
The Quantum IO Monad
QIO

Alexander S. Green

asg@cs.nott.ac.uk

Foundations of Programming Group,

School of Computer Science & IT,

University of Nottingham

The Quantum IO Monad – p.1/19

Introduction

• We would like to model Quantum Computations.

The Quantum IO Monad – p.2/19

Introduction

• We would like to model Quantum Computations.

• The QIO Monad, can be thought of as a register of
Qubits that plugs into your classical computer.

The Quantum IO Monad – p.2/19

Introduction

• We would like to model Quantum Computations.

• The QIO Monad, can be thought of as a register of
Qubits that plugs into your classical computer.

• It provides a framework for constructing quantum
computations...

The Quantum IO Monad – p.2/19

Introduction

• We would like to model Quantum Computations.

• The QIO Monad, can be thought of as a register of
Qubits that plugs into your classical computer.

• It provides a framework for constructing quantum
computations...

• ... and simulates the running of these computations.

The Quantum IO Monad – p.2/19

Haskell and Monads

• Haskell is a pure functional programming language, so
any computations that may involve side effects make
use of Monads.

The Quantum IO Monad – p.3/19

Haskell and Monads

• Haskell is a pure functional programming language, so
any computations that may involve side effects make
use of Monads.

• Monads are defined by a return function, and a bind
function denoted (>>=)

The Quantum IO Monad – p.3/19

Haskell and Monads

• Haskell is a pure functional programming language, so
any computations that may involve side effects make
use of Monads.

• Monads are defined by a return function, and a bind
function denoted (>>=)

•

class Monad m where

(>>=) :: m a → (a → m b)→ m b

return :: a → m a

The Quantum IO Monad – p.3/19

Haskell and Monads

• Haskell is a pure functional programming language, so
any computations that may involve side effects make
use of Monads.

• Monads are defined by a return function, and a bind
function denoted (>>=)

•

class Monad m where

(>>=) :: m a → (a → m b)→ m b

return :: a → m a

• Haskell provides the do notation to make monadic
programming easier.

The Quantum IO Monad – p.3/19

’do’ notation

• IO in Haskell takes place in the IO Monad.

The Quantum IO Monad – p.4/19

’do’ notation

• IO in Haskell takes place in the IO Monad.

• For example, echoing a character to the screen

getChar :: IO Char

putChar :: Char → IO ()

The Quantum IO Monad – p.4/19

’do’ notation

• IO in Haskell takes place in the IO Monad.

• For example, echoing a character to the screen

getChar :: IO Char

putChar :: Char → IO ()

•
echo :: IO ()

echo = getChar >>= (λc → putChar c) > >echo

The Quantum IO Monad – p.4/19

’do’ notation

• IO in Haskell takes place in the IO Monad.

• For example, echoing a character to the screen

getChar :: IO Char

putChar :: Char → IO ()

•
echo :: IO ()

echo = getChar >>= (λc → putChar c) > >echo

• or in do notation

The Quantum IO Monad – p.4/19

’do’ notation

• IO in Haskell takes place in the IO Monad.

• For example, echoing a character to the screen

getChar :: IO Char

putChar :: Char → IO ()

•
echo :: IO ()

echo = getChar >>= (λc → putChar c) > >echo

• or in do notation

•

echo = do c ← getChar

putChar c

echo

The Quantum IO Monad – p.4/19

The QIO Monad

• The QIO Monad has been designed so that Quantum
computations can be defined within Haskell.

The Quantum IO Monad – p.5/19

The QIO Monad

• The QIO Monad has been designed so that Quantum
computations can be defined within Haskell.

• The do notation provided by Haskell is very useful for
this purpose.

The Quantum IO Monad – p.5/19

The QIO Monad

• The QIO Monad has been designed so that Quantum
computations can be defined within Haskell.

• The do notation provided by Haskell is very useful for
this purpose.

•

trueBit :: QIO Bool

trueBit = do qb ← mkQbit True

x ← measQbit qb

return x

The Quantum IO Monad – p.5/19

API

• What can we do in the QIO Monad?

The Quantum IO Monad – p.6/19

API

• What can we do in the QIO Monad?

• mkQbit :: Bool → QIO Qbit

The Quantum IO Monad – p.6/19

API

• What can we do in the QIO Monad?

• mkQbit :: Bool → QIO Qbit

• When initialising a qubit the user must define which of
the base states, True or False (|0〉 or |1〉), to initialise it
into.

The Quantum IO Monad – p.6/19

API

• What can we do in the QIO Monad?

• mkQbit :: Bool → QIO Qbit

• When initialising a qubit the user must define which of
the base states, True or False (|0〉 or |1〉), to initialise it
into.

• measQbit :: Qbit → QIO Bool

The Quantum IO Monad – p.6/19

API

• What can we do in the QIO Monad?

• mkQbit :: Bool → QIO Qbit

• When initialising a qubit the user must define which of
the base states, True or False (|0〉 or |1〉), to initialise it
into.

• measQbit :: Qbit → QIO Bool

• The measurement of a qubit always results in a
boolean value.

The Quantum IO Monad – p.6/19

API

• What can we do in the QIO Monad?

• mkQbit :: Bool → QIO Qbit

• When initialising a qubit the user must define which of
the base states, True or False (|0〉 or |1〉), to initialise it
into.

• measQbit :: Qbit → QIO Bool

• The measurement of a qubit always results in a
boolean value.

• Wht else can be done with these qubits?

The Quantum IO Monad – p.6/19

Unitaries.

• It is possible to construct unitary operators, and apply
them to the relevent qubits.

The Quantum IO Monad – p.7/19

Unitaries.

• It is possible to construct unitary operators, and apply
them to the relevent qubits.

• applyU :: U → QIO ()

The Quantum IO Monad – p.7/19

Unitaries.

• It is possible to construct unitary operators, and apply
them to the relevent qubits.

• applyU :: U → QIO ()

• There are 5 unitary constructors that are available:

The Quantum IO Monad – p.7/19

Unitaries.

• It is possible to construct unitary operators, and apply
them to the relevent qubits.

• applyU :: U → QIO ()

• There are 5 unitary constructors that are available:

• unot :: Qbit → U

which will rotate the given qubit by 180o as in the Not
rotation.

The Quantum IO Monad – p.7/19

Unitaries.

• It is possible to construct unitary operators, and apply
them to the relevent qubits.

• applyU :: U → QIO ()

• There are 5 unitary constructors that are available:

• unot :: Qbit → U

which will rotate the given qubit by 180o as in the Not
rotation.

•

(

0 1

1 0

)

The Quantum IO Monad – p.7/19

Unitaries..

• uhad :: Qbit → U

which will rotate the given qubit by 90o as in the
Hadamard rotation.

The Quantum IO Monad – p.8/19

Unitaries..

• uhad :: Qbit → U

which will rotate the given qubit by 90o as in the
Hadamard rotation.

• 1
√

2

(

1 1

1 − 1

)

The Quantum IO Monad – p.8/19

Unitaries..

• uhad :: Qbit → U

which will rotate the given qubit by 90o as in the
Hadamard rotation.

• 1
√

2

(

1 1

1 − 1

)

• uphase :: Qbit → Float → U

which will rotate the given qubit by the given phase
change (φ).

The Quantum IO Monad – p.8/19

Unitaries..

• uhad :: Qbit → U

which will rotate the given qubit by 90o as in the
Hadamard rotation.

• 1
√

2

(

1 1

1 − 1

)

• uphase :: Qbit → Float → U

which will rotate the given qubit by the given phase
change (φ).

•

(

1 0

0 e2πiφ

)

The Quantum IO Monad – p.8/19

Unitaries...

• swap :: Qbit → Qbit → U

which simply swaps the two given qubits.

The Quantum IO Monad – p.9/19

Unitaries...

• swap :: Qbit → Qbit → U

which simply swaps the two given qubits.

• cond :: Qbit → (Bool → U)→ U

which given a control qubit, will conditionally do the
corresponding unitary given by the function.
(The control qubit must not be effected by the
unitaries)

The Quantum IO Monad – p.9/19

Unitaries...

• swap :: Qbit → Qbit → U

which simply swaps the two given qubits.

• cond :: Qbit → (Bool → U)→ U

which given a control qubit, will conditionally do the
corresponding unitary given by the function.
(The control qubit must not be effected by the
unitaries)

• It is this conditional operation that can be used to
entangle qubits.

The Quantum IO Monad – p.9/19

Unitaries...

• swap :: Qbit → Qbit → U

which simply swaps the two given qubits.

• cond :: Qbit → (Bool → U)→ U

which given a control qubit, will conditionally do the
corresponding unitary given by the function.
(The control qubit must not be effected by the
unitaries)

• It is this conditional operation that can be used to
entangle qubits.

• The U datatype of unitaries, also forms a Monoid
meaning there is an append operation for combining
uniatries sequentially.

The Quantum IO Monad – p.9/19

Running Quantum Computations?

• Along with creating quantum computations, the QIO
Monad also provides two ways of evaluating them.

The Quantum IO Monad – p.10/19

Running Quantum Computations?

• Along with creating quantum computations, the QIO
Monad also provides two ways of evaluating them.

• run :: QIO a → IO a

The Quantum IO Monad – p.10/19

Running Quantum Computations?

• Along with creating quantum computations, the QIO
Monad also provides two ways of evaluating them.

• run :: QIO a → IO a

• Running a quantum computation returns a
probabilistic result for each measurement.

The Quantum IO Monad – p.10/19

Running Quantum Computations?

• Along with creating quantum computations, the QIO
Monad also provides two ways of evaluating them.

• run :: QIO a → IO a

• Running a quantum computation returns a
probabilistic result for each measurement.

• sim :: QIO a → Prob a

The Quantum IO Monad – p.10/19

Running Quantum Computations?

• Along with creating quantum computations, the QIO
Monad also provides two ways of evaluating them.

• run :: QIO a → IO a

• Running a quantum computation returns a
probabilistic result for each measurement.

• sim :: QIO a → Prob a

• Simulating a quantum computation returns a
probability distribution of all the possible
measurement outcomes.

The Quantum IO Monad – p.10/19

Running Quantum Computations?

• Along with creating quantum computations, the QIO
Monad also provides two ways of evaluating them.

• run :: QIO a → IO a

• Running a quantum computation returns a
probabilistic result for each measurement.

• sim :: QIO a → Prob a

• Simulating a quantum computation returns a
probability distribution of all the possible
measurement outcomes.

• We would also like to be able to display the internal
state of the system at any time, possibly by showing
the complex amplitudes for each base state.

The Quantum IO Monad – p.10/19

Computations.

qPlus :: QIO Qbit

qPlus = do qa ← mkQbit False

applyU (uhad qa)

return qa

randBit :: QIO Bool

randBit = do qa ← qPlus

x ← measQbit qa

return x

The Quantum IO Monad – p.11/19

Computations..

share :: Qbit → QIO Qbit

share qa = do qb ← mkQbit False

applyU (cond qa (λa → if a then (unot qb)

else mempty))

return qb

bell :: QIO (Qbit ,Qbit)

bell = do qa ← qPlus

qb ← share qa

return (qa, qb)

The Quantum IO Monad – p.12/19

Computations..

test bell :: QIO (Bool ,Bool)

test bell = do qb ← bell

b ← measQ qb

return b

The Quantum IO Monad – p.13/19

Teleportation.

alice :: Qbit → Qbit → QIO (Bool ,Bool)

alice aq bsq = do applyU (cond aq

(λa → if a then (unot bsq)

else mempty))

applyU (uhad aq)

cd ← measQ (aq , bsq)

return cd

The Quantum IO Monad – p.14/19

Teleportation..

uZ :: Qbit → U

uZ qb = (uphase qb 0.5)

bobsU :: (Bool ,Bool)→ Qbit → U

bobsU (False,False) qb = mempty

bobsU (False,True) qb = (unot qb)

bobsU (True,False) qb = (uZ qb)

bobsU (True,True) qb = ((unot qb) ‘mappend ‘ (uZ qb))

bob :: Qbit → (Bool ,Bool)→ QIO Qbit

bob bsq cd = do applyU (bobsU cd bsq)

return bsq

The Quantum IO Monad – p.15/19

Teleportation...

teleportation :: Qbit → QIO Qbit

teleportation iq = do (bsq1 , bsq2)← bell

cd ← alice iq bsq1

tq ← bob bsq2 cd

return tq

The Quantum IO Monad – p.16/19

Qdata.

• There is a symmetry between initialising a qubit, and
measuring a qubit.

The Quantum IO Monad – p.17/19

Qdata.

• There is a symmetry between initialising a qubit, and
measuring a qubit.

• Larger quantum data structures can be defined using
qubits, in the same way classical data structures are
defined using bits.

The Quantum IO Monad – p.17/19

Qdata.

• There is a symmetry between initialising a qubit, and
measuring a qubit.

• Larger quantum data structures can be defined using
qubits, in the same way classical data structures are
defined using bits.

• We have defined a class of quantum data types, Qdata

For which an mkQ initialisation function and a measQ

measurement function must be defined, between the
quantum datatype and its classical counter-part.

The Quantum IO Monad – p.17/19

Qdata.

• There is a symmetry between initialising a qubit, and
measuring a qubit.

• Larger quantum data structures can be defined using
qubits, in the same way classical data structures are
defined using bits.

• We have defined a class of quantum data types, Qdata

For which an mkQ initialisation function and a measQ

measurement function must be defined, between the
quantum datatype and its classical counter-part.

•

instance Qdata Bool Qbit where

mkQ = mkQbit

measQ = measQbit

The Quantum IO Monad – p.17/19

Qdata..

instance (Qdata a qa,Qdata b qb)

⇒ Qdata (a, b) (qa, qb) where

mkQ (a, b) = do qa ← mkQ a

qb ← mkQ b

return (qa, qb)

measQ (qa, qb) = do a ← measQ qa

b ← measQ qb

return (a, b)

The Quantum IO Monad – p.18/19

Further Work

• We are going to implement some of the famous
quantum algorithms, such as Shor’s quantum
factorisation algorithm.

The Quantum IO Monad – p.19/19

Further Work

• We are going to implement some of the famous
quantum algorithms, such as Shor’s quantum
factorisation algorithm.

• We are going to use the QIO Monad to start reasoning
about quantum computation in general.

The Quantum IO Monad – p.19/19

Further Work

• We are going to implement some of the famous
quantum algorithms, such as Shor’s quantum
factorisation algorithm.

• We are going to use the QIO Monad to start reasoning
about quantum computation in general.

• We are going to model other forms of quantum
computer within the QIO Monad, such as the
Measurment based model of quantum computations.

The Quantum IO Monad – p.19/19

Further Work

• We are going to implement some of the famous
quantum algorithms, such as Shor’s quantum
factorisation algorithm.

• We are going to use the QIO Monad to start reasoning
about quantum computation in general.

• We are going to model other forms of quantum
computer within the QIO Monad, such as the
Measurment based model of quantum computations.

• Thank you all for listening!

The Quantum IO Monad – p.19/19

	Introduction
	Haskell and Monads
	'do' notation
	The QIO Monad
	API
	Unitaries.
	Unitaries..
	Unitaries...
	Running Quantum Computations?
	Computations.
	Computations..
	Computations..
	Teleportation.
	Teleportation..
	Teleportation...
	Qdata.
	Qdata..
	Further Work

