
CHAPTER 3

Modular Tensor Categories

In this 
hapter, we introdu
e one more re�nement of the notion of a tensor 
ate-

gory | that of a modular tensor 
ategory. By de�nition, this is a semisimple ribbon


ategory with a �nite number of simple obje
ts satisfying a 
ertain non-degenera
y


ondition. It turns out that these 
ategories have a number of remarkable prop-

erties; in parti
ular, we prove that in su
h a 
ategory one 
an de�ne a proje
tive

a
tion of the group SL

2

(Z) on an appropriate obje
t, and that one 
an express the

tensor produ
t multipli
ities (fusion 
oeÆ
ients) via the entries of the S-matrix

(this is known as Verlinde formula).

We also give two examples of modular tensor 
ategories. The �rst one, the


ategory C(g;{);{ 2 Z

+

, is a suitable semisimple subquotient of the 
ategory of

representation of the quantum group U

q

(g) for q being root of unity: q = e

�i=m{

.

The se
ond one is the 
ategory of representations of a quantum double of a �nite

group G, or equivalently, the 
ategory of G-equivariant ve
tor bundles on G. (We

do not explain here what is the proper de�nition of Drinfeld's 
ategory D(g;{) for

{ 2 Z

+

, whi
h would be a modular 
ategory | this will be done in Chapter 7.)

3.1. Modular tensor 
ategories

In this se
tion we will study ribbon 
ategories with some additional proper-

ties. Let C be a semisimple ribbon 
ategory. We will use the same notation as in

Se
tion 2.4. De�ne the numbers ~s

ij

2 k = End1 (i; j 2 I) by the following pi
ture:

~s

ij

=

i j

:(3.1.1)

Here and below, we will often label strands of tangles by the indi
es i 2 I meaning

by this V

i

. Note that (2.3.17) implies

~s

ij

=

θ

i j

-1
θ θ

-1

= �

�1

i

�

�1

j

tr �

V

�

i


V

j

= �

�1

i

�

�1

j

X

k2I

N

k

i

�

j

�

k

d

k

:

(3.1.2)
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48 3. MODULAR TENSOR CATEGORIES

Also, it is easy to see that

~s

ij

= ~s

ji

= ~s

i

�

j

�

= ~s

j

�

i

�

; ~s

i0

= d

i

= dimV

i

:(3.1.3)

Definition 3.1.1. A modular (tensor) 
ategory (MTC for short) is a semisim-

ple ribbon 
ategory C satisfying the following properties:

(i) C has only a �nite number of isomorphism 
lasses of simple obje
ts: jI j <1.

(ii) The matrix ~s = (~s

ij

)

i;j2I

, where ~s

ij

is de�ned by (3.1.1), is invertible.

Remark 3.1.2. If C is symmetri
, one 
an 
hange over
rossing and under
ross-

ing, hen
e ~s

ij

= d

i

d

j

. Unless jI j = 1, this matrix ~s is singular, therefore C is not

modular.

Remarks 3.1.3. (i) Many authors (for example, Turaev [T℄) impose weaker


onditions, not ne
essarily requiring semisimpli
ity in our sense. We are only inter-

ested in the simplest 
ase; thus the above de�nition is absolutely suÆ
ient for our

purposes. We refer the reader to [Ke℄, [Lyu2℄ for a dis
ussion of the non-semisimple


ase.

(ii) The name \modular" is justi�ed by the fa
t that in this 
ase we 
an de�ne

a proje
tive a
tion of the modular group SL

2

(Z) on 
ertain obje
ts in our 
ategory,

as we will show below. To the best of our knowledge, this 
onstru
tion �rst ap-

peared (in rather vague terms) in a paper of Moore and Seiberg [MS2℄; later it was

formalized by Lyubashenko [Lyu1℄ and others. Our exposition follows the book of

Turaev [T℄.

(iii) The appearan
e of the modular group in tensor 
ategories may seem mys-

terious; however, there is a simple geometri
al explanation, based on the fa
t that

to ea
h modular tensor 
ategory one 
an asso
iate a 2+1-dimensional Topologi
al

Quantum Field Theory. This also shows that in fa
t we have an a
tion of the map-

ping 
lass group of any 
losed oriented 2-dimensional surfa
e on the appropriate

obje
ts in MTC. This is the key idea of the book [T℄, and will be dis
ussed in detail

in Chapter 4.

From now on, let us adopt the following 
onvention:

If some (
losed) strand in a pi
ture is left unlabeled then we assume

summation over all labels i 2 I ea
h taken with the weight d

i

= dimV

i

.

(3.1.4)

Sin
e d

i

�

= d

i

, we 
an drop the arrow of su
h a strand. Re
all also that we omit the

upward arrow when there is no ambiguity. Then we have the following propositions.

(Their statements and proofs 
an be written expli
itly in terms of �; i; e; Æ, et
., but

we will prefer to use the pi
torial presentation.)

Lemma 3.1.4. In any semisimple ribbon 
ategory we have

i

j

=

~s

ij

d

i

i(3.1.5)

Re
all that by Lemma 2.4.1, d

i

6= 0.
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Proof. The left hand side is an element of End(V

i

) = k, i.e., it is equal to

a

ij

id

V

i

for some a

ij

2 k. Taking a tra
e (i.e., 
losing the diagram), we obtain

=

j

i a ij i

The left hand side is equal to ~s

ij

, while the right hand side to a

ij

d

i

.

Lemma 3.1.5. We have the following identities :

θθ θ
-1

θ
-1+= p

i i

-p= i i,
(3.1.6)

where

p

�

:=

X

i2I

�

�1

i

d

2

i

:(3.1.7)

Proof. We will 
onsider only the 
ase of plus sign, the 
ase of minus sign is

similar. Again the left hand side is an element of End(V

i

) = k, we take the tra
e

of this element and multiply it with �

i

. Then, using (2.3.17), we get

θ θ θ= 

i i

Now de
ompose the tensor produ
t V

j


 V

i

as in (2.4.1) to get

�

i

tr(lhs) =

X

j

d

j

tr

V

j


V

i

� =

X

j;k

N

k

ji

d

j

d

k

�

k

:

Using (2.4.3) and (2.4.6), we obtain

�

i

tr(lhs) =

X

k

�

X

j

N

j

�

ik

�

d

j

�

d

k

�

k

=

X

k

d

i

d

k

�

d

k

�

k

=

�

X

k

�

k

d

2

k

�

d

i

= p

+

d

i

;

as desired.
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Corollary 3.1.6.

-1
θ θ

-1
θ

k

+= pi k

i

Proof. Sin
e any obje
t is a dire
t sum of simple ones, (3.1.6) holds if we

repla
e V

i

by any obje
t V . Apply this identity for V = V

i


V

k

and use (2.3.17).

Theorem 3.1.7. De�ne the matri
es ~s = (~s

ij

), t = (t

ij

) and 
 = (


ij

) (\
harge


onjugation matrix") by (3.1.1) and

t

ij

= Æ

ij

�

i

;(3.1.8)




ij

= Æ

ij

�

:(3.1.9)

Then we have:

(~st)

3

= p

+

~s

2

;(3.1.10)

(~st

�1

)

3

= p

�

~s

2


;(3.1.11)


t = t
; 
~s = ~s
; 


2

= 1;(3.1.12)

where p

�

are de�ned by (3.1.7). Moreover, when ~s is invertible, we have

~s

2

= p

+

p

�


:(3.1.13)

Proof. The fa
t that 
 
ommutes with ~s and t follows from (3.1.3) and (2.4.5);

and 


2

= 1 be
ause i

��

= i. To prove the non-trivial relations (3.1.10, 3.1.11),


onsider �rst the identity

θ θ
-1

θ
-1+= pi k

i

k

(3.1.14)

obtained from Corollary 3.1.6. The right hand side is equal to

p

+

�

�1

i

�

�1

k

i

k

= p

+

�

�1

i

�

�1

k

~s

ik

d

i

i
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where we used Lemma 3.1.4. We 
an rewrite the left hand side of (3.1.14) as

X

j

d

j

�

j

k

j

i

Applying Lemma 3.1.4 twi
e we obtain

X

j

d

j

�

j

~s

jk

d

j

i

j

=

X

j

�

j

~s

jk

~s

ij

d

i

i

This gives the identity

X

j

~s

ij

�

j

~s

jk

= p

+

�

�1

i

~s

ik

�

�1

k

whi
h is equivalent to

~st~s = p

+

t

�1

~st

�1

;

proving (3.1.10). Similarly, using the analogue of Corollary 3.1.6 with minus sign,

one 
an prove

~st

�1

~s = p

�

t~st
;

whi
h implies (3.1.11).

When the matrix ~s is non-singular, it is a matter of pure algebra to dedu
e

Eq. (3.1.13) from (3.1.10){(3.1.12).

Corollary 3.1.8. In an MTC, p

+

and p

�

are non-zero.

Now assume that the 
ategory C is modular, and introdu
e the notation

D :=

p

p

+

p

�

; � := (p

+

=p

�

)

1=6

(3.1.15)

(assuming that they exist in k, otherwise we 
an always pass to a 
ertain algebrai


extension). De�ne the renormalized matrix

s := ~s=D:(3.1.16)

Then we 
an rewrite the relations from Theorem 3.1.7 as follows:

(st)

3

=

s

p

+

p

�

s

2

= �

3

s

2

; s

2

= 
; 
t = t
; 


2

= 1:(3.1.17)

Re
alling the well-known des
ription of SL

2

(Z) as the group generated by the ele-

ments

s =

�

0 �1

1 0

�

; t =

�

1 1

0 1

�

(3.1.18)
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with relations (st)

3

= s

2

; s

4

= 1, we see that the matri
es s; t give a proje
tive

representation of SL

2

(Z). (The fa
t that s

2

t = ts

2

follows from (st)

3

= s

2

.)

Remark 3.1.9. Of 
ourse, one easily sees that we 
an repla
e the matrix t by

t=� and get a true representation of SL

2

(Z) rather than a proje
tive one. In fa
t,

sin
e H

2

(SL

2

(Z);Q) = 0, every proje
tive representation of SL

2

(Z) over a �eld k

of 
hara
teristi
 0 
an be trivialized in some algebrai
 extension of k. However,

we prefer not to do it: later we will show that any MTC gives rise to proje
tive

representations of more general groups (mapping 
lass groups), of whi
h SL

2

(Z) is

the simplest example, and these representations 
an not be trivialized. Moreover,

if we renormalize t now, it will make things only worse later.

Corollary 3.1.10. In an MTC, we have:

i = p

+

p

�

Æ

i;0 i(3.1.19)

p

+

p

�

=

X

d

2

i

= :(3.1.20)

i j = Æ

ij

p

+

p

�

d

i

i

i

(3.1.21)

Proof. Let us prove the �rst identity. As before, it suÆ
es to prove that the

tra
es of both sides are equal. By Lemma 3.1.4 the left hand side of (3.1.19) is

equal to

P

j

d

j

~s

ij

=d

i

id

V

i

. Taking a tra
e, we obtain

X

j

d

j

~s

ij

=

X

j

~s

0j

~s

ij

= (~s)

2

0i

= p

+

p

�




0i

= p

+

p

�

Æ

i;0

:

The se
ond identity (3.1.20) easily follows from (3.1.19). The proof of (3.1.21) is

similar to the above, using twi
e Lemma 3.1.4.

We note that equation (3.1.20), along with the de�nition of s, give the following

formulas for the number D =

p

p

+

p

�

:

D =

q

X

dim

2

V

i

= s

�1

00

:(3.1.22)

We 
an easily des
ribe the Grothendie
k ring of a modular tensor 
ategory. As

before, let C be an MTC and let K(C) be the Grothendie
k ring of C (see De�ni-

tion 2.1.9). Then the algebra K = K(C)


Z

k is a �nite dimensional 
ommutative
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asso
iative algebra with a basis x

i

= hV

i

i, i 2 I , and a unit 1 = x

0

. This algebra is

frequently 
alled the fusion algebra, or Verlinde algebra.

Theorem 3.1.11. Let C be an MTC, K = K(C) 


Z

k, and let F (I) be the

algebra of k-valued fun
tions on the set I. De�ne a map � : K ! F (I) by the

pi
ture:

V

i
=

�

�(V )

�

(i) i

Then � is an algebra isomorphism.

Proof. It is immediate from the results of Se
tion 2.3 that � is an algebra

homomorphism. Indeed,

VU

i
:

=

U

V

i

i

:

Choose a basis in F (I) 
onsisting of renormalized delta-fun
tions: �

i

(j) =

Æ

ij

=s

0i

. Then it follows from Lemma 3.1.4 and the obvious identity ~s

ij

=d

i

= s

ij

=s

0i

that the map � is given by

�(x

j

) =

X

i

s

ij

�

i

:(3.1.23)

Sin
e the matrix s

ij

is invertible, this 
ompletes the proof.

The importan
e of this result is that it gives a new basis �

�1

(�

i

) in K in whi
h

the multipli
ation be
omes diagonal. For brevity, let us write �

i

2 K instead of

�

�1

(�

i

). Then (3.1.23) and �

i

�

j

= Æ

ij

�

i

=s

0i

imply that

x

i

�

j

= �

j

s

ij

=s

0j

:(3.1.24)

Comparing this with the usual formula for the multipli
ation in the basis x

i

:

x

i

x

j

=

X

k

N

k

ij

x

k

;(3.1.25)

we get the following proposition.
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Proposition 3.1.12. For a �xed i let N

i

be the matrix of multipli
ation by x

i

in the basis fx

j

g, i.e., (N

i

)

ab

= N

a

ib

, and let D

i

be the following diagonal matrix:

(D

i

)

ab

:= Æ

ab

s

ia

=s

0a

. Then

sN

i

s

�1

= D

i

:(3.1.26)

This proposition is usually formulated by saying that \the s-matrix diagonalizes

the fusion rules". Another reformulation is the following. De�ne in K another

operation, � (
onvolution), by the formula

x

i

� x

j

= Æ

ij

x

i

=s

0i

:(3.1.27)

Then:

s(xy) = s(x) � s(y);(3.1.28)

s(x � y) = s(x)s(y):(3.1.29)

Therefore, the matrix s 
an be 
onsidered as some kind of a Fourier transform.

Finally, Proposition 3.1.12 immediately implies the following famous formula

for the 
oeÆ
ients N

k

ij

, whi
h was 
onje
tured in [Ve℄ and proved in [MS1℄.

Theorem 3.1.13 (Verlinde formula).

N

k

ij

=

X

r

s

ir

s

jr

s

k

�

r

s

0r

:(3.1.30)

Before giving the proof, let us note that as a 
onsequen
e the right hand side

of (3.1.30) is a non-negative integer, whi
h is a non-trivial and unexpe
ted fa
t.

Proof. Rewrite formula (3.1.26) as sN

i

= D

i

s, or

X

a

N

a

ij

s

ar

=

s

ir

s

jr

s

0r

:(3.1.31)

Multiplying this identity by s

rk

�

and summing over r, we get (3.1.30).

Remark 3.1.14. If the base �eld k = C , and the 
ategory C is Hermitian, that

is, if it 
an be endowed with a 
omplex 
onjugation fun
tor satisfying 
ertain


ompatibility 
onditions [T, Se
t. II.5℄, then it 
an be shown that the matri
es s; t

are unitary (see [Ki℄).

Let C be a modular tensor 
ategory. Re
all the obje
t H =

L

V

i


 V

�

i

2 C

de�ned in (2.4.9). As was mentioned in Se
tion 2.4, we have 
anoni
al isomorphisms

H ' H

�

and H '

L

V

�

i


 V

i

. It also follows from the de�nition that dimH =

D

2

=

P

(dim V

i

)

2

.

Definition 3.1.15. De�ne elements S; T; C 2 EndH as follows. Write

S =

M

i;j2I

S

ij

; S

ij

: V

j


 V

�

j

! V

i


 V

�

i
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and similarly T =

L

T

ij

, C =

L

C

ij

. Then:

S

ij

:=

d

i

D

i

j

;(3.1.32)

T

ij

:= Æ

ij

θ

j j

;(3.1.33)

C

ij

:= Æ

ij

�

j j

-1
θ

:(3.1.34)

We have the following generalization of Theorem 3.1.7.

Theorem 3.1.16. S

2

= C, C

2

= S

4

= �

�1

H

, (ST )

3

=

p

p

+

=p

�

S

2

and the

element C is 
entral in EndH.

Proof. Let us �rst 
he
k the identity S

2

= C. We have:

(S

2

)

ij

=

X

k

S

ik

S

kj

=

X

k

d

i

D

d

k

D

j

i

k
=

d

i

D

2

j

i
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=

d

i

D

2

i

j

θ
-1

=

d

i

D

2

j

θ
-1

i

= Æ

ij

�

j

θ
-1

j

= Æ

ij

�

j j

-1
θ

= C

ij

using (3.1.21) and p

+

p

�

= D

2

, d

i

= d

i

�

.

Similarly, (STS)

ij

=

P

k;l

S

ik

T

kl

S

lj

=

P

k

S

ik

(�

k


 id)S

kj

is equal to

d

i

D

2

θ

i

j

=

d

i

D

2

j

θ
-1

i

θ
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=

d

i

D

2

p

+

j

θ
-1

-1
θ θ

-1

i

=

s

p

+

p

�

d

i

D

-1
θ

i

θ
-1

j

whi
h equals

p

p

+

=p

�

(T

�1

ST

�1

)

ij

; now using Corollary 3.1.6 instead of Corol-

lary 3.1.10. This proves that (ST )

3

=

p

p

+

=p

�

S

2

.

Finally, using (2.3.17), it is easy to see that (C

2

)

ij

= Æ

ij

�

�1

V

i


V

�

i

= (�

�1

H

)

ij

.

We 
annot say that S; T give a proje
tive representation of the modular group

in H , sin
e �

H

is not a 
onstant. However, �

H

be
omes a 
onstant after restri
tion

to an isotypi
 
omponent of H . Equivalently, let us �x a simple obje
t U in our


ategory and 
onsider the spa
e

Hom(U;H) =

M

i2I

Hom(U; V

i


 V

�

i

):

This is a ve
tor spa
e over k, and �

H

j

Hom(U;H)

= �

U

id

Hom(U;H)

, �

U

2 k.

Theorem 3.1.17. De�ne the maps S

U

; T

U

: Hom(U;H)! Hom(U;H) by

S

U

: � 7! S�;

T

U

: � 7! T�:

Then S

U

; T

U

satisfy the following relations

S

4

U

= �

�1

U

;

T

U

S

2

U

= S

2

U

T

U

;

(S

U

T

U

)

3

=

s

p

+

p

�

S

2

U

;

and thus give a proje
tive representation of the group SL

2

(Z) in Hom(U;H).

Example 3.1.18. Let U = 1 be the unit obje
t in C. Then we have a 
anoni
al

identi�
ation Hom(1; V

i


 V

�

i

) ' k, and thus we have a 
anoni
al basis f�

i

g of

Hom(1; H). In this 
ase, the a
tion of the modular group de�ned in Theorem 3.1.17

in the basis f�

i

g is given by s; t de�ned by (3.1.16) and (3.1.8).

The next theorem was proved by Vafa in the 
ontext of Conformal Field Theory.

Theorem 3.1.19 (Vafa [V2℄). In any modular tensor 
ategory the numbers �

i

and � = (p

+

=p

�

)

1=6

are roots of unity (regardless of the base �eld k).

Proof. We will use the following observation: if

Y

j2I

�

M

ij

j

= 1; i 2 I;
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with a non-singular integer matrix M

ij

, then all �

j

are roots of unity. Indeed, we


an diagonalize the matrix M

ij

by rows and 
olumns operations.

For �xed obje
ts W

1

, W

2

, W

3

in C, de�ne the following endomorphisms of

W

1


W

2


W

3

:

�

1

:= �

W

1


 id
 id; �

2

:= id
�

W

2


 id; �

3

:= id
 id
�

W

3

;

�

12

:= �

W

1


W

2


 id; �

23

:= id
�

W

2


W

3

; �

13

:= θ

W WW
1 2 3

�

123

:= �

W

1


W

2


W

3

:

Then it is easy to 
he
k that

�

12

�

13

�

23

= �

123

�

1

�

2

�

3

(3.1.35)

(this identity is sometimes 
alled the lantern identity). Consider this identity for

W

1

= V

i

, W

2

= V

�

i

, W

3

= V

i

. It gives rise to an identity of operators in the ve
tor

spa
e

U

i

= Hom(V

i

; V

i


 V

�

i


 V

i

)

whi
h is non-zero sin
e it 
ontains i

V

i


 id

V

i

. We take determinant of both sides of

this identity.

To 
ompute det �

12

j

U

i

, we use the de
ompositions of V

i


 V

�

i

and V

j


 V

i

as

dire
t sums of simple obje
ts:

V

i


 V

�

i

=

X

j

N

j

ii

�

V

j

; V

j


 V

i

=

X

k

N

k

ji

V

k

;

and (2.4.4, 1.1.2). We obtain

det �

12

j

U

i

=

Y

j

�

N

j

ii

�

N

i

ji

j

:

Similarly, we 
ompute the determinants of other �'s and get the identity

Y

j

�

A

ij

j

= �

4 dimU

i

i

;

where A

ij

= 2N

j

ii

�

N

i

ij

+N

j

ii

N

i

ji

�

. Using that dimU

i

= (1=3)

P

j

A

ij

> 0, it is easy

to see that the matrix A

ij

� 4Æ

ij

dimU

i

is nonsingular. It follows that all �

i

are

roots of unity.

Sin
e det t =

Q

i

�

i

, det t is a root of unity. On the other hand, s

4

= 1 implies

that det s is a 4th root of unity. Therefore, it follows from (st)

3

= �

3

s

2

that � is a

root of unity.

Remark 3.1.20. In MTCs 
oming from Conformal Field Theory (CFT), when

the base �eld is C , one usually writes

�

i

= e

2�i�

i

; � = e

2�i
=24

:(3.1.36)



3.2. EXAMPLE: QUANTUM DOUBLE OF A FINITE GROUP 59

The numbers �

i

are 
alled the 
onformal dimensions and 
 is 
alled the (Virasoro)


entral 
harge of the theory. In this language Vafa's theorem asserts that the


onformal dimensions and the 
entral 
harge of the theory are rational numbers;

this is one of the reasons why su
h CFTs are 
alled rational.

One 
an also easily prove the following result.

Theorem 3.1.21. All the numbers s

ij

=s

0j

= ~s

ij

=d

j

are algebrai
 integers.

Proof. By Verlinde formula (3.1.26), these numbers are the eigenvalues of the

matrix N

i

with integer entries.

3.2. Example: Quantum double of a �nite group

We will give the simplest example of a modular tensor 
ategory|the 
ategory

of �nite dimensional representations of the Hopf algebra D(G), whi
h is the quan-

tum double of the group algebra k[G℄ of a �nite group G. It is interesting that

this example appeared in two seemingly unrelated areas|the theory of 
hara
ters

of redu
tive groups over �nite �elds [L5, L6℄ and the orbifold 
onstru
tions in

Conformal Field Theory [DVVV, KT℄.

Let us �rst �x the notation. Let G be a �nite group. Re
all that its group

algebra k[G℄ over a �eld k is a Hopf algebra with a k-basis fxg

x2G

and

multipli
ation x
 y 7! xy; x; y 2 G;

unit e (the unit element of G);


omultipli
ation �(x) = x
 x; x 2 G;


ounit "(x) = 1;

antipode 
(x) = x

�1

:

This Hopf algebra is 
o
ommutative. A representation of k[G℄ is the same as

a representation of G. By Mas
hke's theorem, the 
ategory Rep

f

k[G℄ of �nite

dimensional representations is semisimple.

The Hopf algebra dual to k[G℄ is isomorphi
 to the fun
tion algebra F (G) of

the group G. It has a k-basis fÆ

g

g

g2G


onsisting of delta fun
tions:

Æ

g

(x) = Æ

g;x

=

(

1 for g = x;

0 for g 6= x:

It has

multipli
ation Æ

g

Æ

h

= Æ

g;h

Æ

g

; g; h 2 G;

unit 1 =

P

g2G

Æ

g

;


omultipli
ation �(Æ

g

) =

P

g

1

g

2

=g

Æ

g

1


 Æ

g

2

; g 2 G;


ounit "(Æ

g

) = Æ

g;e

;

antipode 
(Æ

g

) = Æ

g

�1
:

A representation of F (G) is the same as a G-graded ve
tor spa
e (sin
e fÆ

g

g

g2G

are proje
tors).

Applying Drinfeld's quantum double 
onstru
tion [Dr3℄ it is easy to des
ribe

expli
itly the quantum double D(G) of k[G℄. As a ve
tor spa
e, D(G) = F (G) 


k
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k[G℄. It is a Hopf algebra with

multipli
ation (Æ

g


 x)(Æ

h


 y) = Æ

gx;xh

(Æ

g


 xy); x; y; g; h 2 G;

unit 1 =

P

g2G

Æ

g


 e;


omultipli
ation �(Æ

g


 x) =

P

g

1

g

2

=g

(Æ

g

1


 x)
 (Æ

g

2


 x); g; x 2 G;


ounit "(Æ

g


 x) = Æ

g;e

;

antipode 
(Æ

g


 x) = Æ

x

�1

g

�1

x


 x

�1

:

The Hopf algebra D(G) is quasitriangular with

R-matrix R =

P

g2G

(Æ

g


 e)
 (1
 g):

(Of 
ourse, on
e we know the above formulas, they 
an be easily 
he
ked dire
tly.)

Note that F (G) and k[G℄ embed in D(G) as k-algebras and D(G) is their

semidire
t produ
t:

D(G) = F (G)o k[G℄;(3.2.1)

with

xÆ

g

x

�1

= Æ

xgx

�1 for g; x 2 G:(3.2.2)

Let Rep

f

D(G) be the 
ategory of �nite dimensional representations of D(G)

as a k-algebra. By the above remarks, a representation V of D(G) is the same as

a G-module with a G-grading V =

L

g2G

V

g

satisfying xV

g

� V

xgx

�1
, x; g 2 G.

In other words, obje
ts of Rep

f

D(G) are �nite dimensional G-equivariant ve
tor

bundles over G. We will show that the 
ategory Rep

f

D(G) is semisimple and will

des
ribe its simple obje
ts.

For V 2 ObRep

f

D(G) and v 2 V the submodule generated by v is

D(G)v =

X

g2G

k[G℄Æ

g

v =

X

g2G

M

xgx

�1

2g

xZ(g)Æ

g

v;

where g denotes the 
onjugasy 
lass and Z(g) the 
entralizer of g in G. Note that

k[Z(g)℄Æ

g

v is an irredu
ible representation � of Z(g). Hen
e

V

g;�

:= k[G℄Æ

g

v =

M

xgx

�1

2g

x�;(3.2.3)

is an irredu
ible D(G)-module whi
h depends only on the 
onjuga
y 
lass g and

the isomorphism 
lass of the irredu
ible representation � of Z(g). The a
tion of

D(G) on V

g
;�

is given expli
itly by:

(Æ

f


 h)(xv) = Æ

f;hxgh

�1

x

�1
hxv for f; h; x 2 G; v 2 �:(3.2.4)

This shows that the 
ategory Rep

f

D(G) is semisimple with simple obje
ts

V

g
;�

labeled by pairs (g; �), where g 2 G is a 
onjuga
y 
lass in G and � 2

[

Z(g) is

an isomorphism 
lass of irredu
ible representation of the 
entralizer Z(g) of some

element g 2 g (� is independent of the 
hoi
e of g).
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In what follows we will use the orthogonality relations of irredu
ible 
hara
ters

of a �nite group G:

1

jGj

X

h2G

tr

�

�

(h) tr

�

0

(hg) =

tr

�

(g)

tr

�

(e)

Æ

�;�

0

; �; �

0

2

b

G; g 2 G;(3.2.5)

1

jZ(g)j

X

�2

b

G

tr

�

�

(g) tr

�

(h) = Æ

g;h

; h; g 2 G:(3.2.6)

Also re
all that jgjjZ(g)j = jGj.

Theorem 3.2.1. Rep

f

D(G) is a modular tensor 
ategory with simple obje
ts

V

g
;�

labeled by (g; �), g 2 G, � 2

[

Z(g) (g 2 g). We have:

V

�

g;�

' V

g

�1

;�

�

;(3.2.7)

t

(g;�);(g

0

;�

0

)

= Æ

(g;�);(g

0

;�

0

)

tr

�

(g)

tr

�

(e)

;(3.2.8)

s

(g;�);(g

0

;�

0

)

=

1

jZ(g)jjZ(g

0

)j

X

h2G

hg

0

h

�1

2Z(g)

tr

�

(hg

0

�1

h

�1

) tr

�

0

(h

�1

g

�1

h):(3.2.9)

The numbers p

�

from (3.1.7) are equal to the order of G.

The s-matrix (3.2.9) was �rst introdu
ed by Lusztig [L5℄ (see also [L6, L7℄)

under the names \non-abelian Fourier transform" and \exoti
 Fourier transform".

Then it appeared in [DVVV℄ and [KT℄ in 
onne
tion with \orbifolds". Dijkgraaf,

Pasquier and Ro
he [DPR℄ 
onsidered a generalization of the above 
onstru
tion

whi
h is also related to orbifolds. They introdu
ed a quasi-Hopf algebra D




(G),

depending on a 
ohomology 
lass 
 2 H

3

(G;U(1)), whi
h redu
es to D(G) when


 = 1.

Proof of Theorem 3.2.1. Eq. (3.2.7) follows easily from the de�nitions (note

that Z(g

�1

) = Z(g) and tr

�

�

(h) = tr

�

(h

�1

)).

To prove (3.2.8), we 
ompute the twists � using the results of Proposition 2.2.4

and Lemma 2.2.5. Sin
e 


2

= id, it follows that Æ

V

= id, 
f. (2.2.11). Hen
e,

� = u

�1

=

X

h2G

Æ

h


 h:(3.2.10)

As g is 
entral in Z(g), it a
ts as a 
onstant = tr

�

(g)= tr

�

(e) on the representation

�; hen
e by (3.2.4), �

g;�

= tr

�

(g)= tr

�

(e).

To prove (3.2.9), we will use (3.1.2). We 
ompute for x; x

0

2 G, v 2 �

�

, v

0

2 �

0

:

�

V

�

g;�


V

g

0

;�

0

(xv 
 x

0

v

0

) = �(u

�1

)(xv 
 x

0

v

0

)

=

X

h2G

h

1

h

2

=h

(Æ

h

1


 h)(xv) 
 (Æ

h

2


 h)(x

0

v

0

)

=

X

h2G

h

1

h

2

=h

Æ

h

1

;hxg

�1

x

�1

h

�1
hxv 
 Æ

h

2

;hx

0

g

0

x

0

�1

h

�1

hx

0

v

0

= (fxv 
 fx

0

v

0

); where f = xg

�1

x

�1

x

0

g

0

x

0

�1

:
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Hen
e,

tr �

V

�

g;�


V

g

0

;�

0

=

X

xg

�1

x

�1

2g

�1

x

0

g

0

x

0

�1

2g

0

x

�1

x

0

g

0

x

0

�1

x2Z(g

�1

)

tr

�

�

(g

�1

x

�1

x

0

g

0

x

0

�1

x) tr

�

0

(x

0

�1

xg

�1

x

�1

x

0

g

0

)

=

tr

�

�

(g

�1

)

tr

�

�

(e)

tr

�

0

(g

0

)

tr

�

0

(e)

1

jZ(g)jjZ(g

0

)j

X

h2G

hg

0

h

�1

2Z(g)

tr

�

�

(hg

0

h

�1

) tr

�

0

(h

�1

g

�1

h);

whi
h proves (3.2.9).

The 
omputation of p

�

is straightforward (using (3.2.5, 3.2.6)), and is left to

the reader.

3.3. Quantum groups at roots of unity

We will show that the 
ategory of representations of a quantum group at root

of unity is a modular tensor 
ategory.

We will use the notation and de�nitions from Se
tion 1.3. Re
all that the

quantum group U

q

(g) was de�ned over the �eld C

q

where q is a formal variable

(De�nition 1.3.1). We also de�ned a version of the quantum group (\the quantum

group with divided powers") whi
h makes sense for q 2 C (see (1.3.18)).

In this se
tion we will 
onsider the 
ase q = e

�i=m{

({ 2 Z

+

and m is

from (1.3.17)), and we will abbreviate U

q

(g)j

q=e

�i=m{

to U

q

(g). As usual, we let

q

a

= e

a�i=m{

for any a 2 Q. Let C(g;{) be the 
ategory of �nite dimensional

representations of U

q

(g) over C with weight de
omposition:

V =

M

�2P

V

�

; q

h

j

V

�
= q

(h;�)

id

V

�
;

e

(n)

i

(V

�

) � V

�+n�

i

; f

(n)

i

(V

�

) � V

��n�

i

:

Note that our de�nition of weight de
omposition is stronger than just requiring

that all q

h

be diagonalizable: the a
tion of q

h

does not allow one to distinguish

between V

�

and V

�+2m{�

; � 2 P .

Theorem 3.3.1. C(g;{) is a ribbon 
ategory over C .

Proof. The asso
iatity, unit, et
., follow from the fa
t that U

q

(g) is a Hopf

algebra (
f. Examples 1.2.8(iii), 2.1.4). For the 
ommutativity we need that the

R-matrix 
an be de�ned over U

q

(g)

Z

, whi
h was proved by Lusztig, see [L2℄.

Definition 3.3.2. Let � 2 P

+

be a dominant integer weight of g. The Weyl

module V

�

of U

q

(g) is de�ned by

V

�

= (V

�

)

Z




A

C ;

where A = Z[q

�1=jP=Qj

℄ and (V

�

)

Z

= U

q

(g)

Z

v

�

� (V

�

)

C

q

is the U

q

(g)

Z

-submodule

of (V

�

)

C

q

generated by the highest weight ve
tor.

This means that we 
hoose a basis of (V

�

)

C

q

su
h that the a
tion of U

q

(g)

Z

has 
oeÆ
ients from Z[q

�1=jP=Qj

℄ and then we 
an put q a 
omplex number. This

des
ription shows that the weight subspa
es of V

�

are the same as those of (V

�

)

C

q

.



3.3. QUANTUM GROUPS AT ROOTS OF UNITY 63

For example, let us 
onsider �rst the 
ase when g = sl

2

. The weight latti
e of

sl

2


an be identi�ed with Z, so the Weyl modules are

V

n

=

n

X

i=0

C v

i

; n 2 Z

+

:

Here v

0

is the highest weight ve
tor and v

i

= f

(i)

v

0

. The a
tion of U

q

(sl

2

) is given

by (re
all that [k℄ := (q

k

� q

�k

)=(q � q

�1

)):

q

h

v

i

= q

n�2i

v

i

; ev

i

= [n� i+ 1℄v

i�1

; fv

i

= [i+ 1℄v

i+1

;

see the �gure (f is represented by solid lines and e by dashed ones).

[1]

-1 ][ [

[ [2]

[1]

n

n n

]

]

v v v v vn 2n 1 0 - 1

The 
oeÆ
ients of the above a
tion are in Z[q

�1

℄, so it makes sense for q 2 C

�

. We

will assume that q 6= �1.

Exer
ise 3.3.3. Write the a
tion of e

(k)

and f

(k)

in this basis.

Let q = e

�i={

, { 2 Z

+

. Then the module V

n

may be redu
ible sin
e [k℄ = 0

when { divides k. For example, for n = 3, { = 3, the basis elements v

1

and v

2

span a submodule V

0

3

. This 
laim does not follow simply from the fa
t that V

0

3

is

invariant under the operators e and f , be
ause for example e

(3)

is a new operator

di�erent from e

3

=[3℄! (sin
e [3℄ = 0). We leave the proof as an exer
ise (not too

diÆ
ult). The submodule V

0

3

is not a dire
t summand, hen
e V

3

is not semisimple.

Theorem 3.3.4. (i) The module V

n

is irredu
ible for n < {.

(ii) dim

q

V

n

= [n+ 1℄ = 0 if and only if { divides n+ 1.

The proof of this theorem is straightforward. In parti
ular, this theorem implies

that

For 0 � n � { � 2, V

n

is irredu
ible and dim

q

V

n

6= 0,(3.3.1)

whi
h is obvious be
ause in this 
ase all q-fa
torials are non-zero. (In fa
t, one has

a stronger statement: V

n

is irredu
ible i� n < { or n = l{ � 1, l 2 Z

+

, see [AP℄.)

We will need a similar result for an arbitrary semisimple �nite dimensional Lie

algebra g. Re
all the number m from (1.3.17). We let q = e

�i=m{

, { 2 Z, and

assume that { � h

_

, where h

_

= h�; �i + 1 is the dual Coxeter number, � is the

half sum of positive roots, and � is the highest root of g.

Theorem 3.3.5. dim

q

V

�

= 0 if and only if � + � 2 H

�;l

for some � 2 �

+

,

l 2 Z, where H

�;l

is the hyperplane

H

�;l

:= fx 2 h

�

j hx; �i = l{g:

Proof. By (2.3.13) we have an expli
it formula for dim

q

:

dim

q

V

�

= tr

V

�

q

2�

= �

�

(q

2�

);(3.3.2)

where �

�

is the 
hara
ter of the representation V

�

. Here and below we use the

notation e

�

(q

�

) = q

hh�;�ii

and extend it to f(q

�

) for f 2 C [P ℄, where P is the

weight latti
e of g.
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We have the Weyl formula for �

�

:

�

�

(q

2�

) =

1

Æ(q

2�

)

X

w2W

(�1)

l(w)

q

hhw(�+�);2�ii

;(3.3.3)

where l(w) is the length of w, and Æ is the Weyl denominator

Æ =

Y

�2�

+

(e

�=2

� e

��=2

) =

X

w2W

(�1)

l(w)

e

w(�)

:(3.3.4)

(This equality is the Weyl denominator formula.)

We 
an rewrite (3.3.3) as

�

�

(q

2�

) =

1

Æ(q

2�

)

X

w2W

(�1)

l(w)

q

2hh�+�;w(�)ii

=

Æ(q

2(�+�)

)

Æ(q

2�

)

=

Y

�2�

+

[hh�; � + �ii℄

[hh�; �ii℄

;

(3.3.5)

where, as usual, [n℄ denotes the q-number.

Note that hh�; �ii � hh�; �ii = m(h

_

� 1) < m{, thus the denominator is non-

zero. The numerator is 0 exa
tly when �+ � belongs to some H

�;l

.

Let us de�ne the aÆne Weyl group W

a

to be the group generated by re
e
tions

with respe
t to the hyperplanes H

�;l

. It 
ontains the Weyl group W of g whi
h is

generated by re
e
tions with respe
t to the hyperplanes H

�;0

. Re
all the following

standard fa
ts (see e.g. [K1℄).

Theorem 3.3.6. (i) W

a

is a Coxeter group generated by the simple re
e
tions

s

i

(i = 1; : : : ; rankg) and the re
e
tion s

0

with respe
t to the hyperplane H

�;1

.

(ii) W

a

= W n {Q

_

where Q

_

is the 
oroot latti
e embedded in h

�

using the

form h; i; {Q

_

a
ts on h

�

by translations.

(iii) A fundamental domain for the shifted a
tion w:� := w(�+ �)� � of W on

h

�

is the Weyl 
hamber

C = f� 2 h

�

j (� + �; �

_

i

) � 0; (�+ �; �

_

) � {g:(3.3.6)

For example, for g = sl

2

, h

�

is a line and C is the 
losed interval [�1;{ � 1℄.

We will need a simple te
hni
al lemma.

Lemma 3.3.7. (i) Let f 2 C [P ℄

�W

beW invariant (respe
tively anti-invariant).

Then f(q

2�

) is (anti)symmetri
 with respe
t to the a
tion of W

a

on �.

(ii) Conversely, if f(q

2�

) = f(q

2�

0

) for all f 2 C [P ℄

W

then �

0

= w(�) for some

w 2 W

a

.

Proof. (i) The (anti)symmetry with respe
t to W is obvious. It suÆ
es to


he
k that f(q

2�

) is symmetri
 with respe
t to translations from {Q

_

, i.e.,

f(q

2(�+{�

_

)

) = f(q

2�

); �

_

2 Q

_

:

This follows from the equation

e

�

(q

2(�+{�

_

)

) = q

2hh�;�ii

q

2{hh�;�

_

ii

and the fa
t that 2{hh�; �

_

ii = 2{mh�; �

_

i 2 2{mZ.

(ii) The proof of the 
onverse statement is left to the reader as an exer
ise;

the 
ru
ial step is proving that 
ertain matri
es are non-singular. We will give an

example of a 
al
ulation of this sort later (see the proof of Theorem 3.3.20).
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Corollary 3.3.8. If we de�ne \dim

q

V

�

" for all � 2 P as Æ(q

2(�+�)

)=Æ(q

2�

),

then it is W

a

-antisymmetri
 with respe
t to the shifted a
tion on �.

Proof. Follows from Lemma 3.3.7 and the fa
t that Æ is a W -antisymmetri


element in C [P ℄ (see (3.3.4)).

Theorem 3.3.9. Let C = f� 2 P

+

j (�+ �; �

_

) < {g. Then for � 2 C we

have dim

q

V

�

> 0 and V

�

is irredu
ible.

(In fa
t, one 
an des
ribe exa
tly when V

�

is irredu
ible (see [APW℄) but we will

not need it.)

Proof. The fa
t that dim

q

V

�

> 0 follows from Eq. (3.3.5). The irredu
ibility

of V

�

follows from the so-
alled \linkage prin
iple" (in a weak form):

V

�


an have a subquotient with highest weight �

0

only if �

0

= w(�)

for some w 2W

a

.

To prove it, introdu
e operators K

�

: V ! V (where � 2 P

+

, V is any module) by

the pi
ture

VVν

Sin
e K

�

is a morphism in the 
ategory C(g;{), it 
ommutes with the a
tion of

U

q

(g) on V . If v

�

is a highest weight ve
tor in V , it is easy to see that K

�

(v

�

) =

�

�

(q

2(�+�)

)v

�

. Indeed, let fv

i

g and fv

i

g be dual bases in V

�

and V

�

�

. Using

1.2.8(iii), 2.3.4 and 2.2.4, we 
ompute:

K

�

: v

�

i

7!

X

i

v

�


 v

i


 v

i

�

7!

X

i

q

hh�;wt v

i

ii

(v

i

+ � � � )
 v

�


 v

i

�

7!

X

i

q

2hh�;wt v

i

ii

v

�


 (v

i

+ � � � )
 v

i

Æ

7!

X

i

q

2hh�+�;wt v

i

ii

v

�


 (v

i

+ � � � )
 v

i

e

7!

�

X

i

q

2hh�+�;wt v

i

ii

�

v

�

= �

�

(q

2(�+�)

)v

�

;

where \+ � � �" denotes terms with lower weight than v

i

.

The operators K

�

are 
entral and a
t by 
onstant on v

�

, therefore for subquo-

tients we have

�

�

(q

2(�+�)

) = �

�

(q

2(�

0

+�)

):

Be
ause all �

�

, � 2 P

+

, span C [P ℄

W

, it follows from Lemma 3.3.7(ii) that �

0

= w(�)

for some w 2 W

a

.

This 
ompletes the proof of the theorem.
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Note that C(g;{) is a very 
ompli
ated 
ategory; in parti
ular, it is not semisim-

ple. We want to extra
t a semisimple part with simple obje
ts V

�

, � 2 C. As an

indi
ation that this is possible, we give without proof the following fa
t (see [AP℄

and referen
es therein).

Proposition 3.3.10. For �; � 2 C we have

V

�


 V

�

'

�

M

�2C

N

�

��

V

�

�

� Z

for some module Z with dim

q

Z = 0.

However, it is not possible to de
lare all modules of dim

q

= 0 to be 0. For

example, for g = sl

2

we have dim

q

(V

{�2

� V

{

) = 0, while both V

{�2

and V

{

are

modules with non-zero q-dimension and V

{�2

is simple.

The 
orre
t 
onstru
tion was found by Andersen and Paradowski [AP℄ and is

based on the use of an auxiliary 
ategory of tilting modules, whi
h is interesting in

its own right.

Definition 3.3.11. A module T over U

q

(g) is 
alled tilting if both T and T

�

have 
omposition series with fa
tors V

�

, � 2 P

+

. Let T be the full sub
ategory of

C(g;{) 
onsisting of all tilting modules.

Example 3.3.12. (i) If � 2 C then V

�

' V

�

�

for �

�

= �w

0

(�), where w

0

is the

longest element in W . Therefore the module V

�

is tilting. However, for a general

� 2 P

+

, V

�

may not be tilting.

(ii) Let g = sl

2

, q = e

�i=3

, so [3℄ = 0. Consider the Weyl module V

3

over U

q

sl

2

.

We add two more ve
tors to it and extend the a
tion of sl

2

as shown in the �gure

for the elements e and f (f is represented by solid lines and e by dashed ones).

[1]

[1]

[1]

[1]

[2]

[2]

[2]

[2]

0

0

0

0

0

12

3

4 5

v

v v

v

vv

(The reader 
an de�ne as an exer
ise the a
tion of e

(k)

; f

(k)

for k > 0.) We obtain

a module T =

P

5

i=0

C v

i

. It is easy to see that the ve
tors v

0

, v

1

, v

2

, v

3

generate

a submodule isomorphi
 to V

3

and the fa
tor by it is isomorphi
 to V

1

. It 
an be

easily shown that T

�

' T , hen
e the module T is tilting. Note that T is not a

dire
t sum of V

3

and V

1

.

The following important theorem was proved by Andersen and Paradowski (see

[AP℄ and referen
es therein).

Theorem 3.3.13 ([AP℄). (i) The 
ategory of tilting modules T is 
losed under

�, �, 
 and dire
t summands.

(ii) For every � 2 P

+

there exists a unique inde
omposable tilting module T

�

su
h that its weight subspa
e (T

�

)

�

is 0 unless � � � and (T

�

)

�

= C .
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(iii) For � 2 C we have T

�

= V

�

, while for � 62 C we have dim

q

T

�

= 0. Hen
e

dim

q

T � 0 for all T 2 Ob T .

We will not give a proof of the theorem. We only note that, for example, it is

rather diÆ
ult to show that T is 
losed under 
.

Corollary 3.3.14. T is a ribbon 
ategory.

Note that T is not an abelian 
ategory sin
e it is not 
losed under quotients.

Definition 3.3.15. A tilting module T is 
alled negligible if tr

q

f = 0 for any

f 2 EndT . (In parti
ular, dim

q

T = 0.)

Lemma 3.3.16. T is negligible i� T =

L

�62C

n

�

T

�

for some n

�

2 Z

+

.

Proof. Follows easily from Theorem 3.3.13. Indeed, it is enough to show

that T

�

is negligible i� � 62 C. Sin
e T

�

is inde
omposable and dim

C

T

�

<

1, every endomorphism f of T

�

in some homogeneous basis has the form f =


 id+upper triangular. Then tr

q

f = 
 dim

q

T

�

.

Definition 3.3.17. A morphism f : T

1

! T

2

is 
alled negligible if tr

q

(fg) = 0

for all g : T

2

! T

1

.

Note that if T

1

or T

2

is negligible then any morphism f : T

1

! T

2

is negligible.

Lemma 3.3.18. (i) If T is negligible, then so are T

�

, T 
 T

0

for any T

0

, and

dire
t summands of T .

(ii) If f is negligible, then so are f

�

, f 
 g, fg and gf for any g.

The proof being obvious is omitted.

Definition 3.3.19. Let C

int

� C

int

(g;{) ({ 2 Z, { � h

_

) be the 
ategory with

obje
ts tilting modules and morphisms

Hom

C

int(V;W ) = Hom

T

(V;W )=negligible morphisms:

We list some properties of the 
ategory C

int

� C

int

(g;{):

1. T 2 ObT is negligible i� it is isomorphi
 to 0 in C

int

.

2. C

int

is a ribbon 
ategory.

3. Any obje
t V in C

int

is isomorphi
 to

L

�2C

n

�

V

�

.

4. C

int

is a semisimple abelian 
ategory and dim

C

int V > 0 if V 6' 0.

These properties show that C

int

is the 
ategory we wanted. It is a semisimple ribbon


ategory with a �nite number of simple obje
ts. A natural question is whether this


ategory is modular. We will show that the answer is positive.

Theorem 3.3.20. C

int

is a modular tensor 
ategory with simple obje
ts V

�

(� 2

C),

s

��

= jP={Q

_

j

�1=2

i

j�

+

j

X

w2W

(�1)

l(w)

q

2hhw(�+�);�+�ii

;(3.3.7)

t

��

= Æ

��

q

hh�;�+2�ii

;(3.3.8)

and

D =

p

jP={Q

_

j

Y

�2�

+

�

2 sin(�h�; �i={)

�

�1

;(3.3.9)

� = e

2�i
=24

; 
 = ({ � h

_

) dim g={:(3.3.10)
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Proof. The 
al
ulations in the proof of Theorem 3.3.9 and Eq. (3.1.5) give

~s

��

= �

�

(q

2(�+�)

) dim

q

V

�

=

1

Æ(q

2�

)

X

w2W

(�1)

l(w)

q

2hhw(�+�);�+�ii

:

To show that det ~s 6= 0, we will 
al
ulate the matrix ~s

2

. First note that if we

use the formula above to extend ~s

��

for �; � 2 P , this extended matrix will be

antisymmetri
 with respe
t to the shifted a
tion of the aÆne Weyl group W

a

:

~s

w:�;�

= (�1)

l(w)

~s

�;�

; w 2 W

a

:(3.3.11)

In parti
ular, ~s

��

= 0 when � or � are on the walls of C.

Sin
e

P

�2C

~s

��

~s

��

is symmetri
 with respe
t to the shifted a
tion of W

a

on

� and C is the fundamental domain for the a
tion of W

a

on P , we 
an repla
e the

range of summation with P=W

a

. Sin
e W

a

'W n{Q

_

, this sum equals

1

jW j

X

�2P={Q

_

~s

��

~s

��

=

1

jW j

X

w;w

0

2W

X

�2P={Q

_

Æ(q

2�

)

�2

(�1)

l(w)+l(w

0

)

q

2hh�+�;w(�+�)+w

0

(�+�)ii

:

Now we need an obvious lemma.

Lemma 3.3.21.

X

�2P={Q

_

q

2hh�;aii

=

(

0 for a 62 {Q

_

;

jP={Q

_

j for a 2 {Q

_

:

Note that w(� + �) + w

0

(� + �) = w(� + �)� w

0

w

0

(�

�

+ �) 2 {Q

_

i� �+ � 2

w

�1

w

0

w

0

(�

�

+ �) + {Q

_

where w

0

is the longest elment in W . But sin
e both �

and �

�

are in C, whi
h is a fundamental domain of W

a

, this is only possible if

�+ � = �

�

+ �, w

�1

w

0

= w

0

. Therefore

X

�2C

~s

��

~s

��

=

jP={Q

_

j

Æ(q

2�

)

2

(�1)

l(w

0

)

Æ

�;�

�

:

This number is non-zero, hen
e det ~s 6= 0.

This also gives D sin
e (~s

2

)

��

= D

2

Æ

�;�

�

. Formula (3.3.8) for the twist follows

dire
tly from Example 2.2.6. The rest of the proof is straightforward and is left to

the reader.

Example 3.3.22. When g = sl

2

, we have:

s

��

=

r

2

{

sin

�

�

(�+ 1)(�+ 1)

{

�

; 0 � �; � � { � 2:

The arguments of Theorem 3.3.20 
an be repeated for q = e

�i=m{

, { 2 Q, but

in this 
ase the matrix ~s may be degenerate.

Note that the formulas for the matri
es s; t 
oin
ide with the Ka
{Peterson

formula [KP℄ for the modular transformations of 
hara
ters of the aÆne Lie algebra

^

g when q = e

�i=m{

(their matrix T 
orresponds to the matrix t=� in our notations).

This fa
t will be explained later.

Finally, let us dis
uss the Verlinde algebra for C

int

. Let V = K(Rep

f

(g))
C be

the 
omplexi�ed Grothendie
k ring of Rep

f

(g); similarly, denote V

k

= K(C

int

)
 C

(where, as before, { = k + h

_

).
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Proposition 3.3.23. The Verlinde algebra V

k

is the quotient of V, namely,

V

k

= V=I

k

, where I

k

� V is the linear span of hV

�

i � (�1)

l(w)

hV

w:�

i for � 2

P

+

; w 2W

a

; w:� 2 P

+

.

Proof. The 
onstru
tion given in Theorem 3.1.11 de�nes a surje
tive map

� : V ! V

k

. It follows from Weyl 
hara
ter formula that I

k

� ker�. On the other

hand, it follows from Theorem 3.3.6(iii) that dimV=I

k

= jCj = dimV

k

.

Exer
ise 3.3.24. (i) Show that for g = A

n

, the ideal I

k

is the linear span of

hV

�

i for � 2 P

+

; (�+ �; �

_

) = {.

(ii) Show that for g = E

8

this is not so.

(iii) Show that the fusion rules for U

q

(sl

2

) for q = e

�i=(k+2)

are given by

hV

m

ihV

n

i =

X

l

N

l

mn

hV

l

i;

where

N

l

mn

=

(

1 for jm� nj � l � m+ n; l � 2k � (m+ n); l +m+ n 2 2Z;

0 otherwise

(
f. Example 2.1.10).
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