Jump to content

"ഡിജിറ്റൽ ഇലൿട്രോണിക്സ്" എന്ന താളിന്റെ പതിപ്പുകൾ തമ്മിലുള്ള വ്യത്യാസം

വിക്കിപീഡിയ, ഒരു സ്വതന്ത്ര വിജ്ഞാനകോശം.
ഉള്ളടക്കം മായ്ച്ചു ഉള്ളടക്കം ചേർത്തു
MerlIwBot (സംവാദം | സംഭാവനകൾ)
(ചെ.) യന്ത്രം ചേർക്കുന്നു: et:Digitaalelektroonika
DannyS712 (സംവാദം | സംഭാവനകൾ)
 
(മറ്റൊരു ഉപയോക്താവ് ചെയ്ത ഇടയ്ക്കുള്ള ഒരു നാൾപ്പതിപ്പ് പ്രദർശിപ്പിക്കുന്നില്ല)
വരി 1: വരി 1:
{{prettyurl|Digital electronics}}
{{prettyurl|Digital electronics}}


[[Image:7400.jpg|thumb|180px| 7400 എന്ന പേരിൽ പ്രസിദ്ധമായ ഒരു ഡിജിറ്റൽ ചിപ്പ്. ഇതിൽ രണ്ടു ഇൻപുട്ടുകളും ഒരു ഔട്ട്പുട്ടും വീതമുള്ള നാലു വ്യത്യസ്ത ലോജിക് കവാടങ്ങൾ അടക്കം ചെയ്തിട്ടുണ്ടു്. പവർ സപ്ലൈ (+5 വോൾട്ട്), ‘[[ഗ്രൌണ്ട്]]’ ഇവയ്ക്കു വേണ്ടിയാണു് കൂടുതലുള്ള രണ്ടു കാലുകൾ. ]]
[[Image:TexasInstruments 7400 chip, view and element placement.jpg|thumb|180px| 7400 എന്ന പേരിൽ പ്രസിദ്ധമായ ഒരു ഡിജിറ്റൽ ചിപ്പ്. ഇതിൽ രണ്ടു ഇൻപുട്ടുകളും ഒരു ഔട്ട്പുട്ടും വീതമുള്ള നാലു വ്യത്യസ്ത ലോജിക് കവാടങ്ങൾ അടക്കം ചെയ്തിട്ടുണ്ടു്. പവർ സപ്ലൈ (+5 വോൾട്ട്), ‘[[ഗ്രൌണ്ട്]]’ ഇവയ്ക്കു വേണ്ടിയാണു് കൂടുതലുള്ള രണ്ടു കാലുകൾ. ]]
പരസ്പരം നിയതമായ വ്യത്യാസത്തിലുള്ള രണ്ടു തലങ്ങളിലായി പൂർവ്വലക്ഷണതരംഗങ്ങളെ (signal) പ്രതിനിധീകരിക്കുകയും അവയെ ആവശ്യാനുസരണം മറ്റു രൂപഭാവങ്ങളിലേക്കു് പരിവർത്തനം ചെയ്യുകയും ചെയ്യുന്ന [[ഇലക്ട്രോണിക്സ്|ഇലക്ട്രോണിക് ]] സംവിധാനങ്ങളും അവയുടെ രൂപകൽ‌പ്പനയും നിർമ്മാണവും ഉപയോഗവും സംബന്ധിച്ച സാങ്കേതികശാസ്ത്രവുമാണു് '''ഡിജിറ്റൽ ഇലക്ട്രോണിക്സ്''' എന്നറിയപ്പെടുന്നത്. സാധാരണയായി 0, 1 (ലോജിൿ പൂജ്യം, ലോജിക് ഒന്ന്) എന്നീ രണ്ട് തലങ്ങളാണ് ഡിജിറ്റൽ വിവരതരംഗങ്ങൾക്കും വിവരാവസ്ഥകൾക്കും ഉണ്ടാവുക. പൂജ്യത്തെ പ്രതിനിധീകരിക്കാൻ സധാരണയായി പൂജ്യത്തോടടുത്ത ഒരു വോൾട്ടേജും, ഒന്നിനെ പ്രതിനിധീകരിക്കാൻ ലഭ്യമായ വോൾട്ടേജിനെ ആശ്രയിച്ച്, മറ്റൊരു വോൾട്ടേജും ആയിരിക്കും ഉപയോഗിക്കുന്നത്.
പരസ്പരം നിയതമായ വ്യത്യാസത്തിലുള്ള രണ്ടു തലങ്ങളിലായി പൂർവ്വലക്ഷണതരംഗങ്ങളെ (signal) പ്രതിനിധീകരിക്കുകയും അവയെ ആവശ്യാനുസരണം മറ്റു രൂപഭാവങ്ങളിലേക്കു് പരിവർത്തനം ചെയ്യുകയും ചെയ്യുന്ന [[ഇലക്ട്രോണിക്സ്|ഇലക്ട്രോണിക് ]] സംവിധാനങ്ങളും അവയുടെ രൂപകൽ‌പ്പനയും നിർമ്മാണവും ഉപയോഗവും സംബന്ധിച്ച സാങ്കേതികശാസ്ത്രവുമാണു് '''ഡിജിറ്റൽ ഇലക്ട്രോണിക്സ്''' എന്നറിയപ്പെടുന്നത്. സാധാരണയായി 0, 1 (ലോജിൿ പൂജ്യം, ലോജിക് ഒന്ന്) എന്നീ രണ്ട് തലങ്ങളാണ് ഡിജിറ്റൽ വിവരതരംഗങ്ങൾക്കും വിവരാവസ്ഥകൾക്കും ഉണ്ടാവുക. പൂജ്യത്തെ പ്രതിനിധീകരിക്കാൻ സധാരണയായി പൂജ്യത്തോടടുത്ത ഒരു വോൾട്ടേജും, ഒന്നിനെ പ്രതിനിധീകരിക്കാൻ ലഭ്യമായ വോൾട്ടേജിനെ ആശ്രയിച്ച്, മറ്റൊരു വോൾട്ടേജും ആയിരിക്കും ഉപയോഗിക്കുന്നത്.


വരി 54: വരി 54:


[[Category:ഇലക്ട്രോണിക്സ്]]
[[Category:ഇലക്ട്രോണിക്സ്]]

[[ar:إلكترونيات رقمية]]
[[bn:ডিজিটাল যুক্তিবিজ্ঞান]]
[[ca:Circuit digital]]
[[cs:Číslicová technika]]
[[da:Digital elektronik]]
[[de:Digitaltechnik]]
[[el:Ψηφιακά ηλεκτρονικά]]
[[en:Digital electronics]]
[[es:Electrónica digital]]
[[et:Digitaalelektroonika]]
[[eu:Elektronika digital]]
[[fa:الکترونیک دیجیتال]]
[[fi:Digitaalipiirit]]
[[fr:Électronique numérique]]
[[he:אלקטרוניקה ספרתית]]
[[hi:डिजिटल सर्किट]]
[[hr:Digitalna elektronika]]
[[ia:Electronica digital]]
[[id:Elektronika digital]]
[[it:Elettronica digitale]]
[[ja:デジタル回路]]
[[ka:ციფრული სისტემა]]
[[ko:디지털 전자공학]]
[[ku:Kerxa tivilmanî]]
[[la:Electronica digitalis]]
[[mn:Тоон электроник]]
[[pl:Technika cyfrowa]]
[[pt:Circuito digital]]
[[ru:Цифровые технологии]]
[[simple:Digital electronics]]
[[sk:Digitálna elektronika]]
[[sr:Дигитална електроника]]
[[sv:Digitalteknik]]
[[tr:Sayısal elektronik]]
[[zh:数字电路]]

10:22, 28 ഓഗസ്റ്റ് 2019-നു നിലവിലുള്ള രൂപം


7400 എന്ന പേരിൽ പ്രസിദ്ധമായ ഒരു ഡിജിറ്റൽ ചിപ്പ്. ഇതിൽ രണ്ടു ഇൻപുട്ടുകളും ഒരു ഔട്ട്പുട്ടും വീതമുള്ള നാലു വ്യത്യസ്ത ലോജിക് കവാടങ്ങൾ അടക്കം ചെയ്തിട്ടുണ്ടു്. പവർ സപ്ലൈ (+5 വോൾട്ട്), ‘ഗ്രൌണ്ട്’ ഇവയ്ക്കു വേണ്ടിയാണു് കൂടുതലുള്ള രണ്ടു കാലുകൾ.

പരസ്പരം നിയതമായ വ്യത്യാസത്തിലുള്ള രണ്ടു തലങ്ങളിലായി പൂർവ്വലക്ഷണതരംഗങ്ങളെ (signal) പ്രതിനിധീകരിക്കുകയും അവയെ ആവശ്യാനുസരണം മറ്റു രൂപഭാവങ്ങളിലേക്കു് പരിവർത്തനം ചെയ്യുകയും ചെയ്യുന്ന ഇലക്ട്രോണിക് സംവിധാനങ്ങളും അവയുടെ രൂപകൽ‌പ്പനയും നിർമ്മാണവും ഉപയോഗവും സംബന്ധിച്ച സാങ്കേതികശാസ്ത്രവുമാണു് ഡിജിറ്റൽ ഇലക്ട്രോണിക്സ് എന്നറിയപ്പെടുന്നത്. സാധാരണയായി 0, 1 (ലോജിൿ പൂജ്യം, ലോജിക് ഒന്ന്) എന്നീ രണ്ട് തലങ്ങളാണ് ഡിജിറ്റൽ വിവരതരംഗങ്ങൾക്കും വിവരാവസ്ഥകൾക്കും ഉണ്ടാവുക. പൂജ്യത്തെ പ്രതിനിധീകരിക്കാൻ സധാരണയായി പൂജ്യത്തോടടുത്ത ഒരു വോൾട്ടേജും, ഒന്നിനെ പ്രതിനിധീകരിക്കാൻ ലഭ്യമായ വോൾട്ടേജിനെ ആശ്രയിച്ച്, മറ്റൊരു വോൾട്ടേജും ആയിരിക്കും ഉപയോഗിക്കുന്നത്.

ഒരു ഡിജിറ്റൽ സംവിധാനത്തിൽ ലോജിക് പൂജ്യം എന്നതു് പൂജ്യം വോൾട്ട് എന്നോ ലോജിക് ഒന്ന് എന്നത് ഒരു വോൾട്ട് എന്നോ അർത്ഥമാക്കുന്നില്ല. വോൾട്ടേജിന്റെ സാദ്ധ്യമായ രണ്ടു വ്യത്യസ്ത അവസ്ഥകളിലൊന്നു് എന്നു മാത്രമേ അവയ്ക്കു് അർത്ഥമുള്ളൂ. ഉദാഹരണത്തിനു് ഒരു സർക്യൂട്ടിൽ 1.2 വോൾട്ട് ലോജിക് പൂജ്യവും 4.6 വോൾട്ട് ലോജിക് ഒന്നും ആവാം (പോസിറ്റീവ് ലോജിൿ). മറ്റൊരു സർക്യൂട്ടിൽ ഇതിനുപകരം 3 വോൾട്ട് ലോജിക് പൂജ്യവും -4 വോൾട്ട് ലോജിൿ പൂജ്യവും (നെഗറ്റീവ് ലോജിൿ) എന്നും വരാം. ദശലക്ഷക്കണക്കിനു ട്രാൻസിസ്റ്ററുകളും മറ്റു ഘടകങ്ങളും അടക്കം ചെയ്തിട്ടുള്ള ചില ആധുനിക മൈക്രോപ്രോസസ്സറുകളിൽ ഈ വോൾട്ടേജുകൾ തമ്മിലുള്ള വ്യത്യാസം തീരെ കുറവാണു്. (ഒരൊറ്റ കൂടിൽ 167 പ്രോസസ്സറുകൾ അടങ്ങിയ AsAP2 എന്ന ചിപ്പിൽ ഇവ തമ്മിൽ 0.675 വോൾട്ട് മാത്രമാണുള്ളതു്.)

തീരെ സൂക്ഷ്മായ ട്രാൻസിസ്റ്ററുകൾ, ഡയോഡുകൾ, കപ്പാസിറ്ററുകൾ, പ്രതിരോധകങ്ങൾ (Resistors), അവയ്ക്കിടയിലുള്ള വൈദ്യുതചാലക പാതകൾ തുടങ്ങിയ സർക്യൂട്ട് ഘടകങ്ങളുടെ നേരിയ വ്യതിയാനങ്ങൾ മൂലം ഈ വോൾട്ടേജുകളിൽ ചെറിയ മാറ്റങ്ങൾ വന്നാലും ഈ ലോജിൿ മൂല്യങ്ങൾ മാറുന്നില്ല. അതുകൊണ്ടു് ഡിജിറ്റൽ സർക്യൂട്ടിന്റെ ഉദ്ദേശ്യധർമ്മത്തിനെ ഇത്തരം ചെറിയ വ്യതിയാനങ്ങൾ ബാധിക്കുകയില്ല.

ഡിജിറ്റൽ ഇലക്ട്രോണിക്സ് സംവിധാനങ്ങളുടെ ഘടന

[തിരുത്തുക]

മുഖ്യമായും അനേകം ലോജിക് കവാടങ്ങൾ ആവശ്യാനുസരണം പരസ്പരം സംയോജിപ്പിച്ചാണ് ഡിജിറ്റൽ ഇലക്ട്രോണിക്സ് സംവിധാനങ്ങൾ ഉണ്ടാക്കുന്നത്. ഡയോഡുകൾ, ട്രാൻസിസ്റ്ററുകൾ, റെസിസ്റ്ററുകൾ തുടങ്ങിയ നിരവധി ഇലക്ട്രോണിൿ ഘടകങ്ങൾ പരസ്പരം ബന്ധിച്ചാണു് ഇത്തരം ലോജിൿ കവാടങ്ങൾ ഉണ്ടാക്കുന്നതു്. ഇവയെല്ലാം മുൻ‌കൂട്ടി തയ്യാറാക്കി ഒരുമിച്ചു ചേർത്തു നിർമ്മിച്ച ചിപ്പുകൾ അഥവാ ഇന്റഗ്രേറ്റഡ് സർക്യൂട്ടുകൾ (IC) ആണു് ആധുനിക ഡിജിറ്റൽ സംവിധാനങ്ങളിൽ മിക്കപ്പോഴും ഉപയോഗിക്കുന്നതു്. ഒന്നോ രണ്ടോ ലോജിൿ ഗേറ്റുകൾ അടക്കം ചെയ്ത ലഘുവായ ചിപ്പുകൾ മുതൽ ലക്ഷക്കണക്കിനു ട്രാൻസിസ്റ്ററുകൾ ഒരുമിച്ചു ചേർത്തുവെച്ച അത്യന്തം സങ്കീർണ്ണമായ ഡിജിറ്റൽ മൈക്രോകണ്ട്രോളറുകളും പ്രോഗ്രാമബിൾ ലോഗിൿ കണ്ട്രോളറുകളും വരെ ഇപ്പോൾ ലഭ്യമാണു്. നാം സാധാരണ ഉപയോഗിക്കുന്ന കമ്പ്യൂട്ടറുകളിലും അവയുടെ പല അനുബന്ധ ഉപകരണങ്ങളിലും അടിസ്ഥാനഘടകങ്ങൾ ഇത്തരം ലോജിൿ സർക്യൂട്ടുകളാണു്.

യുക്തിഭദ്രമായ ഏതെങ്കിലും ഒരു നിശ്ചിത ഇലക്ട്രോണിൿ പ്രക്രിയ കൃത്യമായും നിശ്ചയമായും പൂർത്തിയാക്കുന്നതിൽ ഡിജിറ്റൽ പരിപഥങ്ങൾ(circuits) അനലോഗ് സംവിധാനങ്ങളേക്കാൾ മെച്ചപ്പെട്ടവയാണു്. മാത്രമല്ല, താരതമ്യേന ചെലവുകുറഞ്ഞതും സംയോജിപ്പിക്കാൻ എളുപ്പമായതും കൂടുതൽ കാലം സേവനം ഉറപ്പാക്കുന്നതുമാണു് ഡിജിറ്റൽ സംവിധാനങ്ങൾ.

എന്നിരുന്നാലും, പ്രായോഗിക ലോകത്തിൽ നാം അഭിമുഖീകരിക്കുന്ന പല സംവേദന-സാങ്കേതിക പ്രക്രിയകളും അനലോഗ് രൂപത്തിലാണു്. (ഉദാ: സമയം, ശബ്ദം, കാഴ്ച്ച(പ്രകാശം), താപനില, വസ്തുക്കളുടെ അളവു്, തൂക്കം, മർദ്ദം, വേഗം തുടങ്ങിയവ). ഇവയെ നമുക്കാവശ്യമുള്ള രൂപത്തിൽ പരിവർത്തനം ചെയ്യുക എന്നതാണു് സാങ്കേതികവിദ്യയുടെ ധർമ്മം. ഈ ജോലിയ്ക്കു് ഡിജിറ്റൽ സംവിധാനങ്ങളുടെ മേന്മ ഉപയോഗിക്കണമെങ്കിൽ ആദ്യം ഈ പൂർവ്വലക്ഷണങ്ങളെ അനലോഗ് ലോകത്തുനിന്നും ഡിജിറ്റൽ മാദ്ധ്യമത്തിലേക്കു് മാറ്റേണ്ടതുണ്ടു്. അതുപോലെ നമുക്കു് ആവശ്യമുള്ള, അനുഭവവേദ്യമായ (അനലോഗ്) രൂപത്തിൽ ഈ പ്രക്രിയകളുടെ ഫലം ലഭിക്കുകയും വേണം.

ഇത്തരം മാദ്ധ്യമസംക്രമണം നടത്താൻ ഉപയോഗിക്കുന്ന അനുബന്ധഘടകങ്ങളാണു് ADC എന്നും DAC എന്നും അറിയപ്പെടുന്ന അനലോഗ് റ്റു ഡിജിറ്റൽ കൺ‌വെർട്ടറുകളും ഡിജിറ്റൽ റ്റു അനലോഗ് കൺ‌വെർട്ടറുകളും.

മുഹൂർത്താശ്രിത(synchronous) 4-ബിറ്റ് മേൽ/കീഴ് ദശാംശ കൌണ്ടർ ആയ 74LS192 എന്ന ഡിജിറ്റൽ ചിപ്പിന്റെ പ്രതീകം. ഇത്തരം പ്രതീകങ്ങൾ അന്തരാഷ്ട്രതലത്തിൽ മാനകീകരിച്ചിട്ടുണ്ടു്)

പൂർണ്ണമായ ഒരു പ്രായോഗിക ഇലക്ട്രോണിൿ ഡിജിറ്റൽ സംവിധാനത്തിൽ മേൽ‌പ്പറഞ്ഞ ലോജിൿ ഗേറ്റുകൾക്കും കൺ‌വെർട്ടറുകൾക്കും പുറമേ പവർ സപ്ലൈ അല്ലെങ്കിൽ ബാറ്ററി, ആന്ദോളിനികൾ, വിവിധതരം സംവേദിനികൾ (sensors), സംദായിനികൾ (drives or outputs), പൊട്ടൻഷ്യോമീറ്ററുകൾ തുടങ്ങി ഡിജിറ്റലും അനലോഗും ആയ പല ഘടകങ്ങളും അടങ്ങിയിരിക്കും.

അനലോഗും ഡിജിറ്റലും - ഗുണദോഷങ്ങൾ

[തിരുത്തുക]

അനലോഗ് സർക്യൂട്ടുകളെ അപേക്ഷിച്ച് ഡിജിറ്റൽ സർക്യൂട്ടുകൾക്കു് പല മേന്മകളും ഉണ്ട്. നോയ്സ് എന്നറിയപ്പെടുന്ന അപവൃത്തിദോഷം ഏതാണ്ട് നൂറുശതമാനവും ഒഴിവാക്കാമെന്നതാനു് ഇതിൽ ഏറ്റവും പ്രധാനമായതു്.

ഇലക്ട്രോണിക്സിലും അനുബന്ധ മേഖലകളിലും ഗുണഭോക്താവിനു് പ്രയൊജനമുള്ള വിവരം എന്താണോ അതിനെ സിഗ്നൽ എന്നും ആ വിവരത്തിൽ പുറമേ നിന്നും കടന്നുകയറി അതിന്റെ വ്യതിരിക്തത കുറയ്ക്കുന്ന പ്രയോജനമില്ലാത്ത മറ്റു വിവരങ്ങളെ നോയ്സ് എന്നും പറയുന്നു. ഒരു സിഗ്നലിന്റെ സഞ്ചാരപഥത്തിന്റെ പോരായ്മകൾ കൊണ്ടോ ആ സിഗ്നൽ കടന്നുപോകുന്ന ഇലക്ട്രോണിൿ ഘടകങ്ങളുടെ പോരായ്മകൊണ്ടോ ഇത്തരം അപവൃത്തിയ്ക്കു കാരണമാവാം.

സാധാരണ ഗതിയിൽ നോയ്സ് ഒരു സിഗ്നലിന്റെ മേന്മയെ ബാധിക്കുന്നതു് സിഗ്നലിന്റെ അളവിൽ (വോൾട്ടേജിൽ) ചെറുതോ വലുതോ ആയ വ്യത്യാസങ്ങൾ വരുത്തിക്കൊണ്ടാണു്. ഒരു അനലോഗ് സർക്യൂട്ടിൽ ഇത്തരം വ്യത്യാസങ്ങൾ മുൻ‌കൂട്ടി കണക്കാക്കാനോ അവയുടെ ആധിക്യം പരിശോധിച്ച് ഇല്ലാതാക്കാനോ കഴിയില്ല.പക്ഷേ, ഒരു ഡിജിറ്റൽ ഇലക്ടോണിക് സംവിധാനത്തെ സംബന്ധിച്ചിടത്തോളം, ഇത്തരം അപവൃത്തികൾ കണക്കാക്കി അവയെ നിർമ്മാർജ്ജനം ചെയ്തു് യഥാർത്ഥ സിഗ്നലിനെ മാത്രം വീണ്ടെടുക്കാൻ (പൂർവ്വനിശ്ചിതമായ വോൾട്ടേജ് തലങ്ങളിലേക്ക് തിരിച്ചുമാറാൻ) എളുപ്പമാണ്.

ഉദാഹരണത്തിന് ഒരു അനലോഗ് റെക്കോർഡ് പ്ലേയർ കാന്തിക ടേപ്പിൽ നിന്നും വായിച്ചെടുക്കുന്ന ശബ്ദതരംദങ്ങളെ അതേ അനുപാതത്തിൽ കൃത്യമായ വോൾട്ടേജ് തലങ്ങളിലേക്ക് മാറ്റുന്നു. ഈ വോൾട്ടേജ് (ആവശ്യമെങ്കിൽ ഉച്ചത വർദ്ധിപ്പിച്ച ശേഷം) സ്പീക്കറിലേക്ക് നൽകുന്നു. എന്നാൽ ഒരു ഡിജിറ്റൽ ഓഡിയോ പ്ലേയർ ശബ്ദത്തെ പുനർനിർമ്മിക്കുമ്പോൾ ഓരോ സമയത്തേയും വോൾട്ടേജ് മൂല്യങ്ങൾ തത്തുല്യമായ ബൈനറി സംഖ്യയായിട്ടാണ് പുറത്തു തരിക. (ഇതിന് ഒന്നിൽ കൂടുതൽ ഡാറ്റാ ലൈനുകൾ ആവശ്യമാണ്). ഈ ബൈനറി സംഖ്യയെ ഡിജിറ്റൽ റ്റു അനലോഗ് കൺവെർട്ടർ ചിപ്പുകൾ ഉപയോഗിച്ച് കൃത്യമായ അനലോഗ് വോൾട്ടേജാക്കി മാറ്റി (ആവശ്യമെങ്കിൽ ഉച്ചത വർദ്ധിപ്പിച്ച ശേഷം) സ്പീക്കറിലേക്ക് നൽകുന്നു.

സാദ്ധ്യയുക്തി സർക്യൂട്ടുകളും ക്രമയുക്തി സർക്യൂട്ടുകളും

[തിരുത്തുക]

ഡിജിറ്റൽ സർക്യൂട്ടുകളെ അവയുടെ ധർമ്മത്തിന്റെ സ്വഭാവം അനുസരിച്ച് പ്രധാനമായും രണ്ടായി തിരിക്കാം.താരതമ്യേന ലഘുവായ സാദ്ധ്യയുക്തി(Combinational logic) സർക്യൂട്ടുകളും കൂടുതൽ സങ്കീർണ്ണമായ ക്രമയുക്തി (sequential logic)സർക്യൂട്ടുകളും.

(ഇവയെക്കുറിച്ചുള്ള പ്രത്യേക ലേഖനങ്ങൾ കാണുക)

കൂടുതൽ വിവരങ്ങൾ

[തിരുത്തുക]

അവലംബം

[തിരുത്തുക]

ചിത്രശാല

[തിരുത്തുക]

മേന്മകൾ

[തിരുത്തുക]

1. ഡിജിറ്റൽ തരംഗങ്ങൾക്ക് അനലോഗ് തരംഗങ്ങളെ അപേക്ഷിച്ച് പ്രക്ഷേപണ ജീർണ്ണത കുറവാണ്[1].

അവലംബം

[തിരുത്തുക]
  1. Paul Horowitz and Winfield Hill, The Art of Electronics 2nd Ed. Cambridge University Press, Cambridge, 1989 ISBN 0-521-37095-7 page 471