Abstract
In section 7 of [1] it was indicated how a principal 2-bundle is reconstructed from any one of its

cocycles as the pullback of the 2-groupoid incarnation of the universal principal 2-bundle. Here are
details of the proof.
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Ambient context. For definiteness, let all of the following be in the ambient category of manifolds.
Let G be a strict 2-group. Write BG for the corresponding one-object 2-groupoid.

0.1 Principal 2-bundles.

Definition 1 (semistrict principal 2-bundles) A semistrict principal G-bundle over a space X is a groupoid
P equipped with a surjection P — X and equipped with a strict G-action P x G — P such that there is a
reqular epimorphism w:Y — X and a strictly G-equivariant equivalence of categories

P —=Y x G .

Principal G-bundles over X form a category GBund(X) in the obvious way.

0.2 Cocycles

For 7 : Y — X aregular epimorphism, let P (X) be the corresponding Cech 2-groupoid: its space of objects
is Y, its 1-morphisms are freely generated from Y X x Y and its 2-morphisms are generated from triangles
inY xxY xx Y modulo tetrahedra.

Definition 2 (G-cocycle) A G-cocycle relative to'Y is a strict 2-functor
9: Py (X) —=BG .

A G cocycle with respect to a cover by open subsets U;, i.e. for Y = U;U; is a collection of 2-cells
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Coboundaries, i.e. morphisms of cocycles, are collections of 2-cells
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which satisfy
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0.3 Cocycles from principal bundles

Given a principal G-bundle, we obtain from it a cocycle by first choosing a local tivialization ¢ : 7*P —>Y x X
and then defining the components g;; and h;j, by
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It is immediate that this satisfies the cocycle condition. To see that two different choices t,¢ of local
trivializations yield cohomologous cocycles set
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That this indeed is a coboundary between ({g;;}, {hi;r}) follows from
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0.4 Principal bundles from cocycles

Recall from [1] the 2-groupoid INN(G) defined as the pullback

INN(G) — (BG)!
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To amplify its role as the universal G-2-bundle write EG := INN(G) here. Notice the canonical projection
codom : EG — BG.
Given a cocycle g : PY (X) — BG, denote by g*EG the (strict) pullback



Let g*EG/~. be the result of dividing out 2-isomorphisms.

Proposition 1 The bundle (¢*EG/.) — X is a principal G-bundle whose local trivialization yields a cocycle
cohomologous to g.

Proof. The morphisms of (¢*EG/ ~) are are 2-cells

gij(z)

in BG with source ((z,1), g) and target ((z,5), g'). Notice that ¢’ is fixed by the rest of the data. Composition
of such morphisms in (¢*EG/..) is horizontal pasting of these triangles followed by composition with the
cocycle triangle:
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That this composition is associative is precisely equivalent to the cocycle condition. This defines g*EG/ ~
as a groupoid. The G-action on it is by precomposition with the corresponding 1-cells
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with the obvious action of morphisms. The projection down to X is the obvious one.
Now notice that there are naturally given local trivialization functors

tr: ¢'BG/ |u, — G x Uy
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with the right hand side regarded as a l-morphism in G. Again, it is the cocycle law which makes this
assignment functorial. Accordingly, take

given by

tr : G x Ui, — (¢"EG/ ) |u,



to be given by
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(recalling that we are working with g;;(x) = Id). It is immediate that t; o #; = Id and that the natural
transformation
Id = Ek ot

has the component function
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Using this in the law for horizontal composition of natural transformations, it follows that the natural
transformation
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which says precisely that it does reproduce the cocycle ¢ that we started with. O

0.5 Classification of principal 2-bundles.

The colimit over all G-cocycle 2-categories is G-cohomology:



Definition 3
H(X,BG) := colimy 2Funct(P] (X), BG).

Hence we get

Theorem 1 The semistrict principal G-2-bundles from definition 1 are classified by G-cohomology:

H(X,BG) ~ GBund(X).
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