
(over)

CS101 Fundamentals of Computer and Information Sciences – LIU 1 of 6

2019-12-11 15:42
08d925d

Midterm Exam
23 October 2019

Solutions

Practice version

Do not write your name on the exam paper. Instead, a sign-in sheet is coming
around. Choose any of the sign-in codes, write your name next to it, and then copy
that code to the top front of each page of the exam.

You have up to 1 hour, 45 minutes. You may use a calculator, but no text book or notes.

1. For each statement below, ˋll in the blank with the best term from the following
list. Some terms might be used more than once; some might not be used at all.

• algorithm • ASCII • binary • bit • Boolean • byte • compression • CPU
• hexadecimal • input • lossless • lossy • octal • output • pixel • pseudo-code
• resolution • tree • two’s complement • Unicode

• In the von Neumann architecture, a device that receives data from the CPU is
called output

• two’s complement is a format for binary numbers that supports both
positive or negative numbers.

• ASCII is a 7-bit code for representing the characters used in American
English.

• A compression technique is called lossy if decompression cannot
reproduce the original data perfectly.

• A(n) tree is a structure in computer science for representing data at
branches and leaves.

2. Convert the following base ten (decimal) numbers into binary, using as many bits
as needed.

•  14  =    1110

•  25  =   11001

•  86  =  1010110

3. Convert the following 5-bit signed two’s complement binary numbers into base
ten. Note: “signed” means that answersmight be negative.

• 01011  =  +11

• 10011  =  -13



2 of 6 Prof. League – Fall 2019 – Midterm Exam

• 01111  =  +15

• 11000  =  -8

• 00101  =  +5

4. Add the following pairs of 4-bit ˋxed-size unsigned binary numbers. Your
answers must be in binary, but you should check you work by converting to base
ten.

1 1 11
1001 = 9 0110 = 6 1100 = 12
1100 = 12 0101 = 5 0111 = 7
—————— ———— —————— ———— —————— ————
0101 5 1011 = 11 0011 = 3

5. Convert the following binary number to octal and hexadecimal:

1 1 1 1 0 0 0 1 0 1 1 0 0 0 1 1 1 0 0 1 0 0

For octal, make groups of 3 from right to left. Then each group is interpreted using
the powers 4, 2, 1.

1,1 1 1,0 0 0,1 0 1,1 0 0,0 1 1,1 0 0,1 0 0 = 17054344
¹ ⁴ ² ¹ ⁴ ² ¹ ⁴ ² ¹ ⁴ ² ¹ ⁴ ² ¹ ⁴ ² ¹ ⁴ ² ¹

For hexadecimal, make groups of 4 from right to left. Then each group is
interpreted using the powers 8, 4, 2, 1.

1 1,1 1 0 0,0 1 0 1,1 0 0 0,1 1 1 0,0 1 0 0 = 3C58E4
² ¹ ⁸ ⁴ ² ¹ ⁸ ⁴ ² ¹ ⁸ ⁴ ² ¹ ⁸ ⁴ ² ¹ ⁸ ⁴ ² ¹

6. Suppose we want to design a custom character encoding just for the word
REVERE

(a) How many bits would we need to represent each distinct letter if using a
ˋxed-width encoding? 2

(b) Using the ˋxed-width representation in the previous question, how many
bits would we need to encode the entire word REVERE? 2×6 = 12

(c) Draw a tree to represent a variable-width encoding of these letters. Use
your tree to encode the word REVERE. How many bits did you need?



(over)

CS101 Fundamentals of Computer and Information Sciences – LIU 3 of 6

V

E

R

0 1

0 1

100110100 (9 bits)
R EV ER E

7. Which Boolean expression is equivalent to the following circuit diagram?

A

B
X

(a) X = A′ + (A⊕B)

(b) X = A + (A⊕B)′ (This one)

(c) X = A⊕ (A +B)′

(d) X = A + (A⊕B′)



4 of 6 Prof. League – Fall 2019 – Midterm Exam

8. This problem is about a program for a Turing Machine. Recall that a TM operates
by reading and writing symbols on a tape that can be spooled to the left and right.
For our program, each cell on the tape can contain either a zero (0), a one (1), or
it can be blank (B).

The table below is a representation of a particular TM program. The TM keeps
track of its current state, a small integer starting at 0.

The ˋrst row of the table says that if we’re in state 0, and the symbol on the tape
at the current position is a 0, we should write a 1 to that position, move the
position to the Right, and stay in state 0.

If the “next state” differs from the current state, that represents a transition.
Use the new state for subsequent operations. Computation continues according
to the instructions in the table, until we reach the “halt” state, when the machine
stops.

rule current current write move next
number state symbol symbol to state

1 0 0 1 R 0
2 0 1 0 R 0
3 0 B B L 1
4 1 0 1 R halt
5 1 1 0 L 1
6 1 B 1 L halt

Simulate the execution of the above TuringMachine program on a tape containing
a 4-bit number surrounded by blanks, as shown below. The starting position is
underlined (it’s the leftmost 1):

⋯ B B 1 1 0 0 B B ⋯

What will be the contents of the tape when the machine halts?

In tracing the TM, we’ll use brackets [] to highlight the current position.

B B[1]1 0 0 B B in state 0 so rule 2: write 0, move R
B B 0[1]0 0 B B in state 0 so rule 2: write 0, move R
B B 0 0[0]0 B B in state 0 so rule 1: write 1, move R
B B 0 0 1[0]B B in state 0 so rule 1: write 1, move R
B B 0 0 1 1[B]B in state 0 so rule 3: move L, go to state 1
B B 0 0 1[1]B B in state 1 so rule 5: write 0, move L



(over)

CS101 Fundamentals of Computer and Information Sciences – LIU 5 of 6

B B 0 0[1]0 B B in state 1 so rule 5: write 0, move L
B B 0[0]0 0 B B in state 1 so rule 4: write 1, move R, then halt
B B 0 1[0]0 B B

This TM program negates a two’s-complement number. Using 4-bit two’s
complement, 1100 is −4, so the machine turned that into 0100 which is +4.



6 of 6 Prof. League – Fall 2019 – Midterm Exam

9. Trace the following algorithm, which begins with two integer inputs, represented
by variables A and B. Remember to indicate clearly what is output versus what is
scratch work (memory).

Initialize the algorithm with A = 5 and B = 9.

1. Let A,B be two positive integers such that A<B
2. Set N to 0
3. Set K to A (copy the value of A into variable K)
4. If K > B then output N and stop.
5. Set N to N + K
6. Set K to K + 1
7. Go back to step 4

SCRATCH WORK
Step 1 2 3 4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7 4

N 0 5 11 18 26 35
K 5 6 7 8 9 10
A 5
B 9

OUTPUT
35

10. Brieˌy explain the main differences between linear search and binary search.
Which algorithm has the best performance? What must be known about the data
to apply each algorithm?

Linear search looks through a list one item at a time. It can work on any list, but
is slow (it takes time proportional to the length of the list). Binary search requires
that the list must be in order by whatever we’re using as the search criterion.
With binary search, we start from the middle item, and then do a comparison to
determine whether to search in the front half or the back half. It’s much faster, only
log2N steps.


