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Global and local descriptions

A bundle of finite sets is a set map
p: E— B,

such that p~'(b) is a finite set for all b € B.

The bundle p : E — B gives rise to local data:

®,: B — FinSet: b — p~'(b),

where FinSet is the set of finite sets.
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Bundle Theory

Global and local descriptions for Categories

A bundle of finite sets is a set map Kathryn Hess

Bundles of finite

p . E N B7 sets
Bundles of
categories

such that p~'(b) is a finite set for all b € B. Bundies of

monoidal

The bundle p : E — B gives rise to local data: categories

Bundles of
bicategories

®,: B — FinSet: b — p~'(b),
where FinSet is the set of finite sets.
Any set map ¢ : B — FinSet can be globalized: let
Eo = {(b,x) | x € ®(b),b € B}

and
po : Eo — B:(b,x) — b.
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The taUtO|Oglca| bundle for Categories
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categories

Let

Bundles of

FinSet, = {(X, x) | X € FinSet, x € X}. monoidal

categories

The tautological bundle of finite sets is the map Bundies of

bicategories

Tset : FinSet, — FinSet : (X, x) — X.



The tautological bundle

Let

FinSet, = {(X, x) | X € FinSet, x € X}.

The tautological bundle of finite sets is the map

Tset : FinSet, — FinSet : (X, x) — X.

Observe that 7,

(X) = X for all X € FinSet.

Bundle Theory
for Categories

Kathryn Hess

Bundles of
categories

Bundles of
monoidal
categories

Bundles of
bicategories



Bundle Theory

CIaSS IfICatIOn for Categories

Kathryn Hess

Proposition
The bundle Ts¢t classifies bundles of finite sets. J _

Bundles of
categories

Bundles of
monoidal
categories

Bundles of
bicategories



Classification

Proposition
The bundle Ts¢t classifies bundles of finite sets.

Proof.

The globalization ps : E¢ — B of ® : B — FinSet fits into
a pullback square

Es — FinSet, .

Po i lTset

B—2 > FinSet
Moreover, it is obvious that

Po, =p and &, =o

forallp: E — Band for all  : B — FinSet. O
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The local description

Let Cat denote the category of small categories

Let B denote any category. Local category bundle data
over B is a functor

¢ : B — Cat.
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The global description

A functor P : E — B is a bundle of categories if it is a split
opfibration with small fibers
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The global description

A functor P : E — B is a bundle of categories if it is a split
opfibration with small fibers , i.e.:

@ (Existence of a lift)

3 Be
L P P
P(e) b cB

V3
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The global description

@ (Universal property of the lift)

e_A>ﬁ*e. :/\ >e/
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The global description

]
N (v8)«(e)
7Be
e — & —— V«Bx€
Be VBxe
1 P
P(e) v b kil c

and @e = Id, for all e.
@ Each P~'(b) is a small category.
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Associated bundles

Proposition
For any F : A — B, there is a natural factorization

—_F .B
N
-—E

such that P is bundle of categories, QS = lda and there
is a natural transformation SQ = IdE.

,>->

Q
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Associated bundles

Proposition
For any F : A — B, there is a natural factorization

—_F .B
N
-—E

such that P is bundle of categories, QS = lda and there
is a natural transformation SQ = IdE.

,>->

Q

The proof is highly analogous to the usual proof that any
continuous map can be factored as a homotopy
equivalence followed by a fibration.
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Invariance under pullback

Proposition

If P : E — B is a bundle of categories and F :
any functor, then the pullback

F*P:E;A—>A

of P along F is also a bundle of categories.

A—Bis

The proof is very straightforward.
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The tautological bundle

Let Cat, be the category of pointed, small categories:
ObCat, = {(A,a) | Ac ObCat,ac ObA};

Cat,((A a), (B,b)) = {(F.f) | F: A—B,f: F(a) — b}.
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The tautological bundle el
Kathryn Hess

Bundles of finite

Let Cat, be the category of pointed, small categories: sets
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ObCat, = {(A,a) | A< ObCat,ac ObA}; L
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Cat* ((A7 a), (B, b)) = {(F, f) ‘ F:A— B’ f- F(a) N b} categories
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The tautological bundle of categories is the functor

(A, a) — A

: Cat, — Cat :
Tcat {(F, f) — F.

Observe that 7! (A) = A for all small categories A.
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Classification

Theorem
The bundle 7¢5; classifies bundles of categories.

Proof.

@ Local to global: Given local category bundle data
¢ : B — Cat, consider the pullback

E, —— Cat.

Po l chat
[0

B —— Cat.

Since ¢4 is a bundle of categories, Py is also a
bundle of categories.
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Classification

Theorem
The bundle 7¢5; classifies bundles of categories.

Proof.

@ Local to global: Given local category bundle data
¢ : B — Cat, consider the pullback

E, —— Cat.

Po l chat
[0

B —— Cat.

Since ¢4 is a bundle of categories, Py is also a
bundle of categories. (Py is exactly the Grothendieck
construction on ¢.)

Ol
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Classification

Proof.

@ Global to local: Given a bundle of categories
P : E — B, define ¢p : B — Cat by ®p(b) = P~'(b)

and )
&1 - B
A__
¢ T _ ldy=5(5)(&)
- Bey B
1 P
P(Be, o€)
b/”\ o
\7/
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The “geometric” viewpoint

A morphism 3 : b — b’ in B can be seen as a “path” from
btob'.
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The “geometric” viewpoint

A morphism 3 : b — b’ in B can be seen as a “path” from
btob'.

The functor ®p(3) : P~1(b) — P~'(b') can therefore be
seen as “parallel transport” along the path g from the
fiber over b to the fiber over b'.
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The “geometric” viewpoint

A morphism 3 : b — b’ in B can be seen as a “path” from
btob'.

The functor ®p(3) : P~1(b) — P~'(b') can therefore be
seen as “parallel transport” along the path g from the
fiber over b to the fiber over b'.

Since ®p(3") o ®p(B) = ®p(H'), a “connection” giving
rise to this “parallel transport” would have to be flat.
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The “geometric” viewpoint

A morphism 3 : b — b’ in B can be seen as a “path” from
btob'.

The functor ®p(3) : P~1(b) — P~'(b') can therefore be
seen as “parallel transport” along the path g from the
fiber over b to the fiber over b'.

Since ®p(3") o ®p(B) = ®p(H'), a “connection” giving
rise to this “parallel transport” would have to be flat.

Thus: bundles of categories can be thought of as functors
endowed with a flat connection.
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The “geometric” viewpoint

A morphism 3 : b — b’ in B can be seen as a “path” from
btob'.

The functor ®p(3) : P~1(b) — P~'(b') can therefore be
seen as “parallel transport” along the path g from the
fiber over b to the fiber over b'.

Since ®p(3") o ®p(B) = ®p(H'), a “connection” giving
rise to this “parallel transport” would have to be flat.

Thus: bundles of categories can be thought of as functors
endowed with a flat connection.

(The nonflat case corresponds to considering
pseudofunctors B — CAT.)
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Example: covering spaces

For any topological space X, let MN(X) denote its
fundamental groupoid, i.e., ObM(X) = X and N(X)(x, x)
is the set of based homotopy classes of paths from x to
x'.
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Example: covering spaces

For any topological space X, let MN(X) denote its
fundamental groupoid, i.e., ObM(X) = X and N(X)(x, x)
is the set of based homotopy classes of paths from x to
x'.

If p: E — Bis a covering map of topological spaces, then
M(p) : N(E) — MN(B) is bundle of categories.
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Example: covering spaces

For any topological space X, let MN(X) denote its
fundamental groupoid, i.e., ObM(X) = X and N(X)(x, x)
is the set of based homotopy classes of paths from x to
x'.

If p: E — Bis a covering map of topological spaces, then
M(p) : N(E) — MN(B) is bundle of categories.

The corresponding local data ¢, : [1(B) — Cat is such
that ®,(b) is the fundamental groupoid of p~1(b).

Bundle Theory
for Categories

Kathryn Hess
Bundles of finite
sets

Bundles of
categories

Bundles of
monoidal
categories

Bundles of
bicategories



Other examples

@ Categories fibered over groupoids (and therefore
stacks)
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Other examples

@ Categories fibered over groupoids (and therefore
stacks)

@ Hopf algebroids: a Hopf algebroid (A, ') over a
commutative ring R gives rise to a functor

Algr — Gpd — Cat.
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Other examples for Gategories
@ Categories fibered over groupoids (and therefore Kathryn Hess

StaCkS) E:t:dles of finite
@ Hopf algebroids: a Hopf algebroid (A, T') over a SundiEs ot
commutative ring R gives rise to a functor Ealegones
Bundles of
Algs — Gpd — Cat. eatogories

Bundles of
bicategories
@ (Flores) Classifying spaces for families of subgroups:
to a discrete group G and a family F of subgroups of
G, there is associated a functor

R:04 — Cat: G/H — G/H.

The nerve of Eg is then a model for E5G: itis a
G-CW-complex such that every isotropy group
belongs to F and the fixed-point space with respect
to any element of F is contractible.



The local description

Recall that Cat admits a monoidal structure, given by
cartesian product.

Let B denote any monoidal category.

Local monoidal bundle data over B is a monoidal functor

¢ : B — Cat.
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The global description

Let B and E be monoidal categories.

A strict monoidal functor P : E — B that is a bundle of
categories is a bundle of monoidal categories if the lifts
satisfy:

~ ~ —

Pe@Pe =B® ﬁ/e®e’7
forall 3: P(e) — band ' : P(¢') — b/ in B.
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Bundle Theory

The taUtO|Oglca| bundle for Categories
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Tcat . Cat* — Cat

is a bundle of monoidal categories.



Classification
Theorem

The tautological bundle ¢4 classifies bundles of
monoidal categories.

Proof.

Using the constructions of the previous classification
theorem, we see that

¢ : B — Cat monoidal =

Py : E¢ — B bundle of monoidal categories

and
P : E — B bundle of monoidal categories =

®p : B — Cat monoidal .
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The “geometric” viewpoint

If P: E — Bis a bundle of monoidal categories, then the
associated “parallel transport” is such that

P~1(by) x P~1(bp) L P~1(by © b))
¢P(/3)><¢P(ﬂ/)l J{“’P(ﬁ@ﬁ')

P="(by) x P~1(by) *—= P~'(by @ b))

commutes for all “paths” 3 : by — by and 3’ : by — b;.
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Example: modules over a fixed ring

Let R be aring, and let X be a left R-module.

Let (R, ®, /) be the monoidal category where
e ObR=N;
@ R(m, n) = Mym(R), the set of (n x m)-matrices with
coefficients in R;
@ composition is given by matrix multiplication;

e mm :=m+m,[:=0andforall M € M,n(R),
M/ E mn/m/(R)

,_|M 0
wow =1 8]
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Example: modules over a fixed ring

Let R be aring, and let X be a left R-module.

Let (R, ®, /) be the monoidal category where
e ObR=N;
@ R(m, n) = Mym(R), the set of (n x m)-matrices with
coefficients in R;
@ composition is given by matrix multiplication;
e mm :=m+m,[:=0andforall M € M,n(R),
M e im,,/m/(F?)
M 0
MaM = [0 M’] :
Let X be the category with one object « and with
morphism set equal to X.
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Example: modules over a fixed ring e
Kathryn Hess

Let x : R — Cat denote the functor given by Bundios of finite
sets

¢X(m) = Xxm Bundles of

categories

an d Bundles of

monoidal
Sy (M) : XXM — X*1 {

* — % categories

- - Bundles of
X — Mx bicategories

X1
forallx=|: | e X*".

Xn
It is easy to see that ¢ is monoidal and therefore gives
rise to a bundle of monoidal categories

PxiEx—>R.
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The categories of left and of right modules over a fixed bicategories

ring R embed into the category of bundles of monoidal
categories over R.




The matrix bicategory

MAT is specified by
@ MATy = ObSet and
e forall U,V € MAT,

MAT(U, V) = CatV*",

where U and V are seen as discrete categories.
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Bundle Theory

The matFIX blcategory for Categories
Kathryn Hess

MAT is specified by

Bundles of finite

@ MATy = ObSet and sets
e forall U,V € MAT,, cstegories
Bundles of
MAT(U, V) = Cat’*V, ]
Bundles of
where U and V are seen as discrete categories. bicategories

Horizontal composition
MAT(U, V)XMAT(V, W) — MAT(U, W) : (A, B) — A«B
is given by matrix multiplication, i.e.,

(AxB)(u,w) = [ A(u,v) x B(v,w)

veV

foraluec Uand w e W.
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functor @ : B — MAT. _



The local description

Let B be any small bicategory.

Local bicategory bundle data over B consist of a lax
functor  : B — MAT.

This is a sort of “parametrized” version of the local data
for a bundle of monoidal categories. In particular, local
bicategory bundle data is obtained when local data for a
bundle of monoidal categories is “suspended.”
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The global description

A strict homomorphism of bicategories M : £ — Bis a
bundle of bicategories if
@ The induced functor on hom-categories
n:&(e &) — B(M(e),N(e)) is a bundle of
categories for all 0-cells e, €' in €.
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Bundle Theory

The global description for Categories

Kathryn Hess

A strict homomorphism of bicategories N : £ — Bis a Bundles of finlte
bundle of bicategories if sets
@ The induced functor on hom-categories categories
n:é&(e,€)— B(MN(e),N(¢)) is a bundle of Bundles of
categories for all 0-cells e, € in €. categories
@ The composition functors bloategories
E(e,€) x &(¢,€") ¢ (e, €e")

ol |

B(N(e),N(e") x B(N(e'),N(e")) —— B(MN(e),N(e"))

are morphisms of bundles of categories.



Bundle Theory

The global description for Categories

Kathryn Hess

A strict homomorphism of bicategories N : £ — Bis a Bundles of finlte
bundle of bicategories if sets
@ The induced functor on hom-categories categories
n:é&(e,€)— B(MN(e),N(¢)) is a bundle of Bundles of
categories for all 0-cells e, € in €. categories
@ The composition functors bloategories
E(e,€) x &(¢,€") ¢ (e, €e")

B(N(e),N(e") x B(N(e'),N(e")) —— B(MN(e),N(e"))

are morphisms of bundles of categories.

@ The associator and the unitors in B lift to the associator
and the unitors in €.



Bundle Theory

The pointed matrix bicategory for Categories

Kathryn Hess

Bundles of finite
sets

MAT, is specified by Bundies of
o (MAT.), = Set. and s o
e forall (U, u), (V,v) € (MAT,)o, categories
FeRE
MAT, (U, u), (V, v)) = cat!V V)

where (U x V, (u,v)) is seen as a discrete, pointed
category.

Horizontal composition is again given by matrix
multiplication.



The tautological bundle

The tautological bundle of bicategories is the strict
homomorphism

Thicat : MAT, — MAT

given by forgetting basepoints.
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Classification

Theorem
The bundle Tpic4 Classifies bundles of bicategories.

Proof.

@ Local to global: Given local bicategory bundle data
® : B — MAT, consider the pullback

Eo — MAT,

My \L i Tbicat

B —2~ MAT.

Then N is a bundle of bicategories, a sort of
parametrized Grothendieck construction on .
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Bundle Theory

The “geometric” viewpoint: fibers over 1-cells ' forGategories
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Let M : & — B be a bundle of bicategories. Bundles of
categories
Letf: b— b be a1-cellin B. Let e, & be 0-cells of € Bundies of
such that M(e) = b, NM(¢') = b'. categories
The fiber category Fibl, ., over f with respect to (e, €): bloabgenies

fc ObFib,, =7:e—¢€ and N(f)=f

and

A A

a€Fibly(F.f)=a:f—F and MN(a)=ld.



Bundle Theory

The “geometric” viewpoint: parallel transport = forcategories
a|0ng 2'Ce”S Kathryn Hess
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Since N : &(e, &) — B(M(e),MN(¢€)) is a bundle of categories
categories, for each 2-cell Bundles of

monoidal
categories

/'i\ [t

there is a functor

ee/ . Flb e/ —_— Flbe o



The “geometric” viewpoint: parallel transport
and composition

Furthermore, for all

in B,
Fib. , x Fib", ., —%— ~ Fib""
e X e.,e’ ee’
! !
V;efxvzl,eul lvz,;/
. g C o g
Fibg , x FibY ,, —— FibJ?,

commutes.
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Bundle Theory
Exa m p | eS for Categories
Kathryn Hess
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sets

Bundles of

@ Charted bundles with coefficients in a topological e
bicategory (cf., Baas-Dundas-Rognes or eI
Baas-Bokstedt-Kro) naturally give rise to bundles of categories

. . Bundles of
blcategorles. bicategories

@ Parametrized Kleisli constructions.

@ The domain projection from the Bénabou bicategory
of cylinders in a fixed bicategory B down to B is a
bundle of bicategories.



Work in progress

@ K-theory: All these categories of bundles admit

“Whitney sum” and “tensor product”-type operations.

What information does the associated “bundle
K-theory” carry? Should englobe both topological
and algebraic K-theory.
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Work in progress

@ K-theory: All these categories of bundles admit

“Whitney sum” and “tensor product”-type operations.

What information does the associated “bundle
K-theory” carry? Should englobe both topological
and algebraic K-theory.

@ Homotopy theory: How do these bundle notions
interact with the homotopy theory of Cat and of
Bicat?
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