

1

Treelogy: A Benchmark Suite for Tree Traversals

Nikhil Hegde, Jianqiao Liu, Kirshanthan Sundararajah, and Milind Kulkarni School of Electrical and Computer Engineering

Purdue University

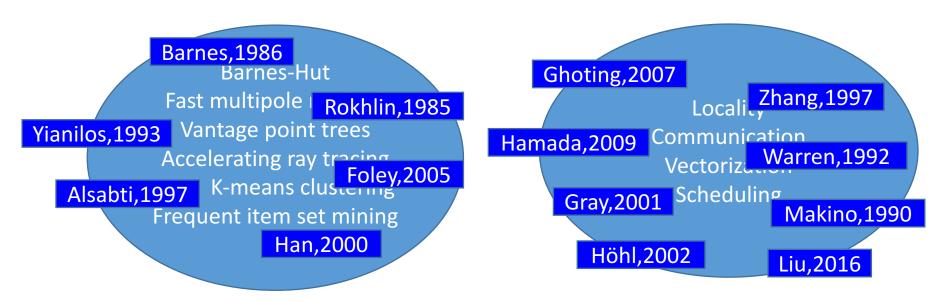
Tree algorithms

- Tree algorithms are important
 - Data mining, statistics, scientific computing, graphics, bioinformatics etc.
- Application-specific optimizations and tree algorithms have been developed over the years

Tree algorithms and Optimizations

Tree algorithms

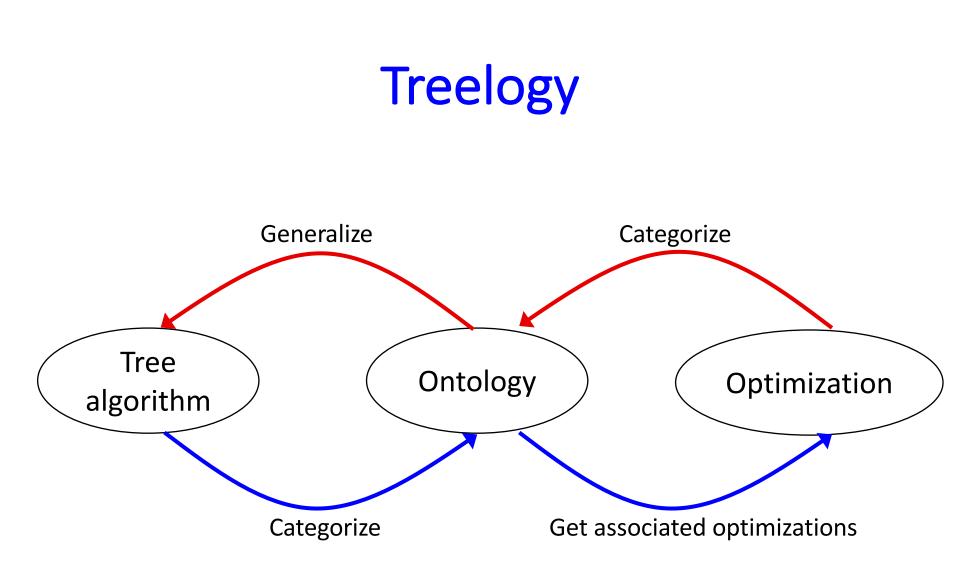
Optimizations



Tree algorithms and optimizations

- 1. Does the tree algorithm admit an existing optimization?
- 2. Can an optimization be generalized to other tree algorithms?

Treelogy helps to answer these questions.



Contributions

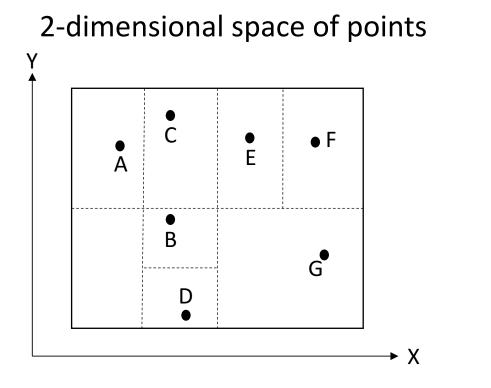
- Ontology for tree traversal algorithms
- Mapping of optimizations with structural properties of tree algorithms
- A suite of 9 tree traversal algorithms from multiple domains
- Evaluation with multiple tree types and hardware platforms (GPUs, shared- and distributed-memory systems)
- <u>https://bitbucket.org/plcl/treelogy</u>

Background

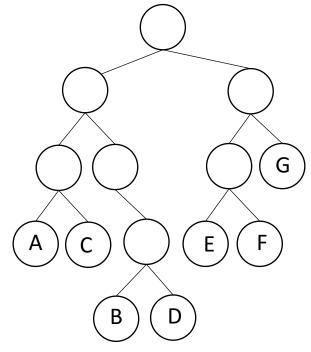
- Why trees and how?
 - Search space elimination and compact data representation
 - Often traversed repeatedly
- Metric trees and n-fix trees are the most common types

Examples – metric trees

e.g. K-dimensional (kd-), Vantage Point (vp-), quad-trees, octrees, ball-trees

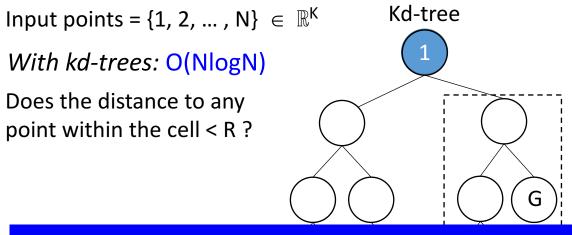


Binary kd-tree, 1 point /leaf cell



Kd-tree for two-point correlation

Goal: for every point, find the number of points that are located within a given distance R. *Naïve solution:* $O(N^2)$

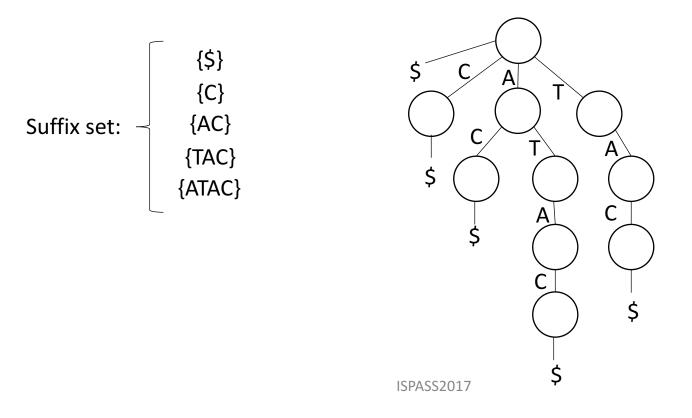


Treelogy kernels with metric trees:

- 1. Two-point correlation (PC) 2.
- 3. K-Nearest Neighbor (K-NN) 4.
- 5. K-means clustering (KC) 6.
- 7. Fast multipole method (FMM)
- Nearest Neighbor (NN)
- Barnes-Hut (BH)
- Photon mapping (PM)

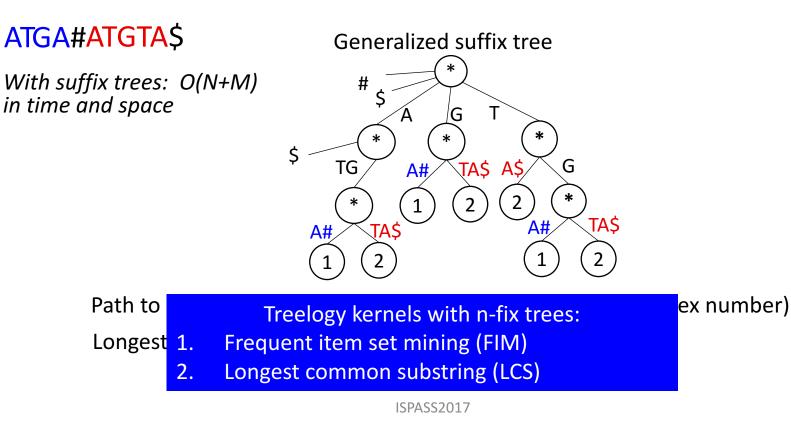
Examples – n-fix tree

- We refer to prefix and suffix trees as n-fix trees
 - e.g. suffix tree (trie) for string ATAC\$



Generalized suffix trees for longest common substring

Goal: find the longest common substring of two strings: 1) ATGA and 2) ATGTA (answer: ATG) Naïve solution: O(N*M²)



Treelogy Kernels

- Two-point Correlation (PC)
- Nearest Neighbor) (NN) Barnes-Hut (BH)
- K-Nearesta Nie Sthor (KNN Frequent Item-set Mining (FIM)
- Barneset Common Substring (LCS)
- Photon Wapping (MPM)

- **Traversals dominate computation**
- **Multiple Traversals**
- Independent
 - Do not modify the tree during traversal
- Traversa on Top-down traversal, different tree type
- Bottom-up traversal, same tree type Multiple
 - Iterative, modify tree or (and) traversals
- Independent
 - Do not modify the tree during traversal
- Frequent Item Sector (PC)
- lagh ga thoo her a et Skokst Fine () CS) K-Means Clust
- ustering (KC) Longest C

T Botton-up traversal, same tree type

Fast Multipole Method (FIVIIVI) Frequent Item-set Mining (FIM)

Iterative, modify tree and (or) traversals

The Ontology

- Top-down vs. Bottom-up
- Type of tree
- Iterative with tree mutation
- Iterative with working-set mutation
- Guided vs. Unguided

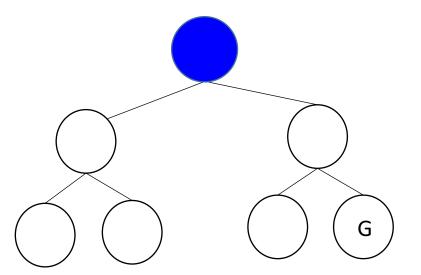
Guided vs. Unguided

1.Unguided traversal^[15]

 Fixed order for every traversal (e.g. left child followed by right)

2. Guided traversal

- Data dependent traversal order
- Order depends on vertex-computation

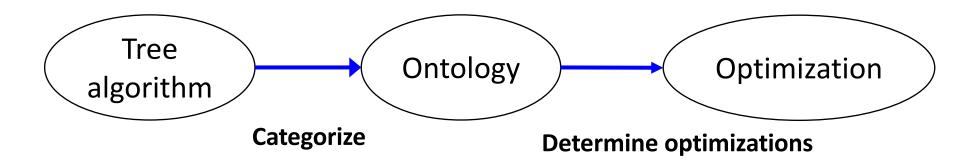


Classification

Benchmark	Domain	Attributes	Tree Type
Two-Point Correlation	Astrophysics, Statistics	Top-down (preorder), guided (vp), unguided (kd)	Kd, vp
Nearest Neighbor	Data mining	Top-down (preorder), guided	Kd, vp
K-Nearest Neighbor	Data mining	Top-down (preorder), guided	Kd, Ball
Barnes-Hut	Astrophysics	Top-down (preorder), unguided, tree mutation	oct, Kd
Photon Mapping	Computer Graphics	Top-down (preorder), unguided, working-set mutation	Kd
Frequent item-set mining	Data mining	Bottom-up, unguided, tree mutation, working-set mutation	Prefix
K-Means Clustering	Data mining, Machine learning	Top-down (inorder), guided, tree mutation	Kd
Longest common substring	Bioinformatics	Top-down (postorder), unguided, tree mutation	Suffix
Fast Multipole Method	Scientific computing	Top-down (preorder) and bottom- up, unguided, tree mutation	Quad

Algorithm -> Ontology

What we have seen so far...



Optimizations

• Optimizations are effective only when certain properties hold

Optimization	Structural properties
Profile driven scheduling	Top-down Liu,2016 10,2012
Tiling Vectorization Hamada,2009 Makino,1990	Top-down, bottom-up Zhang, 1997 Ghoting, 1997
Tiling Vectorization Hamada,2009 Makino,1990	Unguided Zhang, Ghoung 2011
Data representation Kumar,2008 Han,2000	Vp trees for NN, prefix trees for FIM, suffix trees for LCS.
Communication overhead	Top-down Zhang, 1997 Warren, 1992
	Zhang, Warren

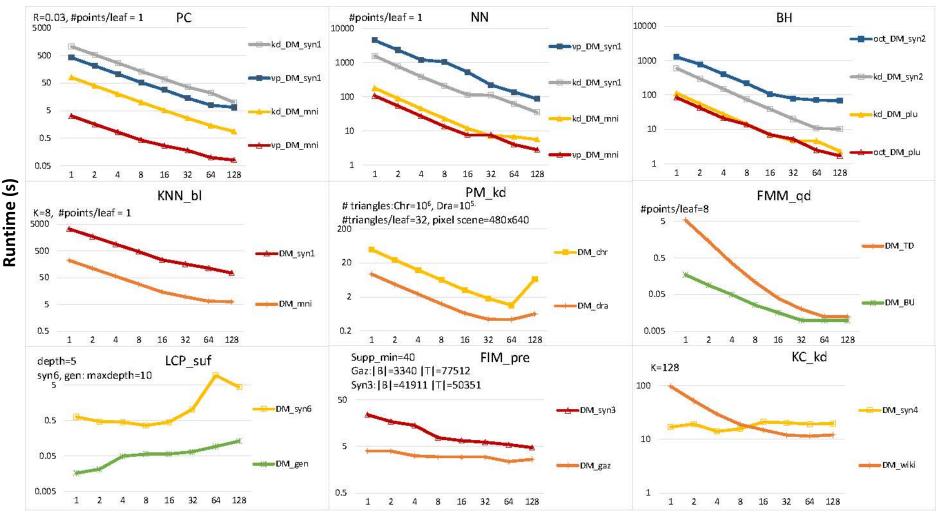
Evaluation Methodology

- Platforms:
 - Shared-memory (SHM): processors 2 10-core Xeon E5 2660 V3, memory - 32 KB L1, 256KB L2, 25MB L3, 64GB RAM
 - **Distributed-memory (DM):** 10 nodes with high-speed Ethernet interconnect
 - **GPU:** nVidia Tesla K20C.

host – 2 AMD 6164 HE processors, 32GB RAM

- Metrics:
 - Architecture-independent
 - Average traversal length, Load imbalance
 - Architecture-dependent
 - L3 Miss Rate, CPI
- All measurements consider traversal times only

Scalability



Number of processes

ISPASS2017

Scalability contd.

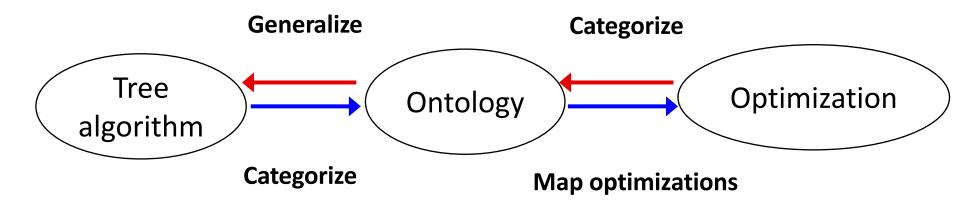
- Adding more cores results in better performance
 - DM plots show excellent scaling
 - SHM and GPU plots similar
- KC and LCS are exceptions
 - Iterative tree mutation algorithms marked by heavy synchronization at the end of an iteration
 - LCS less available parallelism

Summary (scalability)

- Most kernels scale well while taking advantage of ontology-driven optimizations
- Point Correlation (PC) with vp-tree is better than kd-tree
- Barnes-Hut (BH) is sensitive to tree type and input distribution

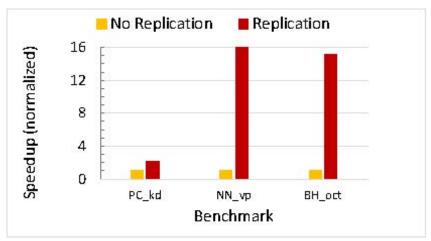
Algorithm <- Optimization

What we have seen so far...



Case study

- Generalizing locally essential trees (LET)
 - BH specific (distributed-memory)
 - Partial replication of tree structure



- Partial replication of only the top-subtree.
 - Improves load-imbalance and minimizes communication overhead

Conclusions

- Treelogy
 - Ontology
 - Mapping of optimizations to structural properties
 - A suite of 9 tree traversal kernels spanning ontology
 - Shared-memory, distributed-memory, and GPU implementations
 - Multiple tree types based on popularity and efficiency
- Evaluations showed that most kernels scale well
 - Two-point correlation (PC) with vp-trees better than standard tree used in literature

Thank you