to R. Thus a genus is a function <[> that assigns to 
each manifold M an element $(M) G R, and that satisfies 

*(Mi JJ M2) = </>(Mi) + 0(M2) 

*(Mi x M 2 ) = 0(Mi)0(M2) 

*(SM) = 0. 

The cobordism rings usually considered are the ring MU* of cobordism classes 
of stably almost complex manifolds, and the ring M SO* of cobordism classes of 
oriented manifolds. The structure of these rings has been determined [20], [14], 
[16], [21], and there are isomorphisms 

Mt / I ,®QwQ[CP 1 ,CP 2 , . . . ] 

M SO* (8> Q « Q[CP2, C P 4 , . . . ]. 

When R is torsion free, a genus is determined by its values on the complex 
projective spaces. There are two natural generating functions that collect these 
values 

log* (z) = Y, $ ( C P " ) ^ ï (logarithm) 

K$>(z) = y—r, (characteristic series) 

where exp$(;z) = log$ (z). A genus <D> with values in a torsion free ring factors 
through Ad SO* if and only if the characteristic series is even 

K*(z) = K*(-z). (2.1) 

The characteristic series determines a stable exponential characteristic class 
with values in H*( — ; Ä ® Q) as follows. By the splitting principle, such a class is 
determined by its value on the complex line bundle L over BS1 associated to the 
identity character. Setting z = c\(L), the characteristic class is then defined by 

K*(L) = K*{z) eH*{BS1\R^Q). 

The following formula of Hirzebruch [10] expresses $(M) in terms of characteristic 
(Pontryagin or Chern) classes: 

$(M) = (K*(TM),[M\). 

Here are some examples. 

(1) The genus whose characteristic series is z/(l — e~z) is the Todd genus. The 
log of the Todd genus is the power series 

- l o g ( l - s ) = ^ ^ - , 
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so its value on CP77, is 1. It can be shown that the Todd genus of a stably almost 
complex manifold is an integer. 

(2) The genus with characteristic series 

z/2 _ z 
K(z) 

sinh(^/2) e*/2 - e-*/2 

is the A genus. It is an invariant of oriented manifolds. The Â-genus has the 
property that it assumes integer values on manifolds that admit a Spin structure. 

(3) The genus with logarithm 

log*(z) = ! (l-26t2 + et4)-idt 
Jo 

is the elliptic genus of Ochanine [17]. The associated characteristic series is even, 
so it is an invariant of oriented manifolds. 

(4) The Witten genus [23], [22] is the genus with characteristic series 

z/2 Yj (1 - qn)2 

n sinh(,z/2) AA (l-q^ez)(l-qne-z)' 

This is an even function of z, and so defines a cobordism invariant of oriented 
manifolds. The Witten genus takes values in Z[[g]] when applied to manifolds that 
admit a Spin structure. 

There is a dimension 4 characteristic class of Spin bundles, twice which is p\. 
Let's denote this class ^-. If M is a Spin manifold of dimension n, and ^-(TM) — 0, 
then the Witten genus of M turns out to be the (/-expansion of a modular form 
for the group JSX 2 (Z) . This means that after setting q = e2lT%r, the Witten genus 
of M can be written as f(r), where / is a holomorphic function on the upper half 
plane R e r > 0, and satisfies the functional equation 

/ ( - l / r ) = ( - r ) V ( r ) . (2.2) 

3. Genus of a family 

The underlying geometry of a genus begins to be revealed when its definition is 
extended to families. Let Ms be a family of manifolds parameterized by the points 
of a space S. The manifolds Ms are allowed to transform through cobordisms, but 
are required to be equidimensional of dimension, say, n. Such a family defines an 
element of the generalized cohomology group M_ n(S), where M is the cohomology 
theory associated to the type of cobordism being considered. 

For a genus $ the quantities &(MS) form some kind of structure parameter­
ized by the space S. It is best to think of this structure as representing an element 
of a generalized cohomology group E~n(S). A genus for families of manifolds is 
then a multiplicative map 

M - » E 

of generalized cohomology theories. 
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The process of extending the definition of a genus to families is not at all 
canonical, and is intimately connected with the expression of the genus in terms 
of geometry and analysis. 

Several kinds of cobordisms will be used in this paper. They are displayed 
below. The diagram on the left is a diagram of classifying spaces. The map labeled 
^- is the universal characteristic class of the same name, and the spaces BU(6) 
and BO(8) are the homotopy fibers of the map ^ and its restriction to BSU, 
respectively. The diagram on the right is the corresponding diagram of cobordism 
theories. For example, a BO(8)-manifold is a manifold equipped with a lift to 
BO (8) of the map classifying its stable tangent bundle, and A40(8) is the coho­
mology theory associated to the cobordism of BO(8)-manifolds. 

BU(6) > BO(8) MU(6) > M 0(8) 

BSU > BSpin —^—> K(Z,A) M SU > MSpin 

BU > BSO MU > A4SO. 

The "families" versions of the genera of Section 2 are as follows. 

(1) The natural domain for the Todd genus is AdU, the theory of complex cobor­
dism. The target of the Todd genus can be taken to be ordinary cohomology with 
coefficients in the rational numbers. This, however, obscures the fact that the Todd 
genus of each individual manifold is an integer. If the Todd genus is thought of as 
a formula for the dimension (Euler characteristic) of certain cohomology sheaves, 
then the natural target appears as if-theory [4], [1]. 

(2) The A genus is most interesting when applied to Spin manifolds, making the 
natural domain the cohomology theory MSpin. Atiyah and Singer [2] showed that 
the A-genus is the index of the Dirac operator, and portrayed the natural target 
of the "families A-genus" as the cohomology theory KO (bundles of vector spaces 
over R). This refinement represents more than an accounting of the integrality 
properties of the genus. The groups 

KO» (S8fc+1) « KO° (S8k+2) « Z/2 

correspond to torsion invariants of families of Spin-manifolds. These invariants can 
be described in terms of analysis but can not be calculated in terms of Pontryagin 
classes [3]. 

(3) In the case of the elliptic genus, it can be shown that the functor 

E l f ( - ) = M S O * ( - ) ® Z[A 6,E,A,A-1]/(26E(62 - E)2 - A) 
MSOm 

defines a generalized cohomology theory [13], [12], [9] on the category of finite cell 
complexes. This represents a natural extension of the elliptic genus to families, 
but, at present, there is no known geometric interpretation of Ell (see, however, 
the exposé of Segal [19]). 



558 Michael J. Hopkins 

(4) The natural domain for the Witten genus is the cohomology theory M0(8). 
There is a map 

MO(8) - • KOM 

representing the Witten genus. It accounts for the integrality properties, and has 
some associated torsion invariants. On the other hand it factors through MSpin, 
and so cannot possibly express the transformation properties with respect to the 
modular group. This is related to the fact that behavior with respect to the trans­
formation r \—> 1/T is very difficult to understand from the point of view of power 
series in q. 

4. Cubical Structures 

A deeper understanding of the Witten genus of a family requires investigating 
the genera attached to the cobordism theories MU(6) and MO(8). The result of 
Hirzebruch, that a genus can be calculated by integrating a stable exponential 
characteristic class over the manifold, remains valid for these theories. However, a 
stable characteristic class is not determined by its value on L. In fact it does not 
even have a value on L, as the structure group of L does not lift to BO (8). On 
the other hand, the (virtual) bundle 

V3 = (Li - 1) ® (L2 - 1) ® (L3 - 1), (4.1) 

over (BS1)3, admits a canonical lift of its structure group to BU(6). Furthermore, 
there is a "splitting principle" that allows one to formally express any BU(6) 
bundle as a sum of trivial line bundles and bundles of this kind. The cohomology of 
(BS1)3 is a polynomial algebra in three variables, so one expects the characteristic 
series of an MU(6) genus to be a function of three variables. This is indeed the 
case, and the series that arise satisfy a certain functional equation. There is a 
geometric interpretation of this functional equation that is particularly suited to 
the study of elliptic spectra. It is known as a cubical structure, and was introduced 
by Breen [5] in order to codify the the rich structure attached to line bundles on 
abelian varieties coming from the theorem of the cube. 

Let G be an abelian group, and £ a line bundle over G. The group G might 
be a discrete group, an algebraic group, a topological group, or a group of some 
other kind. The line bundle £ consists of a collection of lines £x for x G G, and 
should be thought of as varying discretely, algebraically, continuously, or in some 
other manner, depending on the kind of group. 

Given G and £, let 0 (£) be the line bundle over G3 whose fiber at (x,y,z) 
is 

r\(rx\ _ A'x+y+z*'x**y*<'z 
^ W C x . J / , « ) ~ rx rx rx rx J 

*-Jx+y*iJx+z*'ty+z*-'e 

where e G G is the identity element. In this expression, multiplication and division 
are meant to indicate tensor product of lines and their duals. 

The functor 9 is a kind of "second difference" operator. If the terms "line 
bundle" and "tensor product" are replaced with "function" and "addition," then 
8 becomes the operator whose kernel consists of quadratic functions. 
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A cubical structure on £ is a section s of 0(£) satisfying 

(rigid) s(e,e,e) = 1 
(symmetry) s(xa{1),xa(2),Xa(3)) = s(x1,x2,x3) 
(cocycle) s(w + x,y,z)s(w,x,z) = s(w,x -\-y,z)s(x,y,z). 

The two sides of these equations are sections of different bundles, so a com­
ment is in order. In each case a canonical identification can be made. For example, 
the section s(e,e, e) is an element of 6(£)(ejEje), which is the tensor product of 
four copies of £ e with its dual. Contracting the lines with their duals gives an 
identification of this with the trivial line, and it is via this identification that the 
equation labeled "rigid" takes place. There are similar canonical identifications 
that need to be made for the other equations. 

The set of cubical structures on £ will be denoted C3(G;£). 
If the line bundle £ comes equipped with a symmetry isomorphism 

£ ; XJX ~ »*-'—œ 

then the fiber of 0(£) over the point (x, y, —x—y) admits a canonical trivialization. 
A T.-structure on £ is a cubical structure s with the property that 

s(x,y,-x-y) = 1. (4.2) 

The set of E-structures on £ will be denoted CQ(G;£,£). 

5. Formal groups and complex orientable spectra 

The group that arises in homotopy theory is the formal group attached to a com­
plex orientable cohomology theory [18]. Recall that a cohomology theory E is com­
plex orientable if there is a class x G E*BS1 whose restriction to E*S2 « E"*~2(pt) 
is a unit. A choice of such an x gives rise to a very rich structure, and in particular, 
to a theory of E-valued Chern classes for complex vector bundles. 

Suppose that E is a multiplicative, complex orientable cohomology theory 
with the additional properties that 

E*(pt) is commutative (5.1) 

E2{pt) contains a unit. (5.2) 

With these assumptions, the ring E°(BS1)n is isomorphic to a formal power series 
ring in n variables over J50(pt). The multiplication map 

BS1 x BS1 -> BS1 

gives the formal spectrum G = spf E°BS1 the structure of a formal group. In terms 
of "physical" groups, it provides the abelian group structure on the functor G = 
Hom(E°BS1, — ), from the category of augmented EQ(pt)-algebras with nilpotent 
augmentation ideal, to the category of abelian groups. 

The formal group G is the one of interest. The ring of functions on G is 
isomorphic to a formal power series ring in one variable over E°(pt). Let £ be the 
line bundle O(-e), whose local sections are functions that vanish at the unit. The 
module of global sections of £ is the reduced cohomology group E^BS1. This line 
bundle comes with an obvious symmetry isomorphism t : £ x « £-x-
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6. A homology calculation 

Now let R be a commutative ring, and suppose E is as above. A map 

EQBU(6) - • R 

can be composed with the map classifying V3 (4.1), to yield an E° (pt)-module 
map from EQ (BS1) to R. This can be thought of as an R-valued function / on 
G3. It satisfies the following equations (in which the symbol "+" refers to addition 
in the group G): 

f(e,e,e) = 1 
/(Zff(i)iZ<r(2)iZff(3)) = f(xi,x2,x3) 

f(w + x, y, z)f(w, x, z) = f(w, x + y, z)f(x, y, z). 

The first two of these equations are obvious. The last arises from the tensor product 
of (L4 — 1) with the equation 

( L i L 2 - l ) ( L 3 - l ) + ( L i - l ) ( L 2 - l ) 

= (Lx - 1)(L2L3 - 1) + (L2 - 1)(L3 - 1). 

Stated another way, the function / defines a cubical structure on the trivial line 
bundle OQ-

THEOREM 6.1. The map described above gives rise to a natural isomorphism 

spec EQBU(6) « C3(G;OG) 

of functors on the category of multiplicative complex orientable cohomology theories 
E satisfying (5.1) and (5.2). 

For multiplicative cohomology theories E and F, let Mult(i£, F) be the set of 
multiplicative transformations from E to F. In terms of the representing spectra, 
this is the set of homotopy classes of homotopy multiplicative maps. 

The following theorem is proved by applying the Thorn isomorphism to The­
orem 6.1. 

THEOREM 6.2. The map described above gives rise to a natural isomorphism 

Mult(MU{6),E)nC3(G;£) 

of functors on the category of multiplicative complex orientable cohomology theories 
E satisfying (5.1) and (5.2) ; with associated formal group G. If'\ E E°(pt), or if 
E is K(n)-local for some Morava K-theory K(n), with n < 2, then this descends 
to a natural isomorphism 

Mult(MO(8),£) « Cl(G;Z,t). 

There are even more general criteria guaranteeing the validity of the second 
assertion, but they involve a lengthy discussion. 

Theorem 6.2 is analogous to the result that a genus with values in a torsion 
free ring is determined by its characteristic series. The role of the characteristic se­
ries is played by a cubical structure. The analogue of the symmetry condition (2.1) 
is condition (4.2). 
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7. Elliptic spectra 

Theorem 6.2 is most interesting when the formal group G is extended to an elliptic 
curve. For the purposes of this paper, an elliptic curve is a generalized elliptic curve 
in the sense of [8, Definition 1.12], all of whose geometric fibers are irreducible. 

DEFINITION 7.1. An elliptic spectrum consists of 

(1) a complex orientable spectrum E satisfying (5.1) and (5.2), with associated 
formal group G; 

(2) an elliptic curve E over J5°(pt); 

(3) an isomorphism t : G —> Ef from G to the formal completion of E. 

The third condition requires explanation. The elliptic curve E gives rise to an 
abelian group-valued functor on £"°(pt)-algebras, by associating to an algebra R 
the abelian group of R-valued points of E. Restricting this functor to the category 
of augmented E° (pt)-algebras with nilpotent augmentation ideal gives a formal 
group Ef. This is the formal completion of E. The isomorphism G —> Ef is then an 
isomorphism of formal groups. 

The collection of elliptic spectra forms a category, in which a map consists 
of a multiplicative map of cohomology theories, and a map of elliptic curves that 
is compatible with the associated map of formal groups. 

THEOREM 7.2. Attached to each elliptic spectrum E is a multiplicative map 

uE : AdU(6) -* E. 

This map is modular in the sense that if f : E —» F is a map of elliptic spectra, 
then ap = f o a E • If \ E E, or if E has the property that E*(pt) is torsion free 
and concentrated in even degrees, then AdU(6) can be replaced with Ad0(8). 

In the case where E = If [g], and E is the Tate curve, the map 

7T*aE : AdO(8)* - • Zfe] 

can be shown to be the Witten genus. The modular invariance of the genus aE 

is an expression of the modular invariance of the "families" Witten genus. In the 
next section it will be explained how this reduces to "modular invariance" in the 
classical sense, when the parameter space S consists of only one point. 

The main tool used to deduce Theorem 7.2 from Theorem 6.2 is the theorem 
of the cube. 

THEOREM 7.3 Theorem of the cube. If £ is a line bundle over an abelian variety, 
then 0 (£) is trivial. 

Topologically this result follows from the facts that line bundles are classified 
by H2( — ;Z), and H2 is a quadratic functor. The theorem of the cube is the 
analogue of this assertion for algebraic line bundles. 

It follows from the theorem of the cube that any line bundle over an abelian 
variety has a canonical cubical structure. Indeed, the only sections of 0(£) are 
constants, and any potential cubical structure must assume the value 1 at the 
unit. The "rigid," "symmetry," and "cocycle" conditions become identities between 
constant functions that assume a prescribed value at the unit. 
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Proof of Theorem 7.2, given Theorem 6.2. The unique section s of B(£) satisfy­
ing s(e, e,e) = 1, and extending to a section of B(ÖE(—e)), is automatically an 
element of CQ(C7;£,£) . Take aE to be the multiplicative map associated to s by 
Theorem 6.2. D 

8. Modularity 

The point of this section is to relate the "modular" invariance of the maps aE to 
modular forms. This leads naturally to two new cohomology theories. 

Let A4 EH be the category whose objects are elliptic curves 

E A S 

with identity section e, and in which morphisms are cartesian squares 

E' > E 

S. 

This is the elliptic moduli stack (see [15], [8], [7]), as is denoted A4i in [8]. 
For an elliptic curve E/S let a;E/s = e*^E/s ^ e ^ n e ^m e bundle over S con­

sisting of invariant 1-forms along the fibers. For each k G Z, let uk be the functor 
on A4 EH whose value on E/S is the abelian group of global sections of WE/sk- The 
collection of functors LJk forms a functor CJ* on A^EII with values in graded rings. 
The ring of modular forms over Z is the graded ring 

R* =hm^E11o;*. 

This ring has been determined [6, Prop. 6.1], and there is an isomorphism 

Ä, « Z[c4, c6, A\/(c\ -c\- 1728A). 

The grading is such that the class cn is homogeneous of degree n. 
The ring R maps to the classical ring of modular forms by restricting to 

the inverse limit over the full subcategory of A4EH whose only object is the usual 
family of elliptic curves over the upper half plane. The automorphism group of 
this object is the group SL2(Z). This map sends C4 to 24 • 32 • 5 • E2 and CQ to 
25 • 33 • 5 • 7 • E3, where E2 and E3 are the Eisenstein series of weights 4 and 6 
respectively. The element A maps to the discriminant. 

Attached to each elliptic spectrum E is the elliptic curve E over S = spec TTQE. 

The isomorphism G œ Ef determines an isomorphism 

E°(S2k) = E~2k (pt) « LJk(E/S). 

It turns out that there are enough elliptic spectra that there are isomorphisms 

hm E~2k(pt)^Rk, 
E elliptic 

lim £ 2 f e + 1 ( p t ) « 0 . 
E elliptic 
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Moreover, Theorem 7.2 shows that the orientations aE give rise to a map 

Ad0(8)* -> lim E*(pt). 
E elliptic 

This proves that the Witten genus takes its values in R*. One can, however, hope 
for a more refined statement. This is the subject of the next section. 

9. Topological modular forms and eo2 

The category of elliptic spectra is closely related to the elliptic moduli stack. There 
is one important difference. Whereas there is no "good" colimit of the objects in 
A4 EH, the homotopy inverse limit in spectra, of the category of elliptic spectra, 
can be formed. The resulting spectrum is no longer elliptic, but it still represents 
an interesting cohomology theory. 

In practice it is necessary to "rigidify" the category of elliptic spectra by work­
ing with a certain subcategory of A^ etale elliptic spectra. The A œ condition has 
to do with higher homotopy associativity of E, and the etale condition is that the 
map spec ITQE —• A4 EH which classifies E is etale and open. The other conditions 
defining this subcategory arise from obstruction theory and will remain unspeci­
fied. Though the notation is slightly misleading, the homotopy inverse limits that 
follow are taken over this subcategory. 

Define eo2 to be the connected cover of 

holim E 
E, AQO etale elliptic 

and let E02 be the spectrum 

holim E. 
E, AQO etale elliptic 

E smooth 

These spectra are topological models for the moduli space of elliptic curves. There 
is a spectral sequence 

Ì^MKU^ => 7T2fc-fle02, (9.1) 

so it makes sense to call the ring eo2*(pt) the ring of topological modular forms. 
The spectrum E02 is closely related to a spectrum constructed by the author 

and Miller, and the spectrum eo2 is closely related to one constructed by the author 
and Mahowald [11]. 

This spectral sequence (9.1) has been computed by the author and Mahowald. 
It terminates at a finite stage. One interesting feature is that the discriminant A 
is not a permanent cycle, whereas the forms 24A and A24 are. The form A24 is 
not a divisor of zero. There is an isomorphism 

£0 2 , ( - )« (A 2 Ve 0 2 , ( - ) . 

The cohomology theory E02 is periodic with period 242 = 576. 
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The torsion in eo2* is annihilated by 24. It has a very rich structure. The 
cohomology theory eo2 can be used to account for nearly everything that is known 
about the stable homotopy groups of spheres in dimensions less than 60. 

Regarding the Wit ten genus, the more refined statement for which one can 
hope is tha t the maps oE assemble to a multiplicative map 

MO(8) - • eo2. 

This is consistent with many calculations, and is the subject of work in progress. 
It is the most natural target for the "families" Wit ten genus, and would define 
new torsion invariants of Spin-manifolds with ^ = 0. It would be very interesting 
to have an explanation of these invariants in terms of geometry and analysis. 
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