
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 4, Apr. 2017 1931
Copyright ⓒ2017 KSII

On Efficient Processing of Continuous
Reverse Skyline Queries in Wireless Sensor

Networks

Bo Yin1,2*, Siwang Zhou2, Shiwen Zhang3, Ke Gu1, Fei Yu1
1Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation, School of Computer

and Communication Engineering, Changsha University of Science and technology,
Changsha, 410004, China

2 College of Information Science and Engineering, Hunan University, Changsha, 410082, China
3School of Computer Science and Engineering, Hunan University of Science and Technology,

Xiangtan, 411201, China
[e-mail: yinbo@hnu.edu.cn, swzhou@hnu.edu.cn,

shiwenzhang@hnu.edu.cn,gk4572@163.com,yufeiyfyf@163.com]
*Corresponding author: Bo Yin

Received September 20, 2016; revised December 14, 2016; accepted January 3, 2017;

published April 30, 2017

Abstract

The reverse skyline query plays an important role in information searching applications. This
paper deals with continuous reverse skyline queries in sensor networks, which retrieves
reverse skylines as well as the set of nodes that reported them for continuous sampling epochs.
Designing an energy-efficient approach to answer continuous reverse skyline queries is
non-trivial because the reverse skyline query is not decomposable and a huge number of
unqualified nodes need to report their sensor readings. In this paper, we develop a new
algorithm that avoids transmission of updates from nodes that cannot influence the reverse
skyline. We propose a data mapping scheme to estimate sensor readings and determine their
dominance relationships without having to know the true values. We also theoretically analyze
the properties for reverse skyline computation, and propose efficient pruning techniques while
guaranteeing the correctness of the answer. An extensive experimental evaluation
demonstrates the efficiency of our approach.

Keywords: Reverse skyline, continuous query, wireless sensor network, energy efficiency,
pruning

This research is supported by the Natural Science Foundation of China (Grant No.61402055), the Natural Science
Foundation of Hunan Province, China (Grant No.2016JJ3012), and the Open Research Fund of Hunan Provincial
Key Laboratory of Intelligent Processing of Big Data on Transportation, China.

https://doi.org/10.3837/tiis.2017.04.006 ISSN : 1976-7277

1932 Yin et al.: On Efficient Processing of Continuous Reverse Skyline Queries in Wireless Sensor Networks

1. Introduction

A wireless sensor network (WSN) is a collection of sensor nodes, which are responsible for
sensing the surrounding environment and collaborating with each other to relay the sensed
data to a centralized location or sink to answer user queries. Conventional queries, such as
top-k queries [1], and nearest neighbor queries [2], have yet been successfully adapted to WSN
networks. The success of such queries and development of WSN hardware techniques
undoubtedly encourage further attempts to adapt more complicated queries to the WSNs [3].
As an important query operator for intelligent decision over complex data, where multiple and
often conflicting criteria are considered, the skyline operator [4] and its variants [5]-[16] have
been extensively studied recently. In this paper, we study the problem of answering
continuous reverse skyline query in WSNs, which seeks to find the reverse skylines as well as
the full set of nodes that reported them for a number of continuous sampling epochs.

To explain reverse skyline, we explain dynamic skyline first. The dynamic skyline [5]
considers “relative” values, i.e., the coordinate-wise distances between data points and a
user-given query point, and returns all those points that are not dominated by any other point
with respect to the query point. Specifically, a point p1 dominates another p2, if the distance is
not larger than that of p2 on every dimension, and smaller on at least one dimension. Fig. 1(a)
shows an example of dynamic skyline of point p8. Each point p=(p[1], p[2]) in original 2D
space is transformed to a point p’=(|p[1]-p8[1]|, |p[2]-p8[2]|) in 2D distance space. The dynamic
skyline of p8 is {p3, p6, q}. The dynamic skyline query produces interesting points from the
“user” perspective, that is, users who are interested in p8 are likely to be interested in dynamic
skyline points p3, p6 and q. Based on dynamic skyline, a reverse skyline query retrieves a set of
points whose dynamic skyline contains the query point [6]. Fig. 1(b) shows the reverse skyline
set of query point q. Since q is contianed in the dynamic skyline of p8, p8 is contained in the
reverse skyline of q. The same holds for p3 and p6. Hence, the reverse skyline set of q is {p3, p6 ,
p8}. The reverse skyline focuses on the “companies” perspective. It means that users in reverse
skyline set would have been interested in the company product q. Continuous reverse skyline
query is very useful in many WSN applications.

y

O x

q

O x

q

p1 p1

p2 p7

p3

p4

p5

p2

p8

p6

p7

p8

(a) Dynamic Skyline (b) Reverse Skyline

y

p9

4 4'p p=
3 3'p p=

5 5'p p=
9 9'p p=

6 6'p p=

1'p

7'p
2'p

Fig. 1. Reverse skyline example

Scenario 1. For providing valuable services for gardeners (e.g., where and what to plant),

sensors are deployed to monitor weather and soil conditions (temperature, humidity, light,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 4, April 2017 1933

etc.). The plant species are represented by their preferences on different environment
parameters. The query point q is specified as particular monitoring areas. If a plant species is in
the reverse skyline of q, this species would prefer the area that q represents. Then, plant
species appear most in one-day reverse skyline query results is considered to be planted at q.
Given some new locations, the results of reverse skyline querying can also be employed to
seek the suitable area that more plant species are interested in.

Scenario 2. In underground coal mines, to ensure safe working conditions for miners, we
may use sensor networks to collect data, such as gas density, oxygen density, and water depth.
Let us treat the critical values of possible disasters as query q, and continuously pose reverse
skyline query. If most of the query results in a period of time (e.g., 15 minutes) come from a
particular node (or its neighbors), the located area is probably in dangerous state.

Challenge. Answering continuous reverse skyline query in WSNs is non-trivial. As the
reverse skyline operator is not decomposable, even if a point is identified as not belonging to
the query results, this point cannot be simply discarded. Otherwise, false-positive results can
occur. Therefore, during the query processing, a great number of unqualified data points are
transferred over the network for the final results, which incurs high communication cost.

Limitations of the State-of-the-art techniques. The reverse skyline query has been
extensively studied ever since it was introduced in [6]. In addition to traditional reverse
skyline query [6,7], a variety of query variants have been studied, such as why-not reverse
skyline query [8], bichromatic reverse skyline query [9]-[12], ranked reverse skyline query
[13], group-by reverse skyline[14], and reverse skyline over sliding windows [15,16], and
different application environments are considered, such as non-metric space[17], mapreduce
framework [18], uncertain database [19], and moving scenario [20]. Nevertheless, most
existing studies focus on snapshot queries in centralized systems. Their approaches employ
centralized data structures like R-tree and are optimized for processing cost.

The most related works are [16] and [21], which study reverse skyline query in WSNs. The
approach in [21] is designed for snapshot queries and works on the idea of converting the
reverse skyline problem into a full skyline problem such that in-network processing can be
utilized to reduce the network traffic. This approach is extended to handle reverse skyline
queries over sliding windows in [16]. Although the snapshot reverse skyline results could be
extended to answer the reverse skyline query in one or several sampling epochs, it may incur
significant overhead. This is because, every sensor node needs to report its sensor reading at
each query time. Nevertheless, most of those sensor readings may not belong to the final
results. Furthermore, data points are pruned based on routing information, not global
information, which greatly decreases the pruning effectiveness.

Contributions. In this paper, we propose a new algorithm, called efficient computation of
reverse skyline (ECRS), which avoids transmission of updates from nodes that cannot
influence the reverse skyline. Our basic idea is to utilize mapping information of sensor
readings to identify nodes that produced reverse skylines and prune nodes that cannot belong
to the final results. We first propose a mapping scheme, which maps a sensor reading to a
hypersquare that bounds the value of every attribute of the sensor reading. The hypersquare
can be represented by its center and the deviation, where the center is a history sensor reading
which is archived at both source node and the sink. Hence, in stead of reporting the true sensor
readings, sensor nodes send the one-dimension deviations of the hypersquares to the sink.
Based on archived history data and received deviations, the sink can reconstruct the
hypersquares of sensor nodes. We then theoretically analyze the properties for reverse skyline
computation, and propose efficient pruning techniques while guaranteeing the correctness of

http://www.sciencedirect.com/science/article/pii/S0098299707000854

1934 Yin et al.: On Efficient Processing of Continuous Reverse Skyline Queries in Wireless Sensor Networks

the answer. Sensor nodes that can be pruned are excluded from the query results. In order to
minimize the number of nodes that need to report their sensor readings, the sink conducts a
pull-based acquisition of sensor readings from nodes whose sensor readings are determined as
part of the reverse skyline set, such that these new obtained sensor readings can be used to
prune more nodes. In summary, we make the following contributions in this paper.
 We propose an efficient algorithm that computes continuous reverse skyline in sensor

networks. In order to reduce the communication cost, our proposed approach uses
mapping information to identify nodes that produced reverse skylines and suppress
unnecessary data retrieval.

 We propose a data mapping scheme which maps sensor readings to hypersquares,
such that we can determine the dominance relationships of the sensor readings without
having to know their true values.

 We theoretically analyze the properties for reverse skyline computation. We propose
pruning techniques to reduce the number of nodes that need to report their sensor
readings while guaranteeing the correctness of the answer.

 Finally, we conduct extensive experimental study to evaluate the effectiveness of our
algorithm.

The remaining part of this paper proceeds as follows: Section 2 reviews the related work
and presents the preliminaries. Section 3 presents our proposed data mapping scheme. In
section 4, we exploit the properties for reverse skyline computation based on mapped data.
Section 5 presents the ECRS algorithm. Section 6 reports on experiments. Finally, we
conclude in Section 7.

2. Related Work and Preliminaries

2.1 Related Work
The concept of reverse skyline is first introduced by Dellis and Seeger [6].The proposed
algorithm firstly computes the global skyline points, a super set of the reverse skyline, and
then determines reverse skyline points using window queries. Gao et al. [7] proposed a reuse
mechanism to avoid multiple traversal of the R-tree to improve the performance of [6].

In addition to traditional reverse skyline query, a variety of query variants are studied as
well. Islam et al. [8] addressed the problem of answering why-not questions in reverse skyline
queries. Wu et al. [9] studied the bichromatic reverse skyline, and proposed several non-trivial
heuristics to optimize the access order of R-tree to reduce I/O cost. Arvanitis et al. [10]
proposed queue-based data structures to reduce processing cost of [9]. Lian et al.[11]
considered bichromatic reverse skyline for uncertain datasets. Jiang et al. [12] studied the
mutual reverse skyline queries and proposed and proposed several heap-based algorithms.
Gao et al. [13] proposed data-partitioning index for ranked reverse skyline queries. Recently,
the group-by reverse skyline query is studied in [14]. Works of [15] and [16] considered
reverse skyline over sliding windows.

The reverse skyline queries under different application environments are also explored.
Deshpande et al. [17] considered reverse skyline query with non-metirc similarity measures.
The proposed algorithm utilized group-level reasoning and early pruning to reduce attribute
level comparison. Park et al. [18] proposed efficient parallel algorithms for processing reverse
skyline query using MapReduce. Bai et al. [19] proposed some probability pruning techniques
for reverse skyline query over uncertain data stream. Lim et al. [20] considered moving objects,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 4, April 2017 1935

and proposed to make a verification range to reduce the search space and utilize the spatial
index to improve the query efficiency.

Wang et al. [21] proposed a concept, called full skyline, as the set of candidate reverse
skyline points. Since the full skyline query is decomposable, in-network processing can be
utilized to reduce the network traffic during the query processing. Min et al.[16] extended the
approach of [21] to handle reverse skyline queries over sliding windows. As discussed in
Section 1, although the snapshot reverse skyline results [21] could be extended to answer the
reverse skyline query in one or several time epochs, it may incur significant overhead. To
answer continuous reverse skyline queries, we propose a query execution mechanism to avoid
the updates from nodes not contributing to the final results. We propose a mapping scheme and
pruning techniques to reduce the nodes that need to report their sensor readings. Since the
pruning requirements are relaxed compared with that in [21] and extended for node pruning,
our pruning techniques are much more efficient. Finally, [21] does not produce reverse skyline
results progressively, in contrast to our approach.

There are some studies on skyline queries in WSNs. Chen et al. [22] considered continuous
skyline computation, and used hierarchical thresholds to to reduce the transmission traffic.
Kwon et al. [23] selected point closest to the origin as the filter, based on the idea that a point
much closer to the origin has a higher pruning capability. Xin et al. [24] devised two types of
filters, i.e., the grid filter and the tuple filter, for different data distributions. Liang et al. [25]
proposed to use multiple points rather than a single point as the filter. The above methods
assume that the sensor reading of each node is just stored locally. Differently, Su et al. [26]
proposed a cluster-based architecture to store sensing readings, and proposed algorithms to
avoid the need of collecting data from all nodes in the network. Different from these studies, in
this paper we focuses on how to support continuouse reverse skyline queries in WSNs.

2.2 Preliminaries
We assume a cluster-based sensor network [27], which extends the network lifetime and
supports network scalability by grouping sensor nodes into clusters. Data collected by sensor
nodes are first forwarded to corresponding cluster-heads. Then the cluster-heads route
aggregated data of their clusters toward the sink to answer user queries. Each senor node si
produces a d-dimensional point ([1], [2], , [])t t t t

i i i ip p p p d=  at sampling epoch t. We omit the
time epoch when it is clear from the context.
Definition 1 (Continuous reverse skyline query in WSN). The continuous reverse skyline
query retrieves the set of reverse skyline points RSKt with respect to query point q, for each
sampling epoch t, as well as the set of nodes St that generated the reverse skyline points.
Definition 2 (Reverse Skyline [6]). Given a dataset D and a query point q, the reverse skyline
with respect to q is a set of points whose dynamic skyline includes q. That is, a point oϵD is a
reverse skyline point of q, iff ∄pϵD such that (1) |p[m]-o[m]|≤|q[m]-o[m]|for all m, and (2)
|p[k]-o[k]|<|q[k]-o[k]|for at least one k.

3. Mapping Data into ε-hypersquares
The purpose of data mapping is to obtain approximate views of sensor readings, such that we
can identify those nodes that produced reverse skyline points, and perform node pruning
without having to know the true observation values. Due to spatio-temporal correlation among
sensor readings, we propose to represent the approximate views based on history data. Note
that, we archive a history sensor reading for each node at both the sink and source node in our

1936 Yin et al.: On Efficient Processing of Continuous Reverse Skyline Queries in Wireless Sensor Networks

ECRS approach. Let r
ip and t

ip be the archived history and the current sensor readings of
node si, respectively. We map t

ip to an ε-hypersquare t
iF centering at r

ip with side length 2 t
iε .

Since si and sink maintain the same r
ip , si only sends t

iε to the sink which then reconstructs
t

iF as the approximate view of t
ip . We call t

iε the deviation of t
ip . Obviously, t

iF is the
minimum bounding hypersquare that centers at r

ip and covers t
ip . The maintainance and

updation of history point r
ip will be detailed in Section 5.

Definition 3 (ε-hypersquare). Given two data points t
ip and r

ip , the ε-hypersquare of t
ip ,

denoted as t
iF , is the hypersquare centering at r

ip with side length 2 t
iε , where t

iε =

1max | [] [] |r t
m d i ip m p m≤ ≤ − .

An ε-hypersquare t
iF is represented by two corner points, i.e., the nearest corner t

il and the
furthest corner t

iu (to the query q). By conducting dominance tests among those corner points,
we will justify whether or not the true observations are reverse skylines. We now formulate the
computation of corner points. As shown in Fig. 2, the data space is cut into 2d quadrants with d
orthogonal hyper-planes. Note that whether point p is a reverse skyline point only depends on
data points in the same quadrant. Points on quadrant intersection planes belong to all
intersection quadrants. In order to get located quadrant of t

ip based on r
ip , we assume that t

ip
and r

ip are in the same quadrant and r
ip is not on quadrant intersection planes. When t

iF is
inside only one quadrant (Fig. 2(a)), corner points are calculated with Eq. (1) and Eq. (2).

[] | [] []
[] ,1 .

[] | [] []

r t r
t i i i
i r t r

i i i

p m q m p m
u m m d

p m q m p m
ε
ε

 + <= ≤ ≤
− >

 (1)

[] | [] []
[] ,1 .

[] | [] []

r t r
t i i i
i r t r

i i i

p m q m p m
l m m d

p m q m p m
ε
ε

 − <= ≤ ≤
+ >

 (2)

Otherwise, we only need the part of t

iF in the quadrant that r
ip lies in. For this purpose, as

illustrated in Fig. 2(b), we treat point pvi, which is on the quadrant intersection planes and
nearest to q, as the new t

il as follows:

max([], []) | [] []
[] ,1 .

min([], []) | [] []

t r
i i

i t r
i i

l m q m q m p m
pv m m d

l m q m q m p m
 <= ≤ ≤

>
 (3)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 4, April 2017 1937

t
ip

r
ip

t
iu

t
il

t
ip

ipv

r
ip

t
iu

t
il

t
iF

(a) Anε-hypersquare in one quadrant (b) Anε-hypersquare in multiple quadrants

y

O x

q
quadrant 1

quadrant 2quadrant 3

quadrant 4

t
iF

O x

q
quadrant 1

quadrant 2quadrant 3

quadrant 4

y

Fig. 2. Example of data mapping

4. Properties for Reverse Skyline Computation Based on Mapped Data
There are three aspects in reverse skyline calculation. These are: (1) identifying points that
belong to reverse skyline query results; (2) identifying points that cannot belong to query
results; and (3) safely pruning points not contributing to the final results. Recall that, in our
mapping scheme, data points (i.e., the sensor readings) are represented with ε-hypersquares.
Hence, we need to coduct the above three aspects based on mapped data. Given a sensor node
represented with an ε-hypersquare, if its true data point can be pruned, this node need not to
report its data point and it is immediately discarded. Furthermore, if the data point is
determined as part of the reverse skyline set, we will conduct a pull-based acquisition of the
true observations from the nodes, and these observations will be used to prune more
unqualified nodes. Hence, in the following illustration of properties for reverse skyline
computation, we consider a mixed set of sensor readings and ε-hypersquares.

4.1 Identifying Reverse Skyline Points
Given a point p, the reverse skyline dominance region of p, denoted as RSDR(p), is the set of
points dynamically dominating q with respect to p. Clearly, pϵRSK(q) iff ∄oϵRSDR(p). To
illustrate, consider the rectangle with q as a corner point and centered at p in Fig. 3(a). We
emphasize that RSDR(p) is this hyper-rectangle except corners points. Points in RSDR region
can be justified based on the “semidominance” concept [21], that is, oϵRSDR(p) if and only if
o semidominates p. Specifically, point o semidominates p with respect to q, if: (1)
| [] [] | 2 | [] [] |o m q m p m q m− ≤ − and ([] [])([] []) 0o m q m p m q m− − ≥ for all m, and (2)
| [] [] | 2 | [] [] |o k q k p k q k− < − and ([] [])([] []) 0o k q k p k q k− − > for at least one k.

1938 Yin et al.: On Efficient Processing of Continuous Reverse Skyline Queries in Wireless Sensor Networks

1
tF

1
tl

y

O x

q

3
tF

2
tF2

tp

3
tu

2
tu

3
tl

2
tl

RSDR()1
tu

1
tu1

tp

3
tp

O

q

p

y

RSDR(p)

x

1
tF

1
tl

y

O x

q

2
tF

2
tu

2
tl

RSDR()
RSDR()

1
tu
1
tp

1
tu1

tp
2
tp

(a) RSDR region (c) Identification of reverse skyline points(b) Comparisons based on RSDR regions
Fig. 3. Example of reverse skyline point identification

When data points are mapped into ε-hypersquares, intuitively, given an ε-hypersquare
(,)t t t

i i iF l u , if there does not exist another (,)t t t
h h hF l u such that t

hl falls in RSDR(t
iu), then t

hp
cannot be in RSDR(t

ip). Nevertheless, it is not always true. For example, in Fig. 3(b), 2
tl does

not lie in RSDR(1
tu), but its true observation 2

tp is in RSDR(1
tp). This is because 2

tl is a corner
of the rectangle with q as a corner point and centered at 1

tu . As stated earlier, RSDR(1
tu) does

not contain the corners, and thus, 2
tl does not belong to RSDR(1

tu). To solve the problem, we
define the extended semidominance (e-dominance) and prove two propositions (Proposition 1
and Proposition 2) that help to identify reverse skyline points from mapped data.
Definition 4 (Extended semidominance): A point p1 extendly semidominates (e-dominates)
another point p2 with respect to q, if (1) 1 2| [] [] | 2 | [] [] |p m q m p m q m− ≤ − and

1 2([] [])([] []) 0p m q m p m q m− − ≥ for all m, and (2) 1 2| [] [] | 2 | [] [] |p k q k p k q k− < − and

1 2([] [])([] []) 0p k q k p k q k− − > , or 1[] [] 0p k q k− = , for at least one k.

Proposition 1. Point t
ip is a reverse skyline point, if ∄ t

jp such that t
jp semidominates t

ip and ∄

(,)t t t
h h hF l u such that t

hl e-dominates t
ip .

Proof. We prove the proposition using reduction to absurdity. Suppose that t t
iP RSK∉ , then

t
hp semidominates t

ip . Hence, m d∀ ∈ , | [] [] | 2 | [] [] |t t
h ip m q m p m q m− ≤ − and ([]t

ip m −
[])([] []) 0t

hq m p m q m− ≥ , and k d∃ ∈ , | [] [] | 2 | [] [] |t t
h ip k q k p k q k− < − and ([] [])t

ip k q k−
([] []) 0t

hp k q k− > . For the nearest corner t
hl , it holds that m d∀ ∈ , | [] [] |t

hl m q m− ≤

| [] [] |t
hp m q m− and ([] [])([] []) 0t t

h hl m q m p m q m− − ≥ . There are two conditions for t
hl :

1. If t
hl is on the quadrant intersection planes, i.e., k d∃ ∈ , [] [] 0t

hl k q k− = , we can get
m d∀ ∈ , | [] [] | 2 | [] [] |t t

h il m q m p m q m− ≤ − and ([] [])([] []) 0t t
h il m q m p m q m− − ≥ .

2. Otherwise, it holds that: m d∀ ∈ , [] [] 0t
hl m q m− ≠ . Then, we can infer (1) m d∀ ∈ ,

| [] [] | 2 | [] [] |t t
h il m q m p m q m− ≤ − and ([] [])([] []) 0t t

h il m q m p m q m− − ≥ , and (2) k d∃ ∈ ,
| [] [] | 2 | [] [] |t t

h il k q k p k q k− < − and ([] [])([] []) 0t t
h il k q k p k q k− − > .

It follows from Definition 4 that t
hl e-dominates t

ip .

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 4, April 2017 1939

Proposition 2. Given an ε-hypersquare (,)t t t
i i iF l u , its true observation t

ip is a reverse skyline
point, if ∄ t

jp such that t
jp semidominates t

iu and ∄ (,)t t t
h h hF l u such that t

hl e-dominates t
iu .

Proof. We prove the proposition using reduction to absurdity. Suppose that t t
iP RSK∉ , then

t
jp or t

hp semidominates t
ip . If t

jp semidominates t
ip , we have m d∀ ∈ , | [] [] |t

jp m q m− ≤

2 | [] [] |t
ip m q m− and ([] [])([] []) 0t t

i jp m q m p m q m− − ≥ , and k d∃ ∈ , | [] [] | 2 | []t t
j ip k q k p k− <

[] |q k− and ([] [])([] []) 0t t
i jp k q k p k q k− − > . It holds that m d∀ ∈ , | [] [] | | []t t

i ip m q m u m− ≤ −

[] |q m and ([] [])([] []) 0t t
i ip m q m u m q m− − ≥ . We can infer (1) m d∀ ∈ , | [] [] |t

jp m q m− ≤

2 | [] [] |t
iu m q m− and ([] [])([] []) 0t t

j ip m q m u m q m− − ≥ , and (2) k d∃ ∈ , | [] [] |t
jp k q k− <

2 | [] [] |t
iu k q k− and ([] [])([] []) 0t t

j ip k q k u k q k− − > , that is , t
jp semidominates t

iu . Hence, t
hp

semidominates t
iu if t

hp semidominates t
ip . Thus, t

hl e-dominates t
iu according to Proposition 1.

From the above two propositions, we note that, if t
hl does not e-dominate t

iu , t
hp cannot

semidominate t
ip , that is, t

hp ∉ RSDR(t
ip). Fig. 3(c) shows three ε-hypersquares and their

true observations. Consider the ε-hypersquare 1 1 1(,)t t tF l u . Since 3 1| [] [] | 2 | [] [] |t tl y q y u y q y− > − ,

3
tl does not e-dominate 1

tu . Similarily, 2
tl does not e-dominate 1

tu as 2| [] [] |tl x q x− >

12 | [] [] |tu x q x− . Therefore, the true observation 1
tp is a reverse skyline point (Proposition 2).

4.2 Identifying Non-Reverse Skyline Points
Based on RSDR region, it is obvious that a point p cannot be a reverse skyline point, iff there is
another point o in RSDR(p). That is, o semidominates p. We now extend the identification
techniques of non-reverse skyline points to ε-hypersquares. Given two ε-hypersquares

(,)t t t
i i iF l u and (,),t t t

j j jF l u if t
iu falls in RSDR(t

jl), it is likely that the true observation t
ip is

located in RSDR(t
jp). Unfortunately, it is not always the truth. As shown in Fig. 4, although

1
tu is in RSDR(2

tl), 1
tp is not inside RSDR(2

tp) because 1
tp is located at the corner of the

hypersquare that RSDR(2
tp) belongs to. That is, 1

tp does not gurantee to semidominate 2
tp if

1
tu semidominates 2

tl . To solve this problem, we define strong semidominance (s-dominance)
and prove two propositions (Proposition 3 and Proposition 4) that help identify non-reverse
skyline points from mapped data.
Definition 5 (Strong semidominance). A point 1p strongly semidominates (s-dominates) 2p
with respect to q, iff 1 2| [] [] | 2 | [] [] |p m q m p m q m− < − and 1 2([] [])([] []) 0p m q m p m q m− − ≥
for all m.

1940 Yin et al.: On Efficient Processing of Continuous Reverse Skyline Queries in Wireless Sensor Networks

1
tF

1
tp

1
tl

1
tu

y

O x

q

3
tF

2
tF

3
tp

2
tp

3
tu

2
tu

3
tl

2
tl

RSDR()
RSDR()

2
tp

2
tl

Fig. 4. Example of non-reverse skyline point identification

Proposition 3. Point t
ip cannot be a reverse skyline point, if ∃ t

jp such that t
jp semidominates t

ip
or ∃ (,)t t t

h h hF l u such that t
hu s-dominates t

ip .

Proof. According to Definition 5, since t
hu s-dominates t

ip , then m d∀ ∈ , | []t
hu m −

[] | 2 | [] [] |t
iq m p m q m< − and ([] [])([] []) 0t t

h iu m q m p m q m− − ≥ . Moreover, we have m d∀ ∈ ,
| [] [] | | [] [] |t t

h hp m q m u m q m− ≤ − and ([] [])([] []) 0t t
h hp m q m u m q m− − ≥ . We can infer m d∀ ∈ ,

| [] [] | 2 | [] [] |t t
h ip m q m p m q m− < − and ([] [])([] []) 0t t

h ip m q m p m q m− − ≥ . Since k d∃ ∈ such
that [] []t

hP k q k≠ , we have ([] [])([] []) 0t t
h iP k q k p k q k− − > . Hence, t

hp semidominates t
ip if

t
hu s-dominates t

ip .

Proposition 4. The true observation of (,)t t t
i i iF l u cannot be a reverse skyline point, if ∃ t

jp such

that t
jp semidominates t

il or ∃ (,)t t t
h h hF l u such that t

hu s-dominates t
il .

Proof. If t
jp semidominates t

il , we can get m d∀ ∈ , | [] [] | 2 | [] [] |t t
j ip m q m l m q m− ≤ − and

([] [])([] []) 0t t
j ip m q m l m q m− − ≥ , and k d∃ ∈ , | [] [] | 2 | [] [] |t t

j ip k q k l k q k− < − and ([]t
jp k −

[])([] []) 0t
iq k l k q k− > . It holds that m d∀ ∈ , | [] [] | | [] [] |t t

i il m q m p m q m− ≤ − and ([]t
il m −

[])([] []) 0t
iq m p m q m− ≥ .We can infer (1) m d∀ ∈ , | [] [] | 2 | [] [] |t t

j ip m q m p m q m− ≤ − and

([] [])([] []) 0t t
j ip m q m p m q m− − ≥ , and (2) k d∃ ∈ , | [] [] | 2 | [] [] |t t

j ip k q k p k q k− < − and ([]t
jp k

[])([] []) 0t
iq k p k q k− − > . That is, t

jp semidominates t
ip . Then, if t

hu s-dominates t
il , we can

infer t
hp semidominates t

il according to Proposition 3, and thus, t
hp semidominates t

ip .

In the example of Fig. 4, 1
tu s-dominates 3

tl because 1 3| [] [] | 2 | [] [] |t tu m q m l m q m− < − on all
dimensions. According to Proposition 4, the true observation 1

tp must semidominate 3
tp .

Therefore, 3
tp cannot belong to reverse skyline set.

4.3 Safe Pruning
In this subsection, we develop new pruning strategies for the reverse skyline queries while

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 4, April 2017 1941

returning the correct query answer set.
Given a point p, let S(P) denote the set of data points that p semidominates. Data set F(p)

contains points that fully dominates p [21]. Specifically, point p1 fully dominates another p2
with respect to q if: (1) 1 2| [] [] | | [] [] |p m q m p m q m− ≤ − and 1 2([] [])([] []) 0p m q m p m q m− − ≥
for all m, and (2) 1 2| [] [] | | [] [] |p k q k p k q k− < − and 1 2([] [])([] []) 0p k q k p k q k− − > for at least
one k. We denote the region formed by points in F(p) as FDR(p), i.e., the rectangle with p and
the query point q as diagonal corners but except rectangle corners, as shown in Fig. 5. Let us
divide region FDR(p) into two regions FDR1(p) and FDR2(p). Specifically, FDR1(p) contains
data points in F(p)∩S(p). In the work of [21], point p can be pruned only if there are at least
two points in region FDR(p). We prove one lemma (Lemma 1) to improve the pruning
efficiency. Note that, point o must semidominate p if o fully dominates p.

O x

q

p

y

FDR2(p)

FDR(p)
FDR1(p)

Fig. 5. FDR region

Lemma 1. Point p can be pruned, if there are at least (1) two points in region FDR1(p), or (2)
one point in region FDR2(p).
Proof. Point p can be pruned, iff (1) p is a non-reverse skyline point, and (2) any point in S(p)
is semidominated by another point except p. The first condition is fulfilled because p falls in
region FDR(p). For any point oϵS(p), points in region FDR(p) semidominate o. Since points in
FDR1(p) also belong to S(p), it is equivalent to proving that the two points in FDR1(p)
semidominate each other. This is straightforward because points in FDR1(p) fully dominates p
and p semidomiates those points.

We extend Lemma 1 to ε-hypersquares based on the notion of strong fulldominance
(f-dominance). Given a point t

ip , we say that t
hF ∈FDR(t

ip) if t
hu f-dominates t

ip , and t
hF ∈

FDR1(t
ip) if another condition is fulfilled, i.e., t

ip semidominates t
hl . It guarantees that the

true observation t
hp really falls in FDR(t

ip) or FDR1(t
ip) (Proposition 5).

Similarly, given an ε-hypersquare (,)t t t
i i iF l u , we say that point t

jp ϵFDR(t
iF) if t

jp fully

dominates t
il , and t

jp ϵFDR1(t
iF) if t

iu s-dominates t
jp and t

jp fully dominates t
il . The

ε-hypersquare (,)t t t
h h hF l u ϵFDR(t

iF) if t
hu f-dominates t

il , and (,)t t t
h h hF l u ϵFDR1(t

iF) if
another condition is fulfilled, i.e., t

iu s-dominates t
hl .

1942 Yin et al.: On Efficient Processing of Continuous Reverse Skyline Queries in Wireless Sensor Networks

Definition 6 (Strong fulldominance). A point 1p strongly fulldominates (f-dominates) 2p
with respect to q, if 1 2| [] [] | | [] [] |p m q m p m q m− < − and 1 2([] [])([] []) 0p m q m p m q m− − ≥ for
all m.
Lemma 2. Given a point t

ip and an ε-hypersquare (,)t t t
h h hF l u , t

hp fully dominates t
ip if t

hu
f-dominates t

ip .

Proof. Since t
hu f-dominates t

ip , we can get m d∀ ∈ , | [] [] | | [] [] |t t
h iu m q m p m q m− < − and

([] [])([] []) 0t t
h iu m q m p m q m− − ≥ . It holds that m d∀ ∈ , | [] [] | | [] []t t

h hp m q m u m q m− ≤ − and
([] [])([] []) 0t t

h hp m q m u m q m− − ≥ . We can infer m d∀ ∈ , | [] [] | | [] [] |t t
h ip m q m p m q m− < − ,

and ([] [])([] []) 0t t
h ip m q m p m q m− − ≥ . Since k d∃ ∈ , [] []t

hp k q k≠ , then ([] [])t
hp k q k−

([] []) 0t
ip k q k− > . Thus, t

hp fully dominates t
ip .

Proposition 5. A point or an ε-hypersquare can be pruned, if there are at least (1) two
points/ε-hypersquares in the FDR1 region, or (2) one point/ε-hypersquare in FDR2 region.
Proof. 1. Given a point t

ip , if ε-hypersquare t
hF ϵFDR(t

ip), we can get t
hu f-dominates t

ip .
According to Lemma 2, we can infer t

hp fully dominates t
ip . Hence, t

hp ϵFDR(t
ip). When t

hF
ϵFDR1(t

ip), we can get t
ip semidominates t

hl . Therefore, t
ip semidominates t

hp , i.e., t
hp

ϵFDR1(t
ip).

2. Given an ε-hypersquare (,)t t t
o o oF l u , if point pϵFDR(t

oF), we can get p fully dominates t
ol .

Clearly, p fully dominates t
op , i.e., pϵFDR(t

op). When pϵFDR1(t
oF), we have t

ou s-dominates p.
We can infer that t

op semidominates p according to Proposition 3. Hence, pϵFDR1(t
op).

Furthermore, if another ε-hypersquare t
hF ϵFDR(t

oF), we can get t
hu f-dominates t

ol . According
to Lemma 2, we can infer t

hp fully dominates t
ol . Hence, t

hp fully dominates t
op , i.e., t

hp
ϵFDR(t

op). When t
hF ϵFDR1(t

oF), we have t
ou s-dominates t

hl . We can infer t
op semidominates

t
hl according to Proposition 3. Therefore, t

op semidominates t
hp , i.e., t

hp ϵFDR1(t
op).

In conclusion, there are always at least two points in FDR1 region, or one point in FDR2

region. Hence, point t
ip and ε-hypersquare t

oF can be safely pruned based on Lemma 1.

Consider the ε-hypersquares in Fig. 6, since 3
tu f-dominates 1

tl and 1
tu s-dominates 3

tl , we
can get 3

tF ϵFDR1(1
tF). Furthermore, 2

tu f-dominates 1
tl but 1

tu does not s-dominate 2
tl , and

thus, 2
tF ϵFDR2(1

tF). Since there exists an ε-hypersquare in the FDR2 region of 1
tF , 1

tF can be
immediately discarded according to Proposition 5.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 4, April 2017 1943

O x

q

y

FDR1()
FDR()

1
tF1

tl

2
tF

1
tu1

tp

1
tF

1
tF

FDR2()1
tF

2
tF

2
tu

2
tl

3
tF

3
tu

3
tl

Fig. 6. Example of safe pruning

5. ECRS Algorithm
In this section we present our query processing algorithm ECRS. We first provide a general
description in Section 5.1. We then go on to describe in detail the working of three query
stages from Section 5.2 to Section 5.4.

5.1 Algorithm Framework
Initially, the sink collects sensor readings of all nodes and computes the initial reverse skyline
query results. The sink also broadcasts into the network a user-specified threshold, referred to
as ε, as the default value of deviation. Note that the sink maintains for each node the latest
sensor reading that arrives at the sink and is not on quadrant intersection planes as the history
data point. This sensor reading is also archived at both source node and corresponding
cluster-head. Therefore, at each sampling epoch, both the sink and head node can get the same
approximate views of the true observations, and then safely prune unqualified nodes while
avoiding false-positives.

Thereafter, ECRS at each subsequent time epochs consists of three stages.
(1) Mapping information collection: the purpose of this stage is to gather mapped data of

sensor readings, and then identify sensor nodes that produced the reverse skyline
points and perform node pruning.

(2) Probing: the sink asks for sensor readings of “special” nodes (e.g., the identified nodes
that produced the reverse skyline points), and performs node pruning once again based
on these new obtained sensor readings.

(3) Complementing the final results: the sink pulls observations from nodes that have not
reported their sensor readings and not pruned, and generates the rest reverse skylines.

Note that, the reverse skyline points can be obtained in all three stages. If a point is
determined as a reverse skyline point, it can be immediately reported as part of the final results.
Hence, the query results are returned progressively in our approach.

5.2 Mapping Information Collection
During this stage, sensor nodes trigger a propagation of mapping information. Since the
user-specified threshold ε is set as the default value of deviation, node si reports to cluster head

1944 Yin et al.: On Efficient Processing of Continuous Reverse Skyline Queries in Wireless Sensor Networks

its deviation t
iε only when t

iε ε> and the true observation t
ip is not on quadrant intersection

planes. For the scenario that t
ip falls on the quadrant intersection planes, t

ip is directly sent to
cluster head.

After receiving the mapping information, cluster-heads compute ε-hypersquares and apply
Proposition 5 to prune unqualified ε-hypersquares as well as data points. Clearly, sensor nodes
whose ε-hypersquares are pruned need not report their data point in further processing, and
thus, they are immediately discarded. We also discard the points or ε-hypersquares with only
one point/ε-hypersquare in FDR1 region and mark this point/ε-hypersquare as not belonging to
the reverse skyline query results. We now illustrate the reason. For convenience, we consider
point p, and let o be a point/ε-hypersquare in FDR1(p). Obviously p and point o (or the true
observation of ε-hypersquare) semidominate each other and they cannot belong to final results.
Since points of S(p) are also semidominated by o, those points can be still determined as not
belonging to revere skyline without p. Hence, p can be safely pruned by marking o. When a
point is discarded, downlink message is transmitted back to source node to inform it that the
sensing reading has not arrived at sink and the archived history point need not to be updated.
The purpose is to maintain the consistency among source node, cluster-head and the sink.

Then, cluster-heads refine the mapping information for unpruned data points. Especially, for
each unpruned point t

ip , cluster-head selects the history point s
lp (from the archived history data

of the cluster) with the minimum value of deviation and in the same quadrant of t
ip , and sends

the new deviation to the sink. The corresponding node information is also sent to the sink, such
that the sink can get a correct view of t

iF .

y

O x

q
R

N

N
S

S

N1
tF

2
tF

3
tF

4
tF

5
tF

6
tF

7
tF

8
tF

9
tF

10
tF

11
tp

R:R-node
N:N-node
S:S-node

N

N

N

S

y

O x

q
N

N1
tp 2

tF

7
tp 9

tF

10
tF
S

y

O x

q

1
tp 2

tp

10
tp

3 6 9 12 15 18 21

3

6

9

12

15

18

21

3 6 9 12 15 18 21 3 6 9 12 15 18 21

3

6

9

12

15

18

21

3

6

9

12

15

18

21

(a)Mapping information collection (b)Probing (c)Complementing the final results

7
tp

Fig. 7. Example of ECRS

Based on obtained mapping information, the sink prunes away unqualified nodes and
partitions the remaining nodes into three groups: the “reverse skyline” group (or R-node), the
“non-reverse skyline” group (or N-node), and the group of nodes such that whether these nodes
belong to the query result is still unknown (or S-node). Consider the example in Fig. 7(a) which
shows ε-hypersquares of ten sensor nodes (s1 to s10) and one point 11

tp of node s11. The
threshold ε is set to 1. Node s7 is a R-node, since no point semidominats 7

tu and there is no
ε-hypersquare whose nearest corner e-dominates 7

tu (according to Proposition 2). The N-node
set is {s2, s3, s4, s5, s6 , s8 , s11} according to Proposition 3 and Proposition 4. The ε-hypersquares

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 4, April 2017 1945

{ 3
tF , 4

tF , 5
tF , 6

tF , 8
tF }and point 11

tp can be immediately discarded, since they have 7
tF located in

their FDR2 region (according to Proposition 5). The rest nodes {s1 s9, s10} are S-nodes because
we cannot determined whether they belong to the query results.

5.3 Probing
In the probing stage, the sink requires the sensor readings of all R-nodes, as these sensor
readings belong to the reverse skyline set. The sink also asks some special S-nodes to report
their true observations. These special S-nodes are part of S-nodes such that we can not
determine whether they belong to the query results if we know the sensor readings of all other
nodes. Thus, these nodes must report their true observations. Specifically, in order to identify
special S-nodes, we make the following observation:
Observation 1. Given an S-node is , represented by ε-hypersquare (,)t t t

i i iF l u , is must report its
sensor reading if t

il is not semidominated by t
hl of any other (,)t t t

h h hF l u .

The reason is straightforward. If the true observation t
ip is a reverse skyline point, is should

definitely send its observation. On the contrary, if t
ip is not a reverse skyline point, we need to

identify this “status” by using Proposition 4. Since is is an S-node, only when the true
observation t

hp semidominates t
il , we can determine t

ip is not a reverse skyline point without
having to retrieve the true values of t

ip . Clearly, t
hl semidominates t

il if t
hp semidominates t

il .
Hence, in order to determine whether or not t

ip is a reverse skyline points, we must retrieve its
true values.

The “probing” message containing the ids of “probing” nodes are then sent by the sink to
corresponding cluster-heads, which thereafter retrieve observations from corresponding nodes.
The cluster-heads perform node pruning based on received sensor readings and archived
ε-hypersquares, which is similar with the processing in the first stage. Then, cluster-heads send
unpruned sensor readings to the sink, which thereafter prune away unqualified nodes and
identify sensor nodes that belong to the query result as in the first stage.

In Fig. 7(a), 1s is a “special” S-node that needs to send its true observation, because the
nearest corner cannot be semidominated by that of any other ε-hypersquare (according to
Observation 1). Therefore, in the probing stage, the sink asks for values from node 1s and the
R-node 7s . Fig. 7(b) shows updated mapping information. Since 7

tp falls in FDR2 region of

9
tF , 9s is an N-node and 9

tF can be pruned. It is obvious that node 1s is a reverse skyline node.
After the probing stage, 10s is still an S-node.

5.4 Complementing the Final Results
In the last stage, the sink requires sensor readings of all unpruned nodes and generates the rest
reverse skyline points. Node pruning is performed at each cluster-head. Based on received
sensor readings, the sink can correctly compute the rest reverse skyline points. Note that the
reverse skyline result includes the reverse skyline points retrieved in all three stages. Since
some sensor readings arrive at the sink, the sink updates the history data of corresponding
nodes. The same updating operation is performed at cluster-heads and source nodes. Lemma 3
verifies the correctness of ECRS’s algorithm.

As shown in Fig. 7(c), the sink asks for true values of unpruned ε-hypersquares { 2
tF , 10

tF }.

1946 Yin et al.: On Efficient Processing of Continuous Reverse Skyline Queries in Wireless Sensor Networks

Point 10
tp is reported as a reverse skyline point, and 2

tp does not belong to the reverse skylines
since it is semidominated by 1

tp , 7
tp and 10

tp .
Lemma 3. At any epoch t≥tfirst, ECRS produces a correct reverse skyline result where tfirst is
the first sampling epoch.
Proof. The proof is obvious since the algorithm at the first sampling epoch is essentially a
centralized processing, and the correctness at subsequent epochs is guaranteed by Propositions
1 to 5.

6. Performance Evaluation
In this section, we conduct a simulation-based performance of our proposed algorithm that is
implemented in C++. All experiments were conducted on a PC equipped with a 3GHz Dual
Core AMD processor equipped with 2GB RAM.

6.1 Experimental Setup

We assume that n sensor nodes are evenly deployed in √𝑛 × √𝑛 units with the sink located at
the center. The communication radius is 2√𝑛 units. We employ HEED [27] as the underlying
cluster-based network architecture. We deploy three different datasets: uniform, correalted and
clustered [21,28]. We first generate the initial datasets that follow the above distributions
respectively. For uniform and correlated datasets, we then randomly select data point from the
initial dataset for each sensor node. For the clustered dataset, each cluster-head picks randomly
a point and generate 4 centroids that follow a Gaussian distribution on each axis with variance
0.025, and a mean equal to the corresponding coordinate of the centroid. Then, all associated
nodes obtain points, the coordinates of which follow a Gaussian distribution on each axis with
variance 0.005 around the cluster centroids. Values of data points on each dimension are
normalized between 0 and 1. Data points at each node si is then modeled as 1[] []t t

i i i ip l p l eλ −= + ,
where ~ (0,0.1)ie N and ~ (1,0.01).i Nλ Every node is initialized with 1iλ = and 0ie = . Assume
that each d-dimensional point holds 4 d× bytes, and both a deviation and a node identifier take
4 bytes each.

Table 1. Experimental parameters and values
Parameter Values
Dimensions 2, 3, 4,5

Number of nodes 6000, 7000, 8000, 9000

ε
0.006, 0.008, 0.01, 0.02, 0.03, 0.04 (uniform dataset)
0.002, 0.004, 0.005, 0.01, 0.015, 0.02 (clustered and

correlated datasets)

Our main metrics are: (i) the node reduction rate (NRR): the proportion of non-reverse

skyline nodes that do not send their sensor readings to the number of non-reverse skyline nodes,
and (ii) the communication cost, which counts the number of bytes of messages transmitted
during query processing. We compare our ECRS approach with Basic and Mapping approach.
The Basic approach is a continuous version of algorithm of [21], where at each sampling
epoch all nodes report their sensor readings and in-network processing based on the notion of
full skyline is utilized to reduce the amount of transferred data. The Mapping approach is
almost the same to our proposed ECRS method, except that it extends the pruning technique of

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 4, April 2017 1947

[21] to mapped data, that is, data points or ε-hypersquares are pruned only when there are at
least two points/ε-hypersquares in the FDR regions. The parameters of the experiments are
listed in Table 1. Unless stated explicitly, the default parameter values, given in bold are used.

6.2 Experimental Results
Node Reduction Rate. We first study the efficiency of node pruning technique in terms of the
node reduction rate. We set threshold ε to the value that optimizes the overall performance
(through a tuning processing similar to Fig. 13). Specifically, we set ε to 0.01 for the uniform
dataset, and ε to 0.005 for the clustered and correlated datasets.

In order to examine the impact of the dimensionality, we used sensor networks with 8000
nodes with dimensionality varying from 2 to 5. Fig. 8(a) plots the experiment results for
uniform and clustered datasets. We can see that the performance degrades when dimensionality
increases. The charts also show that, the NRR in clustered dataset is 25% to 53% higher than
uniform dataset. The reason is that, data points in clustered dataset concentrate in several
regions, and thus, more sensor nodes are pruned due to mapped data close to query point. To
study the influence of the node cardinality, we used a 4-dimensional dataset and varied the
network size between 6000 and 9000 nodes. As shown in Fig. 8(b), ECRS in clustered dataset
prune about 50% more nodes than uniform dataset. We also see that, the NRR is not much
sensitive to the cardinality under both distributions.

Fig. 8. Data reduction rate (uniform and clustered datasets)

Fig. 9. Data reduction rate of ECRS and Mapping approaches

1948 Yin et al.: On Efficient Processing of Continuous Reverse Skyline Queries in Wireless Sensor Networks

In Fig. 9, we compare ECRS with Mapping method for clustered dataset. We can see that
ECRS is 15% to 28% more efficient than Mapping. The experiments results indicates that our
pruning strategy can efficiently reduce the number of nodes that need to report their sensor
readings.
Communication Cost. We then proceed to investigate the communication cost. We evaluate
the performance of ECRS under three data distributions, i.e., uniform (Fig. 10), clustered (Fig.
11), and correlated (Fig. 12).

Fig.10(a) depicts the communication cost when the dimensionality varies from 2 to 5. We fix
the node cardinality to 8000. ECRS transfers more than 45%~130% fewer data than Basic due
to our node pruning technique employed by ECRS, which greatly reduces the number of nodes
that need to report their readings (as shown in Fig. 8). We also see that, as the dimensionality
increases, the communication cost grows rapidly. There are two reasons. Firstly, an increase of
dimensionality leads to the increase of the size of the individual sensor readings as well as the
cardinality of the reverse skylines. Secondly, the pruning capability degrades when
dimensionality grows.

Fig. 10(b) illustrates the communication cost as a function of the number of sensor nodes for
the 4-dimensional dataset. ECRS transfers about 89% fewer data than Basic and 23% than
Mapping. Since a network of a larger size generates more data, the number of reverse skylines
as well as the average cost of processing such a query increases. Hence, both approaches
transmit more bytes of data when the number of nodes increases.

Fig. 10. Communication cost (uniform dataset)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 4, April 2017 1949

Fig. 11. Communication cost (clustered dataset)

Fig. 11 shows the communication cost of clustered dataset. ECRS shows consistently better

performance than Basic. For the 3-dimensional dataset, the communication cost is an order of
magnitude less than that of Basic. We also see that, ECRS outperforms Basic more significantly
as dimensionality increases. Although communication costs of both algorithm increase with
dimenisionality, the cost incresement of Basic is much more obvious than that of ECRS.

From Fig. 10 and Fig. 11, we can see that, the communication cost of uniform dataset is
higher than that of clustered dataset. The reason is that, more unqualified nodes are pruned for
clustered dataset, and therefore fewer sensor readings are transferred. The charts also show
that the cost of ECRS is always lower than that of Mapping, which proves the effectiveness of
our pruning strategy.

Fig. 12. Communication cost (correlated dataset)

In ECRS, three types of data are transmitted over the network, i.e., sensor readings,

deviations, and the probing message. Specifically, both sensor readings and deviations are
associated with node ids. The probing message contains the ids of the nodes that need to report
their sensor readings. In order to clearly illustrate the effect of transferring these three types of
data, we provide a cost break-down analysis. In Fig. 12, we depict the classified
communication cost in correlated dataset. The chart shows that cost for transferring sensor

1950 Yin et al.: On Efficient Processing of Continuous Reverse Skyline Queries in Wireless Sensor Networks

readings is the dominator of the overall communication cost (59%~87%). Specifically, as
dimensionality increases, the proportion of cost for transferring sensor readings increases (from
59% to 87%, as shown in Fig. 12(a)). As the cardinality of the reverse skyline increases with
dimensionality while the pruning capability degrades, the cost for transferring
multi-dimensional sensor readings grows rapidly with dimensionality. Furthermore, in ECRS, a
sensor node needs to report its true deviation only when the one-dimensional deviation is larger
than the default value ε. Therefore, the effect of additional cost on the overall communication
cost decreases. We only detail the results on correlated dataset here, because ECRS yields
similar performances on the other two datasets. From Fig. 10 to Fig. 12, we can see that,
although additional communication cost is needed for collecting deviations and sending the
probing message in ECRS, the overall cost decreases as a result of the significant reduction of
the number of transferred sensor readings.
Effects of the parameter. In the last experiment, we evaluate the performance of ECRS under
different values of threshold ε. In ECRS, ε is set as the default value of deviation, and a sensor
node reports its deviation as mapping information only when its deviation is larger than ε. Fig.
13(a) evaluate the communication cost of ECRS in uniformly distributed dataset when we vary
ε from 0.006 to 0.04. We used a 4-dimensional dataset with 8000 points. When ε is relatively
small, e.g., ε< 0.01, the performance degrades if ε decreases. A smaller ε does not necessarily
ensure a better performance. The reason is that when ε goes smaller, unqualified nodes need to
report their true deviations for mapping information collection. While ε>0.02, the
communication cost increases when ε goes larger. This is because, a larger ε leads sensor nodes
to be represented with ε-hypersquares with greater volumes, and thus, more unqualified nodes
are not pruned based on their mapping information. Fig. 13(b) shows the effect of ε on the
communication cost when data distribution is clustered. When ε is close to 0.005, the
communication cost is under 5 million and ECRS has relatively good performance. The
correlated distribution exhibit similar behavior, and hence, are omitted here.

Fig. 13. Quality vs. threshold

Summary. From the experiments, we can conclude that for continuous reverse skyline, our
proposed ECRS approach can efficiently reduce the number of nodes that need to send their
sensor readings. ECRS consistently outperforms the the coutinuous version of algorithm of [21]
in terms of communication cost under various network configurations, and the superiority is
more significant as the dimension increases.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 4, April 2017 1951

7. Conclusion
In this paper, we have proposed ECRS, an energy-efficient approach that processed the
continuous reverse skyline queries in wireless sensor networks. The basic idea is to suppress
the updates from nodes not contributing to the reverse skyline result. A data mapping scheme
is used to estimate current sensor readings, and identify nodes that produced reverse skylines.
Node pruning techniques are proposed to remove unqualified nodes while guaranteeing the
correctness of the answer. Our simulation revealed the effectiveness and superior efficiency of
the ECRS. Some extensions can be considered. An interesting topic is to examine the
effectiveness of node pruning technique in other query operators, such as k nearest neighbor
query and range query. Furthermore, it is equally exciting to study secure reverse skyline
query and the reverse skyline queries in various subspaces.

References
[1] A.Silberstein, R.Braynard, C.Ellis, K.Munagala, and J.Yang, “A sampling-based approach to

optimizing top-k queries in sensor networks,” in Proc. of 22nd International Conference on Data
Engineering, pp. 68-68, April 3-8, 2006. Article (CrossRef Link)

[2] Y.Yao, X.Tang, and E.Lim, “Localized monitoring of kNN queries in wireless sensor networks,”
The VLDB Journal, vol. 18, no. 1, pp.99-117, January, 2009. Article (CrossRef Link)

[3] Y.Zhang, X.Sun, and B. Wang, “Efficient algorithm for k-barrier coverage based on integer linear
programming,” China Communications, vol.13, no.7, pp.16-23, September, 2016.
Article (CrossRef Link)

[4] S.Börzsönyi, D.Kossmann, and K.Stocker, “The skyline operator,” in Proc. of 17th International
Conference on Data Engineering, pp.421-430, April 2-6, 2001. (CrossRef Link)

[5] D.Papadias, Y.Tao, G.Fu, and B.Seeger, “An optimal and progressive algorithm for skyline
queries,” in Proc. of ACM SIGMOD International Conference on Management of Data,
pp.467-478, June 9-12, 2003. Article (CrossRef Link)

[6] E.Dellis and B.Seeger, “Efficient computation of reverse skyline queries,” in Proc. of 33rd
International Conference on Very Large Data Bases, pp.291-302, September 23-27, 2007.
Article (CrossRef Link)

[7] Y.Gao, Q.Liu, B.Zheng, and G.Chen, “On efficient reverse skyline query processing,” Expert
Systems with Applications, vol.41, pp.3237-3249, June, 2014. Article (CrossRef Link)

[8] M.S.Islam, R. Zhou, and C. Liu, “On answering why-not questions in reverse skyline queries, ” in
Proc. of 29nd International Conference on Data Engineering, pp.973-984, April 8-11, 2013.
Article (CrossRef Link)

[9] X.Wu, Y.Tao, R.C.-W.Wong, L.Ding, and J.X.Yu, “Finding the influence set through skylines,” in
Proc. of 12th International Conference on Extending Database Technology: Advances in Databse
Technology, pp.1030-1041, March 23-26, 2009. Article (CrossRef Link)

[10] A.Arvanitis, A.Deligiannakis, and Y.Vassiliou, “Efficient influence-based processing of market
research queries,” in Proc. of 21st ACM international conference on Information and knowledge
management, pp.1193-1202, October 29 to November 2, 2012. Article (CrossRef Link)

[11] X.Lian and L.Chen, “Monochromatic and bichromatic reverse skyline search over uncertain
databases,” in Proc. of ACM SIGMOD International Conference on Management of Data,
pp.213-226, June 10-12, 2008. Article (CrossRef Link)

[12] T.Jiang, Y.Gao, B.Zhang, D.Lin, and Q.Li, “Monochromatic and bichromatic mutual skyline
queries,” Expert systems with applications, vol.41, pp.1885-1900, March, 2014.
Article (CrossRef Link)

[13] Y.Gao, Q.Liu, L.Mou, G.Chen, and Q.Li, “On processing reverse k-skyband and ranked reverse
skyline queries,” Information science, vol.293, pp.11-34, February, 2015. Article (CrossRef Link)

[14] Z.Wang, Y.Gao, Q.Liu, X.Miao, Q.Li, and C.Li, “Efficient group-by reverse skyline computation,”
World Wide Web, pp.1-27, November, 2015. Article (CrossRef Link)

http://dx.doi.org/10.1109/ICDE.2006.10
http://dx.doi.org/10.1007/s00778-007-0089-3
http://dx.doi.org/10.1109/CC.2016.7559071
https://doi.org/10.1109/ICDE.2001.914855
http://dx.doi.org/10.1145/872757.872814
http://dl.acm.org/citation.cfm?id=1325887
http://dx.doi.org/10.1016/j.eswa.2013.11.012
http://dx.doi.org/10.1109/ICDE.2013.6544890
https://doi.org/10.1145/1516360.1516478
http://dx.doi.org/10.1145/2396761.2398420
http://dx.doi.org/10.1145/1376616.1376641
http://dx.doi.org/10.1016/j.eswa.2013.08.085
http://www.sciencedirect.com/science/article/pii/S0020025514008573
http://www.sciencedirect.com/science/article/pii/S0020025514008573
http://dx.doi.org/10.1016/j.ins.2014.08.052
http://dx.doi.org/10.1007/s11280-015-0372-y

1952 Yin et al.: On Efficient Processing of Continuous Reverse Skyline Queries in Wireless Sensor Networks

[15] J.Xin, Z.Wang, M.Bai, and G.Wang, “Reverse Skyline Computation over Sliding Windows,”
Mathematical Problems in Engineering, vol.2015, 2015. Article (CrossRef Link)

[16] J.-K.Min, “Efficient reverse skyline processing over sliding windows in wireless sensor networks,”
International journal of distributed sensor networks, Vol.2015, January, 2015.
Article (CrossRef Link)

[17] P.M.Deshpande, and P.Deepak, “Efficient Reverse skyline retrieval with arbitrary non-metric
similarity measures,” in Proc. of ACM SIGMOD International Conference on Management of
Data, pp.319-330, June 12-16, 2011. Article (CrossRef Link)

[18] Y.Park, J.-K. Min, and K. Shim, “Parallel computation of skyline and reverse skyline queries using
mapreduce,” in Proc. of VLDB Endowment, vol.6, no.14, pp.2002-2013, 2013.
Article (CrossRef Link)

[19] M.Bai, J.Xin, and G.Wang, “Probabilistic reverse skyline query processing over uncertain data
stream,” Database Systems for Advanced Applications, vol.7239, pp.17-32, 2012.
Article (CrossRef Link)

[20] J.Lim, K.Bok, Y.Lee, and J.Yoo, “A continuous reverse skyline query processing for moving
objects,” in Proc. of International Conference on Big Data and Smart Computing, pp.66-71,
January 15-17, 2014. Article (CrossRef Link)

[21] G.Wang, J.Xin, L.Chen, and Y.Liu, “Energy-efficient reverse skyline query processing over
wireless sensor networks,” IEEE Transactions on Knowledge and Data Engineering, vol.24, no.7,
pp.1259-1275, March, 2012. Article (CrossRef Link)

[22] H.Chen, S.Zhou, and J.Guan, “Towards energy-efficient skyline monitoring in wireless sensor
networks,” in Proc. of 4th European Conference on Wireless Sensor Networks, pp.101-116,
January 29-31, 2007. Article (CrossRef Link)

[23] Y.Kwon, J.-H.Choi, Y.D.Chung, and S.Lee, “In-network processing for skyline queries in sensor
networks,” IEICE Transactions on Communications, Vol.E90-B, No.12, pp.3452-3459, 2007.
Article (CrossRef Link)

[24] J.Xin, G.Wang, L.Chen, X. Zhang, and Z.Wang, “Continuously maintaining sliding window
skylines in a sensor network,” in Proc. of 12th International Conference on Database Systems for
Advanced Applications, pp.509-521, April 9-12, 2007. Article (CrossRef Link)

[25] W.Liang, B.Chen, and J.X.Yu, “Energy-Efficient Skyline Query Processing and Maintenance in
Sensor Networks,” in Proc. of 17th ACM Conference on Information and Knowledge Management,
pp.1471-1472, October 26-30, 2008. Article (CrossRef Link)

[26] I.-F.Su, Y.-C.Chung, C.Lee, and Y.-Y.Lin, “Efficient Skyline Query Processing in Wireless Sensor
Networks,” Journal of Parallel and Distributed Computing, Vol.70, No.6, pp.680-698, June, 2010.
Article (CrossRef Link)

[27] O.Younis, and S.Fahmy, “HEED: a Hybrid, energy-Efficient, distributed clustering approach for
ad hoc sensor networks,” IEEE Transactions on mobile computing, vol.3, no.4, pp.366-379,
October, 2004. Article (CrossRef Link)

[28] A.Vlachou, C.Doulkeridis, Y.Kotidis, and M.Vazirgiannis, “SKYPEER: Efficient subspace
skyline computation over distributed data,” in Proc. of 23rd International Conference on Data
Engineering, pp. 416-425, April 15-20, 2007. Article (CrossRef Link)

http://dx.doi.org/10.1155/2015/649271
https://doi.org/10.1155/2015/375630
http://dx.doi.org/10.1145/1951365.1951404
http://dx.doi.org/10.14778/2556549.2556580
http://dx.doi.org/doi:10.1007/978-3-642-29035-0_2
http://dx.doi.org/10.1109/BIGCOMP.2014.6741409
http://dx.doi.org/10.1109/TKDE.2011.64
http://dx.doi.org/10.1007/978-3-540-69830-2_7
http://dx.doi.org/10.1093/ietcom/e90-b.12.3452
http://dx.doi.org/10.1007/978-3-540-71703-4_44
http://dx.doi.org/10.1145/1458082.1458339
http://dx.doi.org/10.1016/j.jpdc.2010.01.001
http://dx.doi.org/10.1109/TMC.2004.41
http://dx.doi.org/10.1109/ICDE.2007.367887

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 4, April 2017 1953

Bo Yin received her B.S. degree in communication engineering, M.S. degree in
communication and information system, and Ph.D.degree in computer application
technology from Hunan University, Changsha, China, in 2005, 2008, and 2013
respectively. She is currently a lecturer at School of Computer and Communication
Engineering, Changsha University of Science and Technology, Changsha, China. Her
current research interests include data management and mining, parallel and distributed
computing, and wireless communication systems.

Siwang Zhou received his M.S. degree in computer application technology and
Ph.D.degree in control science and engineering from Hunan University, Changsha,
China, in 2009, and 2015 respectively. He is currently an associate professor at College of
Information Science and Engineering, Hunan University, Changsha, China. His research
interests include machine learning, database system, and wireless communication
systems.

Shiwen Zhang received his Ph.D. degree in computer application technology from
Hunan University, Changsha, China, in 2015. He is currently a lecturer at Hunan
University of Science and Technology, Xiangtan, China. His research interests include
security and privacy issues in social networks, cloud computing, sensor networks, and
data mining.

Ke Gu received his Ph.D. degree in School of Information Science and Engineering
from Central South University in 2012. He is currently a Lecturer at Changsha University
of Science and Technology, Changsha, China. His research interests include
cryptography, network and information security.

Fei Yu received his Ph.D. degree in computer science and technology from Hunan
University, Changsha, China, in 2013. He is currently a lecturer at Changsha University
of Science and Technology, Changsha, China. His research interests include wireless
communication systems and radio frequency integrated circuits design.

