Arkivo originala(1 100 × 849 pixel-i, grandeso dil arkivo: 385 KB, MIME type: image/jpeg)
Ca arkivo jacas en Wikimedia Commons, e povas uzesar en altra projeti.
La deskriptado en lua pagino di deskriptado montresas adinfre.
Tiu ĉi bildo meteorology respektive ĉiuj bildoj en tiu ĉi artikolo aŭ kategorio prefere estu rekreata(j) kiel vektora grafikaĵo en la formato SVG. Vektoraj formatoj por grafikaĵoj havas multajn avantaĝojn, detaloj troveblas anglalingve en la komuneja artikolo Commons:Media for cleanup. Se vi havas aŭ kreas SVG-version de tiu ĉi bildo, bonvolu alŝuti ĝin al la vikipedia komunejo. Post tiu ago, ĉi tiu ŝablono en la bildpaĝo estas anstataŭigenda per la ŝablono {{vector version available|nova dosiera nomo.svg}}.
This meteorology image was uploaded in the JPEG format even though it consists of non-photographic data. This information could be stored more efficiently or accurately in the PNG or SVG format. If possible, please upload a PNG or SVG version of this image without compression artifacts, derived from a non-JPEG source (or with existing artifacts removed). After doing so, please tag the JPEG version with {{Superseded|NewImage.ext}} and remove this tag. This tag should not be applied to photographs or scans. If this image is a diagram or other image suitable for vectorisation, please tag this image with {{Convert to SVG}} instead of {{BadJPEG}}. If not suitable for vectorisation, use {{Convert to PNG}}. For more information, see {{BadJPEG}}.
This is a global map of the annually averaged near-surface air temperature from 1961 to 1990. Such maps, also known as "climatologies", provide information on climate variation as a function of location.
The tropics, between the Tropic of Cancer and Tropic of Capricorn, have the most direct sunlight and highest temperatures. While the seasonal contrasts in surface temperature are due to the tilt of the Earth axis, there is relatively little variation in the annual average sunlight received throughout this entire tropics, and hence the entire band has similar temperatures. Above the tropics, temperatures fall off more rapidly as one travels towards the Earth's poles, at a rate of approximately 1 °C for every 145 km (1 °F per 50 miles). Permafrost will form at positions where the annual average temperature is below 0 °C.
The other key factor in determining surface temperature is elevation. Surface temperature declines ~1 °C for every 220 m (1 °F per 400 ft) in elevation above sea level. The coldest portions of Earth are the Greenland and Antarctic Ice Sheets, which combine both very high latitude and high elevation.
Data sources
This map was produced by combining the 10' CRU CL 2.0archive copy at the Wayback Machine land-surface temperature data set (New et al. 2002) with the 1° NOAA OISST version 2archive copy at the Wayback Machine sea-surface temperature data set (Reynolds et al. 2002) and the 2.5° NCEP/NCAR Reanalysis version 1archive copy at the Wayback Machine data set (Kalnay et al. 1996). OISST was used for low- and mid-latitude ocean temperatures, but NCEP/NCAR was substituted in sea ice-forming regions, where OISST would overestimate the near-surface air temperature. In addition, a small offset was added in all regions to the OISST sea-surface temperatures to match the NCEP/NCAR air temperatures, and thus account for the difference between ocean and air. NCEP/NCAR was used for Antarctica, since it was the only data set including this region.
Copyright
This image was created by Robert A. Rohde for Global Warming Art.
On darfas kopiigar, distributar ed/od altrigar ica dokumento segun la kondicioni di GNU Free Documentation License, quale esas mencionita en la versiono 1.2 od en irga plu posa versiono, qua esas publikigita da Free Software Foundation; En la dokumento ne darfas esas ne-altrigita parti ed olu ne darfas esar kom texto di frontala o dopala pagino di libro o GNU Free Documentation License.http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue
partigar – kopiar, distributar e transsendar la verko
Mixar – adaptar l'arkivo
Segun la sequanta kondicioni:
Atribuo – Vu mustas referar l'artiklo o verko segun la formo definita dal autoro o dal proprietero dil autoroyuro, ed informar se modifikuri facesis. Vu mustas facar to per justa formo, ma ne insinuar ke l'autoro konfidis ol a vu, od aprobis vua uzo dil artiklo.
partigar identa ('share alike') – Se vu modifikos, transformos od augmentos ica verko, vu mustos distributar la rezulto segun la sama, o simila licenco, quale l'originalo.
Ica etiketo pri uzo-permiso ligesis ad ica artiklo dum l'aktualigo dil yurizo GFDL.http://creativecommons.org/licenses/by-sa/3.0/CC BY-SA 3.0Creative Commons Attribution-Share Alike 3.0truetrue
Une deuxième raison pour laquelle la température de surface dépend de la latitude est la variation de l’épaisseur d'atmosphère traversée par les rayons lumineux. Lorsque les rayons sont perpendiculaires à la surface, l'épaisseur d'atmosphère traversée est la plus faible ; la lumière est moins absorbée et moins diffusée par l’atmosphère et la surface reçoit d'avantage d'énergie solaire.
A l’équateur la surface du globe est, côté soleil, perpendiculaire au rayonnement solaire tandis que près des pôles la surface est presque parallèle. L’énergie solaire reçue par unité de surface est donc plus importante près de l’équateur que près des pôles.
Reynolds, R.W., N.A. Rayner, T.M. Smith, D.C. Stokes, and W. Wang (2002). "An improved in situ and satellite SST analysis for climate". J. Climate15: 1609-1625.
E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W.Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, A. Leetmaa, R. Reynolds, Roy Jenne, Dennis Joseph (1996). "The NCEP/NCAR 40-Year Reanalysis Project". Bulletin of the American Meteorological Society77 (3): 437–471.