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Abstract
Despite recent findings indicating a paradoxical association between high-density lipoprotein cholesterol (HDL-C) 
levels and cardiovascular disease (CVD) mortality, the impact of HDL-C on subsequent outcomes after ischemic 
stroke remains unclear. The study aims to investigate the relationships between HDL-C levels and post-stroke 
functional outcomes while examining the potential modifying influence of HDL-C-related single nucleotide 
polymorphisms identified through genome-wide association studies. This cohort study included 1,310 patients 
diagnosed with acute ischemic stroke (AIS), all of whom had their admission serum lipid profile and genotyping 
information. Participants were categorized into four groups based on gender and HDL-C level. Prognostic outcomes 
were assessed using a modified Rankin Scale (mRS) at 1, 3, and 12 months post-admission. Multivariate logistic 
regression and restricted cubic spline regression analysis were used to assess the associations between HDL-C 
levels and outcomes. The mean age of patients was 61.17 ± 12.08 years, and 69.31% were men. After adjusting 
confounders, patients with the highest HDL-C level group had a significantly higher risk of poor functional 
outcomes at 1, 3, and 12 months following stroke compared to the reference group. Restricted cubic splines 
depicted a nonlinear association between HDL-C levels and poor prognosis in both men and women. The ABCA1 
gene rs2575876 AA genotype combined with abnormal HDL-C levels exhibited a significantly heightened risk of 
post-stroke adverse outcomes at 1 and 3 months compared to patients with normal HDL-C levels and GG + GA 
genotype. These findings suggest that the combined effects of ABCA1 genetic variants with either low or high 
HDL-C levels could further heighten this risk.
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Introduction
Cerebrovascular disease continues to be the second lead-
ing cause of death and represents a major global health 
burden [1]. Understanding specific markers of stroke 
outcomes, including risk factors like hypertension or dia-
betes, allows healthcare professionals to tailor treatment 
strategies more effectively, potentially leading to bet-
ter outcomes and reduced stroke-related morbidity and 
mortality [2].

Dyslipidemia is also widely acknowledged as a signifi-
cant risk factor for adverse outcomes in cardiovascular 
diseases (CVD) [3]. The American Heart Association/ 
American Stroke Association guidelines underscore the 
critical role of lipid management in controlling vascular 
risk factors for secondary stroke prevention [4]. Never-
theless, results from the National Health and Nutrition 
Examination Survey spanning 2009 to 2020 indicate that 
lipid control rates among stroke survivors remain subop-
timal [5]. Several studies have elucidated contradictory 
relationships between cholesterol, low-density lipopro-
tein cholesterol levels, and prognostic consequences in 
stroke patients [6, 7].

Similarly, while high-density lipoprotein cholesterol 
(HDL-C) has conventionally been deemed protective 
against CVD [8–10], recent research has uncovered a 
paradoxical association between HDL-C levels and CVD 
mortality, suggesting a U-shaped relationship [11–13]. 
In particular, comparable results were observed in the 
association between HDL-C levels and mortality from 
ischemic stroke [11]. Moreover, regarding the study of 
post-stroke outcomes, numerous previous studies have 
identified an inverse relationship between HDL-C levels 
and stroke recurrence as well as vascular complications 
[14–17]. In addition, countless large-scale randomized 
controlled trials have found that patients did not experi-
ence apparent benefits from the lipid-control treatment 
for CVD, even if they substantially increased HDL-C 
levels [18]. Mendelian randomization studies, which use 
genetic variants related to elevated HDL-C levels as a 
proxy for cumulative HDL-C exposure, have also been 
unable to confirm a causal relationship between HDL-C 
levels and CVD risk [19]. The findings imply that the 
influence of HDL-C on CVD mortality and related out-
comes is complex, sparking further investigation into 
this intriguing paradox. Additionally, studies have dem-
onstrated that genes involved in HDL-C metabolism, 
particularly those encoding various enzymes, may affect 
HDL-C levels [20–23].

Since the effect of HDL-C on outcomes following a 
stroke is not well understood and genes play a role in 
HDL-C metabolism, this study aimed to elucidate the 
impact of HDL-C on outcomes in acute ischemic stroke 
(AIS) by enrolling patients from a large nationwide regis-
try dataset. In addition, the study explored the potential 

modifying role of genetic factors in the association 
between HDL-C levels and the risk of unfavorable out-
comes among ischemic stroke patients.

Materials and methods
Study design and population
The Formosa Stroke Genetic Consortium (FSGC) is a 
collaborative research initiative that commenced in 2005, 
focusing on the molecular aspects of cerebrovascular dis-
eases. The operational procedures of FSGC have been 
outlined in previous studies [24]. Briefly, the consortium 
involved ten hospitals working together to enroll cases 
using a standardized method, which included adminis-
tering questionnaires and collecting biospecimens. Data 
on preadmission, inpatient clinical information, and dis-
charge records were meticulously gathered by trained 
assistants or study nurses, with quality assurance mea-
sures adhering to the standards set by the Taiwan Stroke 
Registry (TSR) [25]. The study participants were all veri-
fied on brain computed tomography (CT) or magnetic 
resonance imaging (MRI) and were followed at 1, 3, and 
12 months. Between 2005 and 2019, 1,310 first-ever AIS 
patients with genotyping data were included in this study. 
More than 80% of patients completed the evaluation of 
the functional outcomes at 1, 3, and 12 months through-
out the 1-year follow-up period (supplementary Figure 
S1).

Since the guidelines of HDL-C from the National 
Cholesterol Education Program III for Asians were less 
than 40 mg/dL in men or less than 50 mg/dL in women 
[26] and few Taiwanese populations have extremely 
high HDL-C concentrations [27], the study participants 
were stratified into four groups relying on gender and 
HDL-C level. Group I was characterized by HDL-C lev-
els below 0.78 mM/L for males and below 1.04 mM/L 
for females. Group II comprised individuals with HDL-C 
levels ranging from 0.78 mM /L to less than 1.04 mM 
/L for males and from 1.04 mM /L to less than 1.30 mM 
/L for females. Group III served as the reference group, 
with HDL-C levels between 1.04 mM /L and less than 
1.30 mM /L for males and between 1.30 mM /L and less 
than 1.55 mM /L for females. Group IV consisted of par-
ticipants with HDL-C levels equal to or greater than 1.30 
mM /L for males and equal to or greater than 1.55 mM /L 
for females.

This study received approval from the Institutional 
Review Board or Ethical Committees at Taipei Medi-
cal University and all collaborative hospitals. Written 
informed consent was obtained from all study subjects 
or their relatives, ensuring that ethical standards and par-
ticipants’ rights were respected throughout the research 
process.
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Data collection
During the admission process, demographic character-
istics, medical history, medication usage history, and 
clinical features were systematically gathered using a 
standardized registry form. To determine the severity of 
the stroke at the beginning, trained neurologists utilized 
the National Institute of Health Stroke Scale (NIHSS). 
Additionally, within 24  h of the onset of AIS, fasting 
glucose levels, glycated hemoglobin (HbA1c), total cho-
lesterol, triglyceride levels, low-density lipoprotein cho-
lesterol (LDL-C), and HDL-C were measured in each 
participating hospital. This comprehensive approach 
ensured the collection of essential data for the study 
and facilitated the evaluation of various stroke-related 
factors.

Outcome measures
The modified Rankin Scale (mRS), a standard tool for 
assessing functional outcomes, was employed to evaluate 
the prognosis of stroke patients at 1, 3, 6, and 12 months 
post-stroke. The scale ranges from 0 to 6, with 0 indicat-
ing no symptoms, 5 signifying severe disability, and 6 rep-
resenting death. In this study, patients with an mRS score 
of 0 to 2 were classified as having favorable outcomes, 
while those with a score of 3 or higher were categorized 
as having unfavorable outcomes.

Selection of HDL-C-related SNP
In this study, HDL-C-related single nucleotide poly-
morphisms (SNPs) were initially identified through a 
genome-wide association study (GWAS) analysis of 
HDL-C, using a cohort of 45,575 individuals from the 
Taiwan Biobank, with 36.31% being males and an aver-
age age of 49.21 ± 10.99 years (supplementary Table S1). 
In brief, Taiwan Biobank is a prospective cohort study 
offering extensive phenotypic and genetic data for the 
Taiwanese population. Genotyping was carried out using 
the TWBv1 array and TWBv2 array, following a stan-
dardized quality control pipeline and imputation proto-
cols [28]. A Q-Q plot illustrated the evaluation of SNP 
enrichment for HDL-C levels, and significant genetic 
loci were depicted in a Manhattan plot (supplementary 
Figure S2). Notably, 15 SNPs were identified on chromo-
some 9, and chromosome 16 reached a significant level 
(P-value = 5*10− 8), as detailed in supplementary Table 
S2. Subsequently, only 9 SNPs associated with HDL-C 
from the GWAS catalog database (https://www.ebi.ac.uk/
gwas/) were selected, specifically those in cholesteryl 
ester transfer protein (CETP) and ATP-binding cassette 
A1 (ABCA1) genes.

Genotyping
Extraction of genomic DNA from the buffy coat fractions 
was adopted by a non-organic purification method and 

stored at -80℃ until genotyping. Genotyping was con-
ducted with the Axiom Genome-Wide TWB 2.0 Array 
Plate from the National Center for Genome Medicine in 
Taiwan. Samples were excluded if the call rate was less 
than 98%. Genotype imputation was used by the Michi-
gan Imputation Server (https://imputationserver.sph.
umich.edu) utilizing the 1000G Phase 1 version 3 refer-
ence panel [29]. Quality control and filtering were carried 
out using PLINK software. The variants were mapped 
by adopting the GRCh37/hg19 reference genome coor-
dinates, and phasing was executed using the Eagle v2.4 
algorithm.

Statistical methods
The mean difference among four HDL-C groups was 
performed using the ANOVA method with Scheffe post 
hoc analysis, while the frequency variation was examined 
using the Chi-square test. Multivariate logistic regres-
sion models were employed to estimate the relationship 
between HDL-C groups and functional outcomes at 1, 3, 
and 12 months following a stroke. Odds ratio (OR) and 
95% CI were determined for each HDL-C group relative 
to the reference group (Group III). Conventional risk fac-
tors for the prognosis of ischemic stroke, including age, 
gender, body mass index (BMI), initial stroke severity, 
hypertension, diabetes mellitus, tobacco smoking, and 
alcohol consumption, were considered covariates. To 
visualize the non-linear relationship between HDL-C 
level and adverse outcomes at 1, 3, and 12 months after 
a stroke, a restricted cubic spline (RCS) regression model 
was used with four knots based on gender-specific cri-
teria. All statistical analyses were performed using SAS 
(version 9.4, Cary, North Carolina) and R (version 4.3.1) 
statistical software. A two-tailed P value of less than 0.05 
was considered statistically significant.

Results
Baseline characteristics
The baseline characteristics of the study participants 
categorized into different HDL-C groups are shown in 
Table  1. Among 1,310 first-ever AIS patients, the aver-
age age was 61.17 ± 12.08 years, with nearly 70% of 
the patients being male. Significant differences were 
observed in the average age, BMI, serum HbA1c level, 
lipid profiles, initial stroke severity, and the frequencies 
of gender, hypertension, and diabetes mellitus histories, 
cigarette smoking, alcohol consumption, lipid-lower-
ing drugs, and anti-diabetics medicine across the four 
HDL-C groups.

Association between HDL-C level and functional outcomes
The association between four different HDL-C level 
groups with unfavorable outcomes at 1, 3, and 12 months 
is presented in Table  2. Patients in Group I and II had 

https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/
https://imputationserver.sph.umich.edu
https://imputationserver.sph.umich.edu
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worse neurological outcomes at 1, 3, and 12 months 
compared with Group III, which served as the reference 
group; however, these differences did not achieve statisti-
cal significance, except for women in Group II at 1-month 
follow-up (OR, 2.17; 95%CI, 1.02–4.64). Notably, patients 
in Group IV had a significantly increased risk of adverse 
outcomes at 1, 3, and 12 months compared with the ref-
erence group, regardless of the overall population or gen-
der, apart from male patients followed at three months. 
Furthermore, the RCS plot for analyzing the relationship 
between HDL-C level and the risk of poor outcomes at 
1, 3, and 12 months after stroke stratified by gender was 
exhibited in Fig. 1. The shape of the dose-response cor-
relation between HDL-C level and unfavorable prognosis 
was non-linear in both men and women.

HDL-C-related SNPs and their association with HDL-C level 
and adverse outcomes
The significant nine selected HDL-C-related SNPs and 
their association with serum HDL-C concentrations were 
illustrated in the supplementary Table S3. The analy-
sis revealed that only two SNPs, ABCA1 rs1883025 and 
rs2575876, were significantly associated with HDL-C lev-
els in the total population and within subgroups of men 
and women (supplementary Figure S3). Subsequently, the 
association between these SNPs and adverse outcomes 
following stroke was investigated. The results showed 
that the recessive model of both rs2575876 and rs1883025 
was notably associated with adverse outcomes at 1 and 3 
months post-stroke onset (supplementary Table S4). Fig-
ure 2 depicts the HDL-C levels across different genotypes 
under the recessive model for rs2575876 and rs1883025 
SNPs in the ABCA1 gene. The findings revealed notable 
differences in HDL-C levels among both SNPs under the 

Table 1 Baseline characteristics among ischemic stroke patients with different HDL-C level
TOTAL (N = 1310) Group I (N = 197) Group II (N = 464) Group III (N = 378) Group IV (N = 271) P-value

Age, year, mean±SD 61.17 ± 12.08 62.43 ± 11.75ab 60.45 ± 11.37ac 59.88 ± 12.62c 63.30 ± 12.44b 0.0009
SEX, n(%)

 Female 402(30.69) 106(53.81) 129(27.80) 79(20.90) 88(32.47) < 0.0001
 Male 908(69.31) 91(46.19) 335(72.20) 299(79.10) 183(67.53)
BMI, kg/m2, mean±SD 25.77 ± 3.98 25.88 ± 4.10a 26.09 ± 3.97a 26.13 ± 4.05a 24.62 ± 3.60b 0.0003
SBP, mmHg, mean±SD 166.27 ± 31.63 163.19 ± 29.26 166.81 ± 31.55 165.49 ± 31.95 168.71 ± 32.90 0.2801
DBP, mmHg, mean±SD 96.55 ± 20.99 94.72 ± 19.40 96.74 ± 20.98 97.59 ± 21.44 96.12 ± 21.50 0.4627
HbA1c, %, mean±SD 7.13 ± 2.71 7.71 ± 4.86a 7.18 ± 2.04b 6.95 ± 2.10b 6.86 ± 2.18b 0.0039
Fasting glucose, mM/L, mean±SD 7.27 ± 2.98 7.78 ± 3.17 7.16 ± 2.67 7.11 ± 3.12 7.29 ± 3.12 0.0719
Cholesterol, mM/L, mean±SD 5.07 ± 1.27 4.68 ± 1.25a 4.89 ± 1.09b 5.19 ± 1.30c 5.51 ± 1.38d < 0.0001
Triglyceride, mM/L, mean±SD 1.86 ± 1.50 2.31 ± 1.53a 2.00 ± 1.47b 1.76 ± 1.62c 1.42 ± 1.17d < 0.0001
LDL-C, mM/L, mean±SD 3.32 ± 1.02 3.02 ± 1.04a 3.15 ± 0.9a 3.36 ± 1.01b 3.3 ± 1.19b 0.0003
NIHSS at beginning, score, mean±SD 5.19 ± 5.10 5.20 ± 4.62a 4.74 ± 4.40a 5.00 ± 5.25a 6.18 ± 6.09b 0.0024
TOAST, n(%)

 LAA 349(30.11) 56(32.94) 128(30.77) 104(31.71) 61(24.90) 0.1510
 SVO 598(51.60) 78(45.88) 228(54.81) 157(47.87) 135(55.10)
 CE 107(9.23) 17(10.00) 26(6.25) 34(10.37) 30(12.24)
 SE 14(1.21) 3(1.76) 6(1.44) 4(1.22) 1(0.41)
 UE 91(7.85) 16(9.41) 28(6.73) 29(8.84) 18(7.35)
Heart disease, n(%) 283(21.62) 48(24.37) 85(18.32) 87(23.02) 63(23.33) 0.1900
Dyslipidemia, n(%) 776(59.46) 121(62.05) 275(59.40) 224(59.42) 156(57.78) 0.8348
Hypertension, n(%) 1037(79.22) 169(86.22) 369(79.53) 287(75.93) 212(78.23) 0.0364
Diabetes mellitus, n(%) 558(42.69) 106(54.08) 204(44.16) 152(40.21) 96(35.42) 0.0005
Cigarette smoking, n(%) 653(50.00) 74(37.76) 253(54.64) 206(54.79) 120(44.28) < 0.0001
Alcohol drinking, n(%) 237(18.15) 18(9.18) 81(17.49) 87(23.14) 51(18.82) 0.0007
Lipid-lowering drug, n(%) 889(67.86) 120(60.91) 332(69.40) 272(71.96) 175(64.58) 0.0278
Anti-hypertensive drug, n(%) 746(56.95) 115(58.38) 269(57.97) 203(53.70) 159(58.67) 0.5098
Anti-diabetics drug, n(%) 470(35.88) 88(44.67) 177(38.15) 125(33.07) 80(29.52) 0.0033
Subjects were divided into groups according to sex and HDL-C level. Group I (M: HDL-C < 0.78 mM/L, F: HDL-C < 1.04 mM/L); Group II (M: 0.78 mM/L ≦ HDL-C < 1.04 
mM/L, F: 1.04 mM/L ≦ HDL-C < 1.30 mM/L); Group III as a reference group (M: 1.04 mM/L ≦ HDL-C < 1.30 mM/L, F: 1.30 mM/L ≦ HDL-C < 1.55 mM/L); Group IV (M: 
HDL-C ≧ 1.30 mM/L, F: HDL-C ≧ 1.55 mM/L)

BMI, Body Mass Index; SBP, Systolic Blood Pressure; DBP, Diastolic Blood Pressure; HDL-C, High Density Lipoprotein Cholesterol; LDL-C, Low Density Lipoprotein 
Cholesterol; LAA, Large Artery Atherosclerosis; SVO, Small Vessel Occlusion; CE, Cardioembolism; SE, Specific etiology; UE, Undetermined etiology

Groups denoted with different letters (a, b, c, d) indicate statistically significant differences using Scheffe post hoc analysis
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recessive model, irrespective of the total population and 
women, except for the results of rs1883025 among men.

The combined effect of HDL-C level and ABCA1 rs2575876 
on the risk of worse outcomes after stroke
Due to the significant findings of HDL-C levels and 
ABCA1 gene rs2575876, the combined effects on the 
risk of worsening prognosis after stroke were further 
analyzed. Figure  3 illustrates the relationship between 
rs2575876 SNP under the recessive model and two 
groups of HDL-C concentrations, categorized as nor-
mal group (1.04 ~ 1.29 mM /L for males and 1.03 ~ 1.53 
mM /L for females) and abnormal group defined as low 
(< 1.04 mM /L for males and < 1.30 mM /L for females) 
and high levels (≥ 1.30 mM /L for males and ≥ 1.53 mM 
/L for females) on the risk of poor outcomes. The findings 
revealed that individuals with abnormal HDL-C levels 
and the AA genotype of rs2575876 exhibited a signifi-
cantly heightened risk of adverse outcomes after stroke at 
1 and 3 months, except for the 12 months, compared to 
patients with normal HDL-C levels and GG + GA geno-
type. However, a substantial increase in poor outcomes 
was observed when patients were exposed to these ele-
vated risk factors at 1, 3, and 12 months of follow-up.

Discussion
The finding from this multicenter registry-based study 
demonstrated that the serum level of HDL-C revealed a 
U-shape relationship with clinical functional outcomes 
at 1, 3, and 12 months after stroke, regardless of gender. 
Furthermore, individuals with abnormal HDL-C levels 
and the rs2575876 AA genotype in the ABCA1 gene had 
a more significantly elevated risk of adverse outcomes at 
1 and 3 months after stroke.

Several recent research has revealed a U-shaped rela-
tionship between HDL-C levels and CVD mortality [11–
13], particularly concerning ischemic stroke. However, 
other studies have reported that lower serum HDL-C lev-
els were related to worse neurological or cardiovascular 
outcomes following a stroke [14–17]. Previous findings 
indicated that HDL function could be a more accurate 
indicator of CVD risk than HDL-C levels alone [30]. A 
recent prospective study demonstrated an inverse cor-
relation between HDL antioxidant capacity in AIS and 
NIHSS scores at admission, identifying capacity as an 
important predictor of clinical outcomes [31]. Moreover, 
multiple studies indicate that while normal HDL typi-
cally exhibits anti-inflammatory properties, throughout 
the acute phase of stroke, it may paradoxically promote 
inflammation, thereby transforming “good” choles-
terol into “bad” cholesterol [32]. During the acute stage 
of ischemic stroke, levels of HDL-related proteins such 
as alpha-1 anti-trypsin, myeloperoxidase, and paraox-
onase-1 may compromise the antioxidant capabilities of Ta
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HDL [33]. Notably, myeloperoxidase, an enzyme found 
in high concentrations in macrophages at atherosclerotic 
lesions, specifically targets apolipoprotein A-1, the major 
protein of HDL, leading to cholesterol accumulation in 
macrophages [34]. Considering these findings, the appar-
ent association between higher HDL-C levels and worse 
outcomes in these results may be attributed to the pro-
inflammatory nature of HDL in the context of AIS.

The impact of genetic factors, including SNPs in genes 
encoding various enzymes, on HDL-C levels has been 
well-documented. Despite the intricate nature of HDL-C 
metabolism regulation, enzymes within the reverse cho-
lesterol transport (RCT) system, such as ABCA1, Leci-
thin: cholesterol acyltransferase (LCAT), CETP, hepatic 
lipase, APOA1/C3/A4/A5, scavenger receptor B type 
I (SCARB1), and lipoprotein lipase, are known to play 
significant roles. From the GWAS analysis on HDL-C 

Fig. 2 Comparison of HDL-C levels in different genotypes under recessive model for (A) rs2575876 and (B) rs1883025 SNPs in ABCA1 gene in the total 
population, men and women. *: P < 0.05, ***: P < 0.001

 

Fig. 1 Odds ratios (ORs) for unfavorable outcomes of ischemic stroke patients at 1, 3, and 12 months according to different levels of HDL-C after adjusting 
for age, gender, BMI, initial stroke severity, hypertension, diabetes, smoking, alcohol drinking, lipid-lowering drug, and anti-diabetics drug
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levels utilizing the Taiwan Biobank dataset, 9 SNPs on 
CETP and ABCA1 genes exhibited substantial associa-
tions with HDL-C expression, also included in the data-
base of GWAS catalog. Specifically, one SNP, rs2575876, 
situated on the ABCA1 gene, demonstrated a consistent 
association with HDL-C levels under a recessive model 
across study subjects, including the total population, men 
and women. Furthermore, this SNP showed a remarkable 
association with unfavorable outcomes at 1 and 3 months 
post-stroke. Notably, rs2575876 has also been linked to 
lipid levels in previous research [35, 36] and identified as 
one of multiple genetic variants directly related to isch-
emic stroke in the Southern Chinese population [37].

The ABCA1 gene, found on chromosome 9q31.1 [38], 
is widely acknowledged as a crucial cholesterol trans-
porter, pivotal in maintaining cholesterol balance within 
the brain and thereby regulating cholesterol homeostasis 
[39]. These variants, intronic, nonsynonymous, or located 
in the promoter region, significantly affect ABCA1 pro-
tein function and expression[40]. Deficiency or genetic 
abnormalities in ABCA1 have increased the susceptibil-
ity to cerebrovascular diseases [41] and can worsen out-
comes following a stroke by impairing the blood-brain 
barrier and white matter [42, 43]. These genetic vari-
ants in ABCA1, whether rare or common, can influence 

circulating levels of HDL-C. A recent meta-analysis 
highlighted that ABCA1 polymorphisms can potentially 
impact plasma lipid levels, which play a role in various 
diseases. This underscores the potential utility of ABCA1 
genotyping in clinical settings for managing lipid profiles 
effectively[44].

The combined effects of abnormal HDL-C levels (both 
low and high HDL-C levels) and rs2575876 AA genotype 
of ABCA1 gene on the risk of poor outcomes after stroke 
were investigated in this study. The findings revealed 
that the risk of unfavorable outcomes increased as risk 
factors increased. It was further hypothesized that the 
ABCA1 gene might not only modulate the effect of lower 
HDL-C levels but also influence the impact of higher 
HDL-C expression on poor outcomes. Interestingly, the 
interaction analysis also reflected an additive interaction 
between abnormal HDL-C levels and the ABCA1 gene in 
worsened outcomes (supplementary Table S5).

Strengths and limitations
The advantages of this study include a large population-
based stroke registry, standardized information collec-
tion protocols, and a relatively high follow-up rate (85%). 
Despite these strengths, certain limitations warrant con-
sideration. Firstly, high HDL-C levels were defined as 

Fig. 3 Association between combined ABCA1 rs2575876 variants, HDL-C levels, and unfavorable outcomes following ischemic stroke. Subjects were 
divided into groups according to sex and HDL-C level. Normal group (M: 1.04 mM/L ≦ HDL-C < 1.30 mM/L, F: 1.30 mM/L ≦ HDL-C < 1.55 mM/L) and ab-
normal group (M: HDL-C < 1.04 mM/L or ≧ 1.30 mM/L, F: HDL-C < 1.30 mM/L or ≧ 1.55 mM/L); OR was adjusted by age, gender, BMI, initial stroke severity, 
hypertension, diabetes, smoking, alcohol drinking, lipid-lowering drug, and anti-diabetics drug. †: P for trend < 0.05
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≥ 1.30 mM /L in men and ≥ 1.55 mM /L in women in this 
study, whereas other studies defined it as > 2.07 mM /L 
[45, 46]. The difference in definition of high HDL-C levels 
was that less than 3% of patients had HDL-C levels > 2.07 
mM /L, potentially limiting the generalizability of the 
findings to other populations. Secondly, while the HDL-C 
concentration measurement was only examined at base-
line, changes during the follow-up period could also bear 
significance. Thirdly, unmeasured confounding factors 
may influence the observed associations despite possible 
covariates being considered in the multivariable regres-
sion analysis. Lastly, it is worth noting that prior findings 
suggest that functional measurements of HDL-C, such as 
particle numbers and size, have demonstrated more sig-
nificant cardioprotective potential compared to HDL-C 
levels alone [47]. However, this study did not analyze 
these functional measurements, highlighting an avenue 
for future investigation in subsequent analyses.

Conclusions
The results indicated a nonlinear association between 
HDL-C levels and poor prognosis following ischemic 
stroke. Genetic variants in the ABCA1 gene may influ-
ence HDL-C expression, potentially exacerbating the risk 
of adverse outcomes following a stroke. The combined 
effects of abnormal HDL-C levels and ABCA1 genetic 
variants could further heighten this risk. These findings 
carry significant clinical implications, suggesting that 
maintaining HDL-C within the normal range contributes 
to favorable outcomes after a stroke. This is particularly 
important given that HDL-C measurements are com-
monly utilized for assessing CVD risk and predicting 
stroke outcomes.
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