MARVIN: Efficient and Comprehensive Mobile App Classification Through Static
and Dynamic Analysis

Martina Lindorfer’”, Matthias Neugschwandtner”, Christian Platzer”
TSBA Research, Vienna, Austria
*IBM Research, Zurich, Switzerland
“International Secure Systems Lab, Vienna University of Technology, Austria
*{mlindorfer,mneug,cplatzer}@iseclab.org

Abstract—Android dominates the smartphone operating sys-
tem market and consequently has attracted the attention of
malware authors and researchers alike. Despite the consider-
able number of proposed malware analysis systems, compre-
hensive and practical malware analysis solutions are scarce
and often short-lived. Systems relying on static analysis alone
struggle with increasingly popular obfuscation and dynamic
code loading techniques, while purely dynamic analysis systems
are prone to analysis evasion.

We present MARVIN, a system that combines static with
dynamic analysis and which leverages machine learning tech-
niques to assess the risk associated with unknown Android apps
in the form of a malice score. MARVIN performs static and
dynamic analysis, both off-device, to represent properties and
behavioral aspects of an app through a rich and comprehensive
feature set. In our evaluation on the largest Android malware
classification data set to date, comprised of over 135,000
Android apps and 15,000 malware samples, MARVIN correctly
classifies 98.24% of malicious apps with less than 0.04% false
positives. We further estimate the necessary retraining interval
to maintain the detection performance and demonstrate the
long-term practicality of our approach.

Keywords-mobile security; malware analysis; classification

I. INTRODUCTION

Android is the most popular smartphone operating system
today, with a market share of 84.7% [1]. In contrast to Apple’s
108, which restricts users to the applications (apps) available
in the iTunes App Store, Android users are not limited to
the official Google Play Store. Instead, they can choose from
many arbitrary sources, such as third-party application markets,
torrents, or direct downloads. Naturally, this liberty causes
Android to attract the attention of malware authors, who try
to lure users into running malicious code, e.g. by repackaging
it with paid or very popular apps. Although there have already
been some drive-by download sightings for Android [2], user-
based installation is still the most prevalent infection vector.

While more recent studies also found alternative markets
hosting up to 5-8% malicious apps [3,4], the official Google
Play Store is not free from malware either [S]-[7]. The
anonymity of the developer accounts, the low sign-up fee of
$25 USD, and its popularity amongst users make the Google
Play Store an attractive target, even when considering that
developers are banned for life when they are caught uploading
malware. As a countermeasure against the growing mobile
malware epidemic Google introduced Bouncer in February
2012 [8]. By testing apps for anomalous behavior in Bouncer’s
dynamic analysis environment before listing them in the Play
Store, they claim to have reduced malicious app downloads
by 40%. Not much is known about the exact functionality of
Bouncer, although two independent studies showed that it can
be fingerprinted and bypassed easily, just like any analysis

environment as long as it is acting as an oracle [9,10]. In
November 2012, Google further extended Android’s security
features by integrating an application verification service in
Android 4.2 that is capable of checking apps from any source
for malicious functionality. However, an assessment of the
effectiveness of this service on a corpus of known malware
showed a low detection rate of only 15.32% [11].

Ultimately, when deciding whether or not to install an app,
the end-user can consult various information sources:

o Trustworthiness of the app’s origin

« App reviews by other users

« Permissions required by the app

e Results from antivirus (AV) scanners

« Results from Google’s app verification service

All of these sources have major shortcomings. To begin with,
trustworthiness is hard to establish — as stated above — even
the Play Store is not safe from malware, and the trust end-
users might put into it is likely making it an even more
tempting target for malware authors. The problem with app
reviews written by users is that most are quite unlikely to
notice malicious behavior and their ratings mainly focus on
functionality and performance instead of privacy risks [12].
Furthermore, malware authors can use app rank boosting
services to increase download numbers and post fake reviews
to encourage users to install their malicious apps [13]. The
permissions required by an app might actually indicate what
the app could do, but this information is too detailed and thus
incomprehensible for a majority of users [14]. Finally, several
AV companies offer solutions for mobile devices, however,
they are restricted by the limited resources and privileges
on mobile devices [15,16]. Current devices are not designed
to accommodate heavy-weight security solutions including
behavior-based malware tracking. One reason is that most
Android installations lack the needed root privileges to carry
out the necessary operations [17]. Furthermore, a constant
runtime scan of running apps puts enormous strain on a
device’s CPU and therefore reduces battery life drastically.

Consequently, researchers started to leverage machine
learning techniques to classify apps based on features learned
from known benign and malicious apps. We show in Section II
that existing approaches have severe limitations in the their
feature extraction as well as their ability to generalize in a real-
world setting. We address these shortcomings by extending
the large-scale public Android malware analysis sandbox
ANDRUBIS [18] to provide users with a risk assessment in
the form of a malice score that can be efficiently calculated
and that is easy to grasp and understand. MARVIN follows
the hybrid analysis approach and leverages static and dynamic
analysis, both performed off-device (in the cloud), to represent

properties and behavioral aspects of an app through a rich and
comprehensive feature set. Using a classifier that is trained
on a large set of known malicious (malware) and benign apps
(goodware), MARVIN estimates the risk associated with a
previously unknown app. By providing a detailed analysis
report in addition to the malice score of the classifier our
system is both transparent in its assessment and beneficial to
both novices and expert users alike. We further evaluate the
long-term benefits and practicality of our approach by showing
that it can be efficiently retrained and that it maintains its
detection accuracy over time.

In summary, our contributions are as follows:

o We introduce MARVIN, a system to automatically evaluate
the risk of unknown Android apps through a combination
of static and dynamic analysis.

« To provide an appropriate end-user experience, we devel-
oped a mobile app that allows users to submit apps to
MARVIN and receive malice scores along with a detailed
analysis report.

o We evaluate MARVIN on a data set of over 135,000 benign
and 15,000 malicious Android apps, on which it correctly
identifies 98.24% of malware samples with less than 0.04%
false positives.

o We discuss the most distinguishing features, and features
unique to Android apps, that MARVIN uses to classify apps.

« We made our solution available to the public by integrating
it in ANDRUBIS, a large-scale app analysis sandbox
that accepts submissions via our mobile app' and at
https://anubis.iseclab.org.

II. RELATED WORK

In the domain of Windows malware, machine learning has
been extensively used for different purposes in the past. One
application of unsupervised learning is finding clusters of
samples that exhibit similar behavior based on dynamic analy-
sis [19,20]. In the field of supervised learning Rieck et al. [21]
trained classifiers with behavior observed during dynamic
analysis to distinguish malware families. ForeCast [22] uses
a classification approach to establish a mapping between the
static features of malware and a behavioral cluster a certain
sample belongs to in order to pre-select interesting samples
for dynamic analysis.

Countermeasures Against Android Malware. As one of
the main differences compared to countermeasures against
Windows malware, related work in the domain of smartphone
malware identified the limited processing resources of smart-
phones and the need to move security defenses off-device and
to the cloud. SmartSiren [15] uses collaborative virus detection
and detects anomalies in the communication activity collected
from a smartphone running its agent. Oberheide et al. [16]
also proposed reducing on-device resource consumption and
software complexity by sending samples to a server where they
can be scanned with a behavioral detection engine. Paranoid
Android [23] replicates the execution of an app in the cloud
to perform resource intensive detection techniques, such as
AV scanning or dynamic taint analysis, to identify exploits.

! Available in the Google Play Store: https://play.google.com/
store/apps/details?id=org.iseclab.andrubis

ThinAV [24] modifies the Android Package Installer to consult
web-based AV scanners before installing an app. MARVIN can
be integrated into this system and provide its malice score in
addition to AV scanning results.

Detection Based on Static Features. Peng et al. [25] were
the first to propose risk scoring for Android apps to improve
the communication of the risk that comes with installing an
app to users. They evaluate different probabilistic generative
models and based their scoring exclusively on the permissions
an app requests. The Android permission system also has
been a core element for several other approaches: Kirin [26]
ranks security-critical combinations of requested permissions
based on a manual assessment. Felt et al. [27] build a
simple classification approach based on requested permissions.
Another static approach is AppProfiler [28], which alerts end
users to privacy-related behavior by matching an app against
a knowledge base of over 200 rules of API calls related to
critical behavior. The Android Observatory [29] focuses on
relationships between apps and provides an interface for users
to check whether an app shares its certificate with known
malware. Apvrille et al. [30] propose a heuristic engine that
statically pre-processes and prioritizes samples to accelerate
the detection of new Android malware in the wild. They
devised 39 flags for static features that they found to be
common in current malware. In contrast, our approach does
not rely on heuristics and automatically determines weights of
malicious features. MAST [31] considers statically extracted
features such as permissions, intent filters, and the presence
of native code to perform market-scale triage and to select
potentially malicious samples for further analysis. Lastly, Zhu
et al. [32] proposed an app recommender system that ranks
apps based on their popularity as well as their security risk,
but again only consider requested permissions.

Considering our ultimate goal of automatically classifying
unknown apps, RiskRanker [33], DroidAPIMiner [34] and
Drebin [35] are the most closely related research. RiskRanker
detects high- and medium risk apps according to several
predetermined features, such as the presence of exploit code,
the use of functionality that can cost the user money without
her interaction, the dynamic loading of code that is stored
encrypted in the app, and the leakage of certain information.
DroidAPIMiner and Drebin classify apps based on features
learned from a number of benign and malicious apps during
static analysis. However, all those approaches lack the ability
to analyze code that is obfuscated or loaded dynamically at run-
time, a prevalent feature of apps as evidenced by a recent large-
scale study [18], unless they are complemented by some form
of dynamic analysis, as recently proposed in StaDynA [36]. In
contrast, MARVIN does not suffer from these limitations. With
a lower false positive rate than DroidAPIMiner and Drebin,
MARVIN also classifies more malware correctly (98.24%) than
DroidAPIMiner, which reports a maximum detection rate of
97.8%, and Drebin, which identifies only 94% of malware.

The remainder of related work on classifying Android
malware based on static features evaluates their approaches
on non-representative data sets: The data set of DroidMat [37]
only contains 238 malware samples, PUMA [38] on the other
hand, in addition to only learning from requested permissions,
is trained and tested on only 249 malicious apps. Finally,
Sahs et al. [39] also include features from the control flow

graph in addition to permissions. However, they only train on
benign samples and use less than 100 malware samples with
unknown diversity for verification. Consequently they achieve
unusual results: One configuration classifies half of benign
applications as malware, while another configuration exhibits
a higher false negative than true negative rate.

Detection Based on Dynamic Features. Andromaly [40]
is an anomaly detector for Android devices based on on-
device monitoring and evaluated different feature selection and
machine learning algorithms. However, its evaluation suffers
from a lack of available malware samples. STREAM [41] is
a framework for evaluating mobile malware classifiers based
on the same features as Andromaly with an equally limited
testing set of only 50 applications. Additionally, the tested
classifiers achieve substantial false positive rates ranging from
14.55% up to 44.36%, rendering them completely impractical.

Crowdroid [42] made a first step towards the use of dynamic
analysis results for Android malware detection by performing
k-means clustering based on system call invocation counts.
DroidRanger [43] combines static and dynamic analysis to
perform a large-scale study of malware in several Android
app markets. The authors apply a permission-based filtering
to improve efficiency and then match apps against behavioral
footprints manually extracted from the manifest, API call
sequences and the structural layout of an app. Additionally,
DroidRanger performs dynamic execution monitoring for apps
that match heuristics for the dynamic loading of code in
order to detect unknown malware. DroidRanger, however,
does not use machine learning techniques to automatically
learn discriminative features for classifying malicious apps.
Furthermore, contrary to DroidRanger, our approach subjects
all apps to dynamic analysis.

Afonso et al. [44] dynamically analyze Android apps to use
the number of invocations of API and system calls as coarse-
grained features to train various classifiers. Their monitoring
approach relies on modifying the app under analysis, which is
easily detectable by malware. The only other related approach
combining static with dynamic analysis is DroidDolphin [45].
Again, the approach relies on repackaging an app with
monitoring code. While the authors observed that the accuracy
increased with the size of the training set, DroidDolphin
achieves an accuracy of only 86.1% in the best case.

Limitations of Related Work. The majority of related
approaches learns from very small data sets, often comprising
of only a few hundred apps, and an even more limited and
less diverse set of malicious apps. Furthermore, related work
failed to investigate the long-term practicality of machine
learning techniques for Android malware classification. These
practices limit the ability of related approaches to generalize
in a real-world setting and their robustness when faced with
changes in the Android app landscape. One of the major
developments that was observed in a recent study [18] is
the increasing importance of dynamic analysis to completely
capture an app’s characteristic features, in turn, rendering
many existing approaches solely relying on static analysis
obsolete. Apps can either use reflection and code obfuscation
to hinder static analysis [46] or bypass static approaches in
general by dynamically loading code at runtime. This code
can either be packaged with the app itself, possibly encrypted
and even hidden in an innocuous looking image [47], or

8

. General Static Dynamic URL
Angry? unlock all your birds Info Analysis Analysis Analysis

@éL
o

File location: /data/app/com dotgears.flappybird-1.apk

P e
00 it i
%h8 | Baidu Mobile o 3 Flappy Bird
Details el
Analysis Result
@ e o
L3z Flappy Bird The analysis has been successful. This app exhibits malicious
~ Details behavior or contains malicious content. Andrubis computed an
—~ overall risk score of 9.8
Q:é Flappy Bird . v
Panda Mania ') Additional Information
Analyzing

Last modified: 2/27/14 2:42 AM
File size: 940 kB

‘ RemoteSMS (Free) 1

@ IS HD
Details
U TR
Details

& RENNG
Details

Figure 1: User interface of MARVIN’s mobile front end.

downloaded from external sources — making static analysis of
the complete app impossible. Such approaches are not only
being used by malicious apps, instead, benign applications use
dynamic code loading, reflection, and obfuscation alike for
application upgrades, statistical A/B testing, premium features
(e.g., features purchased in-app), and/or copyright protection.

Most of the existing classification approaches, however,
solely rely on static features for classification, thus missing
characteristic features in almost 30% of current apps that
dynamically load code at runtime [18]. Conversely, approaches
relying only on dynamic analysis can be defeated by apps
detecting and evading the analysis environment [48,49].

By combining results from static and dynamic analysis
MARVIN can automatically identify common features of
Android malware and is more accurate and more robust to
evasion than prior work. Furthermore, it provides a fine-grained
distinction between goodware and malware in the form of a
malice score, which is beneficial to both novices and experts.

III. APPROACH

MARVIN learns to distinguish malicious from benign apps
based on a set of known malware and goodware. It assigns
malice scores to unknown apps in a range from 0 (benign)
to 10 (malicious). This addresses the fact that there is a gray
area between malware and goodware, e.g. adware, and hence
a binary risk assessment would be unsuitable. Furthermore,
the scores allow categorizing apps into discrete levels, which
makes the results easier to understand for end users [32].

The core element of our risk assessment engine utilizes
machine learning techniques that classify apps based on several
characteristics. These features are gathered from dynamic and
static analysis, network-level behavior and meta-information,
like author fingerprints and application lifetime. As a result,
MARVIN computes the aforementioned malice scores based
on a comprehensive set of distinguishing features that are
capable of separating malware from benign apps accurately.

Users can submit apps through a web interface or a
dedicated mobile app. The mobile interface is purposely kept
simple to attract user attention and to not strain people’s
patience with overly detailed information that might only be
useful to researchers or malware analysts (who can access
additional information on a separate screen, if desired). This
way, the mobile app is useful for novice and expert users alike.

)—»(Training

Dynamic
Analysis

I

) ‘
fa Feature Extraction |
Im | Feature
w Static E (Selection
Reference Apps Analysis ' TRAINING MODE

CLASSIFICATION MODE ()

End-User Apps)

—» Malice Score

|
—| Classification |— ;
1

Figure 2: System overview of MARVIN.

Figure 1 shows the app’s main screen listing all installed apps,
and the analysis overview of a Flappy Birds app repackaged
with malware, which was correctly classified as malware with
a malice score of 9.8.

In contrast to Google’s Bouncer, which scans only apps
submitted to the Play Store to approve or reject them, MARVIN
analyzes apps from arbitrary sources through a public interface
and is independent of a device and its software version. As
all operations are performed off-device and independently of
a particular installation, MARVIN can serve as a lightweight
alternative to AV scanning apps or be integrated into other
services. MARVIN can, for example, be utilized by third-
party app stores to let users make a more informed decision
about which apps to download, or corporate app stores to
decide which apps are fit to be distributed further. For the
typical Android user, MARVIN acts as an advisor to decide
which apps can be safely installed on their device. For
expert users and researchers, MARVIN provides an efficient
maliciousness rating tool for large-scale evaluations through
its public interface.

IV. SYSTEM DETAILS
MARVIN operates in two different modes (see Figure 2): A
training mode, where the existing model can be revised and
adopted to new features or new strains of malware, and a
classification mode in which it assesses the risk of an app.

Training Mode. The training mode is needed to learn the
model that is later used to evaluate the risk associated with
unknown apps. To this end, we provide a training set of known
good- and malware to the system. MARVIN first extracts
a comprehensive feature set from these apps during static
and dynamic analysis. Depending on the configured machine
learning algorithm, the features then can be subjected to feature
selection to avoid overfitting. Here, the most distinguishing
features are determined, which are then used to train the
machine learning algorithm and learn the corresponding
classification model.

Classification Mode. In classification mode, MARVIN accepts
user submissions via a web interface or our own mobile app.
Each submitted app is subjected to the same feature extraction
as the apps used to train the model. Based on the features
exhibited by the app during static and dynamic analysis, and
the model created during the training mode, the classifier then
assesses the risk and outputs the app’s malice score.

The feature extraction step can be skipped, if the submitted
app has already been analyzed before. Otherwise, both static
and dynamic analysis have to be performed first to gather
the necessary features. Therefore, the timeframe to produce a
result in this mode can vary from under a second to several
minutes if dynamic analysis still has to be performed. However,
with a growing repository of cached analysis reports and a
daily throughput of over 3,500 new analysis reports, MARVIN

is able to instantly assess the risk of a large number of apps —
currently amounting to over one million.

A. FEATURE EXTRACTION

Feature extraction is an essential part of MARVIN. Only a
rich and comprehensive set of features that characterizes
an app accurately will be sufficient for the classifier to
produce meaningful results. Hence, we combine both static and
dynamic analysis approaches. For Android apps, static analysis
already provides a rich feature set with meta-information about
the app, such as its name, requested permissions or registered
activities, as well as information about the author from the
developer’s certificate. Furthermore, static analysis can reveal
information that we might not see during dynamic analysis, as
the latter might suffer from weak code coverage. Thus, we can
statically extract the presence of security-critical API calls and
the actually used permissions. Dynamic analysis, on the other
hand, shows aspects only observable during runtime, such as
dynamically loaded code, even from external sources such as
the web, or packed or otherwise obfuscated executables, which
are unscrambled during execution. Additionally, capturing
the app’s network behavior during runtime renders dynamic
analysis fundamental for detecting malware reliably.

As a first step in the feature extraction we extract in-
formation from an app’s manifest. The static analysis also
extracts information from the developer certificate used for
signing the app and the general structure of the app package.
Furthermore, we extract the use of permissions and security-
critical API calls from the app’s code. Subsequently, we
run each app in an emulated analysis environment that
runs an instrumented Dalvik virtual machine to record the
app’s behavior. MARVIN expresses the app’s static properties
and dynamic behavior as binary features in the format
(S|D)_Category_Name. For example, a dynamically ob-
served HTTP connection is represented as D_HTTPGetHost -
_www.google.com, while a statically extracted permission
request in the manifest is expressed as S_PermRequired-
_android.permission.send_sms. The final outcome of
the feature extraction phase is a sparse feature vector Z of
these binary features, with x; denoting the ¢-th feature in the
vector.

During our large-scale evaluation on a data set of 124,189
unique Android apps, we extracted 496,943 different features
(154,939 dynamic analysis features and 342,004 static analysis
features). Table I lists the main feature categories and the
number of distinct features that we observed for each category.
We explain those features in the following paragraphs.

Static Analysis Features. An important source of information
for static analysis features is the manifest that has to ship with
every app. It contains essential information that the Android
OS needs to install and run an app. Among the data contained
in a manifest file, we extract the following:

Table I: Categories and numbers of extracted features.

Source Category # of Features
static Class Structure 132,609
static App Names 93,375
dynamic File Operations 85,204
static Certificate Metadata 81,268
dynamic Network Activit 55,808
dynamic Manifest Metadata 30,807
static & dynamic Intent Receivers 10,892
dynamic ~ Data Leaks) 3,662
static & dynamic Dynamic Code Loading 1,433
static Used/Required Permissions 1,169
dynamic Phone Activity 681
static & dynamic Crypto Operations 35

o The Java package name that uniquely identifies the app in
the Google Play Store and many alternative markets.

o The permissions requested by the app. Based on these
permissions, the Android OS will grant certain security-
critical actions to an app and deny others.

o The intents the app will respond to by the means of a
broadcast receiver. Apps can use this feature to be notified
e.g. on system boot, the receipt of SMS or incoming calls.

e Publisher IDs for advertisement (ad) libraries. These are
used by ad service providers to identify whom to pay the
ad view revenue to.

We also add features that indicate whether the Android
Application Package (APK) file and the manifest are valid, i.e.
they are parseable by standard tools used for analysis, which
is not always the case when examining malware samples.
Furthermore, we parse the package structure and look for
the presence suspicious files, such as native (shared) libraries,
native executables and shell scripts embedded in the resources
of the packaged app.

Additionally, we statically determine several aspects of the
app’s code in case they might not be triggered during the
dynamic analysis phase. In detail, we extract the following
information:

o The used permissions based on the app’s API calls.

o The use of the reflection API.

o The use of the cryptographic API.

o The dynamic loading of code, both native code invoked via
the Java Native Interface and Dalvik bytecode.

As a large number of apps are submitted to MARVIN without
any additional meta-information that would help to identify
the author of an app, we rely on the app developer’s certificate
for authorship information. The certificate used to sign an
APK file can be issued by anyone and can be self-signed, but
it must be the same for all apps of one author account in the
Play Store. Thus, the certificate is also useful for attributing
multiple apps to the same malware author. Previous work
by Apvrille et al. [30] already suggested that information
about the certificates owner/issuer and its validity can be an
indicator for malware. Therefore, we extract the fingerprint,
serial number, and owner of each certificate, whether it is
self-signed and whether its validity period conforms to the
release guidelines of the Play Store [50].

Dynamic Analysis Features. As research on x86 malware
showed [46], static analysis techniques are prone to evasion
by code obfuscation techniques. Furthermore, features should
inherently represent the malicious behavior to be detected
to prevent attackers from evading the learning method, e.g.
with mimicry attacks [51]. Thus, any static analysis is ideally

complemented with dynamic analysis that captures the harmful
behavior inherent to malicious apps.

In order to obtain the dynamic analysis features, we
extended the automated and publicly available dynamic
analysis sandbox ANDRUBIS that we proposed in previous
work [18]. ANDRUBIS performs monitoring at the Java-level
through a modified Dalvik VM as well as at the system-level
through virtual machine introspection (VMI) in the emulator.
Additionally, it employs various stimulation techniques to
trigger program behavior and increase code coverage. We
analyze each app for four minutes. This timeframe yielded the
best trade-off between the use of our analysis resources and
observed features in previous experiments. Furthermore, this
timeframe ensures that the user receives his risk assessment
in a reasonable amount of time, even for apps that have not
been analyzed in the past. During analysis, we monitor the
following events:

e File operations. Each file operation is represented as a
combined feature of the type (read/write) and the file name.

o Network operations. Depending on the protocol level,
network operations offer various types of information.
Starting at the IP level, we represent destination host and
port as distinct features. In the case of SMTP, FTP, DNS,
HTTP, and IRC communication we also extract additional
higher level features. For FTP these are username and
password of a conversation, for IRC they are username,
nickname, password and channel, and for SMTP we extract
the sender’s address and the message subject. For DNS
requests we extract the queried domain names as well as
responses, as unsuccessful DNS resolutions (NXDOMAIN)
can indicate malicious apps using domain generation
algorithms [52]. For HTTP, we create a combined feature of
the method and the request. For the request, we remove the
request parameters as they showed to be extremely noisy
in preliminary experiments.

o Phone events. Both outgoing phone calls as well as sent
SMS are represented by the corresponding phone number.

o Data leaks. Observed data leaks are represented depending
on the data sink used. For leaks via SMS we record the
phone number, network leaks are expressed by host and
port, and leaks to the file system by the file name.

e Dynamically loaded code. Code loaded at runtime is
represented by the type of code (either native code or a
DEX class) and the file name, respectively the class name.

e Dynamically registered broadcast receivers. Broadcast
receivers are represented by the intent they are registered
for.

To reduce the dimensionality of the feature vector and to avoid
overfitting, we keep the features as generic as possible by
replacing app or runtime specific identifiers such as process
IDs, file descriptors and the package name of the app under
analysis with tokens.

B. CHOOSING A CLASSIFIER

The classifier is a core component of MARVIN, as its accuracy
will immediately be reflected in the malice score. When
choosing a classifier, we are bound to the requirements of our
domain:

o High-dimensional feature space. The number of features in
our evaluation data set exceeds 490,000.

e Sparse data. The apps in our data set only exhibit a small
subset of the possible features.

o Performance. Both the training and classification process
should take a limited amount of time, to enable short
retraining intervals and provide the end-user with an as-
instant-as possible risk assessment.

o Scoring. Since we want to address the gray area between
malware and goodware, a classifier providing only a binary
assessment, e.g., a decision tree, is unsuitable for our
purposes.

Given these characteristics, we explore two machine learning
approaches: a linear classifier and a Support Vector Machine.

Linear Classifier. Given a feature vector #, a linear clas-
sifier computes the scalar product with a weight vector
Wy = ZZ z;w;. The outcome, y, is the margin of the
classification. In essence, the weight vector « can be visualized
as a hyperplane that splits the feature space into two sections,
representing the classes the classifier can distinguish. While the
sign of the margin specifies on which side of the hyperplane
Z 1s, its absolute value |y| can be interpreted as the confidence
in this classification, with larger values corresponding to more
confident predictions.

When operating on a binary feature space as in our case,
linear classification speed directly scales with how sparse
a given feature vector is, because the computational effort
of computing the scalar product @ - Z is proportional to the
number of features expressed by a given sample.

Prior to actual classifying, the classifier’s weights need
to be determined in a training process. For training we
experimented with both, Li- and Lo-regularized logistic
regression. L regularization tries to minimize the sum of the
absolute values of the feature weights to be small and tends
to assign zero weight for a large majority of the features. In
contrast, Ly regularization optimizes the sum of the squares
of the weights to be small and tends to assign non-zero
weights to most features. As suggested by Andrew Ng [53]
L regularization proved superior to Lo regularization when
dealing with many irrelevant features, while logistic regression
with L, regularization is extremely sensitive to the presence
of irrelevant features. We show in our evaluation in Section V
that both methods lead to similar results during classification,
while the Lo classifier performs noticeable better on previously
unseen malware samples with outdated training data after
several months. This suggests that the implicit feature selection
observed with the L; classifier is only appropriate when using
very short retraining intervals, which is why we chose the Lo
classifier in the current deployment of MARVIN.

Support Vector Machine (SVM). In principle, an SVM
works the same way as a linear classifier, with a hyperplane
splitting the feature space into two sections. However, it does
address one problem of linear classifiers: as the name already
suggests, the latter classifies samples only accurately if the
problem is linearly separable. To overcome this limitation,
SVMs use the “kernel trick”, implicitly mapping the input
into an even higher-dimensional space, where the problem is
more easily separable.

The kernel of an SVM can be seen as the similarity measure.

For a pure linear classification it would be K (x;, k;) = x; -
(the dot product). Since we want a non-linear classifier we

use the standard Gaussian gadial basis function (RBF) kernel
K(z;, kj) = exp(w). For training, an SVM requires
the cost factor C, which controls the trade-off between margin
and erroneous classification. To determine C' and the RBF-
specific parameter 7y, we perform cross-validation.

As further detailed in Section V, pure linear classification
performed at least as accurate as the SVM and can be
trained significantly faster. Thus, MARVIN uses a purely linear
classifier.

Prediction Probabilities as Scores. In the common case, the
final result of a binary linear classifier is given by the sign of
the margin: it either attributes the input to one or the other
class. However, in the case of a malware/goodware distinction,
a more precise differentiation is desirable. For instance, adware
might express some features that are characteristic of malware,
yet adware itself is not necessarily malicious. To address this
problem, we do not want the classifier to merely predict
classes, but also output the confidence or probability that an
app belongs to a specific class.

To calculate this probability, we use the standard method
for probability estimations, an exponential function of the

—L . The higher the amount of malicious features

margin:

an app under classification exhibits, the further away it is
from the boundary of the separating hyperplane and the higher
this probability will be. For display purposes we scale this
probability to the interval [0, 10] as the malice score for an
app. Additionally, we can display the malicious features that
contributed most to an app’s malice score to let users make a

more informed decision whether to trust an app or not.

C. FEATURE SELECTION

The features detailed in Section IV-A include a large number of
features that we extract from the static and dynamic behavior
of Android apps. However, this does not necessarily mean that
they are useful for classification. Some features are available
throughout (almost) all apps in our data set while other features
are random or simply vary from one app to another. In order
to reduce the dimensionality of our feature vector and to use
only the most discriminative features, we experimented with
feature selection using the F-score (Fisher score) [54]:

@7 — 7)) + @) - 7,)?

F(i) =
ny n_— _ (—
o B) e Bl -

The F-score is calculated on feature vectors I, k=1 ... m,
with ny and n_ being the numbers of positive/negative
samples and Z;, :E;r, Z, being the average of the ¢-th feature
of the whole, positive and negative sets. The higher the F-score
for a certain feature ¢, the more discriminative and important
is this feature to the overall classification accuracy.

For the linear classifier, feature selection is implic-
itly performed depending on the regularization algorithm
and we trained both linear classifiers with Li- and Lo-
regularized logistic regression on the same feature set. For
the SVM classifier, we performed an additional feature
selection step. It iteratively runs its parameter selection with
I,11/2],((1/2)/2],...,1 features ranked by their respective
F-score and with I being the total number of features. The final
result of this procedure is the set of features that produced the

highest accuracy on the sample set. We used a set of known
malware samples and benign apps from the Google Play Store
to determine the subset of discriminative features and their
corresponding F-score to achieve the best classification results
using an SVM with an RBF kernel. We did not include our
whole set of labeled data in the feature selection process to
avoid overfitting the training data.

V. EVALUATION

In this section we provide a detailed evaluation of MARVIN.
We present our data sets, our training procedure, and how
MARVIN fares when assessing known malicious and benign
apps. Furthermore, we evaluate how MARVIN performs on
apps from unknown origins, and how well it maintains its
classification performance over time. Finally, we investigate
the most decisive features when distinguishing benign from
malicious apps.

A. DATA SET SELECTION

We analyzed a total of 124,189 Android apps that MARVIN
analyzed between June and October 2012 for the original
data set used for training and testing. We further analyzed an
additional 11,634 apps MARVIN analyzed from January 2013
to May 2014 to evaluate its retraining effectiveness. Table II
lists the distribution of apps across all data sets.

Ground Truth. The ground truth and input for our feature
selection and training are two labeled data sets: One set is
comprised of known benign apps and one set consists of
known malicious apps. We collected the benign apps from the
Google Play Store and scanned them with VirusTotal [55]. We
did not label apps as goodware if they triggered a response
from any of the 43 AV scanners used by VirusTotal.

We retrieved the malware data set from VirusTotal and
selected samples at random from 30 variants of the 16 most
widely distributed malware families according to the F-Secure
mobile malware report for the second quarter of 2012 [56].
In order to diversify our malware collection, we extended this
data set with 1,894 malware samples belonging to various
families that were first seen by VirusTotal in September 2012
and that matched more than 10 AV signatures. Additionally,
we include the Android Malware Genome Project [57] and
the Contagio malware dump [58] as known malware corpora.

We labeled 78% of the apps in our data set as either
goodware (around 68%) or malware (around 10%). The
remaining 22% of apps were not labeled. We received them
from unknown or untrusted sources mainly through anonymous
submissions to the web interface of MARVIN, sharing with
other researchers, or torrents and direct downloads from
one-click hosting sites. Unlabeled apps also include samples
collected from the Google Play Store that were detected by
one or more AV scanners. We also did not label samples
that we retrieved from VirusTotal that matched below 10 AV
signatures or matched signatures for grayware such as adware,
spyware and riskware.

Sample Activity. We summarize the number of apps for each
label as well as the number of features extracted statically and
dynamically in Table III. On average, an app expresses 40
features, with two thirds extracted statically from the app and
one third extracted during dynamic analysis. The six features
that were always extracted from an APK file are the app’s
name and features from the certificate. For 0.61% of all apps,

Table II: Separation of data set in training and test sets.

Data Set Total Malware Goodware Labeled
Feature Selection 9,180 4,580 49.89% 4,600 50.11% v
Training Set 66,891 7,406 11.07% 59,485 88.93% v
Test Set) 28,670 3,175 11.07% 25,495 88.93% v
Genome Project 1,152 1,152 100% 0 0% v
Unknown Set 27,476 - - - -
Total 124,189 11,733 9.45% 84,980 68.43%
Malware Retraining 1,134 1,134 100% - 0% v
Mixed Retraining 10,500 2,874 27.37% 7,626 72.63% v
Total 135,823 15,741 11.59% 92,606 68.18%

Table III: Min,max,mean number of features for all classes.

Class # of All Features Static Features Dynamic Features
Apps min max mean min max mean min max mean
Malware 11,733 7 196 3733 6 186 24.04 0 88 13.28
Goodware 84,980 6 1,023 3458 6 1,019 2560 0O 488 8.9
Unknown 27,476 6 1,529 40.72 6 1,510 29.82 0 321 10.90
Total 124,189 6 1,529 36.20 6 1,510 26.39 0 488 9.81

the static analysis failed to extract any further static analysis
features and only dynamic analysis features remained. The
number of dynamic analysis features depends on the activity
of a apps in the sandbox and is zero for 5% of our apps that
did not exhibit any behavior during the analysis timeframe,
but which were nevertheless classified based on static analysis
features alone. Apps with both, no static analysis results and
no behavior in the sandbox, amounted to only 0.63% of our
data set.

Training and Test Set. We randomly split the set of labeled
apps in a training set (70%), and a test set (30%). Both
sets contain 11.07% malicious and 88.93% benign apps,
reflecting the proportion of malware to goodware in sub-
missions to ANDRUBIS in November 2012. The malware set
includes samples from the most prevalent families according
to F-Secure, Contagio, and the samples we collected from
VirusTotal in September 2012. We retained samples from the
Genome Project as an independent test set to verify MARVIN’S
classification accuracy on previously unseen malware. We
also retained a set of labeled apps for feature and parameter
selection of the SVM.

B. CLASSIFICATION RESULTS

As we have detailed in Section IV-B, we experimented with
three different classifiers: an SVM with RBF kernel and two
linear classifiers with L1- and Lo-regularized logistic regres-
sion. We evaluated both the overall classifier performance in
terms of accuracy, and the time necessary to train the classifier.
As we show in this section, all classifiers produced comparable
classification results although with vast differences in training
and testing times. The SVM with the RBF kernel and pre-
selected features took on average 16.5 minutes to train and 27
seconds to classify the full test set (on average 0.95 ms per
sample). The linear classifier with L; and L, regularization
on all features took only two to three seconds for training
and under a second for classifying the test set (on average
0.02 ms per sample).

All classifiers output a prediction whether an app is good-
or malware and the probability with which the app belongs
to either of those classes. In the following, we provide a
discussion of the classification results on the test and unlabeled
set as well as the samples from the Genome Project.

0.9976 |
0.9848
0.9985 |

0.9341

0.8] 0.8]

0.8932
0.8776
0.8446

0.6 0.6

0.6892

0.4 0.4

[Selected Features
3 Selected Dynamic Features
I Selected Static Features

0.2 0.2

0.0

0.9865]

0.9983

0.9377
0.9865]

0.8]

0.8950
0.8255

0.6

0.4

0 All Features
[Dynamic Features
I Static Features

0 All Features
== Dynamic Features
I Static Features

0.2

Accuracy Accuracy Recall Recall Precision 00 Accuracy Accuracy
TS G S

T GP Ts TS GP

(a) SVM with RBF kernel.

Recall
TS

(b) Linear L1-regularized.

Recall Precision 0.0 Accuracy Accuracy Recall Recall
Gl S S G

Precision
P T T P Ts GP S

(¢) Linear Lo-regularized.

Figure 3: Performance in terms of accuracy, precision and recall on the test set (TS) and the Genome Project (GP). Note that
the precision on the Genome Project is always 1.0 because it contains only malware, hence we omitted it from the graphs.

Table IV: Sources of apps with classification results and detection rates by VirusTotal’s AV scanners for unlabeled apps.

of Apps in

Data Set Source Total # of Apps

of Apps in

of AV Detections Malicious according to MARVIN

Training/Test Set Unlabeled Set >5 >10 >20 SVM Linear L; Linear Lo
Google Play Store 90,951 85,008 5,943 201 105 3 180 24 101
Torrents 4,241 132 4,109 10 9 1 108 16 24
Direct Downloads 1,565 16 1,549 4 3 0 22 5 5
Sample Sharing 4,716 729 3,987 166 140 71 567 331 382
VirusTotal 10,949 9,950 999 913 783 188 767 759 794
Contagio 324 198 126 126 126 86 112 112 114
Genome Project 1,152 0 1,152 1,150 1,134 454 1,029 1,011 1,031
User Submissions 12,863 0 12,863 3,865 3,104 122 4,739 4,388 4,330
Total Distinct Samples 124,189 95,561 28,628 5,955 4,930 698 7,102 6,244 6,365

Classification of the Labeled Test Set. All three clas-
sifiers predict the correct class for the apps in the test
set with extremely high accuracy, as illustrated in Figure
3: 99.76%, 99.85%, and 99.83% for the SVM and RBF,
the L,-regularized, and the L,-regularized linear classifier
respectively. The SVM misclassifies 62 malware and eight
goodware apps (1.9528% false negatives, 0.0314% false
positives), the Li-regularized linear classifier misclassifies
43 malware and only one goodware apps (1.3543% false
negatives, 0.0039% false positives) and the Ly-regularized
linear classifier misclassifies 45 malware and seven goodware
apps (1.3543% false negatives, 0.0275% false positives).

Taking the base rate of malicious to benign applications in
the test set into account, we further calculate the Bayesian
detection rate, i.e. the probability that an app classified as
malicious by MARVIN indeed is malware. Here, the SVM, the
L -regularized and the Lo-regularized linear classifier achieve
detection rates of 97.98%, 99.74%, and 98.24% respectively.

Another important metric for the practicality of MARVIN
is the number of false alarms raised. Considering the false
positive rate in relationship to the average number of installed
applications on a user’s device (around 90 according to a recent
study [59]), MARVIN raises false alarms for 0.004 apps with
the best configuration (L;-regularized linear classifier) and
0.025 apps with the worst configuration (SVM). If MARVIN
were used to analyze a whole app store, such as Google Play
with currently almost 1,500,000 apps [60], MARVIN would
raise false alarms for 58.5 apps in the best case with the
L-regularized linear classifier and 471 in the worst case with
the SVM.

Manual examination of the false positives reveals that all
misclassified goodware apps raise red flags by requesting
between ten and 32 permissions including the permissions
to send and receive SMS, start a service on startup, install
packages, remount the file system, or modify the APN
settings that control the cellular data configuration. One

misclassified app is a mobile security app that also includes
embedded executables and dynamically loads native code in
addition to requesting dangerous permissions. The majority
of misclassified malware apps receive very low scores due to
their inactivity during dynamic analysis or a limited amount
of static analysis features.

Classification of the Genome Project. We excluded all
samples from the Genome Project from our training and
test set to evaluate the accuracy of our classification on
previously unseen malware. This set consists of around 1,200
malware samples from 49 different families and includes
the majority of prevalent malware families from August
2010 to October 2011 [57]. Despite the age of this data
set, MARVIN classifies close to 90% of the samples correctly.
The majority of misclassified samples belongs to only three
families: DroidDreamlLight, jSMSHider, and GoldDream.
Static vs. Dynamic Features. As illustrated in Figure 3,
classifying apps using a combination of static and dynamic
analysis features yields the best results, while classification
based on static analysis features alone outperforms classifi-
cation based on only dynamic analysis features. However,
dynamic analysis features are the only distinctive features
in a several cases and are indispensable for classifying apps
dynamically loading code at runtime and describing an app’s
network behavior. MARVIN could benefit from incorporating
more dynamic analysis features, such as system calls, to make
the dynamic analysis more decisive, which we leave for future
work (see Section VII). Furthermore, in ongoing work we
explore the benefit of a more comprehensive GUI stimulation
technique to increase the discriminative power of dynamic
features with promising results.

Classification of Unlabeled Apps. Table IV lists the different
sources of apps for this evaluation. For unlabeled apps with
no ground truth available, we also list the detection rates
by VirusTotal (including labels for malware and grayware),
and the amount of apps that are predicted as malware by

I Score >= 5 (Malware) [Score <5 (Goodware)

7.97% 3.19% 8.03%
F-Secure Sophos lkarus

2.54%
TrendMicro

1009
3.75%

Kaspersky
Figure 4: Percentage of apps detected by the top 5 AV
scanners as malware or grayware.

each classifier. In order to estimate MARVIN’s performance
on this data set and as the majority of market apps was
crawled before Bouncer was deployed, we investigate the
apps from the Google Play Store that MARVIN classified as
malware in more detail. For each classifier the majority of high
scores are assigned to variants of the Android.Trojan.IconoSys
family. This assessment is based on certificates reused among
apps, SMS-related permissions and sending SMS, and con-
tacting the URLs blackflyday.com, iconosys.com and
smsreplier.net during dynamic analysis. Other correct
malware detections come from the Android.Trojan.FakeDoc
and Plankton families. MARVIN also flags spyware that
requests permissions to send and receive SMS, leaked the
IMSI and dynamically registered broadcast receivers for sms—
_received and new_outgoing_call events. The majority
of benign apps that receive high scores are apps utilizing
the aggressive AirPush ad library, that has been banned by
Google [61] and that is considered adware by most AV
scanners. Also flagged are two mobile AV apps that start
a service on startup, load native code, dynamically register
broadcast receivers for package installation and uninstallation
events, and request permissions to read and send SMS as well
as modify the APN settings.

Comparison with AV Results. In order to compare our
method to traditional malware detection techniques, we
evaluated MARVIN’s detection rate on the unlabeled set against
the individual AV scanner results provided by VirusTotal. For
brevity, we only show the comparison against the 5 best-
performing AV scanners in terms of detection rates. Figure 4
illustrates that those scanners detect a maximum of around
80% of apps MARVIN flags as malware (i.e. assigned scores
>5). In contrast, the same scanners detect between 2.5% and
8% of apps that receive scores lower than 5 as malware or
grayware.

Retraining Strategy. As the malware landscape changes over
time, due to new monetization opportunities being exploited,
and the never-ending arms race between malware authors and
security researchers, MARVIN’s classification model will age
and will be outdated at some point. Thus, frequent retraining
is an absolute necessity. Our retraining intervals are, however,
dependent on the availability of ground truth. Apvrille et
al. [30] estimated that it takes security researchers up to three
months to detect new Android malware in the wild. Our
original training data includes malware samples seen until
September 2012. Thus, as a worst case scenario we obtained
an additional retraining set comprised of 1,134 malicious
apps that we randomly selected from apps that were first
submitted to VirusTotal in January 2013 and that matched 10

Table V: Features considered for SVM classification.

Data Set Static F-Score Dynamic F-Score Non-Z?#ro F-Scon;Z

max # max
Feature Selection Set 32,022 1.52 26,299 0.27 58,321 11.74%
Labeled Training Set 214,487 1.24 95239 0.31 309,726 62.33%
All Labeled Samples 279,685 1.24 124,976 0.32 404,661 81.43%

Table VI: Features considered for linear classification.

Static Weights mamic Weights Non-Zero
W GW GW Weight
mean # mean # mean # mean # %

L, 783 1.19 394 0.50 272 1.04 120 0.29 1,569 0.32%
L, 6,558 0.15 208,161 0.01 23,638 0.01 71,624 0.01 309,981 62.38%

or more AV signatures. With the three months old training
data MARVIN is still able to correctly classify 88.54%/91.01%
(L1/Lo-regularized linear classification) of these new apps
correctly.

In order to evaluate the retraining effectiveness, we then
split the new test data in a training set (70%) and a testing set
(30%). When training the classifier on the new training set only,
MARVIN achieves a detection rate of 96.47% and 94.71% (L1
and L) on the new test set. However, the detection rate on the
original testing data deteriorates to 57.48% and 43.18%. When
combining the original training data with the new training
set MARVIN’s detection rate recovers to over 98%. In order
to guarantee the optimal performance of our classifier we
thus retrain MARVIN regularly with new apps as soon as new
AV labels become available while still keeping part of older
training apps in the training set.

With another retraining set comprised of both malware
and goodware we further evaluate how malicious and as
benign features shift over longer periods of time. We randomly
selected 2,874 malicious apps from new submissions to
VirusTotal from January 2013 to May 2014. Additionally, we
crawled 7,626 of the most popular apps from Google Play in
April and May 2014. The proportion of malware to goodware
(27% to 73%) in this set reflects the increasing number of
malware submissions to ANDRUBIS. On this data set the Lq-
regularized classifier correctly classified 71.50% of malware
and 70.52% of goodware, while the Lo-regularized classifier
proved superior by accurately classifying 77.59% of malware
and 95.16% of goodware. Note that in this pathological case no
retraining was performed for over one year. Yet, these results
indicate that benign features are more stable over time and
retraining with additional goodware is necessary less frequently
than with malware. When extending the original training
data with the apps from this retraining set MARVIN achieves
a true positive rate of 96.52%/97.80% (L1/L2) and a true
negative rate of 99.78%/99.61%, demonstrating the long-term
practicality of MARVIN without requiring any adjustments to
the feature extraction process.

C. DISTINGUISHING MALWARE FEATURES

Finally, we examine the number and nature of the most
decisive features when distinguishing benign from malicious
apps to better understand MARVIN’s risk assessment.

Number of Relevant Features. For classification with the
SVM the F-scores indicate how discriminative the individual
features are. We calculate the F-score for three different subsets
of the labeled data set: the subset exclusively used for feature
selection of the SVM, the subset used for training the SVM,
and the labeled data set as a whole. Additionally, we calculate

the percentage of features out of the whole evaluation feature
space that are expressed in a particular subset and judged to
be at least marginally relevant by this measure. The results
can be found in Table V: On the feature selection set, 11.74%
of the feature space is assigned an F-score > 0, on the labeled
training set 62.33%, and on all labeled data 81.43%. Static
analysis features are assigned the highest ranking scores,
with send_sms, receive_sms, and read_phone_state
permissions being the top three. Related work by Felt et
al. [27] also determined that those three permissions were
characteristic of malware. However, more dynamic analysis
features than static analysis features were assigned high scores.
This is also reflected by the feature subset selected by the
feature selection: It predicts the highest accuracy for a set of
the 27,808 highest ranked features with a minimum F-score
of 0.000109. 18,335 of those features are dynamic, 9,473 are
static. We use this subset of features for the evaluation of the
SVM detailed in this section.

For the linear classifiers, their model contains the weights
assigned to each feature and thus its importance in the
classifying process. Weights can either be negative or positive,
depending on which class a feature is an indicator of.
Features that are assigned a weight of zero have no part
in the decision making process. As already mentioned in
Section IV-B the weighting strategy differs greatly for L;-
and Lo-regularized linear classification. This fact is illustrated
in Table VI: L; regularization considers only 0.32% of all
features for classification, while Ly regularization considers
62.38% of features relevant. Nevertheless, both strategies yield
comparable results on our test set, although Lo regularization
performs slightly better on the previously unseen Genome
Project and noticeably better with outdated training data after
several months. Both strategies performing comparably well
on the data sets that are very similar to the training data,
but Lo regularization performing better on unrelated test sets
suggests that L, regularization is underfitting the training data
and the resulting model is too simple.

Relevant Feature Categories. In order to determine the
categories of features that are the most distinguishing between
malware and goodware, we calculate the mean of all F-
scores and of all weights for each category of features. One
drawback of the F-score is that it only outputs the degree of
discrimination a feature provides, but it is no indication in favor
of which class. In the case of feature weights, however, we
can assume that features with a positive weight are indicative
of the positive class, i.e. malware in our case. We can also
highlight those features in the analysis report to provide an
explanation on why a certain app was classified as malicious
by MARVIN.

Among the usual suspects, when it comes to features
characteristic of malware, are a number of features that are
unique to Android apps, such as required permissions, sending
SMS, leaking information, and features related to the dynamic
loading of code. The high ranking of SMS related activities and
permissions among common malware features is not surprising
as sending premium SMS is a popular monetization vector of
Android malware [57]. The classification that dynamic code
loading is as an indicator for maliciousness is also in line with
observations in related work [33,57]. Other characteristics for
malware are features extracted from the certificates used to

sign the apps. Our results confirm that malware authors often
reuse the same certificate across variants, or use public testing
and debug certificates as stated in previous work [30]. Other
distinguishing features are network-related activities that have
already been successfully applied to the classification of x86
malware in the past. Looking at the list of hosts contacted
during dynamic analysis, especially the top-level domains
.cn (China), . ru (Russia), .in (India), and .biz are more
frequently contacted by malware, while .kr (Korea), .de
(Germany), .com, and .mobi domains are more likely to
be contacted by goodware. The individual hosts among the
highest ranking features include C&C servers associated with
Android malware, such as client.alb2c3d4e5.in for An-
droid.Frogonal and depot .bulks. jp for Android.Dougalek.

Applications for Distinguishing Features. The result of
MARVIN provides users with the malice score of an app and
a detailed report on the app’s static and dynamic analysis
features. With the knowledge of how individual features
rank in the decision making process of a classifier, we are
able to highlight high ranking features and thus give users
an indication as to why an app received a certain malice
score. Another application of the feature ranking produced
by MARVIN is the integration of highly ranked features in
blacklists: MARVIN can reveal the hosts frequently contacted
by malware and thus provide a candidate set for URL blacklists.
Similarly, MARVIN can also disclose the certificates that are
commonly misused by malware authors to sign their apps and
which, therefore, should not be trusted.

VI. LIMITATIONS
Similar to other approaches leveraging dynamic analysis or
machine learning to analyze and distinguish malicious from
benign applications, MARVIN has some limitations.

One shortcoming of our method to check apps on real
devices is the way they are submitted. The mobile front-
end accesses the APK archive only after it was successfully
installed on the target device. If the user decides to try the
downloaded app before submitting it to MARVIN, chances are
high that an infection already took place. To overcome this
problem, our app would need to intercept downloads for apps
from the official market. Although no official API for the
Google Play Store is available, the proprietary protocol used
for downloading apps has already been successfully reverse
engineered [62]. To intercept installs from third-party markets,
our app would need an instrumentation for each available
market. On the other hand, apps are not directly installed if
they are downloaded from an alternate source. Instead, the
app is stored as an APK file on the device first. At this point,
it can be easily analyzed and rated by MARVIN without the
possibility of infecting the target device.

Another limitation of any VM-based dynamic analysis
approach is evasion. Possibilities reach from iterating certain
device properties to reveal the underlying virtualization
technology, to exploiting specific properties of emulated
code within virtual machines to detect analysis environ-
ments [48,49,63]. However, MARVIN does not rely on
features extracted from dynamic analysis alone and static
analysis features proved highly effective during our evaluation.
Therefore, we argue that this is currently not a problem and
that it can be addressed in the future by building a more
transparent analysis environment.

When malware uses native code to perform malicious

activities, we currently only detect that native code was loaded,
through both static code analysis and during dynamic analysis.

We plan to also incorporate the behavior of the native code
by using system-level events to enrich dynamic features (see
Section VII).

Finally, malware authors who are aware of the way MARVIN
extracts features might try to subvert the classification by
attempting a mimicry attack. To this end they would need
to make their malware express as many goodware and as
little malware specific features as possible. However, they
would then have to keep up with the pace of our retraining
and hide all malicious behavior from the dynamic analysis
environment to achieve this. Furthermore, dynamic analysis
is more resilient to mimicry attacks than static analysis and
often able to discover the malicious behavior regardless.

VII. FUTURE WORK

One extension we plan to incorporate is to include system-level
events as part of the behavioral aspects (dynamic features) of
an app. In our evaluation we show that static analysis features
are equally, or even more decisive to create the model for
an accurate assessment than dynamic analysis features (but
not both). Incorporating system calls into our feature space
can improve the behavioral models and, in turn, lead to more
accurate results for the combined system. Furthermore, by
using system-level events, malware utilizing root exploits can
be identified and characterized more precisely. We are also
currently exploring how MARVIN could benefit from more
intelligent user interactions than the current state-of-the-art
user interface stimulation in its underlying dynamic analysis
environment.

Furthermore, application markets provide a wealth of
information about the offered apps. Therefore, we plan to
integrate meta-information from markets, such as the number
of downloads, user ratings, other apps by the same author,

and the lifetime of an app in the market as additional features.

As another direction for future work we plan to evaluate
the practicality of our feature set for other applications such
as the detection of malicious repackaged apps. MARVIN could
raise alarms for apps that have a large overlap of features but
are assigned very different malice scores in our ranking.

VIII. CONCLUSION

In this paper, we presented MARVIN, an effective and
efficient analysis tool to assess the maliciousness of previously
unknown Android apps. MARVIN utilizes machine learning
techniques to classify apps based on a rich and comprehensive
feature set extracted from static and dynamic analysis of
a set of known malicious and benign apps. Our evaluation
showed that MARVIN is capable creating an accurate snapshot
of malware behavior that it can leverage to assess the
risk associated with apps under investigation accurately and
comprehensively. In our large-scale data set it correctly
identifies 98.24% of malicious apps with less than 0.04% false
positives. Furthermore, we showed that it can be efficiently
retrained to maintain its detection accuracy in the long term
and to adapt to changes in the malware landscape and analysis
evasion techniques.

To provide an appropriate end-user experience helpful for
novice and expert users alike, MARVIN accepts submissions

and displays analysis results through a web interface and
a dedicated mobile app. In addition to the added benefit
for ordinary users, MARVIN provides malware analysts with
the means to pre-select samples for manual investigation.
By setting a report threshold, our system is able to filter
malware candidates with high precision and provide detailed
information about their static analysis features and dynamic
behavior to facilitate further (manual) analysis.

ACKNOWLEDGMENTS
We thank VirusTotal for the service they provided for
our evaluation. Furthermore, we thank Kevin Borgolte and
Abdelberi Chaabane for their valuable feedback. Finally, we
thank Alexej Strelzow for his support in developing the mobile

app.
The research leading to these results has received funding
from the European Union Seventh Framework Programme
under grant agreement n. 257007 (SysSec) and from the
FFG - Austrian Research Promotion under grant COMET
K1. This work also has been carried out within the scope
of u’smile, the Josef Ressel Center for User-Friendly Secure
Mobile Environments. We gratefully acknowledge funding and
support by the Christian Doppler Gesellschaft, A1 Telekom
Austria AG, Drei-Banken-EDV GmbH, LG Nexera Business
Solutions AG, and NXP Semiconductors Austria GmbH.

REFERENCES
[1] IDC, “Worldwide Smartghone Shipments Edge Past 300 Million Units
in the Second Quarter; Android and 1OS Devices Account for 96% of
the Global Market, According to IDC ,” http://www.idc.com/getdoc.jsp?
contamerId—prUS25037214 2014.

[2] E. Protalinski, “A first: Hacked sites with android drive-by download
malware,” http //www.zdnet.com/blog/security/a- ﬁrst hacked-sites- with-
android-drive- by-download-malware/11810, 2012

[3] F-Secure, “Threat Report H2 2013,” http://www.f—secure.com/static/doc/
labs_global/Research/Threat_Report_H2_2013.pdf, 2014.

[4] M. Lindorfer, S. Volanis, A. Sisto, M. Neugschwandtner, E. Athana-
sopoulos, F. Maggl C. Platzer S. Zanero and S. Toannidis, “AndRadar
fast discovery of android apphcatlons in alternative markets,” in
Conference on Detection (z(‘ Intrusions and Malware & Vulnerabtlzty
Assessment (DIMVA), 201

[S] I. Asrar, “Android.Dropdialer Identified on Google Play,”
http://www.symantec.com/connect/blogs/androiddropdialer-identified-
google-play, 2012.

[6] F. Chytry, “Google Play: Whats the newest threat on the official
And1'01d market?”” http:/ lo gavast.com/ZO14/03/07/g00gle flay whats-
the-newest-threat-on-the-official-android-market, March 2014.

[7]1 S. Hirst, “Lookout Discovers SocialPath Malware in Google Play
Store,” https //\6pncreat1ve .net/2015/01/10/1ookout-socialpath-malware-
google play, 2!

[8] H. Lockheimer, “Android and Security,” htt{) ://googlemobile.blogspot.
com/2012/02/android-and- security.html, 2

[9] J. Oberheide and C. Miller, “Dissecting the Android Bouncer,” in
SummerCon, 2012.

[10] N.J. Percoco and S. Schulte, “Adventures in Bouncerland,” in Black
Hat USA,

[11] X. Jiang, “An Evaluanon of the Application ("App”) Verification Service
in Android 4.2,” http://www.cs.ncsu.edu/faculty/jiang/appverify, 2012.

[12] P. H. Chia, Y. Yamamoto, and N. Asokan, “Is This Ap Safe" A
Large Scale Study on Application Permissions and Risk §nals in
International Conference on World Wide Web (WWW), 201

[13] T. Micro, “The Mobile Cybercriminal Underground Market in
China,” http://www.trendmicro.com/cloud-content/us/pdfs/security-
intelligence/white-papers/wp-the-mobile-cybercriminal-underground-
market-in-china.pdf, 2014.

[14] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner,
“Android permissions: User attention, comprehension, and behavior,” in
Symposium on Usable Privacy and Security (SOUPS), 2012.

[15] J. Cheng, S. H. Wong, H. Yang, and S. Lu, “SmartSiren: Virus Detection
and Alert for Smartphones,” in International Conference on Mobile
Systems, Applications, and Services (MobiSys), 2007.

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23

[t

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

(38]

J. Oberheide, K. Veeraraghavan, E. Cooke, J. Flinn, and F. Jahanian,
“Virtualized In-cloud Security Services for Mobile Devices,” in Workshop
on Virtualization in Mobile Computing (MobiVirt), 2008.

M. Endler, “Does Mobile Antivirus Software Really Protect
Smartphones?” http://www.informationweek.com/security/antivirus/
does-mobile-antivirus-software-really-pr/240008673, 2012.

M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio,
V. van der Veen, and C. Platzer, “Andrubis - 1,000,000 Apps Later:
A View on Current Android Malware Behaviors,” in International
Workshop on Building Analysis Datasets and Gathering Experience
Returns for Security (BADGERS), 2014.

M. Bailey, J. Oberheide, J. Andersen, Z. Mao, F. Jahanian, and
J. Nazario, “Automated Classification and Analysis of Internet Malware,”
in International Symposium on Recent Advances in Intrusion Detection
(RAID), 2007.

U. Bayer, P. Milani Comparetti, C. Hlauscheck, C. Kruegel, and E. Kirda,
“Scalable, Behavior-Based Malware Clustering,” in Annual Network &
Distributed System Security Symposium (NDSS), 2009.

K. Rieck, T. Holz, C. Willems, P. Diissel, and P. Laskov, “Learning
and Classification of Malware Behavior,” in Conference on Detection
of Intrusions and Malware & Vulnerability Assessment (DIMVA), 2008.

M. Neugschwandtner, P. Milani Comparetti, G. Jacob, and C. Kruegel,
“ForeCast: Skimming off the Malware Cream,” in Annual Computer
Security Applications Conference (ACSAC), 2011.

G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos, “Paranoid
Android: Versatile Protection for Smartphones,” in Annual Computer
Security Applications Conference (ACSAC), 2010.

C. Jarabek, D. Barrera, and J. Aycock, “ThinAV: Truly Lightweight
Mobile Cloud-based Anti-malware,” in Annual Computer Security
Applications Conference (ACSAC), 2012.

H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju, C. Nita-
Rotaru, and I. Molloy, “Using Probabilistic Generative Models For
Ranking Risks of Android Apps,” in ACM Conference on Computer
and Communications Security (CCS), 2012.

W. Enck, M. Ongtang, and P. McDaniel, “On Lightweight Mobile
Phone Application Certification,” in ACM Conference on Computer and
Communications Security (CCS), 2009.

A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A Survey
of Mobile Malware in the Wild,” in ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices (SPSM), 2011.

S. Rosen, Z. Qian, and Z. M. Mao, “AppProfiler: A Flexible Method
of Exposing Privacy-Related Behavior in Android Applications to End
Users,” in ACM Conference on Data and Application Security and
Privacy (CODASPY), 2013.

D. Barrera, J. Clark, D. McCarney, and P. C. van Oorschot, “Under-
standing and Improving App Installation Security Mechanisms Through
Empirical Analysis of Android,” in ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices (SPSM), 2012.

A. Apvrille and T. Strazzere, “Reducing the Window of Opportunity for
Android Malware: Gotta catch ’em all,” Journal in Computer Virology,
vol. 8, no. 1-2, pp. 61-71, 2012.

S. Chakradeo, B. Reaves, P. Traynor, and W. Enck, “MAST: Triage
for Market-scale Mobile Malware Analysis,” in ACM Conference on
Security and Privacy in Wireless and Mobile Networks (WiSec), 2013.

H. Zhu, H. Xiong, Y. Ge, and E. Chen, “Mobile Ap(;;) Recommendations
with Security and Privacy Awareness,” in ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), 2014.

M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “RiskRanker:
Scalable and Accurate Zero-day Android Malware Detection,” in
International Conference on Mobile Systems, Applications, and Services
(MobiSys), 2012.

Y. Aafer, W. Du, and H. Yin, “DroidAPIMiner: Mining API-Level
Features for Robust Malware Detection in Android,” in International
Conference on Security and Privacy in Communication Networks
(SecureComm), 2013.

D. Arp, M. Spreitzenbarth, M. Hiibner, H. Gascon, and K. Rieck,
“Drebin: Efficient and Explainable Detection of Android Malware in Your
Pocket,” in Annual Network & Distributed System Security Symposium
(NDSS), 2014.

Y. Zhauniarovich, M. Ahmad, O. Gadyatskaya, B. Crispo, and F. Mas-
sacci, “StaDynA: Addressing the Problem of Dynamic Code Updates
in the Security Analysis of Android Applications,” in ACM Con{grence
on Data and Application Security and Privacy (CODASPY), 2015.

D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu, “DroidMat:
Android Malware Detection Through Manifest and API Calls Tracing,”
in Asia Joint Conference on Information Security, 2012.

B. Sanz, I. Santos, C. Laorden, X. U.-P. P. Bringas, and G. Alvarez,
“PUMA: Permission Usage to detect Malware in Android,” in Advances
in Intelligent Systems and Computing (AISC), 2012.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]
[56]

[57]

[58]
[59]

[60]

[61]

[62]

[63]

J. Sahs and L. Khan, “A Machine Learning Approach to Android
Malware Detection,” in European Intelligence and Security Informatics
Conference (EISIC), 2012.

A. Shabtai, U. Kananov, Y. Elovici, C. Glezer, and Y. Weiss, ““Andro-
maly”: a behavioral malware detection framework for android devices,”
é%birznal of Intelligent Information Systems, vol. 38, pp. 161-190, 1

B. Amos, H. A. Turner, and J. White, “Applying Machine Learning
Classifiers to Dynamic Android Malware Detection at Scale,” in
International Conference on Wireless Communications and Mobile
Computing (IWCMC), 2013.

1. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: Behavior-
Based Malware Detection System for Android,” in ACM Workshop
(2)8 1Siecurity and Privacy in Smartphones and Mobile Devices (SPSM),

Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, You, Get Off of My
Market: Detecting Malicious Apps in Official and Alternative Android
Markets,” in Annual Network & Distributed System Security Symposium
(NDSS), 2012.

V. M. Afonso, M. F. de Amorim, A. R. A. Grégio, G. B. Junquera, and
P. L. de Geus, “Identifying Android malware using dynamically obtained
features,” Journal of Computer Virology and Hacking Techniques, 2014.

W.-C. Wu and S.-H. Hung, “DroidDolphin: A Dynamic Android
Malware Detection Framework Using Big Data and Machine Learnin%”
12% 1C‘(‘) iference on Research in Adaptive and Convergent Systems (RACS),

A. Moser, C. Kruegel, and E. Kirda, “Limits of Static Analysis
for Malware Detection,” in Annual Computer Security Applications
Conference (ACSAC), 2007.

A. Aprville and A. Albertini, “Hide Android Applications in Images,”
Black Hat Europe, 2014.

T. Petsas, G. Voyatzis, E. Athanasopoulos, M. Polychronakis, and
S. Ioannidis, “Rage Against the Virtual Machine: Hindering Dynamic
Analysis of Android Malware,” in European Workshop on System
Security (EuroSec), 2014.

T. Vidas and N. Christin, “Evading Android Runtime Analysis via
Sandbox Detection,” in ACM Symposium on IT)rmation, Computer
and Communications Security (ASIACCS), 2014.

Google, “Android Developers: Signing Your Applications,” http://
developer.android.com/tools/publishing/app-signing.html.

N. Srndi¢ and P. Laskov, “Practical Evasion of a Learning-Based
Classifier: A Case Study,” in I[EEE Symposium on Security and Privacy
(S&P), 2014.

M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-Nimeh,
W. Lee, and D. Dagon, “From Throw-away Traffic to Bots: Detecting
tzlbel gise of DGA-based Malware,” in USENIX Security Symposium,

A. Y. Ng, “Feature selection, L1 vs. L2 regularization, and rotational
invariance,” in International Conference on Machine Learning (ICML),
2004.

Y. W. Chen and C. J. Lin, “Combining SVMs with Various Feature Se-
lection Strategies,” in Feature Extraction, Foundations and Applications.
Springer, 2006.

“VirusTotal,” http://www.virustotal.com.

F-Secure, “Mobile Threat Report Q2 2012, http://www.f-secure.com/
weblog/archives/MobileThreatReport_Q2_2012.pdf, 2012.

Y. Zhou and X. Jiang, “Dissecting Android Malware: Characterization
316(]12Evolution,” in IEEE Symposium on Security and Privacy (S&P),

“Contagio,” http://contagiominidump.blogspot.com.

H. T. T. Truong, E. Lagerspetz, P. Nurmi, A. J. Oliner, S. Tarkoma,
N. Asokan, and S. Bhattacharya, “The Company You Keep: Mobile Mal-
ware Infection Rates and Inexpensive Risk Indicators,” in International
Conference on World Wide Web (WWW), 2014.

“AppBrain Stats,” http://www.appbrain.com/stats/number-of-android-
apps, (Retrieved: April 27, 2015).

L. Spradlin, “Google Updates Pla¥ Store Developer
Policy, Puts The Smack own On Intrusive Advertising,”
http://www.androidpolice.com/2012/07/31/google-updates- play-store-
developer-policy-puts-the-smack-down-on-intrusive-advertising-say-
goodbye-to-airpush-and-its-cohorts/, 2012.

T. Strazzere, “Downloading market apglications without the vend-
ing app,” http://www.strazzere.com/blog/2009/09/downloading- market-
applications-without-the-vending-app, 2009.

X. Chen, J. Andersen, Z. M. Mao, M. Bailey, and J. Nazario, “Towards
an Understanding of Anti-Virtualization and Anti-Debugging Behavior
in Modern Malware,” in [EEE International Conference on Dependable
Systems and Networks (DSN), 2008.

