コンテンツにスキップ

「フィールズ賞」の版間の差分

出典: フリー百科事典『ウィキペディア(Wikipedia)』
削除された内容 追加された内容
核青 (会話 | 投稿記録)
概要: 「若手」…単語の定義が曖昧であり、詳細は明記されているので削除します。
タグ: モバイル編集 モバイルウェブ編集 改良版モバイル編集
14行目: 14行目:


== 概要 ==
== 概要 ==
4年に一度開催される[[国際数学者会議]] (ICM) において、顕著な業績を上げた40歳以下{{efn|正確な規定は次の通り:受賞年の1月1日より前に40歳の誕生日を迎えたものは候補となれない{{sfn|Curbera|2009|p={{google books quote|id=9uDqBgAAQBAJ|page=110|110}}}}。ただし厳格な規定が成文化されたのは1966年のICMにおいてである{{sfn|Barany|2015|p=17}}。}}の若手の数学者(2名以上4名以下)に授与される<ref name="IMU"/>。ICMで同時に授与される賞としては、[[ネヴァンリンナ賞]]、[[ガウス賞]]、[[チャーン賞]]などがある。
4年に一度開催される[[国際数学者会議]] (ICM) において、顕著な業績を上げた40歳以下{{efn|正確な規定は次の通り:受賞年の1月1日より前に40歳の誕生日を迎えたものは候補となれない{{sfn|Curbera|2009|p={{google books quote|id=9uDqBgAAQBAJ|page=110|110}}}}。ただし厳格な規定が成文化されたのは1966年のICMにおいてである{{sfn|Barany|2015|p=17}}。}}の数学者(2名以上4名以下)に授与される<ref name="IMU"/>。ICMで同時に授与される賞としては、[[ネヴァンリンナ賞]]、[[ガウス賞]]、[[チャーン賞]]などがある。


数学に関する賞では最高の権威を有する<ref name="AMS"/><ref name="MSJ"/>。しかし、若い数学者の優れた業績を顕彰し、その後の研究を奨励することが目的であり、「4年に一度」「40歳以下」「2名以上4名以下」という制限がある。ただし、「[[フェルマーの最終定理]]」の証明に成功した[[アンドリュー・ワイルズ]]は証明当時すでに42歳になっていたものの、その業績の重要性から1998年に45歳で「特別賞」を与えられた例がある。
数学に関する賞では最高の権威を有する<ref name="AMS"/><ref name="MSJ"/>。しかし、若い数学者の優れた業績を顕彰し、その後の研究を奨励することが目的であり、「4年に一度」「40歳以下」「2名以上4名以下」という制限がある。ただし、「[[フェルマーの最終定理]]」の証明に成功した[[アンドリュー・ワイルズ]]は証明当時すでに42歳になっていたものの、その業績の重要性から1998年に45歳で「特別賞」を与えられた例がある。

2020年6月20日 (土) 09:29時点における版

フィールズ賞
フィールズ・メダル(表面)
フィールズ・メダルの表面。アルキメデスの肖像とラテン語の銘文 TRANSIRE SUUM PECTUS MUNDOQUE POTIRI (己を高め、世界を捉えよ[1])が刻まれている。カナダの彫刻家テイト・マッケンジー英語版によるデザインで[2]、カナダ王室造幣局で鋳造されている[3]。受賞者の名前は縁に刻まれる[4]
受賞対象傑出した業績をあげた40歳以下の数学者
主催国際数学者会議 (ICM)
初回1936年
公式サイトInternational Mathematical Union (IMU) Details

フィールズ賞(フィールズしょう)は、若い数学者のすぐれた業績を顕彰し、その後の研究を励ますことを目的に、カナダ数学者ジョン・チャールズ・フィールズ (John Charles Fields, 1863–1932) の提唱によって1936年に作られたのことである[5][6][7]

概要

4年に一度開催される国際数学者会議 (ICM) において、顕著な業績を上げた40歳以下[注釈 1]の数学者(2名以上4名以下)に授与される[5]。ICMで同時に授与される賞としては、ネヴァンリンナ賞ガウス賞チャーン賞などがある。

数学に関する賞では最高の権威を有する[10][11]。しかし、若い数学者の優れた業績を顕彰し、その後の研究を奨励することが目的であり、「4年に一度」「40歳以下」「2名以上4名以下」という制限がある。ただし、「フェルマーの最終定理」の証明に成功したアンドリュー・ワイルズは証明当時すでに42歳になっていたものの、その業績の重要性から1998年に45歳で「特別賞」を与えられた例がある。

受賞者の一覧より、西ヨーロッパとアメリカの数学者が多い。冷戦時には、共産圏の数学者との交流は困難であった。1970年、初めてソ連の数学者が受賞したが、海外渡航が許されず授賞式には出席できなかった[12]。受賞者の出身国は多様化してきており、ベトナム、イラン、ブラジルなども受賞者を出している。2014年には初めての女性受賞者が出た[13]。なお、メダルは国際数学者会議の開幕式において名誉議長から手渡される[14]

フィールズ賞は、フィールズ賞選考委員会で決められる[5]。ただし、1936年(冷戦開始のはるか以前)当初西側諸国のみで開始された選考に現在では東欧諸国や発展途上国などの国々も参加しており、競争は設立当時と比べて激化している。(しかし、冷戦中でもソビエトの数学者が受賞しており、東欧諸国など共産圏の数学者が選考対象から外されていたということはない。)グリゴリー・ペレルマンは、2019年時点では受賞を辞退したただ一人の人物である。

他の贈賞との比較

数学のノーベル賞」と呼ばれることもあるが[13][15]、賞としての性格は大きく異なる[注釈 2]。ノーベル賞は(存命であれば)受賞者の年齢に関係なく贈られるのに対し、フィールズ賞はその時点でまさに活躍中の40歳以下の若手数学者に贈賞されている[7]。また、ノーベル賞は業績ごとに選考されるため、一つの業績に対して複数の共同受賞者が出ることが多くなっているがフィールズ賞は人に贈られるものであり、共同受賞の例はない。

近年では、「年齢制限なし」「毎年授与」「高額賞金」などノーベル賞に近い性格を持つ国際的数学賞が次々と現れている。1980年に創設されたクラフォード賞は、毎年ではないものの数学上の業績に対して比較的高額な賞金を年齢制限なく与える国際学術賞である。ウルフ賞数学部門も、賞金規模はやや小さいものの、1978年以降ほぼ毎年、年齢制限なく与えられている。2000年には、特定の業績に対してのみノーベル賞級の高額賞金を年齢制限なく与える「ミレニアム懸賞問題」が発表され、世間の耳目を集めた。

2002年には、ノーベル賞により性格の近いアーベル賞が設立された。フィールズ賞とアーベル賞の両方を受賞した人物も存在する。

さらに2014年には、ノーベル賞をも超越する莫大な賞金額を誇る数学ブレイクスルー賞が創設された。

比較項目 数学ブレイクスルー賞 ミレニアム懸賞問題 ノーベル賞 アーベル賞 フィールズ賞
第1回 2015年 (創設は2000年) 1901年 2003年 1936年
実施間隔 1年 不定 1年 1年 4年
年齢制限 なし なし なし なし 40歳以下
賞金額 約3億円 約1億円 約1億円 約1億円 約200万円
授賞分野の制限 特になし 特定業績のみ 数学を対象としない 特になし 特になし

東洋人の受賞者

日本人の受賞者は、2016年現在、小平邦彦1954年)、広中平祐1970年)、森重文1990年)の3人である。日本は国籍別順位では5位であるが、25年以上受賞者が出ていない。

東洋系の受賞者は上記の3名以外に、丘成桐(中国系米国人)(1982年)、陶哲軒(中国系オーストラリア人)(2006年)、ゴ・バオ・チャウ(ベトナム人)(2010年)、マリアム・ミルザハニ(イラン人)(2014年)、マンジュル・バルガヴァ(インド系カナダ・米国人)(2014年)の5人がいる。

受賞者の一覧

名前の読み(名前の綴り、生年 - 没年)、国籍、受賞理由(英語)の順。国籍は受賞時の国名で記す。

1936年オスロ
Awarded medal for research on covering surfaces related to Riemann surfaces of inverse functions of entire and meromorphic functions. Opened up new fields of analysis.
Did important work of the Plateau problem which is concerned with finding minimal surfaces connecting and determined by some fixed boundary.
1950年ケンブリッジ
Developed the theory of distributions, a new notion of generalized function motivated by the Dirac delta-function of theoretical physics.
Developed generalizations of the sieve methods of Viggo Brun; achieved major results on zeros of the Riemann zeta function; gave an elementary proof of the prime number theorem (with P. Erdős), with a generalization to prime numbers in an arbitrary arithmetic progression.
1954年アムステルダム
Achieved major results in the theory of harmonic integrals and numerous applications to Kählerian and more specifically to algebraic varieties. He demonstrated, by sheaf cohomology, that such varieties are Hodge manifolds.
Achieved major results on the homotopy groups of spheres, especially in his use of the method of spectral sequences. Reformulated and extended some of the main results of complex variable theory in terms of sheaves.
1958年エディンバラ
Solved in 1955 the famous Thue-Siegel problem concerning the approximation to algebraic numbers by rational numbers and proved in 1952 that a sequence with no three numbers in arithmetic progression has zero density (a conjecture of Erdös and Turán of 1935).
In 1954 invented and developed the theory of cobordism in algebraic topology. This classification of manifolds used homotopy theory in a fundamental way and became a prime example of a general cohomology theory.
1962年ストックホルム
Worked in partial differential equations. Specifically, contributed to the general theory of linear differential operators. The questions go back to one of Hilbert's problems at the 1900 congress.
Proved that a 7-dimensional sphere can have several differential structures; this led to the creation of the field of differential topology.
1966年モスクワ
Did joint work with Hirzebruch in K-theory; proved jointly with Singer the index theorem of elliptic operators on complex manifolds; worked in collaboration with Bott to prove a fixed point theorem related to the "Lefschetz formula".
Used technique called "forcing" to prove the independence in set theory of the axiom of choice and of the generalized continuum hypothesis. The latter problem was the first of Hilbert's problems of the 1900 Congress.
Built on work of Weil and Zariski and effected fundamental advances in algebraic geometry. He introduced the idea of K-theory (the Grothendieck groups and rings). Revolutionized homological algebra in his celebrated "Tohoku paper"
Worked in differential topology where he proved the generalized Poincaré conjecture in dimension n≥5: Every closed, n-dimensional manifold homotopy-equivalent to the n-dimensional sphere is homeomorphic to it. Introduced the method of handle-bodies to solve this and related problems.
1970年ニース
Generalized the Gelfond-Schneider theorem (the solution to Hilbert's seventh problem). From this work he generated transcendental numbers not previously identified.
Generalized work of Zariski who had proved for dimension ≤3 the theorem concerning the resolution of singularities on an algebraic variety. Hironaka proved the results in any dimension.
Made important advances in topology, the most well-known being his proof of the topological invariance of the Pontrjagin classes of the differentiable manifold. His work included a study of the cohomology and homotopy of Thom spaces.
Proved jointly with W. Feit that all non-cyclic finite simple groups have even order. The extension of this work by Thompson determined the minimal simple finite groups, that is, the simple finite groups whose proper subgroups are solvable.
1974年バンクーバー
Major contributions in the primes, in univalent functions and the local Bieberbach conjecture, in theory of functions of several complex variables, and in theory of partial differential equations and minimal surfaces - in particular, to the solution of Bernstein's problem in higher dimensions.
Contributed to problems of the existence and structure of varieties of moduli, varieties whose points parametrize isomorphism classes of some type of geometric object. Also made several important contributions to the theory of algebraic surfaces.
1978年ヘルシンキ
Gave solution of the three Weil conjectures concerning generalizations of the Riemann hypothesis to finite fields. His work did much to unify algebraic geometry and algebraic number theory.
Contributed several innovations that revised the study of multidimensional complex analysis by finding correct generalizations of classical (low-dimensional) results.
Provided innovative analysis of the structure of Lie groups. His work belongs to combinatorics, differential geometry, ergodic theory, dynamical systems, and Lie groups.
The prime architect of the higher algebraic K-theory, a new tool that successfully employed geometric and topological methods and ideas to formulate and solve major problems in algebra, particularly ring theory and module theory.
1982年ワルシャワ
Contributed to the theory of operator algebras, particularly the general classification and structure theorem of factors of type III, classification of automorphisms of the hyperfinite factor, classification of injective factors, and applications of the theory of C*-algebras to foliations and differential geometry in general.
Revolutionized study of topology in 2 and 3 dimensions, showing interplay between analysis, topology, and geometry. Contributed idea that a very large class of closed 3-manifolds carry a hyperbolic structure.
Made contributions in differential equations, also to the Calabi conjecture in algebraic geometry, to the positive mass conjecture of general relativity theory, and to real and complex Monge-Ampère equations.
1986年バークレー
Received medal primarily for his work on topology of four-manifolds, especially for showing that there is a differential structure on euclidian four-space which is different from the usual structure.
Using methods of arithmetic algebraic geometry, he received medal primarily for his proof of the Mordell Conjecture.
Developed new methods for topological analysis of four-manifolds. One of his results is a proof of the four-dimensional Poincaré Conjecture.
1990年京都
For his work on quantum groups and for his work in number theory.
for his discovery of an unexpected link between the mathematical study of knots – a field that dates back to the 19th century – and statistical mechanics, a form of mathematics used to study complex systems with large numbers of components.
for the proof of Hartshorne’s conjecture and his work on the classification of three-dimensional algebraic varieties.
proof in 1981 of the positive energy theorem in general relativity
1994年チューリッヒ
Bourgain's work touches on several central topics of mathematical analysis: the geometry of Banach spaces, convexity in high dimensions, harmonic analysis, ergodic theory, and finally, nonlinear partial differential equations from mathematical physics.
... such nonlinear partial differential equation simply do not have smooth or even C1 solutions existing after short times. ... The only option is therefore to search for some kind of "weak" solution. This undertaking is in effect to figure out how to allow for certain kinds of "physically correct" singularities and how to forbid others. ... Lions and Crandall at last broke open the problem by focusing attention on viscosity solutions, which are defined in terms of certain inequalities holding wherever the graph of the solution is touched on one side or the other by a smooth test function
proving stability properties - dynamic stability, such as that sought for the solar system, or structural stability, meaning persistence under parameter changes of the global properties of the system.
For his solution to the restricted Burnside problem.
1998年ベルリン
for his work on the introduction of vertex algebras, the proof of the Moonshine conjecture and for his discovery of a new class of automorphic infinite products
William Timothy Gowers has provided important contributions to functional analysis, making extensive use of methods from combination theory. These two fields apparently have little to do with each other, and a significant achievement of Gowers has been to combine these fruitfully.
contributions to four problems of geometry
He has made important contributions to various branches of the theory of dynamical systems, such as the algorithmic study of polynomial equations, the study of the distribution of the points of a lattice of a Lie group, hyperbolic geometry, holomorphic dynamics and the renormalization of maps of the interval.
2002年北京
Laurent Lafforgue has been awarded the Fields Medal for his proof of the Langlands correspondence for the full linear groups

GLr (r≥1) over function fields.

he defined and developed motivic cohomology and the A1-homotopy theory of algebraic varieties; he proved the Milnor conjectures on the K-theory of fields
2006年マドリード
for his contributions to partial differential equations, combinatorics, harmonic analysis and additive number theory
for his contributions to geometry and his revolutionary insights into the analytical and geometric structure of the Ricci flow
for his contributions bridging probability, representation theory and algebraic geometry
for his contributions to the development of stochastic Loewner evolution, the geometry of two-dimensional Brownian motion, and conformal field theory
2010年ハイデラバード[16]
For his results on measure rigidity in ergodic theory, and their applications to number theory.
For the proof of conformal invariance of percolation and the planar Ising model in statistical physics.
For his proof of the Fundamental Lemma in the theory of automorphic forms through the introduction of new algebro-geometric methods.
For his proofs of nonlinear Landau damping and convergence to equilibrium for the Boltzmann equation.
2014年ソウル[17]
for her outstanding contributions to the dynamics and geometry of Riemann surfaces and their moduli spaces.
for his profound contributions to dynamical systems theory have changed the face of the field, using the powerful idea of renormalization as a unifying principle.
for developing powerful new methods in the geometry of numbers, which he applied to count rings of small rank and to bound the average rank of elliptic curves.
for his outstanding contributions to the theory of stochastic partial differential equations, and in particular for the creation of a theory of regularity structures for such equations.
2018年リオデジャネイロ[18]
For the proof of the boundedness of Fano varieties and for contributions to the minimal model program.
For contributions to the theory of optimal transport and its applications in partial differential equations, metric geometry and probability.
For transforming arithmetic algebraic geometry over p-adic fields through his introduction of perfectoid spaces, with application to Galois representations, and for the development of new cohomology theories.
For his synthesis of analytic number theory, homogeneous dynamics, topology, and representation theory, which has resolved long-standing problems in areas such as the equidistribution of arithmetic objects.

国籍別の受賞者数

受賞時の国籍が基準。二重国籍はそれぞれの国に1個。国旗は現在のもの。ただし、消滅した国の国旗は最後の受賞者の受賞時のもの。(2018年8月現在)

受賞数
アメリカ合衆国の旗 アメリカ合衆国 13
フランスの旗 フランス 12
ロシアの旗 ロシア
ソビエト連邦の旗 ソビエト連邦を含む)
9
イギリスの旗 イギリス 8
日本の旗 日本 3
ベルギーの旗 ベルギー
ドイツの旗 ドイツ
イタリアの旗 イタリア
イランの旗 イラン
2
オーストラリアの旗 オーストラリア
 オーストリア
ブラジルの旗 ブラジル
カナダの旗 カナダ
 フィンランド
イスラエルの旗 イスラエル
 ノルウェー
ニュージーランドの旗 ニュージーランド
 スウェーデン
 ウクライナ
 ベトナム
1

脚注

注釈

  1. ^ 正確な規定は次の通り:受賞年の1月1日より前に40歳の誕生日を迎えたものは候補となれない[8]。ただし厳格な規定が成文化されたのは1966年のICMにおいてである[9]
  2. ^ たとえばアティヤはインタビュー(『数学とは何か』朝倉書店、2010年、pp. 148–149)でそれらの名声と効果の違いについて比較し述べている。また日本でフィールズ賞をとることは、ノーベル賞をとるようなものだが、英国では誰も気にとめてくれないなど、国によって扱われ方に違いがあることにも言及している。

出典

関連文献

会議録

関連項目

外部リンク