
Connecting the .dotfiles: Checked-In Secret
Exposure with Extra (Lateral Movement) Steps

Gerhard Jungwirth,∗ Aakanksha Saha,∗ Michael Schröder,∗ Tobias Fiebig,‡ Martina Lindorfer,∗ and Jürgen Cito∗
∗TU Wien, Vienna, Austria ‡Max-Planck-Institut für Informatik, Saarbrücken, Germany

Abstract—Personal software configurations, known as dotfiles,
are increasingly being shared in public repositories. To under-
stand the security and privacy implications of this phenomenon,
we conducted a large-scale analysis of dotfiles repositories on
GitHub. Furthermore, we surveyed repository owners to under-
stand their motivations for sharing dotfiles, and their awareness of
the security implications. Our mixed-method approach consisted
of two parts: (1) We mined 124,230 public dotfiles repositories
and inductively searched them for security and privacy flaws.
(2) We then conducted a survey of repository owners (n=1,650)
to disclose our findings and learn more about the problems
and implications. We found that 73.6% of repositories leak
potentially sensitive information, most commonly email addresses
(of which we found 1.2 million), but also RSA private keys,
API keys, installed software versions, browsing history, and even
mail client inboxes. In addition, we found that sharing is mainly
ideological (an end in itself) and to show off (“ricing”), in addition
to easing machine setup. Most users are confident about the
contents of their files and claim to understand the security
implications. In response to our disclosures, a small minority
(2.2%) will make their repositories private or delete them, but
the majority of respondents will continue sharing their dotfiles
after taking appropriate actions. Dotfiles repositories are a great
tool for developers to share knowledge and communicate – if done
correctly. We provide recommendations for users and platforms
to make them more secure. Specifically, tools should be used to
manage dotfiles. In addition, platforms should work on more
sophisticated tests, to find weaknesses automatically and inform
the users or control the damage.

I. INTRODUCTION

Credentials, API tokens, and other secrets accidentally
committed to public software repositories, such as GitHub, are
common security misconfigurations [30]. As such, accidentally
published credentials and secrets have been the subject of
recent research [25, 30, 32, 38, 54], as well as the initial
point of compromise for major security incidents like the
recent ‘SolarWinds’ hack of the U.S. Government [21, 41,
50]. Nevertheless, fixing security misconfigurations remains
difficult [13], especially as it crosses the boundary to human
factors, a field where technical fixes are usually not the solution
to underlying issues [22, 53].

We develop the issue of secret and credential leaks from
online software repositories a step further, taking context
into account: We investigate the security impact of disclosed
credentials and information in .dotfiles—files used to
configure a user’s environment on Unix and Linux systems—
considering the additional context these files provide and how
.dotfiles exacerbate the issue. The name .dotfiles
comes from the ‘dot’ leading their path. On Unix and Linux
systems, this leading dot excludes files from the output of
ls if the -a parameter is not specified [52]. Hence, these

.gitignore

.bashrc

bash
env

dotfiles/

bin
git-ssh

README.md

#!/bin/bash
export AMAZON_ACCESS_KEY_ID='AKIAJA3M...'
export AMAZON_SECRET_ACCESS_KEY='m9X1XsL/b3/R6UYOY...'

alias website = ssh root@198.51.100.153

apache-2.4.49
.ssh

id_rsa

Fig. 1: Structure of a dotfiles repository exposing sensitive
information that in combination allows an attacker to com-
promise a system. An alias in the .bashrc file exposes the
IPv4 address of a server on which the SSH key may work.
Similarly, apache-2.4.49 is an Apache version vulnerable
to unauthenticated remote code execution (CVE-2021-41773).

files are commonly used to configure a user’s environment.
For example, ∼/.profile, a file in a user’s home directory
(∼/), is automatically run by most shells when a user logs in
(and starts their shell).

However, .dotfiles are not limited to shell config-
uration files. Instead, on modern Unix and Linux systems,
a user’s complete environment—from Firefox to their email
client and editor—is configured and customized via a variety
of configuration files and databases in their home directory
under ∼/.* (see Fig. 1 for an example). Thus, to improve
the reproducibility of systems configurations, .dotfiles are
increasingly version controlled and stored in stored in software
repositories, such as GitHub. While this is a convenient way
to store and share systems configurations, it can lead to
unintended consequences with implications for security and
privacy. As Fig. 1 illustrates, these files can not only leak
credentials, but they also provide an attacker with valuable
context on how and where these credentials can be used, or
whether the .dotfiles repository’s user is running outdated
software. Note that this is not an artificial example: In fact,
as recently as December 2021, the Dutch IRS experienced a
full compromise by an ethical hacker due to an employee’s
.dotfiles repository [42]. In this case the context in the
repository’s /.ssh/known_hosts file provided additional
information on where leaked credentials could be used.

In this paper, we investigate how the context provided by
.dotfiles increases the security impact of leaked creden-
tials and may lead to security and privacy issues, even if no
outright secrets are published along with them. Furthermore,
we investigate whether users are aware of the implications of
sharing their .dotfiles, and why they decided to make their
.dotfiles public. Specifically, we answer the following
research questions:

RQ1 What are the security and privacy implications of sharing
.dotfiles due to their additional context?

RQ2 What are the primary motivations of repository owners
for sharing their .dotfiles?

RQ3 How aware are repository owners of the implications of
sharing their .dotfiles?

To answer these questions, we first construct a taxonomy of
information commonly shared in .dotfiles. We discuss
how this information may threaten users’ security and privacy,
and how it provides additional context that increases the
impact of leaked credentials. We then apply this taxonomy
to a large-scale study of 124,230 .dotfiles repositories
on GitHub, finding 10,942,606 potential issues in 73.6% of
all repositories, including 5,199 critical vulnerabilities. Then,
to better understand why users share their .dotfiles, and
whether they are aware of the implications of .dotfile
sharing as-is, we conduct a survey among users (n=1,650) with
.dotfile repositories.

In summary, we make the following contributions:

• We present a taxonomy of the security and privacy
implications of .dotfile leaks, demonstrating that the
issue of exposed .dotfile has implications beyond the
exposure of credentials.

• Through a large-scale measurement study of 124,230
public .dotfile repositories on GitHub, we identify
10,942,606 security and privacy issues in 73.6% of all
analyzed repositories and personally notify 5,199 reposi-
tory owners in a responsible disclosure process.

• Through a survey among repository owners (disseminated
when informing them on our research and the security and
privacy implications of exposed .dotfiles) we find
that among our 1,650 respondents traditional explanations
for misconfigurations [13], i.e., oversight and negligence,
do not fully capture this phenomenon. Instead, exposure
ties in deeply with users’ personal vice and lacking risk-
assessment (users are aware of risks, but do not consider
them critical).

II. SECURITY AND PRIVACY RISKS IN .DOTFILES

We show in our research that .dotfiles are a sensitive
source of public data on GitHub. Even though they are sup-
posed to contain personal data, they are typically shared with
the public intentionally. While the existence of API keys and
credentials across GitHub repositories is well documented [28,
30, 39] and there exist several solutions, including GitHub’s
own Code Scanning,1 we find secrets are still present at a large
scale in .dotfiles repositories. In addition to these secrets,

1“GitHub Docs: About secret scanning” https://docs.github.com/en/code-
security/secret-security/about-secret-scanning (last accessed April 2023)

TABLE I: MITRE AT&CK [47] classification of our findings.

Tactic (“why”) (Sub)-Techniques (“how”)

TA0009: Collection T1602: Data from Configuration Repository
TA0043: Reconnaissance T1592: Gather Victim Host Information

T1589: Gather Victim Identity Information
T1590: Gather Victim Network Information
T1591: Gather Victim Org Information
T1593: Search Open Websites/Domains

TA0006: Credential Access T1555: Credentials from Password Stores
.003: Browser Credentials

T1552: Unsecured Credentials
.001: Credentials in Files
.004: Private Keys

we found other forms of information disclosure that could be
exploited by a malicious actor in different stages of an attack.
Table I maps our findings to the relevant attack tactics and
techniques in the MITRE AT&CK matrix [47].

MITRE ATT&CK (“Adversarial Tactics, Techniques, and
Common Knowledge”) provides 14 categories of tactics ad-
versaries use as part of an attack, i.e., their technical objective
(“why”), and the corresponding (sub)-techniques they can use
to achieve this goal (“how”). In particular, the tactics Collec-
tion, Reconnaissance, and Credential Access, and the relevant
sub-techniques, align with our categories of exposed secrets in
.dotfiles repositories. In particular, reconnaissance is an
important phase of any contemporary, sophisticated attack [1].
Artifacts of interest include host identifiers (e.g., IP and MAC
Address), email addresses, network information, or organiza-
tional information–information that we find potentially dis-
closed via .dotfiles. We also found information that leads
to more direct attacks: aforementioned credentials, vulnerable
software dependencies, as well as weak cryptographic keys.
The combination of direct and indirect data can lead to targeted
and sophisticated attacks as the attacker has better familiarity
with the target’s infrastructure. For example, knowledge of
a vulnerable web server package coupled with a domain
credential can lead to privilege escalation within a target
environment (see Fig. 1). We further illustrate and enrich our
taxonomy with quantitative data from our measurements (see
Table III) and qualitatively tie results from our measurements
to potential attack paths (see Section IV), demonstrating the
impact of the exposed information in context.

In summary, due to their nature of including configuration
files, .dotfiles repositories likely contain personal infor-
mation, and can enable the following potential attack scenarios:

• Credential Stuffing: Malicious actors can simply use the
API credentials to get access to the respective services.
Alternatively, they can use the found passwords or private
keys (and possibly usernames, emails) in combination
with host information to authenticate against the target
services (e.g., cloud compute and storage services).

• Vulnerable Packages: Vulnerable packages can be identi-
fied from the package information stored in dependency
files, combined with host information can consequently
give access to a specific system. For example, an attacker
identifies a web server vulnerability that allows for unau-
thenticated access to data stored within a web server.

2

• Impersonation: Personal, organisational, and domain
knowledge combined with private data such as email
inboxes, browsing history or chat logs can be used for
identity theft. For example, using the aforementioned
pieces of information, a malicious actor can open bank
accounts for money laundering.

• Spear Phishing: The knowledge of internal/private data in
combination with organizational, and domain information
can be used to orchestrate targeted phishing campaigns.
Thus, increasing the susceptibility of the potential victims
to perform the attacker’s desired action.

III. MEASUREMENT METHODOLOGY

In this section, we describe our methodology for measuring
security and privacy issues in .dotfiles repositories on
GitHub. We execute this pre-study prior to interacting with
users who share dotfiles on GitHub to: (a) Identify the impact
of secrets exposed in .dotfiles, i.e., to evaluate whether
the additional context increases the security impact of exposed
secrets (RQ1), (b) To have a foundation for creating our survey
questions which relates to the actual use of .dotfiles
repositories in the wild, and, (c) To validate that the issue
of exposed repositories actually does exist at scale, and (d) to
identify whether the GitHub user-base is an appropriate target
for recruitment in our subsequent study.

A. Measuring .dotfiles Repositories

In total, we collected 124,230 dotfiles repositories includ-
ing their version history from GitHub. To accomplish this, we
developed a multi-step methodology that first identifies public
.dotfiles repositories, and subsequently clones them.

Step 1: Identifying Repositories: In the first step, iden-
tify a list of repositories that potentially contain .dotfiles.
For this purpose, we used the search function of the GitHub
API [19] to search for variations of the string “dotfiles”
(such as, Dotfile, dotFile, DotFiles, etc.) in either the name
or description of repositories. We use these variations, as
repository names do not necessarily contain the verbatim string
“dotfiles,” but instead it may be hyphenated, split, or adjusted.
Furthermore, we did exclude forks from our search to limit
space usage and avoid duplicates while gaining broader insight
into the domain. We observed that forks generally use a compa-
rable structure to their root repository. As such, we expect the
quality of exposed files (in terms of use, credentials commonly
contained, etc.) to stay consistent between a fork and its root.
In about ten hours, the tool returned 125,171 repositories
matching our criteria. The majority of the repository names
(91%) included the verbatim string “dotfiles.”

Step 2: Downloading Repositories: To download the
repositories locally, we used git clone with SSH public
key authentication and a slight delay. We chose SSH for
technical and automation reasons, but the same could be
accomplished by unauthenticated cloning via HTTPS. In total,
we collected 124,231 repositories out of that 125,171 were
identified via the API. We excluded 56 of the remaining 940
repositories due to their size (more than 1 GB), while another
884 failed to download as they had been deleted or switched
to private in the meantime. On average, each repository had 81
commits and three authors—although the number of authors

per repository can be misleading, as the same person can com-
mit to a repository using different authorship information, a
problem that has been identified before [16] and was confirmed
by us through manual inspection.

Step 3: Descriptive Analysis: After cloning all repos-
itories, we collected general repository metadata and stored
it in an SQLite database on an access-controlled server. We
indexed all files present in each repository’s working copy (i.e.,
the most recent version) and determined their size and, in the
case of text files, their number of lines. Using the UNIX file
utility [27] we also determined each file’s MIME type.

Dataset Descriptives: In total, we analyzed more than 20 mil-
lion files and found that the majority (61%) were text
files, such as text/plain, text/x-shellscript, application/json (see
Table IIa). The most common file name was—naturally—
README.md, appearing in more than half of the repositories,
followed by .gitignore and typical editor and shell con-
figuration files like .vimrc and .zshrc (see Table IIb).

Step 4: Security Analysis: In the final step, we automat-
ically analyzed the downloaded repository data based on our
taxonomy in Table III and the MITRE AT&CK framework [47]
to identify potential security and privacy threats to answer
RQ1. As the general identification of secrets in public Git
repositories has already been covered by related work [28, 30,
39], we decided to extend existing open-access methodologies,
specifically Gitleaks [37] to our research method. Gitleaks
implements a methodology that recursively iterates over repos-
itories and their full history, matching secrets via a pre-
supplied list of regular expressions. We sampled our dataset
and iteratively identify further relevant types of information
that are common in .dotfiles. Subsequently, we crafted
regular expressions for each of them and integrated them into
Gitleaks to identify them in our dataset at scale. The full
list of our newly added regular expressions can be found in
Appendix A [20].

B. Ethical Considerations

Similar to all large-scale measurements, and security-
focused research in particular, we need to consider the ethical
implications of our work. TU Wien only recently established a
Pilot Research Ethics Committee (Pilot REC), which reviews
research plans prior to their execution. Our study predates the
establishment of the Pilot REC, hence, we decided to closely
follow the established best practices of the Menlo Report [3]
independently. Specifically, we considered the following as-
pects and took the associated precautions:

• Participation/Use of Public Data: As we are conducting
a large-scale evaluation of public data, the creators of
repositories analyzed as part of our study can not indi-
vidually consent to us using their published repository for
our research. Hence, we conducted a harm-benefit analysis
concerning the impact in individuals to assess the ethical
aspects of our work. We concluded that: (1) The data we are
using is public, hence all security issues we find may have
been found by malicious actors as well. As we notified all
cases of serious security issues if we could identify a point
of contact, and do not utilize the data for objectives outside
of the scope of our work, we consider our measurements
as providing greater benefit than potential harm to users.

3

TABLE II: Overview of the most common file types and names, their frequency, and size.

(a) Most common MIME types.

MIME type # Files % Files Average Size Average # Lines

text/plain 9,235,370 46.29 9.8 KB 193
image/svg+xml 3,820,771 19.15 3.4 KB 38

image/png 1,955,465 9.80 23.5 KB 85
application/octet-stream 635,244 3.18 82.0 KB 464

text/x-shellscript 580,310 2.91 2.8 KB 63
application/json 507,723 2.54 7.6 KB 116

text/html 488,127 2.45 10.5 KB 178
text/x-lisp 306,868 1.54 17.3 KB 436

text/xml 294,727 1.48 25.8 KB 501
text/x-python 208,948 1.05 9.1 KB 247

(b) Most common file names.

Name # Files # Repositories

README.md 333,164 69,845
.gitignore 85,550 51,734

.vimrc 42,180 41,180

.zshrc 34,117 33,219
.gitconfig 29,071 28,587

config 59,760 28,554
.tmux.conf 26,565 26,061

.bashrc 26,970 25,981
vimrc 23,718 22,672

.gitmodules 20,123 19,018

(2) Our approach does not fundamentally differ from the
approach taken by GitHub itself with Copilot when it comes
to automatically analyzing a large set of repositories. As,
contrary to Copilot, our motives are research driven and
– see above – about helping users accidentally publishing
secrets, we also consider our work ethical in this regard.

• Storage and Access to Data: Even though data may be
publicly available, having it collected in a specific space
may increase the chance for abuse. Hence, we stored data on
a dedicated system only reachable from within our research
institution. After the conclusion of the project, we deleted
all collected data.

• Validation of Vulnerabilities: We did not attempt to exploit
any of the found vulnerabilities and did not test the validity
or recency of any exposed credentials. While such an ap-
proach might have lead to additional insights, we considered
it as ethically unfeasible, as its impact would stand in no
relation to the gained insights.

Considering our harm-benefit analysis and additional precau-
tions we took to protect the collected data, we concluded that
our research approach is sufficiently ethical.

IV. MEASUREMENT RESULTS

In this section, we summarize the findings of our large-
scale measurements and review them in the context of Sec-
tion III. Furthermore, we illustrate non-intuitive attack path-
ways enabled by the information revealed in .dotfiles.

A. Exposed API Keys

A well-known problem of public repositories is that authen-
tication credentials are accidentally committed into them [28,
30, 39]. These credentials can be passwords, API keys/tokens,
or asymmetric private keys. Using our methodology, see Sec-
tion III, we identified possible leaks of API keys in 11,758
repositories (9.5%). Table IV gives an overview of all the
credentials found in our scan, including asymmetric private
keys. The most common leaked credentials in .dotfiles
repositories are GitHub API keys, followed by Twitter Client
IDs. To some extent, these results represent the general popu-
larity of the different platforms.

Our results also include a limited number of false positives,
evident by credentials that include strings such as “dummy” or
“test.” These only accounted for 6,294 (4.73%) of all matches.

As our study is explorative of the underlying issues and does
not focus on exact measurement, we accepted this discrepancy
and excluded affected keys from our analysis instead of using
toolchains to more accurately identify these false positives,
including approaches based on machine learning [28, 39].

The major difference to earlier work, focusing on repos-
itories in general, is that the most commonly found API
keys there were of Google cloud products [18, 30]. We trace
this difference back to our focus on .dotfiles containing
personal systems configuration, instead of code repositories
in general. Hence, exposure of Git-related tokens is more
likely. The crucial point here is that the leaked repository
itself already provides context for the GitHub API key to be
exploited efficiently.

Compromization Opportunity: A GitHub API token exposed
in a .dotfiles repository allows – with high likelihood –
an attacker to commit files to the repository itself. Especially
if the user auto-deploys .dotfiles from their repository
(something that can also become apparent from the repository)
an attacker gains the ability to force the user to execute
specific code, for example by editing the .bashrc (or similar
shell configuration file) used by the user. Hence, contrary to
traditional credential leakage which is usually limited to the
remote project the key is tied to, leaked git credentials in
.dotfiles repositories potentially lead to a full compromise
of the user’s environments due to their additional context.

B. Leaked SSH Keys

In our study, we found 9,452 private keys and an additional
3,145 public keys (2,844 RSA, 192 DSA, 109 ECDSA). Ex-
posed private keys are an obvious problem, while technically
public keys should be shareable [4] and GitHub itself even
provides access to all public keys of its users. However, in
both cases, the additional context of exposed .dotfiles
repositories changes the threat landscape.

Compromization Opportunity: For private keys,
.dotfiles make various targets and users where the
private key might be used apparent. Hence, while a leaked
private key for a system hidden behind several jump-hosts
(SSH servers through which a user has to establish a
connection) may be limited in impact, through security by
obscurity, nonetheless, this obscurity is lost in a .dotfiles
repository. Instead, an attacker may find a readily available
SSH config pointing out the exact system and jump-host path
a private key can be used for.

4

TABLE III: Overview of all findings after mining dotfiles repositories on GitHub. We quantify the prevalence of particular
security and privacy-relevant information in these repositories. We also note where some of our findings replicate existing studies
and which possible attacks are represented by these findings. The number of vulnerabilities is counted once per file.

Type of Information # Repos (%) Notes Possible Attacks

API Keys Hijacking,
GitHub 65,589 6,898 (5.51 %) Impersonation,
Twitter 38,752 3,936 (3.14 %) 20,760 across GitHub [30] Spamming
Other 19,166 4,470 (3.57 %)

RSA Keys Hijacking,
Private Key 9,452 1,489 (1.19 %) 158,011 across GitHub [30] Spamming
Public Weak Key 111 n.a. Key length ≤ 1024 bit
Public Vulnerable Key 6 n.a. Debian RNG attack [55]

PII Spamming,
Email Addresses 1,227,175 88,442 (70.7 %) Phishing

Private Data Hijacking,
Firefox Logins 40 29 (0.02 %) Impersonation
Thunderbird Profiles 2 2 (0.002 %) Actual user data, not metadata
Mailboxes 52 52 (0.04 %) From Thunderbird and Mutt

Software Packages Hijacking
Python Dependencies 16,315 1,036 (0.83 %)
JavaScript Dependencies 145,050 585 (0.47 %)

TABLE IV: Number of matched Gitleaks rules.

Gitleaks rule

65,589 GitHub API Key
38,752 Twitter Client ID
9,452 Asymmetric Private Key
4,981 LinkedIn Client ID
2,880 Google API Key
2,761 AWS Access Key
2,169 AWS Secret Key
2,051 LinkedIn Secret Key
1,557 Facebook Client ID
1,255 Twitter Secret Key

657 Facebook Secret Key
560 Slack
149 GCP Service Account
85 Slack Webhook
39 Mailgun API Key
11 SendGrid API Key
7 MailChimp API key
3 Stripe API Key
1 Picatic API Key

Similarly, the exposure of public keys along with systems
they may be in use for enables various additional attack
pathways for attackers. In our sample, 111 RSA keys had a key
length of ≤ 1024 bit, which is a security risk [5]. Similarly,
we still found six keys vulnerable to insecure random number
generator (RNG) attacks [55], known for over a decade, by
comparing them to a dataset of known affected keys [17].
In both cases, the considerations on exposed private keys
above still apply. In addition, the use of old or outdated key
material may (even if the keys are not publicly broken) indicate
that a system has not been maintained with the appropriate
care, and software running there may be as outdated as the
recommendation to use ≤ 1024 bit SSH keys.

C. Software Packages

.dotfiles repositories often contain dependency graphs
and other information revealing the state of dependency man-
agement on a users’ machine. By analyzing these, we can
infer that particular users are using certain software pack-

ages. In total, we were able to identify dependency trees
in 1,621 repositories (1.3%). In these, the main source of
structured dependency information comes from Python and
JavaScript dependency definitions. Furthermore, we cross-
checked all found dependencies with the publicly available
package archives of the respective languages, and used the
Levenshtein distance [12] to find similar packages for those
which could not be found in the archives.

Compromization Opportunity: In-depth knowledge of the
dependency tree used by a developer or organization enables
several supply chain attacks [33], specifically typosquatting
and dependency confusion. For typosquatting, in-depth knowl-
edge about the utilized dependencies allows an attacker to
carefully target their attack on a specific developer. Further-
more, if combined with write access to the repository, a ty-
posquatted dependency may be stealthily injected into a user’s
.dotfiles. Due to the nature of typos, this compromise
may go unnoticed for an extended period of time [44, 49].

Dependency confusion attacks [7] leverage the fact that
package managers often prefer the highest version of a de-
pendency. Hence, if a user uses a mix of internal and external
repositories to source their code dependencies, an attacker may
submit a version of a dependency that is usually only available
via the internal dependency manager to an also used public
repository. If the package in the public repository has a higher
version number, the package manager will automatically install
it. In practice, these attacks are extremely difficult, as it is often
unknown whether a user uses a mix of internal and external
repositories, and the names of internal packages are usually
unknown. .dotfiles repositories, however, provide this
additional context, significantly reducing the effort necessary
for executing such a supply chain attack.

D. Personal and User Data

Personal and user data is a major issue with .dotfiles
repositories, as on Unix and Linux common tools like chat
programs, web browsers, and email clients write their content
and logs to a user’s home directory. If a user now blindly

5

synchronizes their local .dotfiles with a remote repository,
these files may become public. In our study, we discovered 52
mailboxes. Most likely, these commits were unintentional—
we found that most of the mailboxes were in the historic
states of the repositories and users attempted to delete them
without overwriting the repository history. We also found
private data from web browsers and chat programs, including
caches, cookies, and browsing history.

Compromization Opportunity: Mailboxes and chat histories
provide attackers with an abundance of data to use in a variety
of attacks. This ranges from social engineering attacks [23] to
credentials and account information found in email accounts.
Depending on the organization, an email account may even
contain messages including passwords and other credentials.
Furthermore, in the context of the aforementioned attacks,
communication logs may provide additional context to refine
targeted attacks on an individual or organization.

V. USER SURVEY METHODOLOGY

As outlined in Section II, exposing one’s .dotfiles
can have severe security implications if sensitive files are
accidentally included. Nevertheless, sharing and showcasing
one’s code and configuration is an important aspect of open
source culture [9, 14, 31, 56], enabling others to build and
improve on existing work. Hence, we need deeper insights
into the personal motivation for sharing .dotfiles publicly
(RQ2), and users’ knowledge regarding potential security and
privacy implications (RQ3), in order to be able to suggest
interventions and improvements to enable users to securely
share their .dotfiles.

A. Questionnaire Design

In the design of our questionnaire, we broadly followed
established best practices for questionnaire design [36]. To
better capture specific nuances in .dotfiles repository use,
we opted for a mixed methods approach. Our survey (see
Appendix B [20]) consists of twenty questions across four
sections, with a mix of single-choice, multiple-choice, Likert-
scale, and open-ended answer types.

The first (Q1-Q3) and last (Q15-Q20) sections contain
general questions about GitHub usage and demographic in-
formation, allowing us to compare our target group to par-
ticipants in other GitHub based studies and with the general
group of GitHub users. Furthermore, it serves as a validation
question, to ensure participants are actively using GitHub. The
second section (Q4-Q9) inquires about participants’ use of
.dotfiles repositories and contains questions to help us
understand the trend of publicly shared configuration files.
Furthermore, to capture more nuances and personal preferences
concerning the use of .dotfiles repositories, it includes
the open-ended question: “Why did you share your dotfiles on
GitHub?” (Q9). This allows participants to provide qualitative
responses that are not restricted by a prior questionnaire
framework. By balancing formality and directness, we tried
to be as neutral as possible, while challenging participants to
give this question serious thought. The third section (Q10-
Q14) contains questions to evaluate participants’ knowledge of
and stance on security and privacy issues, also in relation to
exposed .dotfiles repositories. It consists of four questions

on a seven-point Likert scale, which has the disadvantage of
the central tendency bias, but on the other hand, avoids forced
choice and reduces the likelihood of acquiescence bias [24,
35]. The final question is again open-ended: “We found several
security & privacy issues across dotfile repositories on GitHub.
If you are affected, you have received an email from us
with further information. With this knowledge, what are your
planned changes to your repository?” With this question, we
want to explore whether our disclosure has an impact on
raising awareness for existing security problems. Furthermore,
we want to give participants a choice to evaluate their own
security considerations and express additional details about
them or considerations we might have missed. This way, they
are incentivized to take action, even on issues we did not
uncover or as a general means of precaution.

The questionnaire we ultimately used has been refined
through internal iterations and a pilot study with two users,
who fall into the target group of .dotfiles users. We
iteratively incorporated the feedback from the pilot study into
the final survey design before we sent it out.

B. Participants and Recruitment

We decided to recruit participants based on their having a
publicly accessible .dotfiles repository with an associated
contact email address. For our survey, we send an invitation
email (see Appendix C [20]) to the full sample of 44,472 repos-
itory authors for which we could identify contact details in our
dataset from the quantitative study. Please see Section V-D for
a discussion of the ethics of this approach. We personalized the
emails by addressing everyone with their GitHub username. In
addition, we used this opportunity to disclose any security or
privacy vulnerabilities we found in the recipients’ repositories.
Each recipient got an identical survey, independent of whether
or not their repository contained a vulnerability. While this
again limits the depth of our data, we considered it necessary
to further preserve participants’ anonymity.

We sent out a link to our survey (implemented with Google
Forms) via Mailgun, a benign bulk-mail provider, using a
subdomain of our host institution as the from-address. Out
of the 44,472 emails, 98.1% were delivered; the rest had
invalid addresses or were rejected by the receiving email
server. We received 1,650 responses to our survey (response
rate of 3.78%). Our participants did not receive compensation
for their participation, which would also have been difficult
due to our anonymous data collection. We did not use other
incentives like a raffle.

C. Evaluation

We use descriptive statistics to evaluate the nominal, ordi-
nal, interval, and ratio data from the quantitative sections. We
did not execute a deeper statistical evaluation, as the major
objective of this data is to support and enrich observations
from our qualitative questions. To evaluate the two open-
ended questions in a qualitative and reproducible way, we used
standard inductive coding techniques [40, 46]. Specifically, we
drew a random sample of 100 answers of each question for an
initial open coding round. In this first iteration, four members
of our research group each independently developed codes for
all answers, without any limits or guides. Whenever a coder

6

came across a statement that did not fit into any category
already developed, a new category was added. Afterward, the
four coders jointly synthesized the results horizontally across
the coders and vertically across the categories and, resolving
disagreements until consensus was reached, formulated final
coding guidelines [29]. With this guideline and the final codes
fixed, individual research group members coded all of the
remaining responses in our survey.

D. Ethical Considerations

As already mentioned in Section III-B, due to the lack
of an ethical review board at our institution at the time of
our measurements, we followed established best practices for
conducting human subject studies ourselves. Specifically, we
designed our questionnaire to be fully anonymous and used
ranges instead of exact numbers where personally identifiable
information (PII) might be concerned. Furthermore, we in-
formed participants that participation in the study is voluntary
and they may stop at any time. Concerning our recruitment
method, there are significant discussions on the viability of
mass-recruitment via published addresses on, e.g., GitHub.
In general, we followed the practices of earlier studies using
GitHub user populations [8, 11, 26, 34, 43]. Given the objective
of our work, we hence considered our recruitment efforts to
be ethical in terms of a cost-benefit trade-off.

E. Threats to Validity

We invited active users of .dotfiles repositories on
GitHub to participate in our survey. These participants were
self-selected, i.e., the population we sampled is from users who
actively use GitHub, and had the time and motivation to answer
our survey questions (self-selection bias [6]). Users that did not
respond to our survey may be systematically different from the
rest of the population (non-response bias [2]). We may have
also introduced bias through our survey questionnaire design.
While using questions with Likert-type scales is an accepted
instrument to assess levels of agreement, they are susceptible
to acquiescence response bias [35], i.e., the tendency for
respondents to agree with agree-disagree questions. We try to
reduce the likelihood of this bias by using a seven-point Likert
scale, which avoids forced choices.

VI. SURVEY RESULTS

Here, we present the findings of our qualitative study. We
first give a high-level overview of our respondents’ demo-
graphics and then provide detailed results on their answers.

A. Survey Demographics

The majority of our survey respondents (50%) are between
20-29 years old, 33% are between 30-39. The majority (88%)
identify as male, about five percent identify as “other” and
about three percent as female. Our respondents’ most frequent
countries of origin (who chose to answer this question) are
the United States, Germany, United Kingdom, France, Nether-
lands, and Canada. Most of them describe their occupation
as software development, while the second most mentioned
occupation is student. About three out of four respondents
have an undergraduate or postgraduate degree. These results
are similar to other developer surveys working with samples
from GitHub [45].

B. Usage of .dotfiles

As a part of our survey, we asked participants how often
they use GitHub and to select one or more reasons for
using GitHub. Most of our respondents host private projects
on GitHub. A large group is also involved in open-source
development (54%). Moreover, about half of the respondents
contributed to a project or fixed a bug. Regarding the frequency
of GitHub usage, 49% of our respondents use GitHub daily,
and 31% use GitHub at least once a week, thus accounting for
a decent share of active users in our survey. This proportion
of active users is important to address the non-response bias,
as active users are more involved and interested in the security
and contents of their GitHub repositories and, therefore – as
we suspect – are more likely to respond to our survey.

As an extension to the previous question, we asked about
the frequency and usage of the particular dotfiles repository.
Four out of five respondents in our survey claim that they
actively use the specific .dotfiles repository. More than
half of them started using dotfiles in the last five years,
and almost 90% of the respondents have been using it for
the last ten years. In addition, we asked the participants to
disclose other platforms and services they use for sharing
their .dotfiles. The majority claimed to use only GitHub,
although this number might be biased as our survey only tar-
geted GitHub users. Nonetheless, one-third of the respondents
reported using other sharing services and platforms such as a
private server (16%) or other online version control systems
like GitLab and BitBucket (11%).

We were also interested in learning about participants’
way of managing their existing .dotfiles repository and
what tools or technology they use, if any. The different
responses and their percentages are summarized in Figure 2.
A minimalistic approach to using basic git utilities for
.dotfiles management is the most popular method, fol-
lowed by third-party management tools such as yadm, stow,
dotbot, and chezmoi, which are also frequently discussed
among online communities. We also received additional open-
ended responses where respondents mentioned using bespoke
tools and solutions to manage their .dotfiles. Finally, in
response to our question, ”How many (approx) of your dotfiles
are self-written?” most of our respondents claim that all or the
majority of their .dotfiles are self-written.

After the general understanding of participants’ current
usage methods of .dotfiles, their sharing patterns and
management approaches, the survey focuses on security and
privacy-related questions. We collected the responses to our
security-related questions in seven-point Likert scales de-
scribed in the Section V. The responses are visualized in
Figure 3. We can see that the users rate the importance of secu-
rity quite highly and the actual security of their .dotfiles
repository, even though they are a bit modest about their own
knowledge and competence in security.

C. Motivations for .dotfiles Repositories

For our study, we were primarily interested in the moti-
vations for using and sharing .dotfiles repositories. After
two iterations of open coding and cross-validations between
multiple coders (described in Section V), we categorized and
quantified the most common themes, and present them here.

7

Pl
ai

n
gi

t

No
 to

ol

(n
o

an
sw

er
)

st
ow

ya
dm

do
tb

ot

ch
ez

m
oi

0

10

20

30

40

50
Pe

rc
en

t
Do you use a tool/technology to manage your dotfiles? If yes, which one?

Fig. 2: Tools used for .dotfiles management.

0%10%20%30% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%
Percentage of Responses

How would you rate the
security of your dotfile

repository?

Did you think about the
security of your dotfile

repository?

How do you rate your
experience with software

security?

How concerned are you about
software security in general?

Fig. 3: Security-related self-assessment based on survey.

Sharing (59%) A majority of the respondents noted that they
upload their personal dotfiles on GitHub and actively
share them with others.

I often chat about my config with friends that are
also into config management. Having it on GitHub
makes it easy to show some lines while chatting.
– n0492

Many answers also emphasized a sense of community
around personal configuration and learning from others.

Because we all learn from each other when we
share. – n1168

Setup (53%) Another large share of respondents claimed,
they used the repository to either quickly set up new
machines or synchronize their configurations between
physical machines and virtual machines.

So I can pull them from a new machine when setting
up my dev environment. – n0666

Backup (31%) About one third of the respondents claimed
they are using the repository particularly as a convenient

sh
ar

in
g

se
tu

p

ba
ck

up

sy
nc

re
fe

re
nc

e

co
nv

en
ie

nc
e

0

10

20

30

40

50

60

Pe
rc

en
t

Why did you share your dotfiles on GitHub?

Fig. 4: Reasons for using .dotfiles repositories.

storage or backup solution. This answer also includes
people who are using it for its version control capabilities.

Reason number one was probably to have a cloud
copy [...] – n0117

Synchronization (23%) About a quarter of respondents use
the repository specifically to propagate changes between
machines and operating systems. While synchronization
and setup may sound similar, they distinctly emerged as
two different themes in our data, so we decided to create
separate categories.

Reference (9%) Another class of responses argues about
direct links in order to reference certain parts of their
configuration. They use it for example when talking with
friends or colleagues.

Mostly for quick reference when explaining how I
do certain things on my system. – n0894

A summary of the responses is shown in Figure 4. The
survey responses show that a sense of community and open-
source spirit is essential among the .dotfiles repository
users. The users believe in the ideology of sharing. They
acknowledge learning by looking at others’ configuration files,
discovering best practices, tricks, and eventually sharing their
.dotfiles, hoping others can benefit from it in the future.
The second major reason stated by the survey respondents
falls under the broad category of convenience, where users
like having their .dotfiles in an easy-to-access location
to help with backup and quick setup and synchronization
between devices. Some respondents also mention that the lack
of availability of private repositories made them switch to a
public repository, thus making their configuration files publicly
accessible. Furthermore, another set of respondents argued
about the inconvenience of using a private repository and
dealing with extra credentials, thus opting for the easiest way
to share files between devices and platforms. These responses
imply that people tend to choose convenient solutions over
security and raise the question of how we can make secure

8

solutions more usable. Apart from the insights mentioned
above, we discovered a newish concept called “ricing” [14] as
part of our investigation. The term “Rice” is commonly used
to refer to making visual improvements and customizations on
one’s system. The community shares their nifty configurations
and customizations of the default *NIX (Usenix or Linux)
system to make it visually attractive on a Reddit group called
r/unixporn [14]. This Reddit community currently stands at
366,560 ricers sharing and showcasing their configuration, aka
.dotfiles, with the community.

The dotfiles I share are simply cosmetic Linux con-
figurations and/or small useful utilities, scripts, and
customizations. There is a big community of ”ricers”
who like to show off these customizations, and so share
and remix each other’s dotfiles. I share mine because
I want them in version control (I’ve lost them before),
and so that folks who find aspects of them useful can
use them. – n0758

D. Post-disclosure Interventions

In this section, we report on the participants’ response to
the final open-ended question, which asks them to evaluate the
security and privacy considerations and enlist any changes that
they plan to incorporate in their repositories going forward.
Here, we identified the following major themes:

No change (58%) More than half of the participants
responded that they would not change anything in their
repository. The participants were confident about the
content of their files and considered it safe with no
exposed vulnerabilities and security leaks.

I am careful to segregate sensitive information from
configurations, so am fairly confident that I have
not leaked anything. – n0013

Check (5.8%) Those who agreed to make changes claimed
that they are mindful of committing sensitive information
and make an effort to proofread the file contents regularly.

I routinely evaluate my dotfiles repo, and am not
aware of any security risks beyond basic things like
my email, editor preferences, etc. – n0339

And those who received a vulnerability disclosure
email from us claimed to look into the issues and take
appropriate actions.

I will take a good look on what might be there that
you found and remove it from all of that repositories
history. Thank you for your project! – l0041

Update (2.8%) The third most frequent response was to
delete any sensitive files and update the content of their
repository to make it safe while acknowledging the
presence of sensitive content.

The first thing I did was to delete my history backup
file. Though it was a sqlite db file but anyone
who had the deserializer that I was using, can get
in plain text which contained a bunch of secret
credentials. – l0114

Delete repo (1.0%) Some respondents went to the extreme
end of stating that they will delete their entire repository
from GitHub.

Make repository private (1.2%) Another group of users
claimed, they were going to make their repository private.

I changed its visibility to private. Before, github
didn’t allow to go private for free. – n1244

Tool (0.7%) Interestingly for us, a small number of
respondents also plan to use a tool to manage their
.dotfiles repositories or the sensitive data within the
repository.

Maybe encrypting my secrets in git repo (if any)
with git-crypt – n0182

We also observed that 58% of respondents say that they will
not make any changes to the current state of their repository
as we did not report any security or privacy issues pertaining
to their repository, or they are reasonably confident about the
content of their files and consider them safe. The second most
common response was to verify and update the repositories.
Here, the users were thankful for the research of identifying
the security implications of openly sharing configuration files.
The participants genuinely responded to review the contents of
their files and update/delete any sensitive information leakage
that might have occurred either due to carelessness or being
unaware of the consequences of storing them in public.

Thanks for having my dotfiles repo scanned. Fortunately
no leaks were found!It’s a cool project and can help us,
careless devs! Once in a blue moon I do some manual
searching about such leaks and mail the owners in case
I can find their email address. The last time I found
some crazy stuff, such as bash history files with inline
mysql-client invocations including username, password
and public server hostname! The sad thing is that about
one out of twenty-thirty people do respond or take any
action. The last one that replied to me, said he doesn’t
care! I hope you have fun with the project and crush
your goal helping people fix their leaks. – n0067

About 1.2% of the participants responded that they would
make the repository private. They claimed that the repository
does not need to be public, and since GitHub now offers the
creation of a private repository for free, they can safely switch
to it. Apart from this, we also observed some other themes that
fell into the category of Additional Information where partic-
ipants asked for more details on the survey and the disclosed
vulnerability; Tooling where a small number of respondents
plan to use a tool to manage their repositories containing
sensitive data such as git-crypt. Finally, Unused where
0.7% of the respondents claim that they no longer actively
use the repository and plan to delete it or make it private.

In summary, while most of the participants understand the
security concerns related to shared configuration files, a decent
number of participants do not plan to make any changes to
their repository as they do not think of it as an issue or
do not have any private information leakage. On the other
hand, it is motivating to see responses that benefited from our
research and urged the participants to be aware and mindful of

9

committing sensitive data. Finally, we received a few critical
responses on using non-privacy-preserving infrastructure such
as Google Forms and personal email addresses for a mass sur-
vey. As mentioned, we included a proper ethics and disclosure
statement in our survey and made sure only to use publicly
identified email addresses from the recipients’ profiles.

VII. DISCUSSION

Limitations. In this section, we discuss the limitations
of our methodological approach and results. Due to GitHub
users copy-pasting their configurations across projects, there
is some likelihood of inadvertently inheriting secrets from the
initial source that were not directly introduced by the users of
the repositories, thus, resulting in duplicate results. To limit
the impact of such a workflow on our dataset, we excluded
repositories that are forks of other repositories. Furthermore,
in our research, we only mined data from GitHub, and do not
include other publicly available code sharing platforms such
as GitLab and BitBucket. Also, we did not test any secrets or
vulnerabilities we found (see Section III-B). Finally, in Section
II, we covered a range of possible attack vectors, however,
those scenarios are neither exhaustive nor indicative of all
potential attacks.

Recommendations. Although .dotfiles have many
benefits to users, developers should be cautious of commit-
ting sensitive information to publicly available repositories.
They should consider using the GitHub’s private repository
feature, which is currently free. There are also several tutorials
and tools provided by GitHub2 to help developers securely
implement and maintain their repositories. It is important to
note that, once a piece of information is online, no matter
how short-lived, it should be considered compromised. The
uploaded information immediately ends up on GitHub’s Events
API, which is publicly readable, as shown by Meli et al. [30].
As a result, users should take the necessary remediation steps,
which include deleting the information from the repository’s
history, deleting the credentials from the repository, and re-
voking the credentials. GitHub’s documentation on removing
sensitive information from a repository provides several useful
guidelines in these regard.3

Reasons for Publicly Sharing .dotfiles. As we saw
from the survey results, there are two main reasons why people
share their .dotfiles on GitHub. The first group are the
idealistic ones. They believe in the spirit of sharing, i.e., the
spirit of the open-source community. They intend to show
their results to friends or colleagues or in online communities.
Some mentioned specific groups on the online platform Reddit
for that purpose. The answers, which we tagged as reference,
follow a similar purpose. These include respondents who want
to directly reference a specific configuration when talking to
someone or explaining something. This group is very well
suited for the social and collaborative aspects of GitHub.
The second group of explanations includes pragmatic reasons.
For those users, it is convenient to have centralized storage
or backup for this kind of (configuration) files. They take
advantage of the benefits of version control. Many users also

2“Your unofficial guide to dotfiles on GitHub.” https://dotfiles.github.io/
3“GitHub Docs: Removing sensitive data from a repository”

https://docs.github.com/en/github/authenticating-to-github/removing-sensitive-
data-from-a-repository (last accessed April 2023)

argued that this repository allows them to quickly set up
new machines or synchronize configuration changes between
running machines. For this second group, a private repository
would probably be sufficient, even though one user responded
for example, that they appreciate the convenience of down-
loading their configuration quickly on virtual machines without
any authentication, which would be necessary with a private
repository. Still, in general, a private repository is most likely
the best option, and easily available since GitHub nowadays
allows unlimited private repositories for free.

Side-effects and Next Steps. As for the disclosure part of
our email (and survey), we received interesting responses as
well. Independently of whether users received it as part of
a disclosure (or just the general information and the survey
link), many of them were thankful for our dissemination and
indicated that they were planning to make some changes to
their .dotfiles repository. Out of those respondents, the
majority were planning to go through their files or update
them individually. Sill, 1.1% of respondents is planning to
make their repository private and 1% is planning to delete
their repository from GitHub altogether. Furthermore, it is
interesting, that 0.7% respondents said they were going to
use a tool to manage their .dotfiles or check for security
and privacy issues. This may be a good alternative since from
the answers to other questions we see that not using any
supporting tooling or using bespoke, self-written, tooling is
by far the most common approach. As the community grows
and evolves, we hope to see more tools that can strengthen the
security and privacy aspects of personal configurations. These
will also be able to provide more sensible defaults of what files
to include and warnings if any keys or credentials are about
to be committed.

VIII. RELATED WORK

Security and Privacy on Public Repositories. Meli et
al. [30] performed the first large-scale systematic study across
billions of files to measure the prevalence of secret leakage
on GitHub. They attempted to identify the potential root cause
of secret leakage and also touched on GitHub’s metadata and
developer practices of storing personal configuration files in
repositories (i.e., .dotfiles). However, the authors only
covered SSH key leakage within the “.ssh” directory. The
authors noted that, even though these files accounted for only
a small part of their dataset, the impact of leaked secrets from
such repositories was non-trivial. Feng et al. [15] introduced
a new technique for password detection, taking into account
the intrinsic characteristics of textual passwords and semantic
information of program elements to accurately identify hard-
coded passwords from source code files written in different
programming languages. They performed a large-scale system-
atic study to measure password leakage on GitHub and identi-
fied over 60,000 affected repositories in which most leaked
passwords remained available for weeks or longer. Beyond
files, Yasar [54] investigated secrets accidentally committed
into repositories as part of continuous integration (CI) pipelines
and automation. Finally, as mentioned in IV, approaches
scanning for secrets based on regular expressions, such as ours
suffer from false positives. To improve the detection accuracy
of secrets found in public GitHub repositories approaches
based on machine learning have been shown to be effective
by Saha et al. [39] and Lounici et al. [28]

10

Developer Studies on Security and Privacy. Bühlmann
and Ghafari [10] performed a quantitative analysis of security
issues reported from 2014 until 2020 across 182 different
projects on GitHub and found different characteristics of the
security reports and current practices among developers. Their
exploratory study identified only a small group of developers
actively involved in reporting and resolving security issues.
Moreover, security issues progress slowly, and many have been
pending for a long time. Dietrich et al. [13] conducted a combi-
nation of qualitative and quantitative study of human aspects of
security misconfigurations from the operators’ perspective. The
authors’ results indicated that most security misconfigurations
have not (yet) led to security incidents, which suggests that
countless undiscovered issues may be present in Internet-
connected systems. They also identified interdependent facets
of social (communication), structural, and institutional factors
as primary facilitators of bad security posture leading to the
misconfiguration phenomenon. Other than GitHub, several
studies have been conducted on Stack Overflow for exploring
a wide range of topics [48]. Researchers and practitioners have
also investigated the practical challenges of the paradigm of
developer-centered security. For example, Wijayarathna and
Arachchilage [51] conducted a qualitative experimental study
with 40 software developers to understand the programmer’s
perception of who is responsible for the end user’s security of
applications. Their results identified that programmers perceive
it as their responsibility to ensure end users’ security in
application development. Further, even though programmers
are not ignorant of security, they find it challenging to ensure
the security of the applications they develop.

In summary, we consider the above-mentioned study by
Meli et al. [30], consisting mostly of small-scale quantitative
analysis of repositories containing “.ssh” files, the most closely
related to our work. Their goal was to cover a wide range of
different repository types that may leak credentials, while our
work specifically focuses on personal configuration stored in
.dotfiles. Compared to prior studies with repository users,
we perform a dedicated large-scale analysis of 124,230 public
.dotfiles repositories and provide comprehensive insights
into the mental models of these repository owners (n=1,650)
in the context of security and privacy.

IX. CONCLUSION

We provide comprehensive insights into the security and
privacy implications of publicly sharing personal configuration
files. To this end, we performed a large-scale analysis of
124,230 public .dotfiles repositories on GitHub and dis-
covered potential sensitive information leakage in 73.6% of the
analyzed repositories. Since personal configurations are closely
linked to a singular user’s particular system, .dotfiles
repositories pose a highly personal security risk. In our re-
search, we evaluated and classified several attack vectors
such as credential stuffing, impersonation, or phishing due to
direct and indirect security vulnerabilities identified in personal
configuration files. We also surveyed 1,650 repository owners
to understand their motivations, awareness, and perceptions of
security and privacy risks. We found that sharing is mainly
ideological (an end in itself) and to show off (“ricing”), as
well as for providing a reference to other users. Our study also
found that participants commonly use and share .dotfiles
for the convenience of machine setup, synchronization, and

backups. Most users are confident about the contents of their
files and claim to understand the security implications—and
will continue sharing them after taking appropriate actions.

We conclude that, in light of the popularity and widespread
use of .dotfiles repositories, users should be able to
make informed decisions about the security and privacy of
their files. In that regard, we hope our research can help
inform future standards, usage, implementations, and sharing
of .dotfiles repositories.

ACKNOWLEDGEMENTS

We thank the reviewers for their comments and feedback
for improving our paper. We further thank Katharina Kromb-
holz for her valuable input concerning our study design.

This research has been funded by the Vienna Science
and Technology Fund (WWTF) [10.47379/ICT19056], as well
as SBA Research (SBA-K1), a COMET Centre within the
framework of COMET – Competence Centers for Excellent
Technologies Programme and funded by BMK, BMDW, and
the federal state of Vienna. The COMET Programme is man-
aged by FFG. We further gratefully acknowledge a career grant
from the Faculty of Informatics at TU Wien.

REFERENCES

[1] S. Achleitner, T. F. La Porta, P. McDaniel, S. Sugrim, S. V. Krishnamurthy,
and R. Chadha. “Deceiving Network Reconnaissance Using SDN-Based Virtual
Topologies”. In: IEEE Transactions on Network and Service Management 14.4
(2017). DOI: 10.1109/TNSM.2017.2724239.

[2] A. Af Wåhlberg and L. Poom. “An Empirical Test of Nonresponse Bias in Internet
Surveys”. In: Basic and Applied Social Psychology 37.6 (2015). DOI: 10.1080/
01973533.2015.1111212.

[3] M. Bailey, D. Dittrich, E. Kenneally, and D. Maughan. “The Menlo Report”. In:
IEEE Security and Privacy 10.2 (2012). DOI: 10.1109/MSP.2012.52.

[4] M. Barbulescu, A. Stratulat, V. Traista-Popescu, and E. Simion. “RSA Weak
Public Keys Available on the Internet”. In: Innovative Security Solutions for
Information Technology and Communications. 2016.

[5] E. Barker. Recommendation for Key Management: Part 1 - General. Tech. rep.
NIST Special Publication (SP) 800-57 Part 1 Revision 5. National Institute of
Standards and Technology, May 2020. DOI: 10.6028/NIST.SP.800-57pt1r5.

[6] J. Bethlehem. “Selection Bias in Web Surveys”. In: International Statistical
Review 78.2 (2010). DOI: 10.1111/j.1751-5823.2010.00112.x.

[7] A. Birsan. Dependency Confusion: How I Hacked Into Apple, Microsoft and
Dozens of Other Companies. 2021. URL: https : / / medium . com / @alex . birsan /
dependency-confusion-4a5d60fec610 (visited on 06/05/2021).

[8] H. Borges, A. Hora, and M. T. Valente. “Understanding the Factors that Impact
the Popularity of GitHub Repositories”. In: Proc. of the IEEE International
Conference on Software Maintenance and Evolution (ICSME). 2016.

[9] H. Borges and M. Tulio Valente. “What’s in a GitHub Star? Understanding
Repository Starring Practices in a Social Coding Platform”. In: Journal of Systems
and Software 146 (2018). DOI: 10.1016/j.jss.2018.09.016.

[10] N. Bühlmann and M. Ghafari. “How Do Developers Deal with Security Issue
Reports on GitHub?” In: Proc. of the ACM/SIGAPP Symposium on Applied
Computing (SAC). 2022.

[11] J. Cito, P. Leitner, T. Fritz, and H. C. Gall. “The Making of Cloud Applications
An Empirical Study on Software Development for the Cloud”. In: Proc. of the
Joint Meeting on Foundations of Software Engineering (ESEC/FSE). 2015.

[12] F. J. Damerau. “A Technique for Computer Detection and Correction of Spelling
Errors”. In: Communications of the ACM 7.3 (1964). DOI: 10 . 1145 / 363958 .
363994.

[13] C. Dietrich, K. Krombholz, K. Borgolte, and T. Fiebig. “Investigating System
Operators’ Perspective on Security Misconfigurations”. In: Proc. of the ACM
SIGSAC Conference on Computer and Communications Security (CCS). 2018.

[14] J. Fang. The Basics of Ricing Linux. Apr. 2016. URL: https://jie-fang.github.io/
blog/basics-of-ricing/ (visited on 04/24/2016).

[15] R. Feng, Z. Yan, S. Peng, and Y. Zhang. “Automated Detection of Password Leak-
age from Public GitHub Repositories”. In: Proc. of the International Conference
on Software Engineering (ICSE). 2022.

[16] T. Fry, T. Dey, A. Karnauch, and A. Mockus. “A Dataset and an Approach for
Identity Resolution of 38 Million Author IDs Extracted from 2B Git Commits”.
In: Proc. of the the International Conference on Mining Software Repositories
(MSR). 2020.

[17] g0tmi1k. Debian OpenSSL Predictable PRNG (CVE-2008-0166). URL: https: / /
github.com/g0tmi1k/debian-ssh (visited on 02/17/2022).

11

[18] GitGuardian. State of Secrets Sprawl on GitHub - 2021. Mar. 2021. URL: https:
//blog.gitguardian.com/state-of-secrets-sprawl-2021/ (visited on 05/27/2021).

[19] GitHub. Searching for Repositories. URL: https : / /docs .github.com/en/search-
github/searching-on-github/searching-for-repositories (visited on 02/17/2022).

[20] G. Jungwirth, A. Saha, M. Schröder, T. Fiebig, M. Lindorfer, and J. Cito. Dotfiles
Repositories Analysis Artifact. https://github.com/ipa- lab/dotfiles- repositories-
analysis. Online Appendix. 2021.

[21] P. Kari. “What you need to know about the biggest hack of the US government
in years”. In: The Guardian (Dec. 2020). URL: http : / /www.theguardian .com/
technology / 2020 / dec / 15 / orion - hack - solar - winds - explained - us - treasury -
commerce-department (visited on 05/03/2021).

[22] M. Kaur, M. van Eeten, M. Janssen, K. Borgolte, and T. Fiebig. Human Factors
in Security Research: Lessons Learned from 2008-2018. 2021. arXiv: 2103.13287
[cs.CY]. URL: https://arxiv.org/abs/2103.13287v1.

[23] K. Krombholz, H. Hobel, M. Huber, and E. Weippl. “Advanced Social Engineer-
ing Attacks”. In: Journal of Information Security and Applications 22 (2015).
DOI: 10.1016/j.jisa.2014.09.005.

[24] O. Kuru and J. Pasek. “Improving Social Media Measurement in Surveys:
Avoiding Acquiescence Bias in Facebook Research”. In: Computers in Human
Behavior 57 (2016). DOI: 10.1016/j.chb.2015.12.008.

[25] B. Lazarine, S. Samtani, M. Patton, H. Zhu, S. Ullman, B. Ampel, and H. Chen.
“Identifying Vulnerable GitHub Repositories and Users in Scientific Cyberinfras-
tructure: An Unsupervised Graph Embedding Approach”. In: Proc. of th4e IEEE
International Conference on Intelligence and Security Informatics (ISI). 2020.

[26] Z. Li, Y. Yu, T. Wang, S. Li, and H. Wang. “Opportunities and Challenges in
Repeated Revisions to Pull-Requests: An Empirical Study”. In: Proc. of the ACM
on Human-Computer Interaction 6.CSCW2 (2022). DOI: 10.1145/3555208.

[27] Linux man pages. file(1): determine file type. URL: https://linux.die.net/man/1/file
(visited on 02/17/2022).

[28] S. Lounici, M. Rosa, C. M. Negri, S. Trabelsi, and M. Önen. “Optimizing
Leak Detection in Open-source Platforms with Machine Learning Techniques”.
In: Proc. of the International Conference on Information Systems Security and
Privacy (ICISSP). 2021.

[29] N. McDonald, S. Schoenebeck, and A. Forte. “Reliability and Inter-rater Reliabil-
ity in Qualitative Research: Norms and Guidelines for CSCW and HCI Practice”.
In: Proc. of the ACM on Human-Computer Interaction 3.CSCW (2019). DOI:
10.1145/3359174.

[30] M. Meli, M. R. McNiece, and B. Reaves. “How Bad Can It Git? Characterizing
Secret Leakage in Public GitHub Repositories”. In: Proc. of the Network and
Distributed System Security Symposium (NDSS). 2019.

[31] M. Menichinelli. “A data-driven approach for understanding Open Design. Map-
ping social interactions in collaborative processes on GitHub”. In: The Design
Journal 20.sup1 (2017). DOI: 10.1080/14606925.2017.1352869.

[32] D. Nakano, M. Yin, R. Sato, A. Hindle, Y. Kamei, and N. Ubayashi. A
Quantitative Study of Security Bug Fixes of GitHub Repositories. 2020. arXiv:
2012.08053 [cs.SE]. URL: https://arxiv.org/abs/2012.08053v1.

[33] M. Ohm, H. Plate, A. Sykosch, and M. Meier. “Backstabber’s Knife Collection:
A Review of Open Source Software Supply Chain Attacks”. In: Proc. of the
Conference Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA). 2020.

[34] G. A. A. Prana, D. Ford, A. Rastogi, D. Lo, R. Purandare, and N. Nagappan.
“Including Everyone, Everywhere: Understanding Opportunities and Challenges
of Geographic Gender-Inclusion in OSS”. In: IEEE Transactions on Software
Engineering 48.9 (2021). DOI: 10.1109/TSE.2021.3092813.

[35] J. J. Ray. “Reviving the Problem of Acquiescent Response Bias”. In: The Journal
of Social Psychology 121.1 (1983). DOI: 10.1080/00224545.1983.9924470.

[36] E. M. Redmiles, Y. Acar, S. Fahl, and M. L. Mazurek. A Summary of Survey
Methodology Best Practices for Security and Privacy Researchers. Tech. rep.
University of Maryland, 2017. DOI: 10.13016/M22K2W. URL: https://drum.lib.
umd.edu/handle/1903/19227.

[37] Z. Rice. Protect and discover secrets using Gitleaks. URL: https://github.com/
zricethezav/gitleaks (visited on 02/17/2022).

[38] M. O. F. Rokon, R. Islam, A. Darki, E. E. Papalexakis, and M. Faloutsos.
“SourceFinder: Finding Malware Source-Code from Publicly Available Reposito-
ries in GitHub”. In: Proc. of the International Symposium on Research in Attacks,
Intrusions and Defenses (RAID). 2020.

[39] A. Saha, T. Denning, V. Srikumar, and S. K. Kasera. “Secrets in Source Code:
Reducing False Positives using Machine Learning”. In: Proc. of the International
Conference on COMmunication Systems NETworkS (COMSNETS). 2020.

[40] J. Saldana. The Coding Manual for Qualitative Researchers. SAGE, 2021. ISBN:
978-1-5297-5599-2.

[41] R. Satter, C. Bing, and J. Menn. “Hackers used SolarWinds’ dominance against it
in sprawling spy campaign”. In: Reuters (Dec. 2020). URL: https://www.reuters.
com/article/global-cyber-solarwinds-idUSKBN28Q07P (visited on 05/03/2021).

[42] SchizoDuckie. Responsible Disclosure of GitHub dotfiles ethical hack. Dec. 2021.
URL: https://twitter.com/SchizoDuckie/status/1474087696247279626?s=20.

[43] L. Singer, F. Figueira Filho, and M.-A. Storey. “Software Engineering at the
Speed of Light: How Developers Stay Current Using Twitter”. In: Proc. of the
International Conference on Software Engineering (ICSE). 2014.

[44] J. Spaulding, D. Nyang, and A. Mohaisen. “Understanding the Effectiveness of
Typosquatting Techniques”. In: Proc. of the ACM/IEEE Workshop on Hot Topics
in Web Systems and Technologies (HotWeb). 2017.

[45] Stack Overflow. Stack Overflow Developer Survey 2021. 2021. URL: https : / /
insights.stackoverflow.com/survey/2021/ (visited on 01/15/2022).

[46] A. Strauss and J. M. Corbin. Grounded Theory in Practice. SAGE, 1997. ISBN:
978-0-7619-0748-0.

[47] The MITRE Corporation. ATT&CK. 2021. URL: https://attack.mitre.org/ (visited
on 05/14/2021).

[48] F. Tian, P. Liang, and M. A. Babar. “How Developers Discuss Architecture
Smells? An Exploratory Study on Stack Overflow”. In: Proc. of the IEEE
International Conference on Software Architecture (ICSA). 2019.

[49] N. P. Tschacher. “Typosquatting in Programming Language Package Managers”.
Bachelor’s Thesis. University of Hamburg, Mar. 2016. URL: https://incolumitas.
com/data/thesis.pdf.

[50] S. Varghese. “iTWire - SolarWinds FTP credentials were leaking on GitHub in
November 2019”. In: Wired (Dec. 2020). URL: https : / / itwire . com / security /
solarwinds - ftp - credentials - were - leaking- on- github- in - november - 2019 .html
(visited on 05/03/2021).

[51] C. Wijayarathna and N. A. Arachchilage. “Am I Responsible for End-User’s
Security? A Programmer’s Perspective”. In: Proc. of the USENIX Symposium on
Usable Privacy and Security (SOUPS). 2018.

[52] C. E. Wills, K. Cadwell, and W. Marrs. “Customization in a UNIX Computing
Environment”. In: Proc. of the USENIX System Administration Conference (LISA).
1993.

[53] T. Xu, J. Zhang, P. Huang, J. Zheng, T. Sheng, D. Yuan, Y. Zhou, and S. Pasupathy.
“Do Not Blame Users for Misconfigurations”. In: Proc. of the ACM Symposium
on Operating Systems Principles (SOSP). 2013.

[54] H. Yasar. “Experiment: Sizing Exposed Credentials in GitHub Public Repositories
for CI/CD”. In: Proc. of the IEEE Cybersecurity Development Conference
(SecDev). 2018.

[55] S. Yilek, E. Rescorla, H. Shacham, B. Enright, and S. Savage. “When Private
Keys Are Public: Results from the 2008 Debian OpenSSL Vulnerability”. In:
Proc. of the ACM SIGCOMM Conference on Internet Measurement (IMC). 2009.

[56] Y. Yu, G. Yin, H. Wang, and T. Wang. “Exploring the Patterns of Social Behavior
in GitHub”. In: Proc. of the International Workshop on Crowd-Based Software
Development Methods and Technologies (CrowdSoft). 2014.

APPENDIX

A. List of Regular Expressions

We used the following list of regular expressions to identify
relevant secrets and information in .dotfiles repositories:

description = ‘Email Simple’
email = \b[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]
+\.[a-zA-Z0-9-.]+\b

description = ‘Firefox Profile’
path =mozilla/firefox.*(logins\.json|
cookies\.sqlite|places\.sqlite)

description = ‘Files with credentials’
file = (?i)(id_rsa|passwd|id_rsa.pub|
pgpass|pem|key|shadow)

description = ‘Thunderbird Profile’
path = ($|/)\.?thunderbird/

description = ‘Crypto Wallet’
file = wallet\.dat

description = ‘Chrome Profile’
path = config.*/(google-chrome|chromium)/

B. Survey Questionnaire

Thank you for participating in our survey. The survey
consists of 4 sections and will take about 5–10 minutes.
All responses are anonymous. Our research is done by the
BIG (Business Informatics group) and S&P (Security and
Privacy group) at TU Wien, Austria. It focuses on the security
and privacy related aspects of shared configurations, a.k.a.
“dotfiles.” Your response provides valuable information and

12

helps us formulate recommendations on the security of this
domain for the open source community. Our findings will
be published as a paper. If you want to send us additional
feedback, concerns or want to get notified about the results
please send us a message at gerhard.jungwirth@tuwien.ac.at.

Q1. What do you (mostly) use GitHub for?
◦ Private projects
◦ Active opensource software development
◦ Contributions/Bug fixes
◦ Github issue reporting/Discussions
◦ School/University projects
◦ Other:

Q2. How many repositories of your own do you have on
GitHub (self-created)?

Q3. How often do you actively use GitHub?
◦ every day
◦ at least once a week
◦ at least once per month
◦ at least once per year
◦ less than once per year/not regularly

Q4. Do you still actively use the dotfile repository?
◦ Yes ◦ No

Q5. When did you first start to use dotfiles?
◦ 0-5 years ago
◦ 5-10 years ago
◦ more than 10 years ago

Q6. Did you first/also share them in other ways/platforms —
if yes, where?
◦ No, I don’t share dotfiles on other platforms
◦ Dropbox
◦ Other cloud file storage
◦ Other cloud version control service (e.g. GitLab, Bit-
Bucket...)
◦ Private server
◦ Other:

Q7. Do you use a tool/technology to manage your dotfiles? If
yes, which one?
◦ No tool. (I just manually copy my dotfiles to the right
place).
◦ Plain git (e.g. the “bare repo” approach).
◦ dotbot
◦ chezmoi
◦ rcm
◦ yadm
◦ Other:

Q8. How many (approx) of your config files are self-written
and how many are copy-pasted from somewhere?
◦ all are self-written
◦ most are self-written
◦ about half are copy-pasted, the other half self-written
◦ most are copy-pasted
◦ all are copy-pasted

Q9. Why did you share your dotfiles on GitHub?
Q10. How concerned are you about software security in

general?
◦ 1 ◦ 2 ◦ 3 ◦ 4 ◦ 5 ◦ 6 ◦ 7

Q11. How do you rate your experience with software security?
◦ 1 ◦ 2 ◦ 3 ◦ 4 ◦ 5 ◦ 6 ◦ 7

Q12. Did you think about the security of your dotfile reposi-
tory?
◦ 1 ◦ 2 ◦ 3 ◦ 4 ◦ 5 ◦ 6 ◦ 7

Q13. How would you rate the security of your dotfile reposi-
tory?
◦ 1 ◦ 2 ◦ 3 ◦ 4 ◦ 5 ◦ 6 ◦ 7

Q14. We found several security & privacy issues across dotfile
repositories on GitHub. If you are affected, you have
received an email from us with further information. With
this knowledge, what are your planned changes to your
repository?

Q15. Age
◦ 10-19 years ◦ 20-29 years ◦ 30-39 years
◦ 40-49 years ◦ 50-59 years ◦ 60-69 years
◦ 70-79 years ◦ over 80 years

Q16. Gender
◦ Female ◦ Male ◦ Other

Q17. Country of residence
◦ ... list of countries ...

Q18. Highest educational degree
◦ School, no diploma
◦ Secondary education (high school)
◦ Trade/technical/vocational training
◦ Undergraduate education (college or university)
◦ Postgraduate education (masters or doctorate)
◦ Other:

Q19. What is your current occupation?
Q20. How many years of experience do you have in software

development (if any)?

C. Recruitment Mail

We sent the following recruitment mail to the repository
owners. Depending on the issues we identified, we either listed
all the issues found or to stated, “No leaks were found in your
repository,” in case of no issues.

“Hello username,

We are a research team at TU Wien. We are writing you,
because you are using GitHub and have a repository with
configuration files (dotfiles). We did research on the usage and
security of these repositories. We found the following issues
with your repository (if any):

• Credentials: Your repository may contain API keys or
authentication credentials, which (if valid) could be used
to log in to web services in your name. RSA Keys: You
may have a private key or weak public RSA key, which
could be used to authenticate to some service (e.g. via
ssh) in your name.

• Private Data: Your repository may contain private data,
which is typically not shared publicly. This includes,
browsing history, cookies, and chat logs.

• Old/Outdated Dependencies: Your repository may contain
software dependencies, which are outdated or misspelled.
These could, if installed somewhere, contain security
vulnerabilities.

In order to better understand how and why you use shared
configurations, we designed a small survey. We would be very
happy, if you filled it out. It takes about 10-15 minutes.

https://forms.gle/oJe9SWf1KU4MdbZV6

If you have any additional notes, questions or feedback, you
can reply to this email. Thank you for your time.

Best regards, Gerhard Jungwirth (TU Wien)”

13

