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Figure 1. Multiple edges, a loop, and \turning the handle".

3. The Graph Cohomology Zoo

Let us start by �xing what we mean by the words \graph" and \graph isomorphism":

De�nition 3.1. A graph G is a set F = F

G

of \
ags" (to be thought of as verti
es with

half-edges emenating from them), together with a partition V = V

G

of F (the \verti
es")

and a partition E = E

G

of F into pairs (the \edges").

De�nition 3.2. A isomorphism of graphs is a bije
tive map of the set of 
ags of one graph

to the set of 
ags of another, that 
arries (in the natural sense) the set of verti
es and the

set of edges of the �rst graph to the set of verti
es and the set of edges of the se
ond graph.

Similarly one may speak of \an automorphism" of a given graph.

Thus a graph may have loops and multiple edges (Figure 1). It is fully labeled (its 
ag

set is labeled), but it is not dire
ted. And while loops are not dire
ted, the \turning the

handle" automorphism (Figure 1) of a loop is ragarded as non-tirivial.

We will not stop to de�ne other 
lassi
al graph theoreti
al notions su
h as vartex and

edges 
olorings, dire
ted graphs, paths, 
y
les, 
onne
tivity, et
. There is no diÆ
ulty in

transporing these standard notions to our 
ontext.

3.1. The Basi
 Example.

De�nition 3.3. A \graph with an anti-symmetri
 set of edges", or an \ASE-graph", is a

triple (s;G;O

E

), where s 2 f�1g is a sign, G is a graph, and O

E

is an ordering of the set

E

G

of edges of G (a bije
tion between E

G

and an initial segment of the natural numbers),

regarded up to the following relation:

(s;G;O

E

) � ((�1)

�

s;G; �O

E

);

where � is any reordering of the edges of G, and (�1)

�

denotes the signature of the permu-

tation �. We will denote a triple (1; G;O

E

) simply by (G;O

E

), and sometimes abuse the

notation and denote it simply by G.

Note that an isomorphism of graphs allows one to identify an ordering of the edge set of

one of the graphs with an ordering of the edge set of the other graph, and so there is a well

de�ned notion of \an isomorphism between ASE-graphs".

De�nition 3.4. Let

b

~

C be the spa
e of formal R-linear 
ombinations of isomorphism 
lasses

of ASE-graphs G satisfying:

� G has no multiple edges and no loops.

� All verti
es of G have valen
ies 3 or more.

Let

b

C be the quotient of

b

~

C by the relation (�1; G;O

E

) = �(G;O

E

).

The elements of

b

C 
an be thought of as \unlabeled graphs with an anti-symmetri
 set of

edges". Noti
e that de�nitions 3.3 and 3.4 imply that graphs that have an automorphism

that indu
es an odd permutation on their set of edges vanish in

b

C.
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Example 3.5. . The �rst graph shown below vanishes in

b

C, be
ause the obvious 180

Æ

-degree

rotation swit
hes �ve pairs of edges, and hen
e a
ts as an odd permutation on the set of

edges. The other two graphs, a pentagonal wheel with spokes and a triangular prizm with

one diagonal inserted (shown with an expli
it edge-ordering and a small s
ale i
on), do

not vanish in

b

C, be
ause all their automorphisms a
t on their edges by even permutation

(exer
ise!).

= 0;

5

2

7

4

1

9

8

10

3

6

= ;

6

2

10

8

5

4

3

7

1

9

= :

De�nition 3.6. Unless otherwise noted, we set the \degree" of a graph G to be n(G) =

jE

G

j � jV

G

j, and the \ex
ess" to be k(G) = 2jE

G

j � 3jV

G

j. In some of the 
ases below these

de�nitions will be slightly modi�ed.

The degree and the ex
ess indu
e a de
omposition

b

C =

L

k;n�0

b

C

k

n

, where

b

C

k

n

is the

homogenuous ex
ess k and degree n part of

b

C.

Example 3.7. The spa
e

b


C

2

4

is spanned by the graphs and

of Example 3.5, while the spa
e

b


C

1

4

is spanned by the graph shown on

the right.

2

8 7

4

3

10

1

5

6

9 11

=

De�nition 3.8. Let d :

b

C !

b

C be the linear operator de�ned on generators (G;O

E

) by

d(G;O

E

) =

X

e2E

G

�(Gne;O

E

ne);(1)

where:

� Gne is the 
ontra
tion at e of the graph G.

� By 
onvention, elements are removed from an anti-symmetri
 set only at the �rst posi-

tion. This means that when, say, the jth element is removed from some anti-symmetri


set O

E

, one has to �rst move the jth element over the j � 1 pro
eeding elements, at

the 
ost of a sign, (�1)

j�1

. Spe
i�
ally, the sign left unspe
i�ed in (1) is (�1)

O

E

(e)�1

,

where O

E

(e) is the serial number of e in O

E

.

Stri
tly speaking, the image of d may lie outside of its target spa
e

b

C, when an edge


ontra
tion leads to a graph that has a double edge. We simply drop su
h 
ontra
tions from

the de�nition of d, whenever they o

ur. Alternatively, we 
ould have allowed graphs with

multiple edges in the de�nition of

b

C, but then note that su
h graphs always have a sign-

reversing automorphism (
ipping two \parallel" edges), and so they vanish anyway modulo

the de�ning relations of

b

C, and their in
lusion does not 
hange a thing.

There is no diÆ
ulty in showing that d is well de�ned, and that it maps

b

C

k

n

to

b

C

k+1

n

.

Example 3.9. In 
omputing d

� �

only the 
ontra
tions of edges 1, 9, and 11 (numbering

as in Example 3.7) 
ontribute; all other 
ontra
tions lead to diagrams with multiple edges.

Contra
ting edge 1, we 
learly get . Contra
ting edge 11, we get , whi
h is isomor-

phi
 to by the isomorphism given by the edge numbering used in examples 3.5 and 3.7.

Contra
ting edge 9 we get same same answer as for edge 11. So we �nd that (with the given
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edge orderings), d

� �

= + 2 . All edge 
ontra
tions of yield graphs with

multiple edges, and so d

� �

= 0. Finally, only one edge 
ontra
tion of yields a graph

with no multiple edges, the 
ontra
tion of the `far ba
k' edge, numbered 9 in Example 3.5.

But the result of that 
ontra
tion is , whi
h is 0 in

b

C be
ause it's 
ip-over-the-diagonal

automorphism indu
es an odd permutation of the edges. So d

� �

= 0 too.

Proposition 3.10. d

2

= 0, and hen
e im d � ker d.

De�nition 3.11. Basi
 Graph Cohomology is the spa
e

b

H = ker d= im d:

Basi
 Graph Cohomology 
an be de
omposed as a dire
t sum

b

H =

L

k;n�0

b

H

k

n

, where

b

H

k

n

is the degree n and ex
ess k graph 
ohomology, de�ned by

b

H

k

n

= ker djb

C

k

n

= im dj

b

C

k�1

n

:

Example 3.12. Examples 3.5, 3.7 and 3.9 imply that

b


H

2

4

=

D

;

E.�

+ 2

�

:

I.e., dim

b


H

2

4

= 1, it is generated by , and as 
ohomology 
lasses, = �2 .

This is the simplest example of graph 
ohomology. All other examples arise as various

sub
omplexes and/or quotient 
omplexes of twists and/or de
orations of this example.

The simplest modi�
ation one 
an make to the above de�nitions is to restri
t everywhere

to 
onne
ted graphs, 
alling the resulting 
omplex

b


C and its 
ohomology

b


H. Clearly, the


omputation of

b


H is equidiÆ
ult with the 
omputation of

b

H, as the 
omputation of

b

H


an pro
eed in an independent manner on di�erent 
onne
ted 
omponents. Slightly more

formally, one 
an show that

b

H is the symmetri
 algebra of

b


H, in the Z

2

-graded sense.

Habitat. While simplest to de�ne, Basi
 Graph Cohomology does not appear in nature.

Results. At present, very little is known about

b


H

k

n

. The only dimensions we have 
omputed

are in Table 1. The data in that table is displayed using the folowing format for ea
h pair

(n; k):

dim

b


H

k

n

dim

b


H

k

n

dim

b


H

k

n

dim

b


C

k

n

dimker djb


C

k

n

/dim im dj

b


C

k�1

n

(2)

Example 3.13.

b


H

0

5

is generated (over Q ) by

2

3

12

3

4

5

67

13

1012

15 14

11

9

8

+

1

2

3

10

11

12

8

5

9 7

64

15

14

13

+

4

3

1

2

5

6

78

9

10 12

11

1315

3

4

14

+ 2

7

8

15

5

14

9

11 10

1

32

13

12

46

+

1

2

3

5

6 7

8 9

10

12

4

11

13

1514

:

Problems.

b

H is simpler than its twist H, de�ned below. Why is it that H is related to so

many things while

b

H is related to none? What is

b

H?
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n = 4 n = 5 n = 6 k = 7 n = 8 n = 9

k = 0 0

1 7

1/0

0 29

0 / 0

0 214

0 / 0

0 2496

0 / 0

1 30307

1 / 0

k = 1

0 1

0/0

0 13

6 / 6

0 109

29/29

0 1261

214/214

? 16134

? / 2496

? 226296

? / 30306

k = 2

1 2

2/1

0 12

7 / 7

0 186

80/80

1 2926

1048/1047

? ?

k = 3

0 6

5/5

0 170

106/106

0 3491

1878/1878

? ?

k = 4

0 1

1/1

1 75

65/64

0 2328

1613/1613

? ?

k = 5

0 10

10/10

0 879

716/715

? 38906

27533/?

?

k = 6

0 179

163/163

1 13867

11374/11373

?

k = 7

0 16

16/16

0 2742

2493/2493

?

k = 8

0 262

249/249

?

k = 9

0 14

13/13

?

k = 10

0 1

1/1

?

Table 1. Dimensions of

b


H

k

n

.

3.2. The Fundamental Example. We don't know of any dire
t use of the basi
 graph


ohomology in other parts of mathemati
s. Let us now dis
uss the \Fundamental Example";

a 
ertain twist of the original 
omplex, that seems to be related to a variety of other subje
ts.

The Fundamental Example is simply a di�erent 
hoi
e of signs in equation (1), for whi
h

Proposition 3.10 still holds, and thus for whi
h De�nition 3.11 makes sense. There are

several ways to des
ribe the new 
hoi
e of signs. We show two of them below, and leave

their equivalen
e as an exer
ise.

De�nition 3.14. The \oriented loop spa
e" des
ription: In addition to asserting that the

set of edges of a graph G is anti-symmetri
 as in De�nition 3.3, assert also that the (jEj �

jV j + 1)-dimensional ve
tor spa
e of 
losed dire
ted 
y
les in G, 
ommonly denoted H

1

(G)

by topologists, is oriented. Here is a more 
omplete des
ription:

� De�ne an ASEC-graph (Anti-Symmetri
 Edges and Cy
les) to be a quadruple (s;G;O

E

; B),

where s, G, and O

E

are as before and B is a basis of H

1

(G), modulo the relation

(s;G;O

E

; B) � ((�1)

�

(sign detT )s;G; �O

E

; TB):

Here � and (�1)

�

are as in De�nition 3.3, and T is any automorphism of H

1

(G). Noti
e

that a isomorphism of graph G ! G

0

indu
es an isomorphism H

1

(G) ! H

1

(G

0

), and

so the notion of \isomorphi
 ASEC-graphs" makes sense.
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� De�ne C as in De�nition 3.4, only this time using ASEC-graphs and allowing multiple

edges.

� De�ne d : C ! C as in equation (1), noting that H

1

(G) and H

1

(Gne) are 
annoni
ally

isomorphi
 and thus the extra baggage B 
an be loaded on equation (1) at no extra


ost. (Note also that while graphs with multiple edges do not ne
essary vanish in the

new 
ontext, their 
ontra
tions that have loops ne
essarily do vanish, and hen
e 
an be

ignored).

� Finally de�ne H and H

k

n

as in De�nition 3.11, but using C instead of

b

C.

De�nition 3.15. The \anti-symmetri
 
ag and vertex set" des
ription:

� De�ne an ASFV-graph to be a quadruple (s;G;O

F

; O

V

) with s a sign, G a graph, and

O

F

and O

V

orderings of the 
ag set and the vertex set of G respe
tively, modulo the

relation

(s;G;O

F

; O

V

) � ((�1)

�

(�1)

�

s;G; �O

F

; �O

V

):

Here � and � are reorderings of the 
ag set and of the vertex set of G respe
tively.

� Isomorphisms of ASFV-graphs are easily de�ned, and this allows to de�ne C as in

De�nition 3.4, only this time using ASFV-graphs and allowing multiple edges.

� De�ne d : C ! C as in equation (1). This time the spe
i�
ation of the signs and

orderings is a bit more 
ompli
ated, though. The idea remains the same: when elements

are added or removed from an anti-symmetri
 set, the operations are performed \at the

start" of the set. Pre
isely, 
ontra
ting the edge e of a graph G involves removing two


ags f

1;2

and the two 
orresponding verti
es v

1;2

(with v

i

lying on f

i

), and adding a

new vertex v, the result of 
ombining v

1

and v

2

. In the 
ase when f

1;2

are the �rst

two elements of O

F

and v

1;2

are the �rst two elements of O

V

, namely when O

F

=

(f

1

; f

2

; f

3

; : : : ) and O

V

= (v

1

; v

2

; v

3

; : : : ), we will set O

F

ne = (f

3

; : : : ) and O

V

ne =

(v; v

3

; : : : ), and take the sign in equation (1) to be +1. By a preliminary reordering of

O

F

and O

V

and at the 
ost of some signs, we 
an always get to the 
ase just des
ribed.

If the original pla
ement of f

1;2

in O

F

is j

1;2

and the original pla
ement of v

1;2

in O

V

is

k

1;2

, that sign 
ost is (�1)

j

1

+j

2

+k

1

+k

2

sign(j

1

� j

2

) sign(k

1

� k

2

).

� Finally de�ne H and H

k

n

as in De�nition 3.11, but using C instead of

b

C.

Exer
ise 3.16. Show that De�nition 3.14 and De�nition 3.15 are equivalent.

One may de�ne




C and




H by restri
ting everything to 
onne
ted graphs. As before, H is

the symmetri
 algebra over




H is the Z

2

-graded sense.

Habitat. H

0

, also known as (A(;))

?

, enumerates �nite-type invariants of integral homology

spheres [Oh, LMO, Le, BGRT1℄. (H

0

)

?

, also known asA(;), enumerates numeri
al invariants

of metrized Lie algebras [B-N1, BGRT2℄. It is reasonable to guess that H

1

is related to the

integrability question for �nite-type invariants of integral homology spheres [Hu, B-N5℄.

A

ording to [Ko℄, H

k

enumerates invariants of k-parameter families of integral homology

spheres.

Results. The dimensions of H

0

n

were 
omputed up to n = 8 in [B-N1℄, and then up to n = 11

in [Kn℄, using the relationship of H

0

n

with A. The results are shown in Table 2. In addition,

we have 
omputed some dimensions of




H

k

n

for k � 0. The results are shown in Table 3.
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n 0 1 2 3 4 5 6 7 8 9 10 11

dim




H

0

n

0 1 1 1 2 2 3 4 5 6 8 9

dimH

0

n

1 1 2 3 6 9 16 25 42 50 90 146

Table 2. Some dimensions from [B-N1℄ and from [Kn℄.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

k = 0

1 1

1/0

1 2

1/0

1 4

1/0

2 14

2 / 0

2 54

2 / 0

3 298

3 / 0

4 2130

4 / 0

k = 1

0 1

1/1

0 3

3/3

0 19

12/12

0 131

52/52

0 1162

295/295

0 12138

2126/2126

k = 2

0 0

0/0

0 15

7 / 7

0 205

79/79

0 2688

867/867

? 36170

?/10012

k = 3

0 1

0/0

0 19

8 / 8

1 288

127/126

1 4316

1822/1821

?

k = 4

0 1

1/1

0 15

11/11

0 250

161/161

0 4365

2494/2494

?

k = 5

0 4

4/4

0 107

89/89

0 2646

1871/1871

?

k = 6

0 20

18/18

0 989

775/775

? 35324

24836/?

k = 7

0 3

2/2

0 267

214/214

0 13703

10488/10488

k = 8

0 1

1/1

0 61

53/53

0 3877

3215/3215

k = 9

0 8

8/8

0 735

662/662

k = 10

0 78

73/73

k = 11

0 6

5/5

k = 12

0 1

1/1

Table 3. Dimensions of




H

k

n

, using the same format as in (2).

3.3. Graph Cohomology for graphs with a �xed skeleton. A skeleton is not-ne
essarily-


onne
ted graph S, with or without some extra information: vertex or edge 
oloring, and

orientations on some or all of the edges. A graph with skeleton S is a graph G with an

embedded pi
ture of S in it | an inje
tion of the verti
es of S into the verti
es of G and a


hoi
e of a path in G between the images in G of any two verti
es in S that are 
onne
ted

by an edge, so that the resulting paths are disjoint ex
ept at their endpoints. For later


onvenien
e, we also require that the univalent verti
es of S remain univalent in G. Some

examples are in Figure 2. The degree of a graph with skeleton G is its degree as a plain

graph minus the degree of S, and similarly, the ex
ess of G is the ex
ess ex
ess it has beyond
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Figure 2. A graph with skeleton ) and whose degree is 4 and ex
ess is 1, a graph with

skeleton 	��	 whose degree and ex
ess are 7 and 3, and a graph with skeleton �!, degree

4, and ex
ess 0. In all 
ases the skeleton is emphasized with thi
ker lines.

the ex
ess of its skeleton. (In other words, we simply shift the previous de�nitions of degree

and ex
ess so that the degree and ex
ess of S itself both vanish).

We repeat the de�nition of ASEC-graphs in the 
urrent 
ontext and extend the notion

of graph isomorphism to ASEC-graphs with skeleton S in the natural manner: we say that

two su
h graphs are isomorphi
 if there is an ASEC-graph isomorphism between them that


arries the skeleton of one onto the skeleton of the other, preserving the skeleton 
olorings

and orientations if any are present. Given that, we make the analogs of De�nitions 3.4

and 3.8 in this 
ontext:

De�nition 3.17. Let S be some �xed skeleton, and let

~

C(S) be the spa
e of formal linear


ombinations of isomorphism 
lasses of ASEC-graphs with skeleton S that have no non-

skeletal loops (loops that are not a part of the skeleton), and no verti
es with valen
y

less than 3 unless they are already in the skeleton. (The Examples in Figure 2 all satisfy

these 
onditions). As in De�nition 3.4, let C(S) be the quotient of

~

C(S) by the relation

(�1; G;O

E

) = �(G;O

E

).

De�nition 3.18. De�ne dG, as before, to be a sum over edge 
ontra
tions signed just as

in De�nition 3.8, only skipping all 
ontra
tions that produ
e a graph outside of

~

C(S) (for

example, if a 
ertain edge 
ontra
tion 
hange 
onne
ts teo parts of the skeleton that were

not 
onne
ted before, it is not performed).

The newly de�ned map d is still a di�erential (d

2

= 0), and hen
e we 
an de�ne H(S) and

H

k

n

(S) as before.

As the skeleton is always present, the appropriate notion of 
onne
tedness here is S-


onne
tedness: A graph with skeleton S is S-
onne
ted if it is 
onne
ted in the usual sense

when S is 
ollapsed to a single point. (Thus S itself is always S-
onne
ted). Using S-


onne
tedness we 
an de�ne




C(S) and




H(S). It is not diÆ
ult to 
he
k that H(S) is the

free H module generated by




H(S) in the Z

2

-graded sense.

Habitat.




H

0

n

(S) enumerates �nite-type invariants of embeddings of S in a ball in R

3

, so

that the univalent verti
es of S are at �xed positions on the boundary of the ball [St, KT℄.

(H

0

n

(S))

?

enumerates numeri
al invariants of Lie algebras with a representation for ea
h

edge of the skeleton and an invariant tensor in the tensor produ
t of the representation

spa
es in
ident to ea
h vertex of the skeleton.




H

1

n

(S) is likely to be related to integrability

questions [Hu, B-N5℄ for �nite-type invariants of S, and




H

k

n

(S) for general k is likely to be

related to invariants of k-parameter families of embeddings of S.

3.3.1. Paths. One of the most interesting spe
ial 
ases of the above dis
ussion of skeletons

is when the skeleton S is "

X

, the disjoint union of jXj dire
ted edges 
olored bije
tively by

some �nite set of 
olors X.
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n 0 1 2 3 4 5 6 7 8 9 10 11 12

dim




H

0

n

(") 1 1 2 3 6 10 19 33 60 104 184 316 548

Table 4. Some dimensions from [B-N1℄ and from [Kn℄

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7


 = 1 1 2 3 6 10 19 33


 = 2 3 9 23 60 148 366 884


 = 3 6 28 111 413 1; 461 5; 027 16; 924


 = 4 10 69 394 2; 035 9; 849 45; 680 205; 612


 = 5 15 145 1; 130 7; 781 49; 455 297; 622 1; 722; 724


 = 6 21 272 2; 778 24; 632 198; 981 1; 506; 218 10; 875; 542

Table 5. Some dimensions from [B-N3℄. For n = 7 these dimensions were only 
omputed

over a large �nite �eld.

Habitat.




H

0

n

("

X

) enumerates �nite-type invariants ofX-marked pure tangles [B-N2, BGRT1℄.

In parti
ular, the 
ase where X is a singleton is the �rst and most studied type of �nite type

invariants | the 
ase of Vassiliev invariants of long knots [B-N4℄. (In this 
ase X is ususally

suppresed from the notation and "

X

is simply denoted ". (




H

0

n

("

X

))

?

, also 
alled A("

X

), is

a 
ombinatorial model of the ad-invariant elements of tensor powers of universal enveloping

algebras of metrized Lie algebras. In parti
ular, A(") is a 
ombinatorial model of the 
enter

of universal enveloping algebras of metrized Lie algebras, and as su
h it has quite a lot of

stur
ture. See e.g. [B-N1℄.

Results. The dimensions of




H

0

n

(") were 
omputed up to n = 9 in [B-N1℄, and then up to

n = 12 in [Kn℄, using the relationship of




H

0

n

(") with A("). The results are reprodu
ed

in Table 4. For 
 = jXj > 1, some dimensions were 
omputed in [B-N3℄. The results are

reprodu
ed in Table 5. It turns out that these numbers depend polynomially on 
. These

polynomials are determined by the numbers in Table 5, and are printed (to the extent that

they are known) in [B-N3℄.

3.3.2. Cy
les. Stri
tly speaking, an oriented 
ir
le with no base point is not a graph (it is

a \
losed edge" with no verti
es), and hen
e not a skeleton falling under the de�nitions of

Se
tion 3.3. But there is no diÆ
ulty in extending the de�nitions there to this spe
ial 
ase,

and thus in de�ning H

k

n

(	

X

), the graph 
ohomology spa
es for graphs with \skeleton" a

disjoint union of 
ir
les 
olored bije
tively by the 
olors in some �nite set X.

Habitat.




H

0

n

(	

X

) enumerates �nite-type invariants of X-marked links. The 
ase where X is

a singleton is equivalent to the 
ase of




H

0

n

("), as long knots are equivalent to 1-
omponent

links, that is, to knots. (




H

0

n

(	

X

))

?

, also 
alled A(	

X

), is a 
ombinatorial model of the

ad-invariant elements of tensor powers of the 
oinvariant quotients of universal enveloping

algebras of metrized Lie algebras. As in the equivalent 
ase of A("), mu
h is known about

A(	).

Results. For X a singleton and k = 0, the results are the same as in Table 4. Other than

that, very little is known.
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Problems. For X a singleton and k > 0, what is the relationship between




H

k

n

(	

X

) and




H

k

n

("

X

)? We feel that they must di�er by something easily 
omputable.

3.4. Univalent verti
es. A rather simple modi�
ation to the de�nition of C, or, equally

well, to the de�nition of C(S), is to 
onsider graphs G that in addition to the previous

features also have some �xed number u of univalent verti
es, or some �xed numbers u

1

; u

2

; : : :

of 
olored univalent verti
es, 
olored by distin
t 
olors 


1

; 


2

; : : : (u

1

of 
olor 


1

, u

2

of 


2

, : : :

). The new univalent verti
es are never allowed to lie on the skeleton, if a skeleton is present.

The di�erential d is modi�ed only so as to preserve the number of univalent verti
es; it is

de�ned by the same summation as in (1), only that the edges that 
onne
t a univalent vertex

to the rest of the graph do not parti
ipate in the summation. We denote the resulting graph


omplex by C(S; �

u

1




1

�

u

2




2

: : : ). If there's no skeleton, we omit it from the notation. If there's

only one 
olor, we omit it from the notation and simply write C(S; �

u

). When we omit some

or all of the u

i

's from the notation, it means that we are not 
onstraining the number of

univalent verti
es of some or all of the 
olors. In other words, C(�) = �

1

u=0

C(�

u

). We 
an

now de�ne H

k

n

(S; �

u

1




1

�

u

2




2

: : : ) in the usual way.

One 
an 
ome up with several reasonable notions of 
onne
tivity for graphs with univalent

verti
es. Let us the diss
uss the two notions that arise in appli
ations:

� We 
an use the usual notion of 
onne
tivity for graphs with skeleton, as in Se
tion 3.3,

and 
all the resulting Graph Cohomology




H(S; �

u

1




1

�

u

2




2

: : : ). We �nd thatH(S; �




1

�




2

: : : )

is the free H(�




1

�




2

: : : ) module generated by




H(S; �




1

�




2

: : : ) in the Z

2

-graded sense,

and that H(�




1

�




2

: : : ) is the free Z

2

-graded generated by




H(�




1

�




2

: : : ).

� We say that a graphG is weakly 
onne
ted if it be
omes 
onne
ted when all the univalent

verti
es in it, as well as the skeleton if a skeleton is present, are 
ollapsed to a single

newly-
reated vertex 1. Equivalently, if every 
onne
ted 
omponent of G (in the

ususal sense) 
ontains at least one univalent vertex or at least one 
omponent of the

skeleton. We denote the resulting Graph Cohomology by

w

H(S; �

u

1




1

�

u

2




2

: : : ). Clearly,

H(S; �

u

1




1

�

u

2




2

: : : ) is the free H module generated by

w

H(S; �

u

1




1

�

u

2




2

: : : ) in the Z

2

-graded

sense.

Habitat. As is often the 
ase, only the ex
ess 0 
ase has a natural habitat in mathemati
s,

at least in as mu
h as we know now. (

w

H

0

(�




1

�




2

: : : ))

?

is the spa
e B of uni-trivalent

graphs with 
olored legs that appears in [B-N1, B-N2℄. Given a metrized Lie algebra g,

(




H

0

(�




1

�




2

: : : ))

?

is related to the spa
e of invariant elements of (sym g)
 (sym g)
 : : : and

to the spa
e of fun
tions on g� g� : : : [BGRT1, BGRT2℄.

Results. The ele
troni
 publi
ation [B-N3℄ 
ontains the dimensions of many spa
es




H(�

u

1




1

�

u

2




2

: : : ), and in the 
ase of a single 
olor 
, a few more dimensions are in [Kn℄. In Table 6 we

reprodu
e some of the single 
olor results.

3.5. Trees.

Habitat.

Results.
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n 1 2 3 4 5 6 7 8 9 10 11 12

dim




H

0

n

(�

2

) 1 1 1 1 2 2 3 4 5 6 8 9

dim




H

0

n

(�

4

) 1 1 2 3 4 6 8 10 13

dim




H

0

n

(�

6

) 1 2 3 5 8 11 15

dim




H

0

n

(�

8

) 1 2 4 8 12

dim




H

0

n

(�

10

) 1 2 5

dim




H

0

n

(�

12

) 1

Table 6. Some dimensions from [B-N3℄ and from [Kn℄

r g

Figure 3. A (~

3

r

~

2

g

)-graph with skeleton �!, degree 8 and exe
ess 4. We mark the

distinguished verti
es by surrounding them with small 
ir
les, and the spe
ial edges emenating

from them by 
rossing them with short tags.

3.6. Link Relations. The following variation is somewhat arti�
ial. The only justi�
a-

tion for its in
lusion here is that its ex
ess 0 
ase appears in nature as the \link relation"

of [BGRT2, Me℄. The idea is that we want to allow univalent verti
es, like in Se
tion 3.4,

but this time they parti
ipate in the game in a more a
tive way | we allow to 
ontra
t

an edge that leads to a univalent vertex, but some provisions apply. It is easier to des
ribe

everything in a pre
ise way by introdu
ing a distintuished vertex with spe
ial properties,

and by atta
hing all the univalent verti
es to it. If there's more than one 
olor of univalent

verti
es, we will similarly introdu
e several 
olored distintuished verti
es, one for ea
h 
olor

of the univalent verti
es.

De�nition 3.19. A (~

u

1




1

~

u

2




2

: : : )-graph is a graph with distinguished verti
es 
olored 


1

, 


2

,

: : : , together with a marking of pre
isely u

i

of the edges emenating from the 


i

-distinguished

vertex as \spe
ial", for ea
h i. (In parti
ular, the valen
y of the 


i

-distinguished vertex must

be � u

i

). When additional stru
ture is present (a skeleton, Se
tion 3.4-style univalent ver-

ti
es), we require that it is disjoint from the 
urrently distinguished verti
es. We de
lare the

lo
al degree at a distinguished vertex to be its valen
y, and the lo
al ex
ess at a distinguished

vertex to be the number of unmarked edges emenating from it. An example is in Figure 3.

Habitat.

Results.

3.7. Dire
ted Edges.

Habitat.

Results.
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3.8. Terminus Free Graphs.

Habitat.

Results.

3.9. A
robats.

3.9.1. A
robat Towers.

Habitat.

Results.

3.9.2. A
robat Jungles.

Habitat.

Results. A
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