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Abstract

Background: The current clinical frailty assessments are time-consuming and subjective 
which can lead to inaccurate results and delayed medical attention. Sensor technology 
and artificial intelligence enable home-based frailty assessment; however, there are no 
systematic reviews of existing technological methods for home-based frailty assessment 
and prediction.
Objective: To analyze and synthesize the frailty criteria, sensor technology, and the statisti-
cal or artificial intelligence methods used in home-based frailty assessment and prediction.
Methods: An exhaustive database search was performed. Three reviewers screened all 
studies by following the Preferred Reporting Items for Systematic Reviews and Meta-Anal-
yses guidelines. The sensors and AI used for assessing frailty were synthesized with a 
particular focus on home-based technology. The Sackett’s Level of Evidence Scale was 
also used to evaluate clinical evidence for the included studies.
Results: Body-worn sensors were the most commonly used (72%) technology in home-
based frailty assessment. All of the body-worn sensors were accelerometer-based. 88% of 
the included studies measured physical activity for assessing frailty commonly defined by 
Fried’s Frailty Index (75%). Heterogenous machine learning algorithms have been applied 
for classifying frailty. However, none of the AI methods were tested for the predictability 
of frailty. Only one longitudinal study followed up older participants for 10 years and re-
vealed a high odds ratio for the development of frailty using physical activity.
Conclusion: The database search was limited to definitions of physical frailty and the 
English language. Various types of sensor technology with good accuracy are used to 
measure specific frailty criteria and functional tests. However, there is a lack of longitudi-
nal studies for predicting frailty progression. To date, there is limited testing of the sensors 
using older populations with functional and cognitive comorbidities and because they are 
at higher risk of frailty they should be a priority moving forward.
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Introduction
The World Health Organization (WHO) projects 
a 56% growth in the global number of people 
aged sixty years or over between 2015 and 2030 
(WHO, 2015). The majority of the aging popu-
lation is expected to experience age-related is-
sues such as declining functional capacity and 
increasing vulnerability to disease, disability, and 
death (Mitnitski et al., 2015). One of the most 
common age-related issues is frailty, widely con-
sidered as “a condition in which the individual is 
in a vulnerable state at increased risk of adverse 
health outcomes and/or dying when exposed 
to a stressor” (Morley et al., 2013). A recent sys-
tematic review on the prevalence of frailty in 
community-dwelling older adults found a 9.9% 
mean prevalence of physical frailty among peo-
ple aged 65 years or older, with a higher preva-

lence of 13.6% when psychosocial frailty was 
also included (Collard et al., 2012).

Fortunately, researchers (Morley et al., 2013; Puts 
et al., 2016) have found that pre-frailty is a revers-
ible status if frailty is identified and appropriate 
interventions are applied early. To assess frailty, 
clinicians use frailty scales typically in the form 
of standardized self-report questionnaires, or a 
battery of physical tests to evaluate the physical, 
physiological, cognitive or social aspects of pa-
tient health conducted by clinicians (Bruyère et 
al., 2017). However, these assessment methods 
have several limitations, such as subjective self-
report, increased complexity to administer, and 
infrequent assessment and follow-up. Addition-
ally, numerous frailty assessment scales exist due 
to a lack of consensus on the operational defini-
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tion of frailty among clinicians. As such, these 
limitations may result in inaccurate or delayed 
identification of frailty.

There are new attempts by researchers to use 
novel technologies to continuously monitor and 
assess frailty in people’s everyday living settings. 
In contrast to acute conditions, the onset and 
progress of frailty are slow and gradual, and its 
symptoms are usually reflected in individuals’ 
ability to complete activities throughout their day. 
In community settings, frailty predicts future hos-
pitalization, worsened quality of life, and loss of 
ability to carry out activities of daily living. Rou-
tinely identifying frailty offers opportunities for 
targeted care, including applying clinical practice 
guidelines and tools specific to frailty. The clini-
cal reality is that frailty clinical assessments are 
completed periodically; and as a consequence, 
there is a high likelihood that one’s deterioration 
may not be detected and the opportunity to initi-
ate interventions early will be missed. The use of 
technologies including sensors, and artificial in-
telligence (AI) in home settings for frailty assess-
ment can play an important role to overcome this 
practical challenge. Sensor-based devices, such 
as smart wearable watches, motion sensors, or 
pressure sensors, can be used in everyday liv-
ing settings to capture physiological or behavior 
changes (Mainetti et al., 2017). The internet of 
things (loT) can connect these sensors remotely 
and enable data to be collected and analyzed an-
ywhere in real-time. In the field of healthcare, AI 
can find patterns in sensor data usually using ma-
chine learning-based methods, and various IoT 
and AI-based technologies have been proposed 
to help solve healthcare problems by using sen-
sor data (Azimi et al., 2017; Zouba et al., 2009). 
Technology can be used to enable early detec-
tion of frailty and early intervention for revers-
ing or better managing frailty; however, despite 
recent increased attention given to technology 
for home-based frailty monitoring, no systematic 
reviews have been completed in this area.

This systematic review aims to synthesize the use 
of technologies to assess and predict frailty in 
home settings. The following research questions 
are addressed:
(1) What frailty criteria are being measured by 
the technologies in home settings?
(2) What types of technology are used for in-
home frailty assessment and prediction?
(3) What statistical or artificial intelligence meth-
ods have been used for frailty assessment and 
prediction of frailty progression, and their assess-
ment and prediction accuracy compared to clini-
cal methods?

First, this review will synthesize technologies 
including hardware and software systems, AI 

for frailty assessment, and prediction in home-
based systems. Then the studies will be evalu-
ated by a clinical evidence scale to find the tech-
nologies with clinical evidence. The goal of this 
review is to compare and identify the state-of-art 
technology-based in-home frailty assessment 
and prediction methods, find potential opportu-
nities and gaps in this field, and discuss future 
research directions.

Methods
Database search
An information specialist in Toronto Rehabilita-
tion Institute Library conducted an extensive 
database search in the following electronic 
databases: Medline (including Epub Ahead of 
Print, In-Process & Other Non-Indexed Citations, 
Ovid MEDLINE(R) Daily), Cochrane Central Reg-
ister of Controlled Trials, NHS Economic Evalua-
tion Database, Cochrane Health Technology As-
sessment, Embase, PsycINFO, CINAHL, Scopus, 
Compendex, and Proquest Dissertations and 
Theses Global. The search was based on a com-
bination of standardized database vocabulary in 
the following three areas: (1) frail, (2) home, and 
(3) technology. Variants of the keywords from 
these three areas were used in searches. The 
search was limited to English language only and 
papers published in 2000 and onwards due to 
the rapid advancement of technology. A full list 
of search strategies used across the entire data-
bases can be found under Search Strategy sec-
tion in Appendix. The first complete search was 
conducted on July 28, 2017, and two more up-
date searches using the same search criteria as 
the first search were conducted on July 03, 2018 
and May 10, 2019, respectively.

Study selection
The selection process followed the Preferred Re-
porting Items for Systematic Reviews and Meta-
analysis (PRISMA) guidelines (Moher et al., 2009) 
which includes duplicate removal, title, and ab-
stract screening, full-text screening, qualitative 
and quantitative analysis. After the database 
search, we first imported all studies into End-
note software for duplicate removal. The stud-
ies without duplicates were then imported into 
Covidence software for the title and abstract 
screening, and full-text screening. The inclusion 
and exclusion criteria used in the screening pro-
cess were as follows:

Inclusion criteria:
- Population: individuals with pre-frail or frail 
conditions defined by any clinical frailty scale.

- Technology: use of information and communi-
cation technologies, sensors or AI.

- Frailty screening: frailty assessment, detection 
or monitoring.
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- Clinical frailty criteria: measurement of frailty-
related criteria such as weight loss, gait speed, 
grip strength, defined by any clinical frailty index.

- Home-based: trials conducted in a home envi-
ronment.

Exclusion criteria:
- Study subjects are not older adults.
- Frailty intervention studies that focus on apply-
ing any therapeutic method (such as exercise or 
medicine) to control or reverse frailty progress.

- Frailty prevalence studies.
- Qualitative, usability, non-peer reviewed, and 
non-academic studies.

- Systematic reviews, literature review, case re-
ports, and letters.

The web-based Covidence systematic review 
software was used to manage the screening of 
the studies. Two researchers (C.B. and B.Y.) com-
pleted the title and abstract screening indepen-
dently based on the inclusion and the exclusion 
criteria. In case of disagreements, the papers were 
discussed and reviewed with the third reviewer 
(C.C.). The remaining records after the title and 
abstract screening then underwent a full-text 
screening. One researcher (C.B.) completed the 
full-text screening using the above inclusion and 
exclusion criteria. A final list of studies after the 
full-text screening was then included in the review.

The data were extracted from the included stud-
ies according to the following categories: study 
objective, study type, author and year, demo-
graphic information including sample size and 
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Figure 1. PRISMA Flow Diagram.



4

Technology for home-based

mean age, clinical frailty measures and frailty 
criteria, technology used, and study results.

The included studies were then categorized 
based on their level of evidence (LOE) accord-
ing to the Centre for Evidence-Based Medicine 
(CEBM) (CEBM Levels of Evidence Working 
Group, 2009) in order to identify the level of 
clinical evidence to support the use of technol-
ogy in frailty assessment and prediction. The 

CEBM guideline tool evolved 
from Sackett’s LOE (Sackett, 
1989), which is one of the 
earliest and widely recog-
nized scales for evaluating 
the level of clinical evidence. 
Levels 1, 2, and 3 of clini-
cal evidence indicate that a 
study is a validating cohort 
study with good reference 
standards, an exploratory 
cohort study with good refer-
ence standards, and a study 
without consistently applied 
reference standards, respec-
tively. Only studies with 
Level 1 clinical evidence (i.e. 
studies that used a reference 
standard) will be analyzed 
in detail. As clinicians have 
not reached a consensus 
on which frailty operational 
scale should be used in rou-
tine care (Morley et al., 2013), 
any clinical frailty scale was 
eligible as a reference stand-
ard when determining the 
level of clinical evidence in 
this review.

heading 1>Results
The electronic database 
search generated a total of 
2,548 studies. After the dupli-
cates were removed, the re-
maining 1669 records under-
went the two screening stages 
(title and abstract screening; 
full-text screening). After the 
title and abstract screening, 
a total of 1516 studies were 
removed and the remain-
ing 153 full-text studies were 
screened. Of these, 123 were 
removed and 30 studies were 
included in the final analysis. 
The PRISMA flow diagram is 
shown in Figure 1.

Although we defined the 
year range in the search to 

be post-2000 to present (2019), 29 of 30 eligi-
ble papers were published post-2010 and only 
one paper was published in 2009 (Zouba et al., 
2009). Furthermore, among all papers that pub-
lished post-2010, 90% were published between 
2013 - 2019.

Study characteristics
The age criteria for study participants in the 
clinical evidence studies were 65 years old or 
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older. The highest mean age reported was 87±6 
(Alqahtani et al., 2017). The sample size in the 
included studies varied from 20 to 1527. The 
study characteristics can be found in Table 1 and 
in Appendix I. The most commonly used inclu-
sion criteria were “no gait or mobility disorders” 
as gait tests were the most used assessments to 
measure clinical frailty using Fried’s frailty phe-
notype scale. The most common exclusion cri-

teria included cognitive impairment 
indicated by a low MMSE score 
(<18-24 depending on studies) and 
the presence of a terminal illness.

16 of the 30 (53%) studies have a 
Level 1 clinical evidence as identi-
fied by the CEBM rating scale (Table 
2). Specifically, these manuscripts of 
novel technologies compared their 
technology to clinical gold standards 
for frailty assessment with promising 
results to be used as an alternative 
method for frailty assessment. 12 of 
the 16 studies with Level 1 clinical 
evidence used Fried’s frailty pheno-
type scale (consisting of five frailty 
criteria: slow walking speed, weak 
handgrip strength, weight loss in the 
last year, exhaustion and low physi-
cal activities) as the clinical refer-
ence gold standard for the proposed 
technologies making it the most 
common clinical reference for tech-
nology. The other 4 studies used Til-
burg Frailty Indicator (TFI) (Gianaria 
et al., 2016), Groningen Frailty In-
dicator (GFI) (Geraedts et al., 2015), 

“Cumulative Index” model of frailty 
by Kenneth Rockwood (Goona-
wardene et al., 2018) and Identifica-
tion Seniors At Risk - Hospitalized 
Patients’ questionnaire (ISAR-HP) 
(Jansen et al., 2015). The choice of 
the operational scale could depend 
on the context. Fried’s frailty scale is 
usually used for persons living in the 
community. Other frailty scales are 
more commonly used in hospitals.

The research design of 14 (out of 
16) studies were cross-sectional in 
which researchers used proposed 
technological tools, such as a wear-
able sensor to collect frailty-related 
data from study participants within 
a defined time. The outcome of the 
study, which is a frailty class calcu-
lated from the data collected by the 
proposed technology was achieved 
right after the data collection. The 
data collection periods were short, 

for example, less than a day or shorter durations 
like a one-time assessment of the required meas-
urements. 2 studies were longitudinal study with 
longer monitoring period (30 days and 7 days, 
respectively) (Goonawardene et al., 2018; Yuki 
et al, 2019). There was a marked lack of longi-
tudinal studies that monitored the progression of 
frailty over many years in the home.
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Frailty criteria and measurements
Technologies in the reviewed studies measured 
frailty in two ways: (1) directly measured frailty 
criteria such as physical activity, gait speed and 
muscle strength which are defined in clinical 
frailty scales such as the Fried’s frailty pheno-
types; and (2) measured the performances in 
standardized functional tests and studied the 
correlation between the functional performance 
and frailty measured as a baseline by research-
ers using clinical frailty scales. The proposed 
technologies and the frailty criteria are shown 
in Table 2 and Appendix I. The most common-
ly used criteria are various aspects of physical 

activities (PA) which have 
been used in 14 of the 16 
studies (88%). The Timed 
up and Go (TUG) and Sit to 
Stand test are the two most 
common standardized func-
tional tests that technologies 
assessed to measure frailty, 
followed by measuring bal-
ance (e.g. sway of ankle, hip, 
and center of mass), gait (e.g. 
walking speed, stride time, 
gait variability) and muscle/
grip strength.

The specific parameters for 
measuring physical activity 
in the review studies include 
activity intensity of light to 
vigorous levels (Razjouyan 
et al., 2018; Yuki et al., 2019), 
duration of activities (Bas-
tone et al., 2015; Geraedts 
et al., 2015; Mohler et al., 
2013), number of transitions 
between different postures 
such as standing, walking 
and lying (Geraedts et al., 
2015; Parvaneh et al., 2017; 
Schwenk et al., 2015), daily 
step counts (Bastone et al., 
2015; Mohler et al., 2013) 
and energy expenditure 
(kcal/day) (Chen et al., 2015). 
For instance, Mohler et al. 
used sensors to continu-
ously monitor participants 
throughout the day and 
measured their percent-
age of time spent in a day 
either lying down on their 
side, standing, and walk-
ing; a number of walking 
episodes, and a number of 
steps using an accelerometer 
motion sensor (Mohler et al., 
2013). In contrast, Parvaneh 

et al. used sensors to measure the total number 
of transitions during stand-to-walk and walk-to-
stand tests (Parvaneh et al., 2017). Table 2 lists 
the sensor measurements and their correspond-
ing clinical gold standard references.

Balance was also assessed by measuring specific 
parameters like body sway and center of mass. 
Specifically, Schwenk et al. captured data related 
to the sway of the ankle, hip, and center of mass 
in medial-lateral and anterior-posterior direction 
during their experiments (Schwenk et al., 2015). 
Using technology to capture balance parameters 
during a standing balance test was another way 
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to assess balance (Alqahtani et al., 2017).

The specific gait-related measurements include 
speed, stride, double support, walking time, and 
distance (Schwenk et al., 2015). Such data can 
be collected in a home-based 15-feet walk test 
(Schwenk et al., 2015), or along a 6-m course 
with 1-m acceleration/deceleration space at 
each end (Okubo et al., 2018).

Muscle strength was measured in 
both upper extremity motion and 
lower extremity motion. Toosiza-
deh et al. measured kinematics and 
kinetics of elbow flexion (speed, 
flexibility, power, rise time, moment, 
jerkiness, and speed reduction) 
in an upper extremity motion test 
(Toosizadeh et al., 2015), whereas 
Alqahtani et al. chose to measure 
lower extremity muscle strength 
by measuring knee extension, knee 
flexion, hip abduction, hip flexion, 
ankle plantar flexion and dorsiflex-
ion (Alqahtani et al., 2017).

Technology was also used to meas-
ure standardized functional tests, in-
cluding TUG and Sit to Stand, where 
sensors were able to discern many 
different features of movement pa-
rameters. For example, 44 sensor-
derived features were extracted 
from a TUG test (Greene, Doheny, 
O’Halloran, et al., 2014) and were 
grouped into four categories: tem-
poral gait parameters, spatial gait 
parameters, tri-axial angular veloc-
ity parameters and turn parameters. 
Similarly, another study extracted 
52 TUG features which also include 
temporal, spatial, turning, and rota-
tional characteristics (Greene, Do-
heny, Kenny, et al., 2014). The same 
study also extracted 82 movement 
parameters during a Five Times Sit 
to Stand (FTSS) test.

Although Fried’s frailty phenotype 
was the most commonly used clini-
cal reference (75%), two of the five 
frailty criteria defined in Fried’s frail-
ty index - weight loss and exhaus-
tion – have not been extensively 
measured by the technologies in 
the included studies. For those that 
measured these criteria, data were 
collected with a modified home 
chair (weight) (Chang et al., 2013) 
and an elbow flexion test (exhaus-

tion) (Toosizadeh et al., 2015).

heading 2>Technology
Sensors 
Table 3 in the Appendix outlines all the sensor 
technologies used for frailty assessment and pre-
diction. Body-worn technology was in 13 (72%) 
of 16 Level 1 clinically evident studies; 5 studies 
used ambient technology. All the 13 studies that 
involved body-worn technology used inertial 
measurement unit (IMU) which consists of ac-
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celerometers, gyroscopes, and sometimes also 
magnetometers. They were used to measure 
various frailty criteria (physical activity, muscle 
strength, gait, etc.). The form factor of the IMU 
sensors is different. The IMU sensor can be em-
bedded in a shirt (Parvaneh et al., 2017; Schwenk 
et al., 2015) or a standalone wearable device that 
can be worn in the neck (Geraedts et al., 2015), 
or chest (Mohler et al., 2013).

Unlike body-worn sensors which are homogene-
ously IMU-based, ambient sensors are hetero-
geneous in type. The ambient technologies in-
clude furniture embedded sensors (Chang et al., 

2013), motion sen-
sors and door sen-
sors (Goonawardene 
et al., 2018), balance 
pad (Alqahtani et al., 
2017), and Bluetooth 
beacons (Tegou et al., 
2019). The furniture 
embedded sensors 
were a suite of tech-
nologies that consists 
of eScale, eChair, 
ePad, eReach (Y. C. 
Chang et al., 2013). 
Collectively, these 
were used to meas-
ure reaction time and 
slowness, weight, Sit 
to Stand, TUG, and 
functional reach.

Two studies took a 
sensor fusion ap-
proach that used a 
combination of body-
worn and ambient 
sensors to measure 
multiple frailty relat-
ed criteria (Alqahtani 
et al., 2017; Okubo et 
al., 2018). Alqahtani 
et al. used a uniaxial 
load cell (ambient) 
and a dual-axis ac-
celerometer (body-
worn). The load cell 
was made into a 
lower extremity mus-
cle strength device 
to measure knee ex-
tension, knee flexion, 
hip abduction, hip 
flexion, Ankle plan-
tar flexion, and dor-
siflexion. The Airex 
Pad and the acceler-
ometer were used to 

conduct a standing balance test.

Four studies were conducted in participant’s 
home but with the researchers on site instructing 
the tests (Alqahtani et al., 2017; Chen et al., 2015; 
Schwenk et al., 2015; Toosizadeh et al., 2015) and 
two studies were conducted using both controlled 
and uncontrolled protocols in home settings 
(Geraedts et al., 2015; Okubo et al., 2018). 10 of 
the 16 studies were conducted in a “free-living 
uncontrolled environment”, meaning that older 
adults are living freely within their environments 
according to their own pace and schedule without 
following any predefined protocol created by re-

ρ



9

Technology for home-based

searchers and without the presence of researchers.

Depending on the frailty criteria and measure-
ments, the data collection period ranged from 
50 seconds (Toosizadeh et al., 2015) to 30 days 
(Goonawardene et al., 2018). The studies that 
used IMU-based body-worn devices to measure 
physical activity collected data for at least 24 
hours to a week.

Technologies from companies like BioSensics, 
ActiGraph, Analog Device, Omeron have been 
used by a number of studies in this review. IMU-
based wearable devices such as LEGSys and 
PAMSys trackers from BioSensics, IMU from 
Omron were used in a similar way to monitor 

motions during physi-
cal activities (Chen et al., 
2015; Mohler et al., 2013; 
Parvaneh et al., 2017; 
Schwenk et al., 2015). Be-
sides the dominant num-
ber of IMU-based technol-
ogy, a portable metabolic 
measurement system by 
COSMED was used to 
study the association be-
tween frailty and aero-
bic fitness (Bastone et al., 
2015). The COSMED K4 
system consists of a face 
mask, HR chest strip, bat-
tery and transmitting unit 
(containing the O2 and 
CO2 gas analyzers), and 
a receiving unit. Data in-
cluding oxygen consump-
tion, respiratory exchange 
ratio, and heart rate was 
collected during an incre-
mental shuttle walk test.

The cost of commercial 
technologies varies. Some 
examples include the LEG-
Sys or PAMSys IMU from 
BioSensics (≈ USD 4000), 
Active style Pro of Omron 
(¥20,000 ≈ USD 184), and 
Qstarz BT-Q1000x GPS 
receiver (≈ USD 100). The 
most expensive device in 
this review is the COS-
MED K4 portable meta-
bolic measurement system 
(≈ USD 9,900).

Statistics and AI 
Table 3 shows the literature 
summary on statistical and 
AI methods. The studies 

in the review used either statistical or AI-based 
methods to analyze the data collected by the pro-
posed technologies. 12 of 16 (75%) studies used 
traditional statistical methods and the remaining 4 
studies implemented AI-based methods.

AI-based frailty classification and prediction
The studies that adopted AI-based methods 
trained machine learning models to classify older 
adults into different frailty levels such as frail, pre-
frail, or non-frail. Heterogeneous machine learn-
ing algorithms such as logistic regression, naïve 
bayes, and neural networks (Chang et al., 2013; 
Goonawardene et al., 2018; Tegou et al., 2019) 
were used to build a model for classifying frailty 
levels. Goonaward et al. reported that the logis-
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tic regression yielded the highest AUC (0.98) in 
assessing if an elderly is frail or robust using 7 
features of in-home living patterns. In contrast, 
Tegou et al. reported the random forest method 
outperformed other methods with an 82.33% 
accuracy in classifying frailty status. Chang et al. 
trained their own artificial neural networks with 
11 neurons (sensor features) in the input layers 
and 2 neurons (pre-frail and normal) as output. 
However, none of these machine learning models 
were used to predict when a person would pro-
gress into frailty from a pre-frail status in the future.

Statistical methods
Statistical methods were used for testing the 
statistically significant associations of different 
frailty related parameters with clinical frailty. For 
instance, Analysis of Variation and t-tests were 
used to test differences in each sensor-derived 
clinical parameter between different classes of 
frailty (Bastone et al., 2015; Toosizadeh et al., 
2015). Similarly, general linear model tests were 
used to compare postural transitions parameters 
between frailty groups. Regression is the most 
commonly used method to determine independ-
ent predictors of frailty among sensor-derived 
parameters. Multiple studies used logistic regres-
sion (Parvaneh et al., 2017; Schwenk et al., 2015; 
Toosizadeh et al., 2015). For instance, Schwenk 
et al. used multinomial logistic regression to ana-
lyze temporal-spatial gait parameters, postural 
balance parameters, and physical activity pa-
rameters extracted from data collected by 5 iner-
tial sensors from 125 participants (Schwenk et al., 
2015). They found that stride length (AUC=0.86), 
double support (AUC=0.84), and walking bout 
duration variability (AUC=0.82) are the most 
sensitive parameters for discriminating between 
frail, pre-frail, and non-frail levels. In contrast, 
Chen et al. used univariate and multivariate lo-
gistic analyses to calculate odds ratios (OR) for 
each frailty related factor and revealed high ORs 
for multiple factors such as age increment, alco-
hol consumption, and social engagement (Chen 
et al., 2015). Notably, the only longitudinal study 
that reported predictability of frailty used gen-
eralized estimate equation to analyze steps and 
activity intensity data (Yuki et al., 2019). These 
data were collected from a cohort of communi-
ty-dwelling Japanese older adults with 10 years 
follow-up. They reported ORs for development 
of frailty with an increase in 1000 steps (OR = 
0.92), an increase in 10 minutes of light physical 
activity (OR = 0.96), and moderate to vigorous 
physical activity (OR = 0.83).

Discussion
To our knowledge, this is the first systematic re-
view summarizing and discussing home-based 
sensor and AI technology for frailty assessment 
and prediction and assessing these methods us-

ing a clinical evidence scale.

One notable body-worn sensor technology in 
this review is the IMU sensor. The IMU sensor 
was the most common sensor technology in 
our reviewed studies, which provides evidence 
for its validation and good efficacy of the body-
worn IMU-based technology in assessing frailty. 
This homogeneity in the studies was notable 
since the IMU sensor can only measure gait 
and activity-related parameters. Technologies 
measuring new criteria of physical frailty such 
as muscle, weight, and exhaustion, or measuring 
the same gait criteria but used a different way 
than extant literature, could be a future research 
area for assessing physical frailty. For example, 
the exhaustion criteria of the Fried’s frailty index 
were not assessed with the use of technology, 
and the activity criteria were mostly measured 
by IMU sensor. Perhaps a more natural and in-
teractive method powered by technologies such 
as natural language processing (NLP) could be 
used to measure these criteria. The NLP technol-
ogy could ask the individual about their level of 
exhaustion or daily activity. These new technolo-
gies are still yet to be tested and validated.

In addition, studies that tested the body-worn 
IMU sensors, muscle strength meter and portable 
metabolic measurement system were conducted 
in supervised settings and therefore have two ma-
jor limitations: (1) it requires training or clinician’s 
supervision; (2) accuracy of the measurement for 
frailty depends on the high level of user compli-
ance to wearing the technology. In other words, 
few of the evaluated technologies can be used 
independently with zero effort. Considering the 
application in home settings, the limitations of 
the technology creates considerable barriers for 
older adults themselves to use at home if training 
is not adequate and sustainable or a clinician is 
not able to be present to supervise.

The ecological automatic measurement of grip 
strength by home-based technology is found to 
be understudied and not validated as of yet. Only 
one study (Okubo et al., 2018) in the reviewed 
studies used an unidentified hand-grip strength 
device as part of a functional assessment. It was 
not clear in the paper if the hand-grip strength 
assessment was administered with supervision 
or automatically. In addition, standardization of 
hand-grip strength measurement was not dis-
cussed either. More research is needed for in-
vestigating the feasibility and standardization of 
ecological automatic grip strength measurement 
by home-based technology which is why it is 
not proposed for this study.

Furthermore, the exclusion of older adults with 
more severe cognitive impairment and mobility 
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issues from the samples was an interesting find-
ing with implications to the clinical relevance 
of this body of work. As the severity of cogni-
tive impairment is associated with the physical 
decline in older adults (Laurin D et al., 2001) 
and at high risk of frailty, a wider sample that 
reflects the range of cognitive and mobility im-
pairments in this population is required. Similar-
ly, eight studies also excluded older adults with 
mobility issues including unable to ambulate for 
a certain period of time or distance, musculo-
skeletal injuries, severe handicaps, and severe 
balance impairments. The reason for excluding 
them was related to the specific mobility test 
that the technology required for assessing frailty. 
However, older adults commonly have mobility 
impairments which increase their risk of being 
physically frail. This prompts us as to whether 
technologies that are not relying on mobility 
tests could be used to assess frailty especially for 
people with mobility issues.

Although two studies (Goonawardene et al., 
2018; Yuki et al., 2019) followed up participants 
for 1 year and 10 years respectively, other stud-
ies being reviewed were cross-sectional and 
unable to capture the progression of frailty over 
time, therefore the capability of AI to predict 
frailty is still to be determined.

To the best of our knowledge, there is no re-
view that has synthesized the statistical and AI 
methods used for assessing and predicting frailty. 
From the review results, we suggest more het-
erogeneous machine learning algorithms can be 
investigated for predicting frailty progression. In 
the meantime, more longitudinal data that is col-
lected for many years are required to study the 
transition between healthy and frail conditions. 
The technology to assess and predict frailty in 
homes can also be used to assess frailty in other 
settings like acute care once it has been accu-
rately tested in homes. This is an area for future 
research. In addition, another frailty test may be 
better suited for acute care as mentioned above.

Strengths and limitations
Our review has several strengths:

(1) Extensive database searches.
(2) The first systematic review that focuses on 
home-based technology for frailty assessment 
and prediction.
(3) The only systematic review on technology 
and frailty that has reviewed the use of AI and 
statistical methods for frailty data analysis.
(4) The only systematic review on technology 
and frailty that evaluated the level of evidence 
of reviewed studies. Our review also has limita-
tions. We focused our search strategy on technol-
ogy specifically for assessing frailty (as a general 
term) as well as physical phenotypes of frailty. 
As frailty could also present in the form of cogni-
tive frail or social frail, this review did not search 
the phenotypes that could contribute to the de-
tection of cognitive or social frailty, unless those 
articles also contain the term frailty which could 
be included in our search strategy. We also only 
included research conducted in English.

Conclusions
This systematic review focused on the use of 
technology for frailty assessment and prediction 
with particular attention to home-based technol-
ogy and AI. Our findings highlight several gaps 
in this field for future work. First, more different 
types of technology other than IMU-based wear-
able sensors should be studied for evaluating the 
efficacy in assessing frailty as existing studies 
concentrated too much on IMU-based technol-
ogy. Second, there are opportunities for tech-
nology to measure frailty criteria that have not 
been extensively measured by existing research 
such as exhaustion, muscle strength, weight loss 
in the gold standard Fried’ frailty index. For any 
new technology that measures frailty, it is rec-
ommended to validate the technology assess-
ment with clinical standard reference in order to 
prove its clinical evidence. Third, few longitudi-
nal studies were found in the review, however, 
this type of study should be a future direction 
because longitudinal data is essential for AI to 
track an individual’s progress in frailty, which 
the cross-sectional study wouldn’t be able to 
do. Home-based continuous frailty monitoring is 
ideal to capture frailty progress as frailty pheno-
types usually express in daily life.
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Appendix I
Search strategy
Initial search terms were compiled and itera-
tively refined by content experts in the fields of 
library science, geriatrics, and technology. The 
following search strategy was used in the Ovid 
MEDLINE(R) Epub Ahead of Print, In-Process & 
Other Non-Indexed Citations, Ovid MEDLINE(R) 
Daily and Ovid MEDLINE(R) <1946 to Present> 
database: 1 Frail Elderly/ (9135), 2 frail*.mp. 
(18933), 3 prefrail*.mp. (261), 4 or/1-3 (18944), 
5 exp Community Health Services/ (281911), 6 
home*.mp. (506872), 7 house*.mp. (162253), 8 
community*.mp. (472943), 9 residential*.mp. 
(31372), 10 "ag???? at home".mp. (80), 11 "ag???? 
in place".mp. (541), 12 assisted living.mp. (2302), 
13 or/5-12 (1219972), 14 (smart adj2 (home? or 
house?)).mp. (349), 15 Signal Processing, Com-
puter-Assisted/ (42735), 16 exp Accelerometry/ 
(5497), 17 (acceleromet* or actigraph*).mp. 
(17012), 18 wearable?.mp. (5474), 19 (sensor or 
sensors or sensing).mp. (161535), 20 exp Arti-
ficial Intelligence/ (72528), 21 artificial intelli-
gence/ (21628), 22 machine learn*.mp. (12840), 
23 wrist*.mp. (40720), 24 ((worn or wear) adj2 
(body or wrist)).mp. (1109), 25 Wireless Technol-
ogy/ (2505), 26 wireless*.mp. (10983), 27 exp 
Video Recording/ (36894), 28 (video* or video-
camera* or camera*).mp. (162924), 29 (pressure 
adj2 mat).mp. (175), 30 Technology/ (8526), 31 
exp Biomedical Technology/ (11446), 32 (ger-
ontech* or tech or technolog*).mp. (435624), 

33 gyro*.mp. (3706), 34 detector*.mp. (63113), 
35 gauge*1.mp. (26357), 36 ??????meter*.mp. 
(27398), 37 exp Telemedicine/ (22258), 38 exp 
Telemetry/ (11554), 39 telehealth*.mp. (3245), 40 
telemed*.mp. (20681), 41 telecar*.mp.(942), 42 
telemonitor*.mp. (1214), 43 telesurveillanc*.mp. 
(22), 44 "internet of things".mp. (473), 45 IOT.
mp. (408), 46 monitoring, physiologic/ (51408), 
47 monitoring, ambulatory/ (7358), 48 (monitor* 
adj2 (tele* or health* or ambulator*)).mp. (27212), 
49 or/14-48 (1079564), 50 4 and 13 and 49 (383), 
51 50 not (exp animals/ not exp humans/) (383), 
52 limit 51 to english language (361), 53 limit 52 
to yr="2000 -Current" (315), 54 remove dupli-
cates from 53 (298). Search strategies applied in 
the other databases were derived from the MED-
LINE search. Reference lists of relevant articles 
were subsequently hand-searched to identify ad-
ditional papers. 

Abbreviation
ANOVA – Analysis of Variance
AUC – Area Under Curve
ISAR-HP - Identification Seniors at Risk - Hospital-
ized Patients’ questionnaire
GFI - Groningen Frailty Index
OR – Odds ratio
PA - Physical Activity
SVM – Support Vector Machine
TFI - Tilburg Frailty Index
TUG - Timed Up and Go


