본문으로 이동

AutoML

위키백과, 우리 모두의 백과사전.
TedBot (토론 | 기여)님의 2024년 6월 1일 (토) 14:36 판 (봇: 같이 보기 문단 추가)
(차이) ← 이전 판 | 최신판 (차이) | 다음 판 → (차이)

AutoML(Automated machine learning)은 실제 문제에 기계 학습을 적용하는 작업을 자동화하는 프로세스이다.

AutoML에는 원시 데이터 세트부터 시작하여 배포 준비가 된 기계 학습 모델 구축까지 모든 단계가 포함될 수 있다. AutoML은 머신러닝 적용에 대한 점점 커지는 과제에 대한 인공지능 기반 솔루션으로 제안되었다. AutoML의 높은 수준의 자동화는 비전문가가 기계 학습 전문가가 될 필요 없이 기계 학습 모델 및 기술을 사용할 수 있도록 하는 것을 목표로 한다. 기계 학습을 엔드투엔드에 적용하는 프로세스를 자동화하면 더 간단한 솔루션을 생성하고 해당 솔루션을 더 빠르게 생성하며 종종 수동으로 설계한 모델보다 성능이 뛰어난 모델을 생성할 수 있는 이점도 제공된다.

AutoML에 사용되는 일반적인 기술에는 초매개변수 최적화, 메타 학습, 신경 아키텍처 검색이 포함된다.

같이 보기

[편집]