CHAPTER 3

Modular Tensor Categories

In this chapter, we introduce one more refinement of the notion of a tensor cate-
gory — that of a modular tensor category. By definition, this is a semisimple ribbon
category with a finite number of simple objects satisfying a certain non-degeneracy
condition. It turns out that these categories have a number of remarkable prop-
erties; in particular, we prove that in such a category one can define a projective
action of the group SL2(Z) on an appropriate object, and that one can express the
tensor product multiplicities (fusion coefficients) via the entries of the S-matrix
(this is known as Verlinde formula).

We also give two examples of modular tensor categories. The first one, the
category C(g, ), € Z, is a suitable semisimple subquotient of the category of
representation of the quantum group U,(g) for ¢ being root of unity: ¢ = emi/ms
The second one is the category of representations of a quantum double of a finite
group G, or equivalently, the category of G-equivariant vector bundles on G. (We
do not explain here what is the proper definition of Drinfeld’s category D(g, ») for
» € Z, which would be a modular category — this will be done in Chapter 7.)

3.1. Modular tensor categories

In this section we will study ribbon categories with some additional proper-
ties. Let C be a semisimple ribbon category. We will use the same notation as in
Section 2.4. Define the numbers §;; € k = End 1 (¢,j € I) by the following picture:

(3.1.1) 5 =
i J

Here and below, we will often label strands of tangles by the indices i € I meaning
by this V;. Note that (2.3.17) implies
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=0,'0; " tr0y gy, = 0,6, >  NEOrdy.
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Sij =

(3.1.2)
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Also, it is easy to see that
(313) §ij = §ji = §i*j* = §j*¢*, §¢0 = dl = dlm‘/z

DEFINITION 3.1.1. A modular (tensor) category (MTC for short) is a semisim-
ple ribbon category C satisfying the following properties:

(i) C has only a finite number of isomorphism classes of simple objects: |I| < co.

(i) The matrix § = (8;5)4,jer, where §;; is defined by (3.1.1), is invertible.

REMARK 3.1.2. If C is symmetric, one can change overcrossing and undercross-
ing, hence 3;; = d;d;. Unless |I| = 1, this matrix 3 is singular, therefore C is not
modular.

REMARKS 3.1.3. (i) Many authors (for example, Turaev [T]) impose weaker
conditions, not necessarily requiring semisimplicity in our sense. We are only inter-
ested in the simplest case; thus the above definition is absolutely sufficient for our
purposes. We refer the reader to [Ke], [Lyu2] for a discussion of the non-semisimple
case.

(ii) The name “modular” is justified by the fact that in this case we can define
a projective action of the modular group SLo(Z) on certain objects in our category,
as we will show below. To the best of our knowledge, this construction first ap-
peared (in rather vague terms) in a paper of Moore and Seiberg [MS2]; later it was
formalized by Lyubashenko [Lyul] and others. Our exposition follows the book of
Turaev [T].

(iii) The appearance of the modular group in tensor categories may seem mys-
terious; however, there is a simple geometrical explanation, based on the fact that
to each modular tensor category one can associate a 2+1-dimensional Topological
Quantum Field Theory. This also shows that in fact we have an action of the map-
ping class group of any closed oriented 2-dimensional surface on the appropriate
objects in MTC. This is the key idea of the book [T], and will be discussed in detail
in Chapter 4.

From now on, let us adopt the following convention:

If some (closed) strand in a picture is left unlabeled then we assume

1.4
(3.14) summation over all labels ¢ € I each taken with the weight d; = dim V;.

Since d;« = d;, we can drop the arrow of such a strand. Recall also that we omit the
upward arrow when there is no ambiguity. Then we have the following propositions.
(Their statements and proofs can be written explicitly in terms of 0,1, ¢, d, etc., but
we will prefer to use the pictorial presentation.)

LEMMA 3.1.4. In any semisimple ribbon category we have

(3.1.5) i _ 5 ;

Recall that by Lemma 2.4.1, d; # 0.
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ProOF. The left hand side is an element of End(V;) = k, i.e., it is equal to
a;j idy, for some a;; € k. Taking a trace (i.e., closing the dlagram we obtain

D

The left hand side is equal to §;;, while the right hand side to a;;d;. O

LeMMA 3.1.5. We have the following identities:

(3.1.6) :P+@§ )
i
|
where
(3.1.7) pt = 60Fd;.

icl

Proor. We will consider only the case of plus sign, the case of minus sign is
similar. Again the left hand side is an element of End(V;) = k, we take the trace
of this element and multiply it with €;. Then, using (2.3.17), we get

O

Now decompose the tensor product V; ® V; as in (2.4.1) to get

0; tr(lhs) Zd try;ov; 0 = ZNfidjdka.

Using (2.4.3) and (2.4.6), we obtain

str(ths) = > (30 Nijdj ) deby = > didge i = (3 063 ) d; = ptd,
k k

k J

as desired. O
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COROLLARY 3.1.6.

® il [k ) =r@) @

| | i k

PRrROOF. Since any object is a direct sum of simple ones, (3.1.6) holds if we
replace V; by any object V. Apply this identity for V = V;®V}, and use (2.3.17). O

THEOREM 3.1.7. Define the matrices § = (5;;), t = (tij) and ¢ = (cy5) (“charge
conjugation matriz”) by (3.1.1) and

(3.1.8) tij = 0i;0:,

(3.1.9) cij = Oijr.

Then we have:

(3.1.10) (5t)* = pt&?%,

(3.1.11) (5t71)3 = p~ &,

(3.1.12) ct=te, c§=35 =1,

where p* are defined by (3.1.7). Moreover, when 3 is invertible, we have
(3.1.13) Z=ppc

ProoF. The fact that ¢ commutes with § and ¢ follows from (3.1.3) and (2.4.5);
and ¢*> = 1 because i** = i. To prove the non-trivial relations (3.1.10, 3.1.11),
consider first the identity

B k
(3.1.14) ' @ p+ @
| - /
l

obtained from Corollary 3.1.6. The right hand side is equal to

k
1 . 1,150
pro;te,t i =ptO ]
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where we used Lemma 3.1.4. We can rewrite the left hand side of (3.1.14) as

J
0D
J k

Applying Lemma 3.1.4 twice we obtain

This gives the identity
> 3053k = pT6; b,
J

which is equivalent to

§ts =ptt~tat,
proving (3.1.10). Similarly, using the analogue of Corollary 3.1.6 with minus sign,
one can prove

5715 = p~tste,
which implies (3.1.11).

When the matrix § is non-singular, it is a matter of pure algebra to deduce
Eq. (3.1.13) from (3.1.10)—(3.1.12). O

COROLLARY 3.1.8. In an MTC, p* and p~ are non-zero.
Now assume that the category C is modular, and introduce the notation
(3.1.15) D:=+/ptp~, (= ("/p)""

(assuming that they exist in k, otherwise we can always pass to a certain algebraic
extension). Define the renormalized matrix

(3.1.16) s:=3§/D.

Then we can rewrite the relations from Theorem 3.1.7 as follows:

+ . . .
(3.1.17) (st)® = ”%52 =% s’=c¢, ct=te, =1

Recalling the well-known description of SLo(Z) as the group generated by the ele-
ments

()6
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with relations (st)® = s%,s* = 1, we see that the matrices s,t give a projective
representation of SLy(Z). (The fact that s*t = ts? follows from (st)® = s2.)

REMARK 3.1.9. Of course, one easily sees that we can replace the matrix ¢ by
t/¢ and get a true representation of SLy(Z) rather than a projective one. In fact,
since H?(SLy(Z),Q) = 0, every projective representation of SLy(Z) over a field k
of characteristic 0 can be trivialized in some algebraic extension of k. However,
we prefer not to do it: later we will show that any MTC gives rise to projective
representations of more general groups (mapping class groups), of which SLo(Z) is
the simplest example, and these representations can not be trivialized. Moreover,
if we renormalize ¢ now, it will make things only worse later.

COROLLARY 3.1.10. In an MTC, we have:

(3.1.19) i =ptpTdio |

(3.1.20) prp =) di =

(3.1.21)

PROOF. Let us prove the first identity. As before, it suffices to prove that the
traces of both sides are equal. By Lemma 3.1.4 the left hand side of (3.1.19) is
equal to ), d;8;;/d;idy;. Taking a trace, we obtain

D disi =D 50i5i = (3)5 =p"p o =ptpdi.
j j

The second identity (3.1.20) easily follows from (3.1.19). The proof of (3.1.21) is
similar to the above, using twice Lemma 3.1.4. |

We note that equation (3.1.20), along with the definition of s, give the following
formulas for the number D = /ptp—:

(3.1.22) D =1/> dim*V; = 5,5

We can easily describe the Grothendieck ring of a modular tensor category. As
before, let C be an MTC and let K(C) be the Grothendieck ring of C (see Defini-
tion 2.1.9). Then the algebra K = K(C) ®z k is a finite dimensional commutative
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associative algebra with a basis z; = (V;), i € I, and a unit 1 = xy. This algebra is
frequently called the fusion algebra, or Verlinde algebra.

THEOREM 3.1.11. Let C be an MTC, K = K(C) ®z k, and let F(I) be the
algebra of k-valued functions on the set I. Define a map p: K — F(I) by the
picture:

Then p is an algebra isomorphism.
ProorF. It is immediate from the results of Section 2.3 that p is an algebra

homomorphism. Indeed,

U

ueyVv

@
Q V
i
Choose a basis in F(I) consisting of renormalized delta-functions: €;(j) =

i/ s0i- Then it follows from Lemma 3.1.4 and the obvious identity §;;/d; = si;/s0:
that the map p is given by

(3123) ,u(:vj) = Z Sij€i-
Since the matrix s;; is invertible, this completes the proof. |

The importance of this result is that it gives a new basis u~!(¢;) in K in which
the multiplication becomes diagonal. For brevity, let us write ¢; € K instead of
p~(€;). Then (3.1.23) and €;¢; = &;5€;/50; imply that

(3124) Ti€5 = €5 Sij/Soj.
Comparing this with the usual formula for the multiplication in the basis x;:
(3.1.25) TiT; = ZNikjmk7

k

we get the following proposition.
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PROPOSITION 3.1.12. For a fized i let N; be the matriz of multiplication by x;
in the basis {x;}, i.e., (Ni)ap = Njj, and let D; be the following diagonal matriz:
(Di)ab = 6ab3ia/30a- Then

(3.1.26) sN;s~! = D;.

This proposition is usually formulated by saying that “the s-matrix diagonalizes
the fusion rules”. Another reformulation is the following. Define in K another
operation, * (convolution), by the formula

(3127) Ty *Tj = (Sijwi/S()i.
Then:

(3.1.28) s(zy) = s(z) *s(y),
(3.1.29) s(z xy) = s(z)s(y).

Therefore, the matrix s can be considered as some kind of a Fourier transform.
Finally, Proposition 3.1.12 immediately implies the following famous formula

for the coefficients N/, which was conjectured in [Ve] and proved in [MS1].

THEOREM 3.1.13 (Verlinde formula).

SirSirSk*
(3.1.30) N =)

S
r Oor

Before giving the proof, let us note that as a consequence the right hand side
of (3.1.30) is a non-negative integer, which is a non-trivial and unexpected fact.

ProoF. Rewrite formula (3.1.26) as sIN; = D;s, or

SirSj
3.1.31 Nisar = —1C.

( ) E s

Multiplying this identity by s, and summing over r, we get (3.1.30). O

REMARK 3.1.14. If the base field k = C, and the category C is Hermitian, that
is, if it can be endowed with a complex conjugation functor  satisfying certain
compatibility conditions [T, Sect. IL.5], then it can be shown that the matrices s, ¢
are unitary (see [Ki]).

Let C be a modular tensor category. Recall the object H = @GV, @ V;* € C
defined in (2.4.9). As was mentioned in Section 2.4, we have canonical isomorphisms
H~H* and H ~ @V ®V;. It also follows from the definition that dim H =
D? =Y (dim V;)2.

DEFINITION 3.1.15. Define elements S, T, C € End H as follows. Write

S:@Sij, SUV;(X)‘/J*—)V;@V;*

i,yel
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and similarly T = @ T35, C = @ Cy;. Then:

d;
(3.1.32) S =3 \//\ :

(3133) Tij = (Sij (@ )

J

We have the following generalization of Theorem 3.1.7.

55

THEOREM 3.1.16. S? = C, C? = S* = 0,', (ST)® = \/p*/p=S? and the

element C is central in End H.

PROOF. Let us first check the identity S? = C. We have:
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i ) L
R=Rias)
) E Y
Q
A<

using (3.1.21) and pTp~ = D?, d; = d;~.
Similarly, (STS)U = Zk,l Sika[Slj = Zk Sik (ek (39 id)Skj is equal to

| Ly
N
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~@~ 9

which equals \/p+/p—( T-tsT-! )”; now using Corollary 3.1.6 instead of Corol-
lary 3.1.10. This proves that (ST)? = \/p*/p—S2.
Finally, using (2.3.17), it is easy to see that (C?);; = (5Z39‘7 BV = 07")i. O

We cannot say that S, T give a projective representation of the modular group
in H, since f is not a constant. However, f becomes a constant after restriction
to an isotypic component of H. Equivalently, let us fix a simple object U in our
category and consider the space

Hom(U, H) = P Hom(U, V; ® V;").
iel
This is a vector space over k, and 0y |nom(v,i) = Ov iduom,m), v € k.
THEOREM 3.1.17. Define the maps Sy,Ty: Hom(U, H) — Hom (U, H) by

Sy:®— S,

Ty: ® — Td.
Then Sy, Ty satisfy the following relations

St =05,
TyS? = SETy,

3 P e
(SuTy)” = FSU:

and thus give a projective representation of the group SLo(Z) in Hom (U, H).

ExaAMPLE 3.1.18. Let U = 1 be the unit object in C. Then we have a canonical
identification Hom(1,V; ® V;*) ~ k, and thus we have a canonical basis {x;} of
Hom(1, H). In this case, the action of the modular group defined in Theorem 3.1.17
in the basis {x;} is given by s,t defined by (3.1.16) and (3.1.8).

The next theorem was proved by Vafa in the context of Conformal Field Theory.

THEOREM 3.1.19 (Vafa [V2]). In any modular tensor category the numbers 6;
and ¢ = (p*/p~)Y/® are roots of unity (regardless of the base field k).

Proor. We will use the following observation: if

[1¢; =1 ier

JeI
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with a non-singular integer matrix M;;, then all 8; are roots of unity. Indeed, we
can diagonalize the matrix M;; by rows and columns operations.

For fixed objects Wy, Wa, W3 in C, define the following endomorphisms of
Wi & W @ Wy

B = Oy, ®id®id, 6 :=id@bw, @id, 63 :=id®id @by,

912 = 9W1®W2 & id, 923 =1id ®9W2®W37 913 = Q

0125 1= Ow, awsow;-
Then it is easy to check that
(3.1.35) 012013023 = 0123010203

(this identity is sometimes called the lantern identity). Consider this identity for
Wi =V;, Wo = V", Wy = V,. It gives rise to an identity of operators in the vector
space
Ui = Hom(V;, Vi @ V" @ V;)

which is non-zero since it contains iy, ®idy,. We take determinant of both sides of
this identity.

To compute det 812|y;, we use the decompositions of V; ® V;* and V; ® V; as
direct sums of simple objects:

Vo Vi =Y NV, VieVi=>» NiVi,
J k

and (2.4.4, 1.1.2). We obtain

det (912

NI, N,
U, = H 9]' i i
J
Similarly, we compute the determinants of other #’s and get the identity

Aij _ p4dimU;
I16;% =¢: ,
J
where Aij = 2N/

1N + NN, Using that dimU; = (1/3) 3, Ay > 0, it is easy
to see that the matrix A;; — 49;; dim U; is nonsingular. 1t follows that all 8; are
roots of unity.

Since dett =[], 6;, dett is a root of unity. On the other hand, s* = 1 implies
that det s is a 4th root of unity. Therefore, it follows from (st)* = (3s? that ( is a
root of unity. O

REMARK 3.1.20. In MTCs coming from Conformal Field Theory (CFT), when
the base field is C, one usually writes

(3.1.36) g; = 2™ (= e2mic/24.
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The numbers A; are called the conformal dimensions and c is called the ( Virasoro)
central charge of the theory. In this language Vafa’s theorem asserts that the
conformal dimensions and the central charge of the theory are rational numbers;
this is one of the reasons why such CFTs are called rational.

One can also easily prove the following result.
THEOREM 3.1.21. All the numbers s;;/so; = 8i5/d; are algebraic integers.

Proor. By Verlinde formula (3.1.26), these numbers are the eigenvalues of the
matrix N; with integer entries. O

3.2. Example: Quantum double of a finite group

We will give the simplest example of a modular tensor category—the category
of finite dimensional representations of the Hopf algebra D(G), which is the quan-
tum double of the group algebra k[G] of a finite group G. It is interesting that
this example appeared in two seemingly unrelated areas—the theory of characters
of reductive groups over finite fields [L5, L6] and the orbifold constructions in
Conformal Field Theory [DVVV, KT].

Let us first fix the notation. Let G be a finite group. Recall that its group
algebra k[G] over a field k is a Hopf algebra with a k-basis {z},cqe and

multiplication TRY— Ty, z,y € G,
unit e (the unit element of G),
comultiplication Alz) =z ®u, z €G,
counit e(z) =1,

antipode y(z) =zt

This Hopf algebra is cocommutative. A representation of k[G] is the same as
a representation of G. By Maschke’s theorem, the category Repy k[G] of finite
dimensional representations is semisimple.

The Hopf algebra dual to k[G] is isomorphic to the function algebra F(G) of
the group G. It has a k-basis {0, }4e¢ consisting of delta functions:

5,(@) = 8y0 = {(1) ior g=u,
or g # x.
It has

multiplication 0g0n = 6g,104, g, heq,
unit 1= deG dg,
comultiplication A(dg) =241 ga=g 091 ® g, g € G,
counit €(dy) = g,
antipode Y(dg) = dg-1.

A representation of F(G) is the same as a G-graded vector space (since {d,}geq
are projectors).

Applying Drinfeld’s quantum double construction [Dr3] it is easy to describe
explicitly the quantum double D(G) of k[G]. As a vector space, D(G) = F(G) ®y,
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k[G]. It is a Hopf algebra with

multiplication (0g ® )(0p, ®Y) = gg,zn(dg ® zY), z,y,9,h € G,
unit 1=3eccly®@e,

comultiplication ~ A(d, @) =3, . _ (35 ®2) @ (4, ® T), g9,z €G,
counit €(0g ® ) =y,

antipode Yy ® @) = Gp-1g-1, @ "
The Hopf algebra D(G) is quasitriangular with
R-matrix R=3%,ccldy®e)®(l®g).
(Of course, once we know the above formulas, they can be easily checked directly.)

Note that F(G) and k[G] embed in D(G) as k-algebras and D(G) is their
semidirect product:

(3.2.1) D(G) = F(G) » k|G,
with
(3.2.2) @6ga" = 0,4,-1 for g,z € G.

Let RepyD(G) be the category of finite dimensional representations of D(G)
as a k-algebra. By the above remarks, a representation V' of D(G) is the same as
a G-module with a G-grading V' = o Vy satistying aVy, C Vygp-1, 2,9 € G.
In other words, objects of RepyD(G) are finite dimensional G-equivariant vector
bundles over G. We will show that the category Rep;D(G) is semisimple and will
describe its simple objects.

For V € ObRepsD(G) and v € V' the submodule generated by v is

D(Gy = Z E[G)égv = Z @ zZ(g)dgv,

geG 9geG xgz—1leg

where g denotes the conjugasy class and Z(g) the centralizer of g in G. Note that
k[Z(g)]d4v is an irreducible representation 7 of Z(g). Hence

(3.2.3) Vir =k[Glogv= @ an,
zgr—leg
is an irreducible D(G)-module which depends only on the conjugacy class g and

the isomorphism class of the irreducible representation © of Z(g). The action of
D(G) on V5, is given explicitly by:

(3.2.4) (0 ® h)(av) = 6f pygn-14-1 hav for f h,x € G, veT.

This shows that the category RepyD(G) is semisimple with simple objects

V5.« labeled by pairs (g, ), where g € G is a conjugacy class in G and 7 € Z(g) is
an isomorphism class of irreducible representation of the centralizer Z(g) of some
element g € g (7 is independent of the choice of g).
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In what follows we will use the orthogonality relations of irreducible characters
of a finite group G-

i _ trﬂ(g) ! ~
(3.2.5) @ f;trﬂx (h) tra (hg) = (e bnn, w7 €G, geQG,
1
(3.2.6) 70 Ztrﬂ* (9)trx(h) =655,  h,g€G.
TelG

Also recall that [g]|Z(g)| = |G].

THEOREM 3.2.1. RepyD(G) is a modular tensor category with simple objects
Vo« labeled by (g,7), g€ G, m € Z(g) (9 €7). We have:

(3.2.7) V—*Tr ~ VFJT*’

g,
_ tr (9)
B28)  tgm.@a) = 0@ g (e)
— — ; 1—=ly 1 1,1
(3.2.9) G = 22 };} trr(hg' Th™ ) trp (b tg th).
hg'h™1€Z(g)

The numbers p* from (3.1.7) are equal to the order of G.

The s-matrix (3.2.9) was first introduced by Lusztig [L5] (see also [L6, L7])
under the names “non-abelian Fourier transform” and “exotic Fourier transform”.
Then it appeared in [DVVV] and [KT] in connection with “orbifolds”. Dijkgraaf,
Pasquier and Roche [DPR] considered a generalization of the above construction
which is also related to orbifolds. They introduced a quasi-Hopf algebra D¢(G),
depending on a cohomology class ¢ € H?*(G,U(1)), which reduces to D(G) when
c=1

Proor oF THEOREM 3.2.1. Eq. (3.2.7) follows easily from the definitions (note
that Z(g~!) = Z(g) and try-(h) = tr.(h™1)).

To prove (3.2.8), we compute the twists 6 using the results of Proposition 2.2.4
and Lemma 2.2.5. Since 2 = id, it follows that Jy = id, cf. (2.2.11). Hence,

(3.2.10) =u"'=> 6 ®h
hedG

As g is central in Z(g), it acts as a constant = tr(g)/ tr,(e) on the representation
m; hence by (3.2.4), 05 = trr(g)/ trz(e).
To prove (3.2.9), we will use (3.1.2). We compute for z,z' € G,v € n*, v € n":

Ovs v, (zv @ 2'v') = Alu™) (v @ 2'v')

= Y (O, @ h)(@v) @ (6n, @ h) (")

heG@
hiha=h

= E (Shhhzg—lw—lh—lhxv®(5h27hz/glwr—1h—1hmlvl

heG@
hiha=h

(fav® fo'v'), where f =g 'z 'a'g's’ .
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Hence,
1 —1 N
trevé«,"@vg_,,ﬂl = Z trﬂ-*(g Ly 1$Igl;[;' x)trﬂr(xl xg 1y 1$Ig/)
vl T
.z/g/z/—ley
w_lz'g'w'_leZ(g_l)
tro-(g7") tro(g') 1 -1 1,1
= tree (hg'h™ ) tro (R~ "g "h)
@ @ FOIZD] 2 " |
hg'h~*eZ(g)

which proves (3.2.9).
The computation of p* is straightforward (using (3.2.5, 3.2.6)), and is left to
the reader. O

3.3. Quantum groups at roots of unity

We will show that the category of representations of a quantum group at root
of unity is a modular tensor category.

We will use the notation and definitions from Section 1.3. Recall that the
quantum group U,(g) was defined over the field C; where ¢ is a formal variable
(Definition 1.3.1). We also defined a version of the quantum group (“the quantum
group with divided powers”) which makes sense for ¢ € C (see (1.3.18)).

In this section we will consider the case ¢ = e™/™* (»x € Z, and m is
from (1.3.17)), and we will abbreviate U, (g)[,—eri/m= to Uy(g). As usual, we let
q® = e®™/™* for any a € Q Let C(g, ) be the category of finite dimensional
representations of Uy (g) over C with weight decomposition:

V=@V "l =d"Vidys,
AEP
e (V) c vt () C AT
Note that our definition of weight decomposition is stronger than just requiring

that all ¢" be diagonalizable: the action of ¢" does not allow one to distinguish
between V* and VAT2m=r ¢ P,

THEOREM 3.3.1. C(g, ») is a ribbon category over C.

ProOF. The associatity, unit, etc., follow from the fact that U,(g) is a Hopf
algebra (cf. Examples 1.2.8(iii), 2.1.4). For the commutativity we need that the
R-matrix can be defined over U, (g)z, which was proved by Lusztig, see [L2]. O

DEFINITION 3.3.2. Let A € P, be a dominant integer weight of g. The Weyl
module V) of U,(g) is defined by

Vi=WM)z®aC,

where ./4 = Z[qil/‘P/Ql] and (V)\)Z = Uq(g)zw\ C (VA)(C

. is the Uy(g)z-submodule
of (Vi)c, generated by the highest weight vector.

This means that we choose a basis of (V)¢, such that the action of U,(g)z
has coefficients from Z[g*'/1F/@]] and then we can put ¢ a complex number. This
description shows that the weight subspaces of V) are the same as those of (V)c, -
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For example, let us consider first the case when g = sly. The weight lattice of
sly can be identified with Z, so the Weyl modules are

n
Vn:Z(Cvi, ne€ Zy.
=0

Here vy is the highest weight vector and v; = f(Pvy. The action of U,(sls) is given
by (recall that [k] := (¢* — ¢ *)/(q— g )):

qhvi =q¢" Y, ev; = [n—i+ 1vi1, fu; =[i+ 1vig,

see the figure (f is represented by solid lines and e by dashed ones).
(] [2] [11

anvnl eee V, Vi Vo

(1] [n-1] [n]
The coefficients of the above action are in Z[¢g*!], so it makes sense for ¢ € C*. We
will assume that g # £1.

EXERCISE 3.3.3. Write the action of e®) and f(*) in this basis.

Let ¢ = e™/*, 3 € Z,. Then the module V,, may be reducible since [k] = 0
when 3¢ divides k. For example, for n = 3, s = 3, the basis elements v; and v,
span a submodule V4. This claim does not follow simply from the fact that V3 is
invariant under the operators e and f, because for example e(®) is a new operator
different from e*/[3]! (since [3] = 0). We leave the proof as an exercise (not too
difficult). The submodule V5 is not a direct summand, hence V3 is not semisimple.

THEOREM 3.3.4. (i) The module V,, is irreducible for n < .
(ii) dimgy Vi, = [n+ 1] = 0 if and only if s divides n + 1.

The proof of this theorem is straightforward. In particular, this theorem implies
that

(3.3.1) For 0 <n < —2,V, is irreducible and dim, V,, # 0,

which is obvious because in this case all g-factorials are non-zero. (In fact, one has
a stronger statement: V,, is irreducible iff n < s or n =1lsx — 1,1 € Z, see [AP].)

We will need a similar result for an arbitrary semisimple finite dimensional Lie
algebra g. Recall the number m from (1.3.17). We let ¢ = e™/"* 5 ¢ Z, and
assume that s > hY, where hY = (p,0) + 1 is the dual Coxeter number, p is the
half sum of positive roots, and 6 is the highest root of g.

THEOREM 3.3.5. dim, Vy = 0 if and only if X+ p € H,,; for some o € Ay,
l € Z, where H,; is the hyperplane
Hyp={z b | (z,a) =lsx}.
Proor. By (2.3.13) we have an explicit formula for dim,:
(3.3.2) dimg Vi = try, ¢*” = xa(¢*),

where x» is the character of the representation V). Here and below we use the
notation e*(¢#) = ¢ and extend it to f(¢*) for f € C[P], where P is the
weight lattice of g.
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We have the Weyl formula for y:

1 .
3.3.3 ¢?°) = — —DHw) glwA+p).20)
(333) 06") = e D)
where [(w) is the length of w, and ¢ is the Weyl denominator
(334) 6= H (eoa/2 _ e—a/Z) — Z (_l)l(w)ew(p)'
a€Ay wew

(This equality is the Weyl denominator formula.)
We can rewrite (3.3.3) as

(3.3.5)

2p\ 1 w) 2 p,w(p)) — 5((12()\4-0)) _ [«av/\_l'p»]
(@) = 5oy w%(_l)l( gpOenton - Z0o ang

where, as usual, [n] denotes the g-number.
Note that {a,p) < (0, p) = m(hY — 1) < mse, thus the denominator is non-
zero. The numerator is 0 exactly when A + p belongs to some H, ;. |

Let us define the affine Weyl group W* to be the group generated by reflections
with respect to the hyperplanes H, ;. It contains the Weyl group W of g which is
generated by reflections with respect to the hyperplanes H, 9. Recall the following
standard facts (see e.g. [K1]).

THEOREM 3.3.6. (i) W* is a Cozeter group generated by the simple reflections
s; (i =1,...,rankg) and the reflection sy with respect to the hyperplane Hy ;.

(i) W = W x »%QV where QV is the coroot lattice embedded in h* using the
form (,); Q" acts on h* by translations.

(iii) A fundamental domain for the shifted action w.\ := w(A+p)—p of W on
h* is the Weyl chamber

(3.3.6) C={eb" | (A+pa)) >0, A+p,0Y) < 5}

For example, for g = sly, h* is a line and C is the closed interval [—1, 5 — 1].
We will need a simple technical lemma.

LEMMA 3.3.7. (i) Let f € C[P]*Y be W invariant (respectively anti-invariant).
Then f(q?*) is (anti)symmetric with respect to the action of W% on p.

(ii) Conversely, if f(¢**) = f(¢**') for all f € C[P]W then u' = w(p) for some
we W

PROOF. (i) The (anti)symmetry with respect to W is obvious. It suffices to
check that f(q?*) is symmetric with respect to translations from »#QV, i.e.,

F@e ) = f(@*), oY eQ.
This follows from the equation
ek(q2(u+%av)) = g g2
and the fact that 23, a¥) = 23em{u, V) € 2:emZ.
(ii) The proof of the converse statement is left to the reader as an exercise;

the crucial step is proving that certain matrices are non-singular. We will give an
example of a calculation of this sort later (see the proof of Theorem 3.3.20). O
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COROLLARY 3.3.8. If we define “dim, Vy” for all A\ € P as §(¢* 1)) /5(¢%°),
then it is W%-antisymmetric with respect to the shifted action on A.

ProoF. Follows from Lemma 3.3.7 and the fact that § is a W-antisymmetric
element in C[P] (see (3.3.4)). O

THEOREM 3.3.9. Let C = {\A € Py | (A+p,0Y) < »}. Then for X € C we
have dimg Vy > 0 and V) is irreducible.

(In fact, one can describe exactly when V) is irreducible (see [APW]) but we will
not need it.)

PRrOOF. The fact that dim, Vi, > 0 follows from Eq. (3.3.5). The irreducibility
of V) follows from the so-called “linkage principle” (in a weak form):

V can have a subquotient with highest weight A" only if X' = w(A)

for some w € W®.
To prove it, introduce operators K, : V' — V (where v € P, V is any module) by
the picture

<
<

Since K, is a morphism in the category C(g, »), it commutes with the action of
Ug(g) on V. If vy is a highest weight vector in V, it is easy to see that K, (vy) =
Xo (@A) vy. Indeed, let {v;} and {v’} be dual bases in V, and V,*. Using
1.2.8(iii), 2.3.4 and 2.2.4, we compute:

K,: vy @Zv,\@vi@)vi
i
S Y AT (g ) @ oy @0
i

KA Z qz({A,wtw))w\ @ Wi +-)® vt

(3

2 > Oty @ (v 4--) @0

(3

- (Z PRICSTAL vi»)w = % (@O,

where “4-..” denotes terms with lower weight than v;.
The operators K, are central and act by constant on vy, therefore for subquo-
tients we have

q2(A+p)) 2(>\’+p))_

XV( = XV(q

Because all x,,, v € Py, span C[P]", it follows from Lemma 3.3.7(ii) that X' = w(\)
for some w € W?.
This completes the proof of the theorem. [l
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Note that C(g, ») is a very complicated category; in particular, it is not semisim-
ple. We want to extract a semisimple part with simple objects V), A € C. As an
indication that this is possible, we give without proof the following fact (see [AP]
and references therein).

ProrosiTionN 3.3.10. For A\, u € C' we have

nav,~ (Prgv) oz
ved
for some module Z with dimy Z = 0.

However, it is not possible to declare all modules of dim, = 0 to be 0. For
example, for g = sly we have dim,(V,._2 ® V,,) = 0, while both V,,_5 and V,, are
modules with non-zero g-dimension and V,,_» is simple.

The correct construction was found by Andersen and Paradowski [AP] and is
based on the use of an auxiliary category of tilting modules, which is interesting in
its own right.

DEFINITION 3.3.11. A module T over U,(g) is called tilting if both T" and T*
have composition series with factors Vy, A € P,. Let T be the full subcategory of
C(g, 5) consisting of all tilting modules.

ExaMPLE 3.3.12. (i) If A € C then V), ~ Vi« for \* = —wy(A), where wy is the
longest element in W. Therefore the module V) is tilting. However, for a general
A € Py, V) may not be tilting.

(ii) Let g = slo, ¢ = €™/3, 50 [3] = 0. Consider the Weyl module V3 over U,sls.
We add two more vectors to it and extend the action of sl as shown in the figure
for the elements e and f (f is represented by solid lines and e by dashed ones).

(The reader can define as an exercise the action of e®), f(*¥) for k > 0.) We obtain
a module T' = Z?:O Cuv;. It is easy to see that the vectors vy, vy, v2, v3 generate
a submodule isomorphic to V3 and the factor by it is isomorphic to V. It can be
easily shown that 7" ~ T, hence the module T is tilting. Note that 7T is not a
direct sum of V3 and V;.

The following important theorem was proved by Andersen and Paradowski (see
[AP] and references therein).

THEOREM 3.3.13 ([AP]). (i) The category of tilting modules T is closed under
x, @, ® and direct summands.

(ii) For every A € Py there exists a unique indecomposable tilting module T
such that its weight subspace (Tx\)* is 0 unless p < X\ and (Ty)* = C.
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(iii) For A € C we have T\ =V, while for A ¢ C we have dim, T\ = 0. Hence
dim,T" >0 for all T € ObT.

We will not give a proof of the theorem. We only note that, for example, it is
rather difficult to show that 7 is closed under ®.

COROLLARY 3.3.14. T is a ribbon category.
Note that 7 is not an abelian category since it is not closed under quotients.

DEFINITION 3.3.15. A tilting module 7" is called negligible if try f = 0 for any
f € EndT. (In particular, dim, T = 0.)

LEMMA 3.3.16. T is negligible iff T = @Aec n Ty for some ny € Z.

ProOF. Follows easily from Theorem 3.3.13. Indeed, it is enough to show
that T is negligible iff A ¢ C. Since Ty is indecomposable and dim¢c T, <
oo, every endomorphism f of T in some homogeneous basis has the form f =
cid +upper triangular. Then tr, f = c¢dim, 7. O

DEFINITION 3.3.17. A morphism f: Ty — T is called negligible if try(fg) =0
forall g: Tb — T7.

Note that if T or Ty is negligible then any morphism f: T7 — T5 is negligible.
LemMA 3.3.18. (i) If T is negligible, then so are T*, T @ T" for any T', and

direct summands of T
(i) If f is negligible, then so are f*, f® g, fg and gf for any g.

The proof being obvious is omitted.

DEFINITION 3.3.19. Let C'"* = C'"t(g, ) (3 € Z, 2 > h") be the category with
objects tilting modules and morphisms

Homgine (V, W) = Hom7(V, W) /negligible morphisms.

We list some properties of the category C'™ = Ci"t(g, s):

1. T € ObT is negligible iff it is isomorphic to 0 in Cint,

2. C'8t is a ribbon category.

3. Any object V' in C'"* is isomorphic to ¢ naVi.

4. ' is a semisimple abelian category and dimeine V' > 0 if V £ 0.
These properties show that C"t is the category we wanted. It is a semisimple ribbon
category with a finite number of simple objects. A natural question is whether this
category is modular. We will show that the answer is positive.

THEOREM 3.3.20. C"* is a modular tensor category with simple objects Vy (X €
o),

(3.3.7) Sxp = |p/%QV|71/2i\A+\ Z (_1)1(10)q2<<w(Aer)7/Hrp>>7
weWw
(3.3.8) tap = Orug X200
and
(3.3.9) D =P[=Q"] [] (2sin(m{e, p)/5) ",
€A,

(3.3.10) (=™ = (5c—hY)dimg/s.
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ProoF. The calculations in the proof of Theorem 3.3.9 and Eq. (3.1.5) give

. : 1 w) 2w
Sap = Xu(@OTP)) dim, Vi, = ) Z (=1)!w) 2Lwrtp)pto))
weWw

To show that det§ # 0, we will calculate the matrix §2. First note that if we
use the formula above to extend 5y, for A,u € P, this extended matrix will be

antisymmetric with respect to the shifted action of the affine Weyl group W¢:
(3.3.11) Swap = (-D)Ws . wewe
In particular, 55, =0 when A or p are on the walls of C.

Since Zuec Sau8uv 1s symmetric with respect to the shifted action of W* on

p and C'is the fundamental domain for the action of W* on P, we can replace the
range of summation with P/W%. Since W% ~ W X »@Q", this sum equals

1 R
W 2 S
HEP/xQV
1 ! B I
— W Z Z 5(q2p)—2(_1)l(w)+l(w )q2<<u+pyw(>\+p)+w (v+o))
w,w' €W pneP/xQV

Now we need an obvious lemma.

LemMa 3.3.21. Y ¢ = 0 for a & QY
HEP/3QY |P/#QY| for a € »xQV.

Note that w(A + p) +w' (v + p) = wA + p) — wWwo(v* +p) € xQV if A+ p €
wrw'wo (V* + p) + #QY where wy is the longest elment in . But since both A
and v* are in C, which is a fundamental domain of W%, this is only possible if
A+ p=v"+p, wlw' = wy. Therefore

- |P/#QY] -\ i(wo)
D Bl = S (D)0 e,
pere 6(q*r)

This number is non-zero, hence det § # 0.

This also gives D since (52)y, = D?dy ,~. Formula (3.3.8) for the twist follows
directly from Example 2.2.6. The rest of the proof is straightforward and is left to
the reader. O

1

EXAMPLE 3.3.22. When g = sl,, we have:

/2 A+1 1
Sap = ;sin<ﬂw>, 0< \p<sx—2.

»

The arguments of Theorem 3.3.20 can be repeated for ¢ = e™/™* 3 € Q, but
in this case the matrix 5 may be degenerate.

Note that the formulas for the matrices s,¢ coincide with the Kac—Peterson
formula [KP] for the modular transformations of characters of the affine Lie algebra
g when ¢ = e™/™* (their matrix T corresponds to the matrix #/{ in our notations).
This fact will be explained later.

Finally, let us discuss the Verlinde algebra for C'"*. Let V = K (Reps(g)) ©C be
the complexified Grothendieck ring of Repy(g); similarly, denote Vi, = K (C™) @ C
(where, as before, » = k + h").



3.3. QUANTUM GROUPS AT ROOTS OF UNITY 69

PROPOSITION 3.3.23. The Verlinde algebra Vi, is the quotient of V, namely,
Vi = V/Ii, where T, C V is the linear span of (V\) — (=1)"®)(V,,») for X €
P+,U} S Wa,w./\ S P+.

Proor. The construction given in Theorem 3.1.11 defines a surjective map
w:V — V. It follows from Weyl character formula that Z;, C ker u. On the other
hand, it follows from Theorem 3.3.6(iii) that dim V/Z;, = |C| = dim V. O

EXERCISE 3.3.24. (i) Show that for g = A,,, the ideal 7} is the linear span of
(Vi) for A € P, (A +p,0Y) = 5.

(ii) Show that for g = Ejg this is not so.

(iii) Show that the fusion rules for U, (sly) for ¢ = e™/(¥+2) are given by

(Vi) (Va) = Z ernn<Vl>7
l

where

. 1 for m—n|<Ii<m+n,l<2k—(m+n), l+m+ne2Z,
Nmn: .
0 otherwise

(cf. Example 2.1.10).
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