周期的なポテンシャルをU(r)として、ほとんど自由な電子の固有値(固有エネルギー)E(k)は、Uを摂動と考えると、
-
- となる。上式右辺第一項は、自由電子の固有値、第二項は一次の摂動エネルギー、第三項が二次の摂動エネルギーである。ここで|k⟩, ⟨k|は、自由電子での固有関数(波動関数)で、
-
である(Vは系の体積)。一次摂動エネルギーの項は、
-
であり、二次摂動エネルギーの項の⟨k+q|U|k⟩は同様にして、
-
である(ポテンシャルの周期性から、q = Kn:Knは逆格子点)。以上から、固有値E(k)は次のように書き直せる。
-
E(0)は自由電子での固有値。
上式の右辺第三項の分母部分がゼロになる場合、つまりE(0)(k)=E(0)(k+Kn)となる場合(縮退)は、そのままでは第三項は非常に大きな寄与となり摂動項としての意味がなくなる。
縮退が起こるのは、k2-|k+Kn|2=0の時(ブラッグの反射条件に相当)で、これは|k|≒|k+Kn|→Kn=0, Kn = -Knから、以下の方程式(行列式となる)を得る。
-
cは固有関数に関しての係数で、更に、
-
である。これを解くと、
-
となる。更に、E1≒E2とすると、
解1:
解2:
を得る。これは、 (ブリュアンゾーンを構成する多面体の表面に相当)においての縮退が解けて、2u(Kn)のギャップが開くことを意味している。
NFE近似は、平面波による展開が非常に収束が悪いため、実際の計算においてあまり役に立たないことも多い。この困難を避ける方法として直交化された平面波 (OPW) 法などがある。