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Abstract 

Background Nonalcoholic Steatohepatitis (NASH) results from complex liver conditions involving metabolic, inflam‑
matory, and fibrogenic processes. Despite its burden, there has been a lack of any approved food‑and‑drug adminis‑
tration therapy up till now.

Purpose Utilizing machine learning (ML) algorithms, the study aims to identify reliable potential genes to accurately 
predict the treatment response in the NASH animal model using biochemical and molecular markers retrieved using 
bioinformatics techniques.

Methods The NASH‑induced rat models were administered various microbiome‑targeted therapies and herbal drugs 
for 12 weeks, these drugs resulted in reducing hepatic lipid accumulation, liver inflammation, and histopathological 
changes. The ML model was trained and tested based on the Histopathological NASH score (HPS); while (0–4) HPS 
considered Improved NASH and (5–8) considered non‑improved, confirmed through rats’ liver histopathological 
examination, incorporates 34 features comprising 20 molecular markers (mRNAs‑microRNAs‑Long non‑coding‑RNAs) 
and 14 biochemical markers that are highly enriched in NASH pathogenesis. Six different ML models were used 
in the proposed model for the prediction of NASH improvement, with Gradient Boosting demonstrating the highest 
accuracy of 98% in predicting NASH drug response.

Findings Following a gradual reduction in features, the outcomes demonstrated superior performance 
when employing the Random Forest classifier, yielding an accuracy of 98.4%. The principal selected molecular fea‑
tures included YAP1, LATS1, NF2, SRD5A3-AS1, FOXA2, TEAD2, miR‑650, MMP14, ITGB1, and miR‑6881‑5P, while the bio‑
chemical markers comprised triglycerides (TG), ALT, ALP, total bilirubin (T. Bilirubin), alpha‑fetoprotein (AFP), and low‑
density lipoprotein cholesterol (LDL‑C).
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Conclusion This study introduced an ML model incorporating 16 noninvasive features, including molecular and bio‑
chemical signatures, which achieved high performance and accuracy in detecting NASH improvement. This model 
could potentially be used as diagnostic tools and to identify target therapies.

Keywords NASH, MAFLD, Machine learning, Drug efficacy non‑coding RNA, Biomarkers

Introduction
Metabolic dysfunction-related hepatic condition 
(MDHC), previously identified as a Non-alcoholic fatty 
liver ailment (NAFLA), impacts approximately 25% of 
adults worldwide and emerged as a prevalent chronic 
hepatic ailment on a global scale [1, 2]. It is strongly asso-
ciated with metabolic abnormalities like overweightness, 
cardiovascular risk, and type-2-diabetes mellitus (T2DM) 
[3, 4]. Its pathogenesis involves a multifaceted complex 
phenotypic and microscopic spectrum from basic fatty 
liver, inflammatory steatohepatitis, and fatty liver with 
necroinflammatory lesions, non-alcoholic steatohepati-
tis (NASH) the harbinger of the progressive fibrosis and 
cirrhotic liver and ultimately hepatocellular carcinoma 
(HCC), increasing the likelihoods of liver transplantation 
[5, 6]. With no specific pharmacotherapy approved yet 
directed to MDHC /NASH [7].

The intricate molecular mechanisms underlying the 
development of NASH continue to be largely elusive [8]. 
However, the widely embraced "multiple hit" hypothesis 
provides valuable insights [9]. This hypothesis suggests 
that NASH pathology involves a combination of vari-
ous destructive events, such as liver fat buildup, insulin 
resistance, inflammation, impaired adipose tissue, altered 
gut microbiota, and genetic or epigenetic factors [10]. 
Inflammation is a key driver of NASH [11]. It is currently 
believed that innate immune responses are essential in 
maintaining hepatic inflammation in NASH [12]. Moreo-
ver, the incidence of hepatic fibrosis emerges as an indi-
cator of NASH-related mortality [13].

The absence of a decisive therapy for NASH poses a sig-
nificant challenge [14]. While lifestyle interventions, such 
as weight loss and managing comorbidities, remain the 
gold standard for NASH treatment in individuals with 
cirrhosis and obesity or overweightness, there is a press-
ing need for more effective solutions [15]. Various drugs 
have been tested or are being developed, targeting differ-
ent aspects within and outside the liver, with the goal of 
improving steatohepatitis and fibrosis [16, 17]. The ongo-
ing efforts in therapy development for MDHC and NASH 
primarily revolve around addressing metabolic imbal-
ances, oxidative stress, and innate immunity [18].

The involvement of the gut microbiota in developing 
MDHC/NASH has been an active research entity [19]. 
shifts in gut microbiota composition, disruption of the 
gut barrier, and liver inflammation are key factors in the 

pathogenesis [20]. Thus, targeting the gut microbiota 
has been a potential approach for pharmacological treat-
ments of MDHC [21]. The administration of probiotics 
has demonstrated promising results in reducing intra-
hepatic triglyceride content and aspartate aminotrans-
ferase levels in NASH patients [22]. Furthermore, fecal 
microbiota transplantation has shown promising out-
comes in alleviating steatohepatitis in animal models 
resulting in a significant reduction in the proinflamma-
tory cytokines, intrahepatic lipid accumulation, as well as 
the NAS (MDHC Activity Score) [23–25].

Numerous drugs have undergone clinical trials for 
NASH treatment, but most studies have been limited 
in size and duration, making repeated biopsies imprac-
tical for trial participants [26, 27]. As a result, alterna-
tive methods for assessing drugs’ potential efficacy 
have become essential. Recent advancements have been 
made in utilizing non-invasive biomarkers in the initial 
phases of drug development [28] encompassing a range 
of metabolic parameters like lipid metabolism, insulin 
resistance, systemic inflammation, and hepatic lipogen-
esis, that are employed for confirming the therapeutic 
effects of NASH drugs in initial trials [29]. By integrating 
liver enzymes, ultrasound, and molecular biomarkers, 
researchers can effectively monitor treatment response 
in NASH patients, sparing them from the discomfort 
and potential complications associated with repeated 
invasive procedures [30].

The use of animal models in biological research and 
drug development is a long-standing practice due to sev-
eral key reasons. Firstly, animal models offer significant 
physiological and anatomical similarities to humans, 
particularly mammals, enabling the study of complex 
immune responses and multi-tissue interactions that 
are crucial for understanding drug efficacy and safety. 
This similarity helps inform the design of clinical trials 
and mitigates the risk of adverse effects in human sub-
jects. Rodents, in particular, share orthologous genes and 
physiological homologies with humans, making them 
especially suitable for studying human pathologies [31]. 
Secondly, the controlled experimental environment pro-
vided by animal models allows researchers to manipulate 
variables and isolate specific mechanisms, which can be 
challenging in studies involving humans due to genetic 
and environmental variability [32]. Finally, ethical and 
logistical constraints in human studies, especially those 
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involving invasive procedures, underscore the practi-
cal importance of animal models for initial hypothesis 
testing and therapeutic evaluation prior to clinical trials 
[31]. Therefore, the models facilitate detailed mechanistic 
investigations into pathogenic processes such as NASH, 
including lipid metabolism and inflammatory signaling 
pathways, which are difficult to explore directly in human 
subjects.

Through extensive research on animal models, the 
authors have made significant strides in the search for 
a prophylactic drug for NASH. These investigations 
focused on various approaches, including targeting 
the liver-gut axis to modulate the gut microbiota using 
substances like kefir, the probiotic "Flora 20–14 Ultra 
Strength," the prebiotic inulin fiber "Greena," and synbi-
otics (the mixture of both probiotic and prebiotic). Addi-
tionally, anti-fibrotic strategies that directly addressed 
hepatic stellate cell inflammation, such as Mutaflor, were 
explored, moreover, rosavin was used to hinder inflam-
matory cell recruitment or block inflammatory signaling. 
To gain deeper insights, a panel of gene measurements 
involved in NASH pathogenesis and its epigenetic regu-
lators were implemented. Alongside biochemical, his-
tological, and immunohistochemistry analyses, these 
comprehensive evaluations provided valuable indica-
tions of the therapeutic candidates’ biological actions and 
potential clinical benefits [33–36].

Machine learning (ML) allows autonomous learn-
ing from data that aided a variety of genomics studies 
[37–40]. Drug response prediction (DRP), a specialized 
application of ML, forecasts the phenotypic reactions 
of biological specimens using their molecular [41, 42]. 
These predictors often provide valuable insights [43]. 
Another significant research challenge is determining 
how a clinical drug will react, or how sensitive it will be, 
to a particular form of cancer [44]. Accurate prediction of 
clinical drug responses allows clinicians to comprehend 
variations in drug sensitivity outcomes among patients, 
ultimately reducing the time and costs involved in identi-
fying effective drug candidates [45].

This study aimed to leverage machine learning (ML) 
algorithms to identify key genes that can reliably predict 
treatment responses in an animal model of NASH. By 
integrating biochemical, and molecular markers obtained 
through bioinformatics techniques, the research seeks 
to evaluate the efficacy of microbiome-targeted thera-
pies and herbal drugs in managing NASH. The primary 
objective is to elucidate the genetic and epigenetic RNA 
networks involved in NASH progression and determine 
their potential as predictive markers for drug responses. 
Through rigorous validation of established biochemical-
RNA signature networks in a larger animal cohort using 
bioinformatics and ML methodologies, the study aimed 

to enhance the accuracy of predicting drug efficacy in 
NASH treatment. Ultimately, this research underscores 
the significance of RNA-based predictors in advancing 
personalized treatment strategies for NASH.

Materials and methods
Bioinformatic‑based selection of biochemical‑RNA 
signatures
Selection of the candidate RNAs was done by search-
ing for RNA species (mRNA, miRNAs, and lncRNAs) 
significantly expressed in NASH and contribute to 
pathogenic mechanisms driving the disease. Firstly, 
the KEGG DISEASE Database1 was utilized to visual-
ize the pathogenic pathways and processes involved 
in NASH genesis (Appendix Fig. A.1). Then, the dif-
ferential expressed genes (DEGS) that are differen-
tially expressed in NASH were retrieved from the gene 
chip datasets GSE164760, GSE24807, and GSE126848 
(Appendix Table A.1) of the Gene Expression Omni-
bus (GEO) database.2 From the retrieved significant 
genes, Yes Associated Protein 1 (YAP1), Neurofibro-
min 2 (NF2), Large tumor suppressor 2 (LATS2), TEA 
Domain Transcription Factor 2 (TEAD2), Forkhead box 
protein A2 (FOXA2), Angiomotin Like 2 (AMOTL2), 
SRY-Box Transcription Factor 11 (SOX11), Large tumor 
suppressor 1 (LATS1), Mothers Against Decapenta-
plegic Homolog 4 (SMAD4), Matrix metalloproteinase 
14 (MMP14), Heat shock protein Family D Member 
1 (HSPD1), Integrin Subunit Beta 1 (ITGB1) Tumor 
necrosis factor (TNF) were chosen. These genes were 
selected based on validation by public databases and 
their involvement in pathogenic mechanisms such as 
Hippo signaling, transforming growth factor-β (TGF-β) 
signaling, TNF signaling pathway, apoptosis, oxidative 
stress, and inflammatory response (Appendix Fig. A.2). 
Moreover, all these selected mRNAs were validated for 
their correlation to gut microbiota using the Encyclope-
dia of gut microbiota3 (Appendix Fig. A.3).

The miRNAs and lncRNAs that modify the chosen can-
didate mRNAs were obtained from two databases: miR-
Walk4 and DIANA-LncBase.5 After evaluating their high 
interaction with the candidate mRNAs and their involve-
ment in NASH-related pathogenic mechanisms, miR-
1205, miR-6881-5p, miR-650, miR-6807-5p, as well as 
LncRNAs-RPARP-AS1, SPARCL1-1:2, and SRD5A3-AS1 
were selected (Appendix Figs. A.4-A.6).

1 https:// www. genome. jp/ kegg/ disea se/
2 https:// www. ncbi. nlm. nih. gov/ geo/
3 http:// micro biota. wall. gu. se/
4 http:// mirwa lk. umm. uni- heide lberg. de/
5 www. micro rna. gr/ LncBa se

https://www.genome.jp/kegg/disease/
https://www.ncbi.nlm.nih.gov/geo/
http://microbiota.wall.gu.se/
http://mirwalk.umm.uni-heidelberg.de/
http://www.microrna.gr/LncBase
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Selection of the biochemical signatures was done by 
searching target effector proteins interacting with the 
selected candidate genes and strongly contributed to the 
inflammatory and fibrotic processes of NASH progres-
sion. As a result, TGF-β1 and interleukin-6 (IL6) were 
obtained (Appendix Fig. A.2). The robustness of the cor-
relation between RNAs and biochemical signatures was 
evaluated using the STRING database, which indicated 
a significant enrichment in protein–protein interactions 
(PPI) with a highly noteworthy P-value of 3.33e-15.

Drugs and chemicals
The chemicals were supplied by Ralin (BV, Lijinbaan, 
Netherlands). The study used different microbiome-
targeted therapies including Flora Ultra Strength (FUS) 
probiotic mixture, INNATE Response Formulas (Man-
chester, USA), Inulin Greena (INU) prebiotic, (RESIPI 
PHARMA, Cairo, Egypt), Mutaflor (Escherichia coli 
Nissle 1917 strain) (Ardeypharm GmbH, Herdecke, Ger-
many), Kefir milk (Ready-made probiotics containing 
milk) (Heal Pharmaceutical, Cairo, Egypt) in addition to 
Rosavin (Aktin Chemicals, Chengdu, Chinaherbal) as an 
herbal drug.

Experimental animal design
A hundred and thirty male Wistar rats 140–160 g were 
obtained from Ain Shams University’s Scientific Research 
Centre “MASRI” for this study (Fig.  1A). The rats were 
maintained in a regulated environment with a 12-h light/
dark cycle and a temperature of 20 ± 2℃. Ethical approval 
(FMASU-R 111/2022, FWA 000017585) was obtained 
from Ain Shams Faculty of Medicine’s Ethics Committee, 
following NIH guidelines for laboratory animal care and 
use. Rats were fed a high sucrose and high-fat (HSHF) 
diet (10% sucrose, 20% fat, supplemented with 68.75% 
standard chow, 1% cholesterol, and 0.25% bile salts) for 12 
weeks to induce NASH [46]. After seven days of acclimat-
ing, rats were divided randomly into two groups: stand-
ard chow-fed (Normal group, n = 10) and high-sucrose/
high-fat-fed diet (n = 120). The high-sucrose/high-fat-fed 
rats were subdivided into ten groups (n = 12): NASH-
12wk (fed the diet for 12 weeks), NASH-9wk (fed the diet 
for 9 weeks), FUS (administered 4 × 109 CFU bacteria/
kg/day of FUS probiotic) [47], INU (administered 2 g/
kg/day of INU prebiotic fibers) [48], FUS + INU (admin-
istered both FUS probiotic mixtures and INU prebiotic 
fibers), Mutaflor (administered 4 × 108 CFU of Escheri-
chia coli Nissle 1917/kg bw/day) [49], Kefir (administered 
4 × 107 CFU/ml ready-made kefir milk/kg bw/day) [50], 
and three Rosavin-treated groups (Ros-10, Ros-20, Ros-
30) administered with three doses (10, 20, and 30 mg/kg/
day) of herbal rosavin treatment [51].

Microbiome-targeted therapies were administered 
via gastric gavage, while herbal rosavin treatment was 
administered intraperitoneally, both daily for 12 weeks. 
Prior to sacrifice, the rats were fasted for 12 h, anesthe-
tized with urethane (1.2 g/kg) intraperitoneally, and 
blood samples were collected from the retro-orbital vein. 
The serum was separated by centrifugation (3000 rpm, 10 
min, -20°C). Liver tissues were dissected, with one part 
used for RNA and protein analysis, and the rest fixed in 
10% formalin for histopathology and immunohistochem-
istry. The study design workflow is depicted in Fig. 1.

Histopathological assessment
Liver samples were fixed in buffered formalin, dehydrated 
in alcohol, and embedded in paraffin wax. Subsequently, 
4-µm-thick sections were prepared from these samples. 
Hematoxylin and eosin (H&E) staining was employed to 
evaluate tissue morphology. The severity of NASH was 
graded on a scale of 0 to 8, where scores of NASH (≥ 5), 
borderline (3–4), and no NASH (< 3) were assigned [52]. 
This grading system is based on the sum of scores for ste-
atosis (0–3), lobular inflammation (0–3), and hepatocyte 
ballooning (0–2) [53].

Biochemical analysis
The concentrations of multiple serum biomarkers includ-
ing alanine transaminase (ALT), aspartate transaminase 
(AST), alkaline phosphatase (ALP), gamma-glutamyl 
transferase (GGT), total bilirubin (T. Bilirubin), direct 
bilirubin (D. Bilirubin), albumin, High-density lipopro-
tein cholesterol (HDL-C), total cholesterol (TC), triglyc-
erides (TG), and Low-density lipoprotein cholesterol 
(LDL-C) were measured using commercially available 
kits and an automated Beckman Coulter AU680 auto-
analyzer (Beckman Coulter Inc, CA). Alpha-fetoprotein 
(AFP) levels were quantified using a rat AFP ELISA Kit 
from MyBioSource (Catalog No. MBS452901, San Diego 
SDS, CA, USA). Additionally, interleukin-6 (IL-6) and 
Transforming growth factor beta 1 (TGF-β1) levels in 
liver tissues were determined with sandwich ELISA kits 
(catalog numbers: E0079r and E0124R, respectively; 
EIAab, Wuhan, China) following the manufacturer’s 
instructions.

RNA extraction and quantification
To extract RNA, liver tissue samples underwent pro-
cessing with the miRNeasy Mini Kit (Cat. No. 217004, 
Qiagen, Helman, Germany) following the manufac-
turer’s instructions. The concentration and purity 
of the isolated RNA were assessed using NanoDrop 
(Thermo scientific, USA) to ensure a desired purity 
range of 1.8–2 (A260/A280 ratio). The extracted RNA 
was then reverse transcribed into complementary DNA 
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Fig. 1 Schematic representation of the experimental protocol. A summarizes the study design and laboratory work. B illustrates the ML‑based 
model findings
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(cDNA) using miScript II RT (Cat. No. 218161, Qia-
gen, Helman, Germany) and RT2 First Strand Kit (Cat. 
No. 330404, Qiagen, Helman, Germany) with Thermo 
Hybrid PCR Express (Thermo Fisher Scientific, Massa-
chusetts, USA). The expression levels of SMAD4, SOX11, 
AMOTL2, YAP1, LATS1, NF2, FOXA2, TEAD2, LATS2, 
HSPD1, TNF, MMP14, and ITGB1 mRNAs (Acces-
sion: NM_NM_005359.6, NM_003108.4, NR_002819, 
_001113490.2, NM_001034002, NM_001134543, 
NM_013193, NM_ 021784, NM_003598, NM_014572, 
XR_037196, NM_000594, NM_004995, and NM_004763, 
respectively) were determined. This was done using the 
Quantitect SYBR Green ROX qPCR Mastermix Kit (Cat. 
No. 204143, Qiagen, Helman, Germany). The housekeep-
ing gene GAPDH and Hs_SNORD72_11 miScript Prim-
ers (Accession: QT00079247 and MS00033719) were 
used to normalize the raw data and compare it with a 
control sample. The qPCR protocol commenced with an 
initial activation phase at 95°C for 10 min. This was fol-
lowed by 40 cycles, each involving denaturation at 94°C 
for 15 s, annealing at 55°C for 30 s, and extension at 72°C 
for 30 s. In addition, the expression levels of lncRPARP 
AS-1, lncRNASPARCL1-1:2, and lncRNA-SRD5A3-AS1 
(Accession: ENST00000473970, ENST00000506480, and 
ENST00000433175) were quantified using the RT2 SYBR 
Green ROX qPCR Master Mix (Cat. No. 330500, Qiagen, 
Helman, Germany). The qPCR procedure started with 
an initial activation step at 95°C for 2 min, then 40 cycles 
consisting of denaturation at 95°C for 5 s, and combined 
annealing/extension at 60°C for 10 s. To evaluate the 
hsa-miR-1205, hsa-miR-6807-5p, miR650, and miRNA-
6881-5P (Accession: MIMAT0005869, MIMAT0027514, 
MIMAT0003320, and MS00048069) expression levels, 
the miScript SYBR Green PCR Kit (Cat. No. 218073, 
Qiagen, Helman, Germany) was employed. The qPCR 
program for this analysis began with an initial activation 
step at 95°C for 15 min, then denaturation at 94°C for 15 
s for 40 cycles, annealing at 55°C for 30 s, and extension 
at 70°C for 30 s. Real-time quantitative PCR (RT-qPCR) 
was performed using an Applied Biosystems 7500 FAST 
RT-PCR system (Applied Biosystems, Foster City, CA, 
USA) thermal cycler. Duplicate reactions were conducted 
for each sample, and threshold cycle (Ct) values above 36 
were considered negative expressions. The Livak method, 
RQ =  2(−ΔΔCt), was employed to determine the relative 
quantification of RNA expression (Appendix Table A.2) 
[54].

Statistical analysis
The presented data was expressed as mean ± standard 
deviation (SD). The normality of data distribution was 
assessed using the Shapiro–Wilk test. To assess sta-
tistical differences among the experimental groups, 

GraphPad Prism software (version 8.0, San Diego, CA, 
USA) was utilized to conduct a one-way analysis of vari-
ance (ANOVA). Intergroup comparisons were performed 
using Tukey’s post hoc test. Statistical significance was 
considered when the p-value was below 0.05. For the 
analysis of categorical data, the Chi-square test was 
utilized.

Machine learning model building
In this study (Fig.  2), a comprehensive ML experiment 
was conducted utilizing a dataset comprising 130 samples 
with 2 different groups of signatures. The first group con-
sisted of 20 molecular signature features (HSPD1, TNF, 
MMP14, ITGB1, YAP1, LATS1, NF2, FOXA2, TEAD2, 
LATS2, SOX11, SMAD4, AMOTL2, miRNA-6881-
5P,miR-1205, miR-650,miR-6807-5p, lnc-SPARCL1-1:2, 
lncRNA SRD5A3-AS1, LncRNA RPARP AS-1), while the 
second group contained 14 biochemical features (ALT, 
AST, ALP, GGT, T. Bilirubin, D. Bilirubin, AFP, Albumin, 
TC, TG, HDL-C, LDL-c, IL-6, TGFB1).

The analysis began by conducting machine learn-
ing predictions individually for each group of features 
(Molecular and Biochemical) which allowed us to iden-
tify the best features within each group separately utiliz-
ing the robust Random Forest algorithm. Then, for the 
combined features six ML models were used as follows: 
Random Forest (RF), Logistic Regression (LR), K-nearest 
neighbor (KNN), Gradient Boosting, Decision tree (DT), 
and linear support vector machines (SVMs) to compre-
hensively identify the potential set of features that are 
highly predictive for the drug response with high accu-
racy compared to the invasive histopathological interven-
tions, creating a total of three different modeling phases. 
was split into two sections: 80% was allocated for train-
ing purposes, while the remaining 20% served as a vali-
dation set for all trials. Additionally, various methods 
were utilized to mitigate overfitting, boost efficiency, and 
enhance the models’ generalizability. First, Min–Max 
scaling was employed to normalize the dataset, adjust-
ing features to a range between 0 and 1 to prevent any 
single feature from dominating the model. Next, outlier 
detection was conducted to ensure the dataset lacked sig-
nificant outliers, preventing anomalous data points from 
biasing the model training. Lastly, Recursive Feature 
Elimination with Cross-Validation (RFECV) was imple-
mented to determine the optimal subset of features for 
predicting NASH.

Preprocessing of the data
Data preprocessing is one of the central steps in machine 
learning models’ development, ensuring the data’s quality 
and reliability before it is used by classifiers. In this study, 
there were three datasets: molecular data, biochemical 
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data, and a combined dataset that combined both of 
them. In the preprocessing, any features with missing val-
ues were eliminated, noisy data were cleaned, categorical 
features were converted into numbers, and identified and 
removed outliers. Additionally, a check was conducted to 
ensure the absence of null features.

Binary classification
The target label was reshaped and modified (Histopatho-
logical NASH score) to have only two main classes. The 
two classes were selected to reflect how close the score 
is to the extreme scores, 0 or 8. Scores from 0 to 4 were 
considered as class 0 (HPS Improved), while scores from 
5 to 8 were considered as class 1 (HPS Not Improved). 
However, for biochemical and molecular signatures com-
bined together, the HPS values were kept. That means an 
adjusted accurate prediction of the HPS exact level with-
out grouping similar scores (9 HPS levels from 0 to 8) 

was performed. Also, an additional step was performed 
to adjust the balance between samples belonging to dif-
ferent HPS levels as used-up sampling to increase the 
small number of cases in specific HPS levels.

Feature selection
The feature selection technique was employed to reduce 
the complexity and dimensionality of the data, thereby 
enhancing learning efficiency. Also, the model becomes 
faster and more accurate by choosing only the pertinent 
features, while improving its predicting skills by reducing 
noise [55, 56].

Selecting the important features of ML
A preliminary experiment was conducted to identify 
the machine learning-selected features for predict-
ing improvement levels. The RFECV method was used, 
which works by progressively eliminating features and 

Fig. 2 Sequential Steps of the ML Algorithms Illustrated in a Flowchart
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evaluating prediction accuracy. The optimal set of pre-
dictive features is chosen as the one that maintains or 
exceeds the original accuracy obtained with the full fea-
ture set. The study presents different accuracy levels for 
various feature combinations.

Principal Component Analysis (PCA)
PCA was assessed on sets of features before and after the 
feature selection phase. The PCA analysis shows how the 
prediction strength could be when using different sets 
of features. Dimensionality reduction is a process that 
involves reducing the number of used features in ML 
algorithms. This may also be utilized for enhancing the 
performance and accuracy of ML algorithms. One form 
is to perform data compression. For instance, transform 
3D data into 2D data and remove a feature or dimension. 
It can also be used for reducing dimensions for efficient 
data visualization. Dimensionality reduction may also 
be used to speed up the total duration it takes for other 
learning algorithms to learn. The usage of dimensionality 
reduction reduces the amount of training samples and/or 
the number of features, consequently reducing the train-
ing’s running time. However, the compressed data still 
retains the same information as the uncompressed data.

Feature correlation for each available data set
The goal of this process was to uncover the relation-
ships between the existing features. A correlation matrix 
was employed to evaluate the correlation coefficients 
between different pairs of features. A correlation coeffi-
cient near + 1 or -1 signifies a strong positive or negative 
correlation between the two features, respectively, while 
a value of 0 indicates no relationship between them [57].

Multi‑class classification
In this research, six ML tools were applied, and their per-
formance was evaluated, RF, LR, KNN, GBOOST, DT, 
and SVM [58].

Random Forest classifier (RF)
This ensemble learning technique, utilized for classifi-
cation (and regression), involves constructing numer-
ous decision trees during training and determining the 
final class through a voting process among these indi-
vidual trees [59]. Random forests entail creating a col-
lection of uncorrelated trees using a procedure similar 
to CART, augmented by randomized node optimiza-
tion and bagging [60].

One significant benefit of RF is its computational effi-
ciency, which results in improved prediction accuracy 
without a significant increase in computational demands. 
Moreover, random forests can effectively handle a sub-
stantial number of explanatory variables, even reaching 

into the thousands [61]. As a result, they are recognized 
as one of the leading algorithms in current machine-
learning practices [62].

Logistic Regression (LR)
LR is a widely employed mathematical modeling tech-
nique commonly utilized for epidemiological datasets 
within the realm of machine learning. Initially, LR com-
putes probabilities using the logistic function. It proceeds 
to acquire the coefficients necessary for constructing the 
LR model and ultimately leverages this model for making 
predictions [63]. This model falls under the category of 
generalized linear models and consists of two fundamen-
tal components: the linear part, responsible for executing 
the classification model calculations, and the link func-
tion, which delivers the output of these computations 
[64]. It is valued for its simplicity, interpretability, and 
efficiency.

K‑Nearest Neighbors (KNN)
The KNN is a non-parametric method used for both 
classification and regression. This technique identifies 
the k closest training examples within the feature space. 
In KNN classification, class membership is determined 
through a majority vote among an object’s nearest neigh-
bors, assigning the object to the most common class 
among its k closest neighbors. Here, k is a positive inte-
ger, usually small. When k = 1, the object is assigned to 
the class of its single nearest neighbor [65].

Decision Tree (DT)
In ML, DT serves as a predictive model [66]. A DT is 
structured like a flowchart, each internal node represents 
a test on an attribute, each branch shows the result of 
that test, and each leaf node represents a class label. The 
decision-making process evaluates all attributes, and the 
path from the root to a leaf node outlines the classifica-
tion rules. Essentially, a decision tree acts as an adaptive 
basis function model [67].

Gradient Boosting (GBOOST)
Ensemble machine learning technique that builds predic-
tive models by sequentially combining simpler models, 
typically decision trees, to correct errors made by pre-
vious models. It works by optimizing a loss function to 
find the best model weights, making it highly effective 
for both regression and classification tasks. GBoost often 
produces robust and accurate predictions but can require 
careful tuning to prevent overfitting.

Support Vector Machine (SVM)
SVM [68] is a technique that maps a feature vector into 
a higher-dimensional vector space [69]. In this space, 
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an optimal hyperplane is defined to maximize the mar-
gin between the hyperplane and the nearest data points 
on both sides. By increasing the separation between the 
nearest data points from different classes, the overall 
classification error is reduced.

Model training parameter of classifiers
The hyperparameters of the RF model, such as maximum 
tree depth, minimum sample split, and the number of 
estimators, were adjusted to obtain the best-perform-
ing model (Table  1). The optimization process involved 
experimenting with various parameter combinations 
for the specific technique being used, aiming to find the 
most effective configuration for each dataset.

Machine learning evaluation
The performance of the model was assessed using the test 
dataset. Statistical metrics, such as accuracy, and a con-
fusion matrix were computed to evaluate the effective-
ness of the machine learning algorithms. Additionally, 
the area under the curve (AUC) was utilized for compari-
son purposes [58].

Results
Histological findings
The liver from the normal rats’ group displayed the 
normal structure of the brownish-red color that has a 
smooth and shiny morphology without any pathologi-
cal features. However, livers from the NASH-induced 
groups or the group treated with herbal rosavin appeared 
enlarged, yellowish, and harder. Conversely, compared 
to those of the NASH groups, the livers of rats treated 
with Microbiome-targeted therapies looked redder 
and lighter. Histological examination of the livers in the 
NASH groups revealed severe parenchymal damage, 
ballooned hepatocytes, and micro and macrovesicular 
steatosis. Additionally, the NASH-12wk group exhib-
ited substantial fibrosis. While the microbiome-targeted 
and herbal rosavin-treated groups indicated significant 
improvements in hepatocyte vacuolation, NASH score, 
inflammatory response, and fibrosis (Fig.  3) (Appen-
dix Table A.3). Although the improvements in the Ros-
10 group were less notable compared to other treated 
groups, these findings suggest that Microbiome-targeted 

therapies or herbal rosavin can potentially improve 
NASH progression. Overall, the group treated with a 
high dose of rosavin, and the FUS/INU combination 
group exhibited a significantly greater ameliorative effect 
compared to other treatments. The groups treated with 
probiotics (FUS, Mutaflor, and Kefir) and the Ros-20 
group showed a similar pattern of improvement.

Microbiome‑targeted therapies and herbal rosavin impact 
on serum biochemicals
The levels of all serum biomarkers exhibited significant 
differences among the 11 experimental groups (P < 0.001), 
as shown in Table  S1. Rats that were fed an HSHF diet 
for either 9 or 12 weeks displayed a notable increase in 
serum liver enzymes (ALT, AST, ALP, albumin, GGT, 
total bilirubin, direct bilirubin) and lipid profile (TC, TG, 
and LDL-C), along with elevated levels of the AFP tumor 
marker. However, HDL-C showed a different behavior 
and significantly decreased in both NASH groups com-
pared to the group that was normally fed chow. While 
administration of either microbiome-targeted therapies 
or herbal rosavin, simultaneously with a high-sucrose/
high-fat diet, significantly modulated these variables 
detected in NASH groups.

Effect of microbiome‑targeted therapies and herbal 
rosavin on the target effector signatures
Inducing NASH markedly raised the levels of IL-6 and 
TGF-β proteins in liver tissue compared to the normal 
group. However, in groups treated with microbiome-
targeted therapies and herbal rosavin, there were notable 
decreases in these protein levels compared to both NASH 
groups. (P < 0.05). These observations suggested that both 
microbiome-targeted therapies, as well as herbal rosavin, 
effectively ameliorated the inflammation and fibrosis 
grades detected in NASH Table S1.

Effect of microbiome‑targeted therapies and herbal 
rosavin on the expression profile of RNA signatures
Both NASH groups experienced significant increases 
in the YAP1, HSPD1, TNF, TEAD2, ITGB1, FOXA2, 
MMP14, and SMAD4, as well as miR-1205, miR-6881-5p, 
miR-650, miR-6807-5p, and SPARCL1-1:2 expression. At 
the same time, LATS1, LATS2, AMOTL2, SOX11, NF2, 
LncRNAs-RPARP-AS1, and SRD5A3-AS1 were signifi-
cantly suppressed in both NASH groups, in comparison 
to the Normal group. However, the daily treatment with 
either microbiome-targeted therapies or herbal rosavin 
slightly normalized the significant expression of hepatic 
RNA signatures (Fig.  4). The pronounced effect was 
observed in the ros-30 treated group and the FUS/INU 
combination group.

Table 1 Random forest hyperparameter tuning

Parameter Values

max_depth 4

min_samples_split 3

n_estimators 50

random_state 42
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The ML results
Correlation analysis
The correlation matrix, as illustrated in Fig. 5, displayed 
the levels of correlation between pairs of features over the 
entire dataset for the molecular, biochemical, and both of 
them combined, providing insight into feature relation-
ships. The correlation coefficient was contained in each 
cell of the matrix. Based on the connection with the tar-
get group feature, Tables 2 and 3 displayed the sorted fea-
tures that had a high association.

Feature selection and PCA
For the Molecular signatures, the RFECV was adopted 
[70]. The method selected 2 out of 20 features which kept 
the same prediction accuracy level. Figure  6A depicts 
the performance of distinct features. The two selected 
features are HSPD1 and miR-6807-5p. Feature selec-
tion phases identified these 2 genes as being the two 
most important genes in the prediction of improve-
ment. PCA was performed on sets of features before 
and after the feature selection phase. The PCA analysis 
shows how the prediction strength could be when using 
distinct sets of features. The set of selected features for 
the molecular signatures could keep the same level of 

prediction accuracy although 18 features were dropped. 
The selected set of features showed good discrimination 
between the two reconstructed categories of Improved 
case scores when examined by the PCA plot as shown in 
Fig. 6B&C.

However, the feature selection for the Biochemical 
Signatures did not show any improvement when fea-
tures were reduced. Thus, the whole set of 14 features is 
used for predictions as they could together differentiate 
between predicted classes. The discriminative ability of 
the features is shown in the PCA (Fig. 7A). Also, the dis-
criminative ability of the combined 34 features is shown 
in the following PCA (Fig. 7B).

Confusion matrix of random forest classifier
The confusion matrix presented in Table  4 shows 
the correctness of the predictions for both classes, 
improved (HPS: 0 → 4) and Not-Improved (HPS: 5 → 8) 
based on the molecular data only. In the test set results, 
the Improved samples that were predicted correctly 
were 18 out of 20), while the Not-Improved samples 
were all correctly predicted (6 out of 6) based on the 
molecular data only. The correct portions of prediction 
are highlighted in bold in the above confusion matrix. 

Fig. 3 Microbiome‑targeted therapies and herbal rosavin impact on hepatic steatosis, inflammation, and fibrosis assessed using H&E staining. 
Histological examinations revealed (A) Normal group: normal architecture. B NASH‑12 wk and (C) NASH‑9wk groups: showed severe parenchymal 
damage, ballooned liver cells, and micro and macro‑vesicular steatosis. Additionally, the NASH‑12wk group showed substantial fibrosis. Notable 
histological improvements in steatosis, inflammation, fibrosis, and NASH score in (D) FUS, (E) INU, (F) FUS + INU, (G) Mutaflor, (H) Kefir, (I) Ros‑10, (J) 
Ros‑20 and (K) Ros‑30 treated groups (Magnifications: × 100)
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While the confusion matrix presented in Table 5 shows 
the correctness of the predictions for both classes, 
improved (HPS: 0 → 4) and Not-Improved (HPS: 5 → 8) 
based on the biochemical data. In the test set results, 
the Improved samples that were predicted correctly 

were 20 out of 20), while the Not-Improved samples 
were all correctly predicted (6 out of 6). The correct 
portions of prediction are highlighted in bold in the 
above confusion matrix. Finally, the correctness of the 
predictions for both classes is presented in Table  6, 

Fig. 4 Differential expression of RNA signatures in the hepatic tissues. Values mean ± SD. *P < 0.001 compared to the Normal group. ##P < 0.001 
and #P < 0.05 compared to NASH‑12wk group, aP < 0.05 compared to NASH‑9wk. One‑way ANOVA followed by Tukey’s multiple comparison test

Fig. 5 Heatmaps represent the correlation analysis. A Correlation matrix for the Molecular features. B Correlation matrix for the Biochemical 
features. C Correlation matrix for the combined features
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Improved (HPS: 0 → 4) and Not-Improved (HPS: 5 → 8) 
based on both the molecular and biochemical features. 
In the test set results, the Improved samples that were 
predicted correctly are (20 out of 20), while the Not-
Improved samples were all correctly predicted (6 out of 

6). The correct portions of prediction are highlighted in 
bold in the above confusion matrix.

Area Under the Curve (AUC)
For the molecular features, the cross-validation results 
for both feature sets showed almost identical results. 
Also, the average area under the ROC curve was very 
high with the selected feature set predictions. Figure  8 
shows the comparison between the full and selected 
feature set models when plotted on the AUC plot, dis-
playing how accurate the prediction models were. Only 
a few numbers of instances were misclassified. The aver-
age accuracy achieved was 98%. The True positives refer 
to the improved samples that were predicted correctly. 
While the True negatives refer to the Not Improved sam-
ples that were correctly predicted. On the other hand, 
the cross-validation results of the biochemical features 
showed that the average accuracy achieved was 97%. The 
average AUC was 99% (Fig.  8). Additionally, the cross-
validation results of both the molecular and the biochem-
ical features showed that the average accuracy achieved 
was 98%. The average AUC was 100% (Fig. 8).

Multi‑class classification and performance evaluation 
results
The prime incentive of the multi-class classification was 
the development of models capable of distinguishing 
between the two category classes (HPS Improved, class 
0), (HPS Not-Improved, class 1). The 2 main columns 
show two different up-sampling stages. Initially, the 
results of the GBoost Classifier outperformed Random 
Forest, DT, SVC, LR, and KNN algorithms. The perfor-
mance of the models is summarized in Table  S2. After 
up-sampling, the results of the machine learning models 
applied to our dataset focused on the molecular features 
only showed that the GBoost model stands out as the top 
performer, achieving an impressive accuracy of 94.91% 
and a test accuracy of 94.44% reflecting its solid scores 
with the molecular data. Furthermore, the model exhibits 
great precision at 0.95 which evaluates the model’s ability 
to reduce false positives and recall at 0.94 which shows 
how many of the true positive cases were successfully 
predicted. For the biochemical features, the Support Vec-
tor Machine with Logistic Regression (SVC-LR) model 
emerges as the standout performer achieving an accuracy 
of 89.35% and a test accuracy of 90.74%. Also, scoring a 
decent precision of 0.94 and recall of 0.92. For the com-
bined features the GBoost model outperformed other 
algorithms, achieving the highest accuracy at 99.07% and 
test accuracy at 98.15% as well as for precision and recall 
scoring 0.98. The confusion matrix presented in Fig. S1 
shows the correctness of the predictions for all classes, 
starting from class 0 up to class 8,

Table 2 Sorted molecular features based on correlation with the 
target group feature

Molecular Features Correlation 
Degree

ITGB1 0.82

YAP1 0.8

HSPD1 0.79

miR‑6807‑5p 0.78

miR‑1205 0.77

TEAD2 0.77

SMAD4 0.77

FOXA2 0.76

Lnc‑SPARCL1‑1:2 0.74

MMP14 0.74

miR‑650 0.74

Mir‑9881‑5p 0.72

TNF 0.71

NF2 0.7

LATS1 0.66

LATS2 0.66

RPARP‑AS1 0.66

SRD5A3‑AS1 0.68

AMOTL2 0.6

SOX11 0.54

Table 3 Sorted molecular features based on correlation with the 
target group feature

Biochemical Features Correlation 
Degree

AFP 0.82

ALP 0.73

ALT 0.7

Albumin 0.69

IL‑6 0.69

AST 0.67

GGT 0.65

TG 0.61

T. bilirubin 0.54

TGFB1 0.54

TC 0.39

D. bilirubin 0.34

HDL‑C 0.32

LDL‑C 0.31
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Selecting the most important features
In this experiment, the feature selection was performed 
with many details and using different techniques. The 

methodology of feature selection was based on gradual 
decrement of features and continuous checking for predic-
tion accuracy. At some point, the accuracy will drop by a 

Fig. 6 A Prediction performance for different numbers of features. PCA analysis for the features B before feature selection with 20 features, and C 
after feature selection (2 features)

Fig. 7 A PCA analysis for the biochemical features, B PCA analysis for the combined features
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significant value. The set of features before this drop is con-
sidered the best prediction feature set. The selected set of 
molecular features were YAP1, LATS1, NF2, SRD5A3-AS1, 
FOXA2, TEAD2, miR-650, MMP14, ITGB1, miR-6881-5P, 
while the biochemical were ALT, ALP, T. Bilirubin, AFP, 
TG, LDL-C. Using these features only resulted in a highly 
accurate prediction using the RF technique. The prediction 
accuracy was 98.4% (Fig. S2).

Discussion
Despite the availability of several scoring systems for 
NASH severity classifications such as the NASH Clini-
cal Research Network (NASH CRN) and the NAFLD 

Activity Score (NAS) that categorize NASH based on 
fibrosis stages or multifactorial scores including steato-
sis, cellular ballooning, and inflammation. These systems 
have limitations in capturing the full spectrum of cellu-
lar and stromal damage that drives the disease, and they 
are not sensitive enough to accurately indicate changes 
in the severity of the disease over time. Additionally, the 
currently available scoring systems illustrate only moder-
ate-to-fair reproducibility [52]. Despite these drawbacks, 
the current framework for approving NASH therapies 
depends on pathological scoring methods performed 
manually [71, 72].

Intestinal microbes play a crucial role in metaboliz-
ing dietary compounds and producing bioactive mol-
ecules, impacting both physiological and pathological 
conditions that have the potential to promote HCCs 
and chronic liver diseases’ development and progres-
sion [73]. Accordingly, targeting the intestinal perme-
ability as well as gut microbiome through interventions 
like fecal microbiota transplantation, diet, synbiotics, 
probiotics, and prebiotics shows promise as one of the 
innovative approaches for MAFLD/NASH treatment 
[74]. Animal studies have shown that probiotics have 
a profound effect on NASH, decreasing fatty acid pro-
duction, metabolic endotoxemia, and inflammation. 
Wagnerberger et al. [75] proved that the administration 
of Lactobacillus casei strain Shirota probiotic are found 
to mitigate fructose-driven NAFLD by attenuating the 
hepatic Toll-like receptor 4 signaling cascade. A few of 
the research works have reported improvement in liver 
functions and histology with probiotic treatments, but 
additional randomized controlled trials are required to 
confirm their therapeutic effectiveness [76].

Recently, numerous research works have diagnosed 
MAFLD and/or NASH using ML focusing on particu-
lar avenues of the disease such as quantifying lipid con-
tent, staging by imaging, fibrotic status, or even using 
clinical practice records [77, 78]. Moreover, integrating 
ML algorithms into established bioinformatics could 

Table 4 Confusion matrix for the molecular data

Actual Predicted
Improved Not‑

Improved
18 2

0 6

Table 5 Confusion matrix for the molecular data

Actual Predicted
Improved Not‑

Improved
20 0

0 6

Table 6 Confusion matrix for both the molecular and 
biochemical data

Actual Predicted
Improved Not‑

Improved
20 0

0 6

Fig. 8 A AUC for the Molecular features. B AUC for the Biochemical features. C AUC for the Combined features
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present tools that accurately predict or assist in the 
diagnosis of NASH, and identify therapeutic targets 
[79]. Sorino et al. [80] developed a web application on 
the basis of a Neural Network (NN) that utilized medi-
cal records to predict NAFLD, especially its absence. 
The application demonstrated a high level of accuracy 
of 77.0%, specificity of 100%, and sensitivity of 73%.

Therefore, the present research aims to use bioinfor-
matics and ML techniques to develop a reliable model 
to predict drug efficacy in NASH. To achieve this, the 
previously established RNA-biochemical signatures 
were re-validated on a larger sample size of animals 
across different NASH therapy modules, involving 
microbiome-targeted therapy and herbal drugs. Our 
goal is to present a group of features that can assist in 
predicting the response to different therapeutic modali-
ties for NASH. Herein, various public microarray data-
bases were utilized for selecting functionally linked 
RNAs and biochemical signatures involved in patho-
genic mechanisms driving the NASH pathogenesis, at 
genetic, epigenetic, and proteomic levels. Consequently, 
mRNAs (TEAD2, YAP1, LATS1, LATS2, NF2, FOXA2, 
AMOTL2, SOX11, SMAD4, MMP14, HSPD1, ITGB1, 
TNF), miRNAs (miR-1205, miR-6881-5p, miR-650, miR-
6807-5p), lncRNAs (RPARP-AS1, SPARCL1-1:2, and 
SRD5A3-AS1) and target effectors (IL-6 and TGF-β1) 
were retrieved in addition to the serum liver enzymes 
and lipid profile biomarkers (ALT, AST, ALP, Alb, GGT, 
T. Bilirubin, D. Bilirubin, TC, TG, and LDL-C) and the 
AFP.

In the current study, the treatment of animals with 
either microbiome-targeted therapies or herbal rosavin 
for 12 weeks diminished the histopathological and meta-
bolic abnormalities induced in the NASH groups. They 
decreased the degree of NASH score, the hepatic level 
of IL-6 and TGF-β1 as well as improvement in both 
liver biomarkers and lipid panel. The hepatoprotective 
effect of either microbiome-targeted therapies or herbal 
rosavin may be attributed to diminished pro-inflamma-
tory cytokines’ production, inhibition of inflammatory 
signaling, antioxidant signaling pathways’ activation, 
enhanced cellular immunity, and decreased tissue apop-
tosis [34, 36].

Regarding mRNA signatures, there were significant 
increases in the hepatic expression of YAP1, HSPD1, 
TNF, TEAD2, ITGB1, FOXA2, MMP14, and SMAD4, 
with significant decreases in LATS1, LATS2, AMOTL2, 
SOX11, and NF2 in both NASH groups, as against the 
Normal group. The daily treatment with either microbi-
ome-targeted therapies or herbal rosavin modulated the 
expression of hepatic mRNA signatures by ameliorating 
the signaling pathways contributing to NASH progres-
sion including Hippo signaling, TGF-β signaling, TNF 

signaling, and apoptosis. The Hippo signaling pathway 
is a highly conserved regulatory system that controls the 
hepatic size, liver regeneration, and hepatic cell differen-
tiation and survival [81]. YAP serves as a pivotal down-
stream mediator of the Hippo signaling pathway. Upon 
dephosphorylation, it translocates to the nucleus where 
it forms a complex with the transcription factor TEAD, 
facilitating essential cell proliferation during liver regen-
eration. However, prolonged activation of YAP can lead 
to the development of malignant tumors. NF2 and angio-
motin (AMOT), situated upstream in the Hippo pathway, 
contribute to YAP phosphorylation via LATS1/2 during 
cell fate determination and developmental processes. 
SMAD4, a member of the SMAD protein family, exhibits 
dual roles as both a tumor suppressor and an oncogene 
in cancers such as hepatocellular carcinoma. FOXA2 
expressed prominently during early fetal liver develop-
ment but absent in mature hepatocytes or bile duct cells, 
represents a potential marker for hepatic cell prolifera-
tion [81]. TGF-β signaling mechanism performs a promi-
nent part in the maintenance of normal homeostasis of 
the liver and is involved in different stages of liver fibro-
sis, which further contributes to the progression of NAS 
[82]. TNF signaling is one of the primary regulators of 
inflammation. It has decisive functions in tissue homeo-
stasis, regulating cell death, and inflammation, which 
suggests a potential interlinkage between the severity of 
NASH and its distinct levels [83]. Evidence shows that 
activated Kupffer cells can worsen liver injury by activat-
ing TGF-β and TNF signaling, leading to the production 
of new extracellular matrix (ECM) proteins like collagen, 
which contribute to liver fibrosis. This process activates 
matrix metalloproteinases (MMPs) such as MMP14, 
which induce the expression of hepatic vascular adhe-
sion molecules. Activated integrins, such as ITGB1, on 
immune cells interact with adhesion molecules to pro-
mote cell detachment from the ECM. Dying hepatocytes 
release stress signals that affect nearby hepatic cells, 
triggering inflammation and fibrosis [36]. Therefore, 
the modulatory effect of microbiome-targeted therapies 
or herbal rosavin on mRNA signatures may result from 
inhibition of the Hippo, TGF, and TNF signaling path-
ways, and activation of antioxidant signaling pathways. 
In the current study, the combination of probiotics and 
prebiotics is more ameliorative than administering them 
individually because prebiotics serve as a food source 
for probiotics, enhancing their growth and activity. This 
synergistic effect can lead to a more robust and effective 
modulation of the gut microbiome, resulting in improved 
NASH progression. Furthermore, the combination group 
and the high-dose rosavin-treated group exhibited a sim-
ilar modulatory effect. This may be owing to their action 
on similar pathways or mechanisms.
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In the current study, a 12-week duration was chosen 
based on several considerations, including previous stud-
ies, the nature of the experimental model, and practical 
constraints. Many studies have successfully employed a 
12-week duration to evaluate the efficacy of treatments 
in similar experimental models of metabolic disorders 
[84–87] finding this period sufficient to observe signifi-
cant physiological and metabolic changes and provid-
ing meaningful insights into the immediate effectiveness 
of the therapies. Additionally, the treatments applied in 
our study have previously been tested in human subjects, 
showing prospective effects and demonstrating safety 
and efficacy over extended periods in clinical settings 
(Table  S3). These prior human studies provide a strong 
foundation for our choice of treatments.

Additionally, the outcomes revealed a significant 
upsurge in the hepatic expression of miR-1205, miR-
6881-5p, miR-650, miR-6807-5p, and SPARCL1-1:2 in 
the two NASH groups (NASH-12wk and NASH-9wk) 
compared to the Normal group. Moreover, there was a 
notable decrease in the levels. The expression of these 
miRNA and lncRNA signatures has been reversed with 
microbiome-targeted and herbal rosavin therapies, along 
with diet manipulation. The functional enrichment of 
these epigenetic signatures showed their involvement in 
NASH-related pathogenic mechanisms including TGF-β 
and Hippo signaling. This can explain their differential 
expression level among the NASH groups and the other 
treated groups. The important part of miRNAs and lncR-
NAs in developing NASH are widely recognized. miRNAs 
regulate gene expression by binding to specific mRNA 
sequences, resulting in either the degradation of mRNA 
or the suppression of translation [88]. Meanwhile, lncR-
NAs act as miRNA sponges, preventing the degradation 
of mRNAs targeted by miRNAs, thereby preserving their 
stability [89]. These molecules are involved in the progres-
sion of NASH [90], owing to their strong association with 
the inflammatory and fibrotic mechanisms and pathways 
that drive the disease pathogenesis [91]. Herein, differ-
ent machine-learning models; (RF, LR, KNN, GBoost, 
DT, and SVM) were used to build models that can differ-
entiate between our two classes (HPS Improved), or not 
(HPS Not-Improved). The data was sectioned into two 
partitions: 80% for training and 20% for validation. Also, 
adjustments were made to balance samples belonging to 
different HPS levels by using up sampling to increase the 
number of cases in specific HPS levels. The model’s effec-
tiveness was assessed using various performance evalua-
tion metrics, including accuracy, precision, and recall, in 
addition to the analysis of the confusion matrix. For the 
combined molecular and biochemical features, GBoost 
was the best model outperforming other algorithms in 
terms of all evaluation metrics achieving an accuracy of 

98%. However, after a gradual decrement of features, the 
results showed a better performance when using the Ran-
dom Forest classifier, achieving an accuracy of 98.4%. The 
top selected set of molecular features was YAP1, LATS1, 
NF2, SRD5A3-AS1, FOXA2, TEAD2, miR-650, MMP14, 
ITGB1, miR-6881-5P, while the biochemicals were ALT, 
ALP, T. Bilirubin, AFP, TG, LDL-C. This variation of the 
result may suggest the dynamic nature of machine learning 
model selection and its sensitivity to feature composition 
[92]. The principal component analysis (PCA) before and 
after the feature selection phase showed that the 9 selected 
features could keep the same level of prediction accuracy 
and showed better discrimination between classes (NASH 
vs. Non-NASH). Ultimately, the RF classifier containing 9 
features showed very high accuracy and the average area 
under the ROC curve with the selected 9 features was 0.99 
which means that the 9 features have superior diagnostic 
characteristics for NASH disease (Fig. 1B).

In this study, different machine learning methods were 
tried to compare performance over our dataset. Iterative 
experiments with optimizations showed that Random 
Forest is performing well over other methods. The set of 
algorithms was selected based on either the simplicity or 
interpretability of the results. In addition, other methods 
were used for comparison and evaluation of performance.

The process began with Decision Tree methods, which 
highlight important features that achieve higher infor-
mation gain during the splitting of tree nodes. Decision 
Trees are easily interpretable models able to capture non-
linear relationships and feature importance. Random 
Forest provides the same ability while being more resist-
ant to overfitting by using an ensemble of trees. Knowing 
the important features is crucial to help reduce experi-
mental efforts. RF handles high-dimensional data and is 
robust to outliers and noisy data.

Other methods used for comparing performance 
included: Logistic Regression K-Nearest Neighbors (KNN), 
SVM, and lastly Gradient Boosting which is an ensem-
ble method that sequentially builds models to correct the 
mistakes of previous models and achieves high predictive 
accuracy. Although it has a high predictive ability, it is more 
prone to overfitting and less effective in deciding feature 
importance when compared to Random Forest.

To tackle concerns about overfitting, a multi-step strat-
egy was developed to strengthen our model’s ability to 
generalize effectively. Initially, The data was rigorously pre-
processed, cleansing it of any null values or duplicates to 
ensure integrity and remove potential biases. RFECV was 
then utilized to identify the most crucial features of the 
model. This method systematically prunes less relevant 
features, homing in on those that carry the most discrimi-
natory power and reducing the risk of overfitting. In sum-
mary, ensuring the model’s generalizability was a priority. 
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The approach encompassed thorough data preprocess-
ing, feature selection via RFECV, and the application of 
diverse algorithms. These combined efforts are believed to 
enhance the robustness and reliability of the findings.

AST, ALT, and ALP are typically utilized as indica-
tors of liver injury, but they lack specificity in diagnosing 
NASH [11, 93]. Ma et al. [94] developed a machine learn-
ing predictive model for NAFLD, by selecting 5 features 
such as weight, TG levels, ALT, GGT, and serum uric 
acid levels that provided the most accurate predictions in 
their Bayesian network model achieving an accuracy rate 
of 83%, a specificity of 0.878, and a sensitivity of 0.675. By 
leveraging extensive electronic health records from the 
United States, Fialoke et  al. [95] established a machine-
learning model that was capable of accurately predicting 
NASH. This model incorporated longitudinal data of key 
biomarkers such as AST, ALT, AST/ALT ratio, and plate-
let count, along with basic demographic information and 
diabetes status (AUC = 0.88).

Costello et  al. [96] emphasized predicting drug 
response based using genomic, epigenomic, and prot-
eomic datasets collected from human breast cancer cell 
lines. Ali and Aittokallio [97] proposed a Bayesian multi-
task learning model on a dataset of 53 breast cancer cell 
lines that integrates data from multiple omics sources 
including RNA-sequencing, point mutations, somatic 
DNA copy number variation, protein abundance, tran-
script expression, and DNA methylation to predict drug 
response reporting that this multi-task learning model 
allows the model to learn a more inclusive view of the 
cancer cells and to make more accurate predictions of 
drug response suggesting the machine learning a promis-
ing tool for precision oncology.

Stetson et  al. [98] reported three extensive pharma-
cogenomic investigations, involving the screening of 
anticancer compounds across more than 1,000 diverse 
human cancer cell lines. The datasets were combined for 
creating and authenticating multi-omics predictors for 
drug responses. The study makes a comparison of drug 
response models constructed via various techniques, 
including a support vector machine, penalized linear 
regression model, as well as random forest. The reliabil-
ity and accuracy of each drug response model were rig-
orously evaluated through cross-validation across three 
independent datasets. Notably, in comparison to the 
commonly used elastic net regression as well as SVM, 
the RF yielded more robust and precise prediction signa-
tures. The resulting drug response signatures can be used 
to stratify patients into treatment groups based on their 
tumor biology, offering two significant advantages: facili-
tating the repositioning and repurposing of existing anti-
cancer therapies and expediting the process of bringing 
preclinical drugs to market.

Strengths and limitations
The strength of this study lies in its integration of 
bioinformatics and ML that utilized the biochemi-
cal and molecular features to identify reliable NASH 
drug efficacy predictors. The model was developed 
using a high-quality, biopsy-confirmed dataset, crucial 
for accuracy and reliability. By utilizing biopsy-con-
firmed diagnoses as the gold standard, the study iden-
tified relevant non-invasive biomarkers, enhancing 
the model’s predictive power and clinical relevance. 
Additionally, the inclusion of multiple ML algorithms 
such as RF, LR, KNN, GBoost, DT, and SVM enhances 
the robustness of the predictive model. However, this 
study also has some limitations. While it sheds light 
on the potential effectiveness of microbiome-targeted 
therapies and herbal remedies in managing NASH, it’s 
essential to recognize certain drawbacks. It primar-
ily examined a limited selection of such drugs, pos-
sibly not fully representing the spectrum of potential 
interventions for NASH. Future investigations should 
encompass a broader range of pharmaceutical agents 
and treatment methods. Future studies will include a 
wider variety of NASH models, such as genetically 
modified mice and additional dietary models, to cap-
ture an even broader range of disease phenotypes 
and enhance the generalizability of the findings. Also, 
models derived from data collected in animal models 
need comprehensive validation in clinical settings. It 
is crucial to conduct validation studies across diverse 
human populations with NASH and real clinical sce-
narios to validates the effectiveness of the applied 
treatments as well as to ensure the reliability and gen-
eralizability of these models.

Conclusion
The objective was to develop an algorithm to evaluate 
the efficacy of conventional liver blood tests combined 
with a panel of interacting mRNAs-miRNAs-LncRNAs 
in identifying a specific set of features that can reliably 
predict drug efficacy in Nonalcoholic Steatohepatitis 
(NASH). Utilizing noninvasive biomarkers for predict-
ing treatment response reduces the need for invasive 
procedures like liver biopsies, thereby minimizing 
patient discomfort and associated risks. This approach 
can drive the development of new therapeutic targets 
and strategies, potentially leading to more effective 
treatments for NASH.
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