

# Nusantara's Smart Building Guideline

PLAZA SEREMON

**Green and Digital Transformation** Nusantara Capital Authority

144 MIL



### CIRCULAR LETTER CHIEF OF NUSANTARA CAPITAL AUTHORITY NUMBER : 009/SE/Kepala-Otorita IKN/VIII/2023

### ABOUT GUIDELINE FOR THE DEVELOPMENT OF SMART BUILDINGS IN THE NUSANTARA CAPITAL CITY

### APPENDIX NUSANTARA'S SMART BUILDING GUIDELINE

"Nusantara's Smart Building Guideline" is the official translation of Circular Letter Nomor: 009/SE/Kepala-Otorita IKN/VIII/2023

# CONTENTS

| Introduction                                            |    |
|---------------------------------------------------------|----|
| Sustainable Development within the Context of Nusantara | 12 |
| Smart Building Principles                               | 14 |
| Sustainable Resource<br>Management                      | 16 |
| Implementation Guidelines                               | 21 |
| Implementation of Smart<br>Building in Nusantara        | 97 |

## NUSANTARA'S SMART BUILDING GUIDELINE

#### **Green and Digital Transformation**

#### Copyright ©2023

Green and Digital Transformation Nusantara Capital Authority 17<sup>th</sup> Floor Menara Mandiri 2, Senayan Kebayoran Baru, South Jakarta Special Capital Region of Jakarta 12190

#### Editor

Ir. Bambang Susantono, MCP., MSCE., Ph.D. Chairman of Nusantara Capital City Authority Prof. Mohammed Ali Berawi, M.Eng.Sc., Ph.D. Deputy for Green and Digital Transformation

#### Authors

Prof. Mohammed Ali Berawi, M.Eng.Sc., Ph.D. Prof. Yandi Andri Yatmo, M.Arch., Ph.D. Dr. Mustika Sari, S.Ars., M.T. Sylvia Putri Larasati, S.T. Evan Roberts, S.T.

#### Partner

Green and Digital Transformation Working Group

#### Layout

Sylvia Putri Larasati, S.T.

#### Illustrations

Ministry of Public Works and Housing

This guideline is the result of the in-house production of the Deputy for Green and Digital Transformation of the Nusantara Capital Authority, which is an accumulation of learning and research that has been carried out over the past 10 years by the team of authors at Universitas Indonesia. Before the smart building guideline book was published, a Focus Group Discussion was held at Le Meridien Hotel Jakarta on June 9-10, 2023 and involved more than 50 institutions from various related ministries including the Ministry of Health, Ministry of Communication and Information, Ministry of Transportation, Ministry of Environment and Forestry, Ministry of Finance, Ministry of Energy and Human Resources, academics from 9 universities, practitioners and construction companies and technology providers from within and outside the country.

#### FOREWORDS

Developing a city and its infrastructure is arguably one of the main drivers of economic growth. New city development can form the backbone of an economy, as they provide social and economic benefits to the society. The economic role and significance of city development must consider other dimensions of sustainable development, particularly its environmental aspects. Thus, the development of modern cities enables competitive advantage in the global economy and contributes to a nation's economic and social growth.

Nusantara Capital City will be planned as green open space where 65% is a protected area and 10% is for food production and the rest, the development area will consist of various zones of mixed-use and neighbourhood. On top of that, Nusantara will be utilized as a clean energy source and mobilization within Nusantara will be heavily accomplished by public transportation.

The creation of a new city requires careful preparation in terms of planning and project implementation. Well-prepared technical, financial, and good governance frameworks need to be in place before the construction of a new city can be carried out. Implementing accountable and prudent good governance in the development process is among the important factors in the construction of a new capital city's mega project. Based on the presidential regulation on the master plan of Nusantara, we then develop a more detailed plan as shown in this guideline.

Smart city development aims to produce a resilient and sustainable city by producing better city services, from improvements in transportation, energy, and water resources to waste disposal and health services. Smart cities can improve a city's ability to use natural resources efficiently, make public transportation more attractive, and further provide data to planners and decision makers to allow them to allocate resources appropriately. In other words, the smart city concept contributes to the formation of a high-quality, healthy, and regenerative built environment that is modelled on a circular economy and has an overall positive impact on the environment.

Science and technology development plays a significant role in achieving sustainable development by improving the efficiency and effectiveness of new and more long-lasting ways of building and living. Investments in green technology, more streamlined and targeted processes, safer materials, and improved performances and outcomes are some of the results of such development. Technological advances in utilizing renewable energy resources, building urban water systems and sustainable public infrastructure, and producing environmentally friendly materials and products are among the pathways along which technology will significantly contribute to sustainable new smart city development.

Bambang Susantono Chairman of Nusantara Capital City Authority

#### FOREWORDS

As technology advances at an unprecedented pace, our buildings are transforming into intelligent, connected entities capable of improving how we live, work, and interact with our surroundings. The concept of smart buildings has received a lot of traction in recent years as businesses and governments have realized how revolutionary these cutting-edge buildings may make the way we plan, develop, use, and maintain our built environment.

The demand for comfort, efficiency, and sustainability is growing, and smart buildings are emerging as a robust solution to address the challenges caused by the inadequate supply of these demands. In this book, we go into the topic of smart buildings to offer a thorough guide that covers the terminology, background, elements, and technological approaches used in these innovative buildings.

We start by delving into the definition of smart buildings, moving beyond the buzzword to comprehend the essential elements that develop a building as smart. We look at the numerous aspects of smart buildings and how they fit into the larger picture of smart cities, where connectivity and data-driven decision-making are changing the look of metropolitan areas.

Next, we explore the components of smart buildings, revealing the essential elements that serve as the foundation of these intelligent structures. From advanced sensors and controls to energy-efficient systems, we explore the inner workings of smart buildings, emphasizing how these components work to maximize building performance, improve user experience, and reduce environmental impact.

However, what truly distinguishes smart buildings are the innovative technological solutions that enable their transformation. In this book, we present an indepth examination of the advanced technologies driving smart building growth. We investigate the role of these technologies in enabling buildings with intelligence and connection, ranging from artificial intelligence (AI) and machine learning (ML) to the Internet of Things (IoT) and big data analytics.

This book results from extensive research, expert insights, and practical recommendations to guide industry experts, policymakers, and stakeholders in navigating the fascinating world of smart buildings. It is a comprehensive resource that can help architects, engineers, facility managers, and urban planners understand, develop, and execute smart building solutions that are user-centric, efficient, and sustainable.

"Smart Building Guidelines" is aimed to encourage the implementation of smart buildings that contributes to the growth of sustainable and intelligent built environments. I hope you can join us on this transformative journey as we uncover the potential of smart buildings and shape the future of our cities.

#### Mohammed Ali Berawi

Deputy for Green and Digital Transformation Nusantara Capital City Authority

## **Executive Summary**

A smart city is an approach that utilizes advances in information and communication technology, urban data management, and digital technology to plan and manage core urban functions in an efficient, innovative, inclusive, and resilient manner. Based on technological priorities, smart buildings are a component that is expected to be present at the beginning of Nusantara Capital City. Therefore, this guideline is established as a standard for smart building planning in the Nusantara region. With the application of the features in this guideline, it is expected that all buildings in Nusantara can optimally achieve their performance goals. The application of smart buildings is one of the supporters of Nusantara Capital City's vision, namely 'World City for All' through sustainable development in the energy, water, waste, environment & biodiversity, economy, tourism, security, and technology sectors. Smart buildings have 6 principles namely automation, multi-functionality, adaptability, interactivity, inclusivity, and efficiency. Smart buildings are equipped with a range of features that allow for greater energy efficiency, convenience, and safety. Each feature in a smart building must fulfil the following functional requirements and specifications.

| <ul> <li>BASIC REQUIREMENTS</li> <li>Integrated Building Management<br/>System</li> <li>Control Room and Data Center</li> <li>Fiber-to-the Room (FTTR)</li> <li>Digital Twin</li> </ul>            | <ul> <li>COMMUNICATION SYSTEM</li> <li>Intercom System</li> <li>Audio Visual &amp; Digital Signage</li> </ul>                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RESOURCE SYSTEM <ul> <li>Smart Water Management</li> <li>Smart Drinking Water Fountain</li> <li>Smart Waste Chute</li> <li>Smart Bin</li> <li>Smart Restroom</li> </ul>                            | <ul> <li>SECURITY SYSTEM</li> <li>Intelligent Video Surveillance</li> <li>Smart Locking System</li> <li>Virtual Gates</li> <li>Occupancy Monitoring</li> </ul>                                                            |
| <ul> <li>ACCESS CONTROL SYSTEM</li> <li>Touchless Access Control</li> <li>Visitor Management</li> </ul>                                                                                            | LIGHTING SYSTEM     Smart Lighting System                                                                                                                                                                                 |
| <ul> <li>ENERGY SYSTEM</li> <li>Automatic Meter Readers</li> <li>Automatic Sub-meter Readers</li> <li>Electricity Load Balancing</li> <li>Public Electric Vehicle Charging<br/>Stations</li> </ul> | <ul> <li>MOBILITY SYSTEM</li> <li>Smart Escalator and Auto walk</li> <li>Smart Elevator</li> <li>Smart Parking System</li> </ul>                                                                                          |
| SAFETY SYSTEM<br>Active Disaster Response System<br>Smart Fire Suppression System<br>Emergency Button<br>Fire Safety Device Maintenance<br>Animal Hazard Protection                                | <ul> <li>HVAC SYSTEM</li> <li>Air Quality Monitoring</li> <li>Air Conditioning System</li> <li>Air Purification and Filter Monitoring</li> <li>Demand Controlled Ventilation</li> <li>Climate Detection System</li> </ul> |

| SYSTEM            | Access<br>Control | Communicati<br>on | Energy       | HVAC         | Lighting     | Mobility                                                                                                                                           | Resource                                                                                                                                           | Safety                                                                                                                                             | Security     |
|-------------------|-------------------|-------------------|--------------|--------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Access<br>Control |                   | X                 |              | $\checkmark$ | $\checkmark$ | $\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$ | V                                                                                                                                                  |                                                                                                                                                    | V            |
| Communicati<br>on | $\checkmark$      |                   |              | $\checkmark$ |              | $\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$ |                                                                                                                                                    | $\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$ | K            |
| Energy            |                   |                   |              | >            | $\checkmark$ | $\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$ | $\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$ |                                                                                                                                                    | K            |
| HVAC              | $\checkmark$      | <                 | $\checkmark$ |              |              | $\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$ | $\checkmark$                                                                                                                                       | $\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$ | K            |
| Lighting          | $\checkmark$      |                   | $\checkmark$ |              |              | $\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$ | $\checkmark$                                                                                                                                       | $\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$ | K            |
| Mobility          | $\checkmark$      | $\checkmark$      | $\checkmark$ | $\checkmark$ | $\checkmark$ |                                                                                                                                                    |                                                                                                                                                    |                                                                                                                                                    | V            |
| Resource          | $\checkmark$      |                   | $\checkmark$ | $\checkmark$ | $\checkmark$ |                                                                                                                                                    |                                                                                                                                                    |                                                                                                                                                    | $\checkmark$ |
| Safety            |                   | $\checkmark$      |              | $\checkmark$ | $\checkmark$ |                                                                                                                                                    |                                                                                                                                                    |                                                                                                                                                    | $\checkmark$ |
| Security          | $\checkmark$      | $\checkmark$      | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$ | $\checkmark$                                                                                                                                       | $\checkmark$                                                                                                                                       |              |

#### Table 1. System Integration Matrix

The table above shows the integration between systems in a smart building. Integration between systems in smart buildings must be done carefully and planned by considering the needs and objectives of building use, namely energy efficiency, increased productivity, increased occupant comfort and safety.

The implementation of smart building in Nusantara consists of several stages to ensure the achievement of performance target, from building planning and design, performance review, system implementation, and performance evaluation.



# 1. Introduction

#### 1.1 Background

Law No. 3 of 2022 has decreed that Indonesia's capital city will move from Jakarta to the Nusantara, located in East Kalimantan. The development plan of the Nusantara Capital City is described in Presidential Regulation Number 63 of 2022 concerning the Master Plan for the Nusantara Capital City. In the regulation, it is explained that the basic principles of developing the capital city area combine three concepts of urban development, namely forest city, sponge city, and smart city.

A smart city is an approach that utilizes advances in information and communication technology, urban data management, and digital technology to plan and manage core urban functions in an efficient, innovative, inclusive, and resilient manner. Based on technological priorities, smart buildings are a component that is expected to be present at the beginning of Nusantara Capital City. Plus, President Jokowi has emphasized that on Indonesia's Independence Day in 2024, a flag ceremony will be held with a complete city ecosystem, including office and residential buildings of course. So, building designs that include smart features are important from the planning phase.

The application of smart buildings has begun in Indonesia, such as parking systems with sensors, surveillance with CCTV, automatic lighting systems, and others. However, the understanding of the smart building concept is still different from one building to another. In Indonesia, there is no policy or standard that specifically explains smart buildings. Therefore, this guideline is established as a standard for smart building planning in the Nusantara Capital City region. With the application of the features in this guideline, it is expected that all buildings in Nusantara can optimally achieve their performance goals.

#### 1.2 Limitations of this Guideline

- This guideline only regulates the design of building towers
- This guide is not universally applicable, as it is dependent on specific conditions, functions, and locations. It is not a substitute for accurate calculations and modelling by the design team.
- The effectiveness of the design methods and systems outlined in this guide will be determined by the design, implementation, and operation of the relevant systems.





#### 1.3 Why Smart Building?

According to IEA data from 2021, building operations account for 30% of global final energy consumption and 27% of total energy sector emissions [28]. Therefore, the building sector has a vital role to play in responding to the climate emergency. Engineers in the construction world are starting to conceptualize more environmentally friendly buildings such as green buildings and sustainable buildings.

Many studies have proven that the condition of buildings greatly affects the productivity of the people who move in them. Indoor environmental quality, such as air and lighting conditions, can affect human health and comfort. Therefore, the condition of building occupants is also starting to become a major concern in building design [29].

This smart building guideline was developed to promote building practices within Nusantara that take into account, not only the impact of buildings on the environment, but also on the well-being of their occupants with the help of the latest technology.

The application of the smart building concept offers many advantages including:

- Optimize energy use and minimize energy waste, thereby reducing operating costs and helping to protect the environment.
- Air quality can be better monitored and regulated, improving the health and comfort of building occupants.
- Equipped with better security and safety systems, such as CCTV monitoring systems, fire sensors, and alarm systems, so as to help protect building occupants.
- With the right use of technology, smart buildings can help reduce building operational and maintenance costs.
- Smart buildings can be connected to other systems, such as public transportation and urban infrastructure, helping to reduce traffic congestion and improve transportation efficiency.
- Improve the productivity and well-being of building occupants by providing a better environment to work or live in.
- Provide a better and more efficient user experience in the use of building facilities and services.

#### 1.4 Is Smart Building More Expensive?

The perception that smart buildings cost more than conventional buildings is not necessarily true. The initial cost of implementing technology for smart buildings can indeed increase building costs by up to 25%. However, with the application of these technologies, building operational costs can decrease to 38% [8]. In addition, there are many other financial benefits that come from implementing smart building concepts such as increasing occupant productivity, increasing building asset value, and reducing carbon tax costs.

#### JTC Summit, Singapore

JTC Summit is a smart office building in Singapore's Jurong Lake district. The 31-story building incorporates a network of approximately 60,000 sensors to collect various building systems data. By using open digital platform, they are able to merge various technologies, such as smart energy, building management, and robot delivery services, into a single platform. The building's owners are able to see data virtually via the building's digital twin to help them in decision making regarding energy use, system malfunction, remotely unlocking gates in real time. In addition, the building is equipped with robots that are capable of delivering packages, detecting maintenance problems, and conducting security patrols throughout its corridors [40].



Source: streetdirectory.com



Source: conferences-uk.org.uk

#### The Crystal, London

The Crystal is a sustainable urban development center in London that is considered to be one of the most sustainable buildings in the world. The building was opened in 2012 and was designed by Siemens as a showcase for sustainable technology and urban planning. The building is designed to be highly energy efficient, with features such as triple-glazed windows, а high-performance buildina envelope, and a rooftop solar array that generates electricity. A number of smart control systems manage its energy use through building management systems and an integrated energy management system that tracks and analyzes energy use in real-time [27].

#### The Edge, Amsterdam

The Edge Amsterdam is considered one of the most intelligent and sustainable buildings in the world. The building is located in the Zuidas business district of Amsterdam, Netherlands and was completed in 2015. It was designed by the architectural firm PLP Architecture and built by OVG Real Estate. The building is equipped with over 28.000 sensors to monitor lighting, temperature, humidity, and other factors, resulting in a 70% reduction in energy consumption. A significant amount of its energy is provided by over 4.000 solar panels on the roof of the building. The building is equipped with an indoor climate control system, smart lighting system, and smart parking system. The building collects data on several metrics and analyzes them to make informed decisions about the building operations and management [2].



Source: urbanland.uli.org

# 2. Sustainable Development Within the Context of Nusantara

One of Nusantara's main goals in achieving the vision of a 'World City for All' is to develop sustainable cities in the world. Nusantara is designed to be a pioneer in sustainable cities and is expected to become a model for other regions in Indonesia. The master plan for the Nusantara capital city, as stated in Presidential Regulation 63 of 2022, describes sustainable development as follows.

#### 2.1 Energy

All energy infrastructure is gradually directed towards using 100 percent renewable energy by 2045 throughout the Nusantara Capital City region. Renewable energy sources are produced through hydroelectric power plants, solar farms, rooftop solar panels, floating solar panels, bioenergy, and other potentials such as green hydrogen.

Specifically in the building infrastructure, the key performance indexes (KPI) in 4.2 with topic low carbon emission for the Nusantara Capital City is 60% energy savings for energy conservation in buildings. In the transportation sector, the use of electric vehicles and the development of supporting infrastructure are also part of the renewable energy development strategy in the Nusantara Capital City region as part of efforts to achieve the Net Zero Emission target.

#### 2.2 Water

The sponge city concept is applied in the Nusantara Capital City, as stated in the masterplan part 3.1.2.2, to restore and maintain the natural cycle of water which has changed due to changes in function and land cover. The sponge city concept is implemented in an integrated manner at the smallest to urban settlement scale to slow down and restrain the flow of water, harvest rainwater, and increase the absorption of rainwater into the ground.

Buildings in Nusantara are conceptualized to be flood-resistant using in-place rainwater retention features, porous surfaces, and green roofs to hold and filter water before discharge. Technology also plays an important role in sustainable water management on a city or building scale.

#### 2.3 Waste

Nusantara's KPI in point 5 with topic circular and tough for the waste sector is 60% recycling of solid waste by 2045 in sub point 2 (5.2) and 100% of waste water will be treated through a treatment system by 2035 in sub point 3 (5.3). Both targets are achieved by the development of facilities and infrastructure as well as the management of integrated waste and wastewater management systems from upstream to downstream by applying circular principles.



#### 2.4 Environment & Biodiversity

Nusantara's development concept as a forest city is a nature-based solution. The concept of a forest city is a realization of the concept of a sustainable city by maintaining, managing, and restoring forest ecosystems to anticipate various social and environmental changes. The application of forest city has advantages in economic, social, and environmental aspects, which include increasing biodiversity, maintaining water and air quality, and overcoming climate change.

#### 2.5 Economic

Referring to President Regulation No. 63 of 2022 (Nusantara's master plan) where the smart city aims to become an Economic Superhub. In order to achieve the GDP projection of 13900 - 14700 per capita in 2045 for the smart city, one of the requirements is the implementation of smart buildings to support 6 components of 6 industrial clusters and 2 enablers. Economically, the development of smart buildings would be much more effective compared to conventional buildings. By calculation, it can reduce costs by 50% and even more depending on the desired PEB (Pre-Engineered Buildings) and BEC (Business Environment and Concepts). Additionally, maintenance will be more efficient, coupled with guaranteed connectivity between smart buildings, which will accelerate economic circulation.

#### 2.6 Tourism

Referring to President Regulation No. 63 of 2022 part 3.2.2.5, the development of ecotourism in Nusantara Capital City is centered around the natural environment and/or traditional culture. The concept of ecotourism aims to minimize negative impacts on the natural environment and socio-culture. Nusantara can become a unique destination through the development of a sustainable ecotourism identity that meets ecological, socio-cultural and economic criteria. Nusantara's KPI in point 5 with topic circular and tough for the waste sector is 60% recycling of solid waste by 2045 in sub point 2 (5.2) and 100% of waste water will be treated through a treatment system by 2035 in sub point 3 (5.3). Both targets are achieved by the development of facilities and infrastructure as well as the management of integrated waste and wastewater management systems from upstream to downstream by applying circular principles.

#### 2.7 Technology

Nusantara's KPI in point 7 with topic comfortable and efficient in technology in the subpoint 2 (7.2) contains 100% connectivity digital and technology, information, and communication for all citizens and business. The utilization of technological advances in the development of Nusantara is implemented in the smart city concept. The emergence of various innovations in improving environmental sustainability and improving the welfare of the community is a parameter for the successful implementation of this concept. In the sustainable aspect, technology has the benefit of better environmental quality by reducing greenhouse gas emissions, water wastage, and waste generation. The smart city concept in the Nusantara Capital City Region is categorized into 6 (six) domains, namely governance, natural resources and energy, living, transportation and mobility, industry and human resources, and built environment and infrastructure.



#### 3.1 Automation

A smart building should be able to utilize advanced technology for the purpose of managing and improving building systems. The integration of various building systems, along with the monitoring of building conditions through sensors, and the use of automation and data analytics are key principles of smart building automation. By automating and centralizing building management, smart building automation can lead to lower energy usage, increased efficiency, and an enhanced user experience [13].

#### 3.2 Multi-functionality

A smart building should be able to serve various purposes and adapt to changing user requirements. This principle involves integrating various building systems and technologies such as heating, ventilation, and air conditioning, lighting, and security to create a versatile and adaptable building environment. The primary aim of smart building multifunctionality is to optimize the use of building space and resources, minimize expenses, and enhance user satisfaction. By designing buildings that can perform multiple functions and cater to various users' needs, smart building multifunctionality can boost building sustainability and value [45].

#### 3.3 Adaptability

A smart building should be able to learn, predict and satisfy the needs of users and the stress from the external environment. Integration between different aspects in the building gathers information internally and externally from a range of sources. Smart buildings utilize this information to prepare the building for a particular event before the event has happened. For example, sensors and smart control in air conditioning systems can be used to detect and respond to changes in air quality and other environmental factors. A smart building should be able to adapt its operations and physical form for these events to increase energy efficiency, occupant's comfort and productivity [9].

#### 3.4 Interactivity

The systems in a smart building should be able to interact and communicate with one other as well as with building occupants. Advanced sensors and control systems that can detect changes in occupancy, temperature, lighting, and other aspects can be used to create interactivity. This enables real-time communication between a smart building and its residents. A smart building, for instance, may recognize when a room is empty and automatically switch off the lights. Building inhabitants can utilize a smartphone app as a communication platform to modify the lighting, temperature, and other systems as needed. With demand response programs, interactivity can improve occupant security and safety, comfort and productivity, and energy efficiency [33]. The system should also be open platform so that it is open to future technological developments.

#### 3.5 Efficiency

A smart building should be able to increase energy, time, and costs in several ways. Real-time data can inform decision-making, streamlining building operations to help building managers. Predictive maintenance through the use of sensors and data analytics can prevent major maintenance issues and further save time and cost on repairs. Automated systems can also improve efficiency by reducing the time required for manual adjustments. Improved productivity and retention rates, leading to cost savings, can also be achieved by improving occupant experience through personalized settings. This can be implemented to all building systems to, not only to increase efficiency, but also create a more sustainable and comfortable environment for occupants [12].

#### 3.6 Inclusivity

Designing, creating, and operating smart buildings in a way that is inclusive, equitable, and accessible to everyone, regardless of their skills or impairments, is known as inclusivity. Smart buildings should be made accessible and useful by everyone, regardless of their age, size, ability, or disability. This entails following accessibility guidelines, offering inclusive technology, and interacting with the neighborhood to learn about the requirements and tastes of various user groups.

#### 3.7 Green Building

The principle of green building is one of the main foundations in planning the smart building concept. Regulations regarding green buildings in Indonesia have been regulated in the Minister of Public Works Regulation No. 21 of 2021 concerning Green Building Performance Assessment. The principles are:

- Site management
- Energy use efficiency
- Water use efficiency
- Indoor air quality
- Use of environmentally friendly materials
- Waste management
- Wastewater management



## 4. Sustainable Resource Management

#### 4.1 Energy Management

Managing energy is important to smart buildings in Nusantara because it uses the most modern technology to make efficiency & reduce energy consumption and carbon emissions. The ways that energy systems can be managed sustainably:

#### Renewable Energy Sources

The integration of renewable energy sources like solar panels, wind turbines, and geothermal systems into the building's energy infrastructure can help reduce reliance on fossil fuels and decrease carbon emissions. This not only makes the building more sustainable but also saves costs in the long run.

#### Energy Efficient HVAC Systems

Heating, ventilation, and air conditioning (HVAC) systems are among the most significant energy consumers in a building. Smart buildings can use energy-efficient HVAC systems that are designed to optimize energy consumption and reduce waste. For instance, using smart thermostats that can adjust the temperature based on occupancy or outside temperature can reduce energy consumption.

#### Efficient Lighting Systems

Smart buildings can implement efficient lighting systems that use motion sensors and timers to turn off lights in unoccupied areas. This helps reduce energy consumption and also prolongs the lifespan of lighting systems.

#### Energy Storage Systems

Energy storage systems like batteries can store excess energy generated by renewable energy sources or during off-peak hours for later use when the demand for energy is high. This helps reduce peak-hour energy demand and also ensures a reliable and continuous energy supply.

#### • Energy Management Systems (EMS)

Energy management systems (EMS) can help monitor, manage and optimize the energy consumption of a smart building. This system integrates with the building's various energy systems and provides data-driven insights and recommendations for reducing energy consumption and increasing efficiency.

#### Monitoring and Analytics

Smart buildings can incorporate sensors and monitoring systems to collect and analyze energy data. By analyzing this data, building managers can identify areas of high energy consumption and optimize energy consumption in real-time.

#### 4.2 Air Management

The air management system is an important aspect for smart building as people spend 90% of their time indoor. Therefore, following are some ways to manage air systems sustainably in a smart building:

#### Efficient Ventilation Systems

A smart building can implement efficient ventilation systems that can reduce energy consumption and improve indoor air quality. The ventilation system can use sensors to control the amount of outdoor air brought into the building based on occupancy levels. This ensures that the ventilation system operates only when neccessary thus reducing energy consumption.

#### Air Quality Monitoring

Smart buildings can use sensors to monitor indoor and outdoor air quality, including humidity, temperature, carbon dioxide, and volatile organic compounds (VOCs). Monitoring and analyzing this data can help identify sources of indoor air pollution and take necessary actions to improve air quality.

#### Air Purification Systems

Air purification systems, such as air filters, can help remove pollutants and allergens from the air, improving indoor air quality. These systems can be integrated with the building's HVAC system to ensure optimal air quality and energy efficiency.

#### Proper Maintenance and Cleaning

Regular maintenance and cleaning of air systems, including HVAC systems and air filters, can help improve air quality and reduce energy consumption. Dirty filters and ducts can impede airflow, forcing HVAC systems to work harder to circulate air, resulting in increased energy consumption.





#### 4.3 Water Management

Sustainable resource management of water systems is a crucial aspect of a smart building, as it helps reduce water consumption, minimize water waste, and conserve natural resources. So, following some ways to implement sustainable resource management in water systems in a smart building:

#### Rainwater Harvesting

Capturing and utilizing rainwater as a water source can reduce health and environmental impacts, reduce runoff and provide economic benefits to building users.

#### • Water Recycling

Grey water is domestic wastewater that comes from the results of daily household activities such as bathing and washing, excluding toilets. Grey water can be treated and redistributed to toilets and urinals for flushing and irrigation purposes.

#### • Efficient Plumbing Fixtures

Smart buildings can incorporate water-efficient plumbing fixtures such as low-flow toilets, faucets, and showerheads. These fixtures can help reduce water consumption without compromising performance.

#### • Water Monitoring and Analytics

Smart buildings can use sensors to monitor water consumption and identify areas of high consumption. By analyzing this data, building managers can identify inefficiencies and implement corrective measures.

#### Leak Detection Systems

Smart buildings can incorporate leak detection systems to identify and address leaks in real-time. These systems can use sensors to detect leaks and notify building managers before they become major issues.

#### Smart Irrigation Systems

Smart buildings can use sensors and weather data to optimize irrigation systems. This can help reduce water waste and ensure that irrigation occurs only when necessary.

#### Proper Maintenance and Cleaning

Regular maintenance and cleaning of water systems, including plumbing fixtures and irrigation systems, can help improve efficiency and reduce water waste. Dirty fixtures and clogged pipes can impede water flow, resulting in increased water consumption.



#### 4.4 Economic

Sustainable resource management is not only about environmental conservation, but it also includes economic sustainability. Smart buildings can implement various strategies to achieve economic sustainability while promoting environmental conservation.

#### • Energy Efficiency

Smart buildings can implement energy-efficient strategies such as using efficient HVAC systems, lighting systems, and appliances. This can help reduce energy consumption, which can lead to significant cost savings in the long run.

#### • Renewable Energy

Smart buildings can incorporate renewable energy systems such as solar panels, wind turbines, and geothermal systems. This can help reduce energy costs, and in some cases, generate revenue by selling excess energy back to the grid.

#### • Demand Response Programs

Smart buildings can participate in demand response programs that incentivize energy reduction during periods of peak demand. This can help reduce energy costs by avoiding high-demand charges.

#### • Smart Metering

Smart buildings can install smart metering systems that can track energy and water consumption in real-time. This can help identify areas of high consumption, optimize energy usage, and minimize costs.

#### Building Automation Systems

Smart buildings can incorporate building automation systems that can monitor and control building systems such as HVAC, lighting, and security systems. This can help optimize energy usage, reduce costs, and improve occupant comfort.

#### • Life-Cycle Cost Analysis

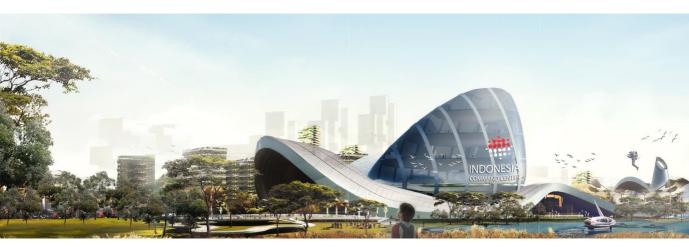
Smart buildings can use life-cycle cost analysis to evaluate the cost-effectiveness of different sustainability measures. This can help prioritize investments that provide the greatest long-term economic benefits.

#### 4.5 Technology

Sustainable resource management in technology systems of smart buildings involves the implementation of efficient and effective technologies that reduce energy and resource consumption, minimize waste, and promote sustainability. Here are some ways to implement technology in the sustainable resource management smart building in Nusantara New Capital City:

#### • Virtualization and Cloud Computing

Virtualization and cloud computing can help reduce the need for physical infrastructure and equipment, leading to a reduction in energy usage, waste, and costs.


#### • Smart Monitoring and Analytics

Smart monitoring and analytics systems can help optimize energy usage and identify areas of waste and inefficiency in technology systems. This can help reduce energy waste and promote sustainability in the operation of the building's technology systems.

#### Automation Decision Making

Automation decision making in smart buildings involves the use of sensors and data analysis to make real-time decisions about the operation of various building systems. By using automation decision making in smart buildings, for example machine learning and artificial intelligence, businesses and organizations can reduce their environmental impact while also improving efficiency and reducing costs. However, it is important to ensure that these systems are designed and implemented in a sustainable and responsible way.

By implementing these strategies, smart buildings can promote sustainable resource management in technology systems, reduce the environmental impact of the building, and improve the overall sustainability of the technology systems. It is important to consider sustainability as part of the overall technology strategy and promote sustainable practices throughout the lifecycle of the building's technology systems.



# 5. Implementation Guidelines

Smart buildings are equipped with a range of features that allow for greater energy efficiency, convenience, and safety. Each feature in a smart building must fulfill the following functional requirements and specifications.



## **5.1 Basic Requirements**

#### 5.1.1 Integrated Building Management System

Smart buildings have emerged as pioneers of efficiency and sustainability, with Integrated Building Management Systems at their core. The Integrated Building Management System is a framework that governs communication and limitless control among various building systems. One crucial layer within the Integrated Building Management System is the Automation Layer, where Building Automation Systems take the lead.

The Automation Layer serves as the nerve center of smart buildings, integrating various controllers, panels, and adapters that seamlessly connect and regulate all interconnected systems. Advanced sensor and actuator networks facilitate this complex interaction, ensuring optimal functionality and resource utilization.

Building automation systems are crucial in enabling the Automation Layer to function effectively. Gateways connect various smart building systems in the Field Application Layer, which includes HVAC systems, energy systems, lighting systems, resource systems, mobility systems, communication systems, access control systems, security systems, and safety systems.

Aligning various interconnected systems in smart buildings using Integrated Building Management Systems will enhance efficiency and lay the foundation for a more environmentally friendly, responsive, and future-ready built environment. With technological advancements, the potential of smart buildings and their contribution to sustainable living will continue to evolve, revolutionizing how we inhabit and interact with the environment.

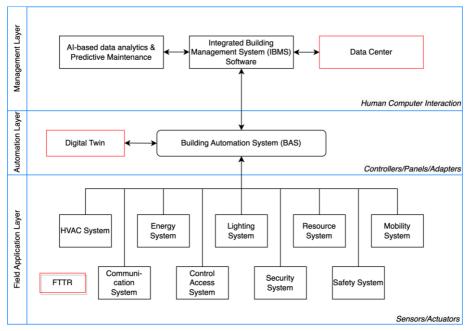


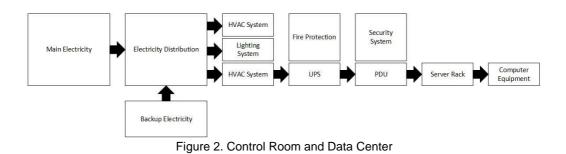

Figure 1. Integrated Smart Building Management System

| Functional Requirement                         |                                                                                                                                                                                                                                                    |  |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Integration [1]                                | The system must be able to integrate all systems and devices in the building.                                                                                                                                                                      |  |
| Building<br>Automation <sup>[1]</sup>          | The system must be able to control various systems and devices within the building.                                                                                                                                                                |  |
| Data analysis <sup>[1]</sup>                   | The system must have data analysis capabilities that can provide<br>insight into building performance and identify areas for<br>improvement. This will enable operators to make informed<br>decisions and optimize building performance over time. |  |
| Compliance and<br>Data Security <sup>[1]</sup> | Systems must comply with applicable data security regulations and standards to protect sensitive data related to building operations.                                                                                                              |  |
|                                                | uildings and landed bouses [2] Mandatory for buildings and                                                                                                                                                                                         |  |

<sup>[1]</sup> Mandatory for buildings and landed houses, <sup>[2]</sup> Mandatory for buildings and recommended for landed houses, <sup>[3]</sup> Recommended for buildings and landed houses

| Reference Standard            |                                                                               |  |
|-------------------------------|-------------------------------------------------------------------------------|--|
| ISO 16484                     | Building automation and control systems                                       |  |
| ISO 27001:2022                | Information security, cybersecurity, privacy protection                       |  |
| ISO 27010:2015                | Information security controls for cloud services                              |  |
| ANSI/ASHRAE Standard 135-2020 | A Data Communication Protocol for Building Automation<br>and Control Networks |  |
| Others                        | and other applicable regulations or standards                                 |  |




#### 5.1.2 Control Room and Data Center

A data center is a specialized facility that houses and manages computer systems, servers, network equipment and other critical infrastructure components for storing, processing and managing large amounts of data. The data center is the central hub for an organization's IT operations and hosts a variety of hardware and software resources that support various applications, services, and business processes.

A control room is a centralized facility designed to monitor and manage complex systems, processes or operations in real-time.

|                                                        | Functional Requirements                                                                                                                                                                                                                                                                           |  |  |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Real-time<br>monitoring<br>and control <sup>[2]</sup>  | The control room must be equipped with the necessary sensors and<br>control systems to monitor and control all the building systems in real-<br>time. This will enable the operators to quickly identify and resolve any<br>issues that may arise                                                 |  |  |
| Integration<br>with building<br>systems <sup>[2]</sup> | The control room must be able to integrate with all the building systems, including HVAC, lighting, security, and energy management systems. This will allow the operators to control and manage all the systems from a central location                                                          |  |  |
| User-friendly<br>interface <sup>[2]</sup>              | The control room must have a user-friendly interface that is easy to<br>navigate and understand. This will allow the operators to quickly<br>access the information they need and take appropriate action                                                                                         |  |  |
| Alerting and notification <sup>[2]</sup>               | The control room must be equipped with an alerting and notification<br>system that can quickly inform the operators of any issues or<br>malfunctions in the building systems. This will allow the operators to<br>take immediate action and prevent any potential damage or downtime              |  |  |
| Energy<br>management <sup>[2]</sup>                    | The control room must have a robust energy management system<br>that can monitor and optimize the building's energy consumption. This<br>will help reduce energy costs and minimize the building's carbon<br>footprint.                                                                           |  |  |
| Data analytics<br>[2]                                  | The control room must be equipped with a data analytics and<br>reporting system that can provide insights into the building's<br>performance and identify areas for improvement. This will allow the<br>operators to make informed decisions and optimize the building's<br>performance over time |  |  |
| Data reporting [2]                                     | The control room must have a robust security and access control<br>system to ensure that only authorized personnel have access to the<br>building systems. This will help prevent unauthorized access and<br>protect the building from potential security threats.                                |  |  |
| Security and<br>access control<br>[2]                  | The control room should have a data backup and recovery system in anticipation of an emergency or cyber hazard.                                                                                                                                                                                   |  |  |
| Data Backup<br>and Recovery<br><sup>[2]</sup>          | The control room must be equipped with the necessary sensors and<br>control systems to monitor and control all the building systems in real-<br>time. This will enable the operators to quickly identify and resolve any<br>issues that may arise                                                 |  |  |

| Hardware                                                                                                                                                                                                                            | Software                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>UPS (Uninterruptible Power Supply)</li> <li>HVAC and Security</li> <li>Storage</li> <li>Server</li> <li>Advance monitor</li> <li>Power Backup</li> <li>Cooling Machine</li> <li>CCTV</li> <li>Fire extinguisher</li> </ul> | <ul> <li>System Operation Server</li> <li>Database Management System</li> <li>Web Server</li> <li>Server Virtualization</li> <li>Monitoring Tools and Dashboard</li> <li>Backup and Recovery Tools</li> <li>Remote Access Software</li> <li>Security Software</li> </ul> |



| Reference Standard                                                         |                                                                                                                |  |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|
| Minister of Public<br>Works and Housing<br>Regulation Number 21<br>of 2021 | Green Building Performance Assessment                                                                          |  |
| SNI 8799:2019                                                              | Information Technology - Data Center                                                                           |  |
| SNI 7512:2008                                                              | Information Technology - Security Engineering -<br>Information security incident management                    |  |
| SNI 19-7013-2004                                                           | Data Center Building Security Requirements                                                                     |  |
| TIA 942-B                                                                  | Telecommunications Infrastructure Standard for Data<br>Centers                                                 |  |
| ISO/IEC 22237                                                              | Information technology – Data Centre Facilities and Infrastructures                                            |  |
| ISO 27001:2022                                                             | Information security, cybersecurity, privacy protection                                                        |  |
| ISO 27010:2015                                                             | Information security controls for cloud services                                                               |  |
| ISO 11064                                                                  | Ergonomic Design of Control Centres                                                                            |  |
| ISO/IEC 30134-1                                                            | Information technology - Data centres - Key performance indicators - Part 1: Overview and general requirements |  |
| Lainnya                                                                    | And other applicable regulations or standards                                                                  |  |



#### 5.1.3 Fiber-to-the-Room (FTTR)

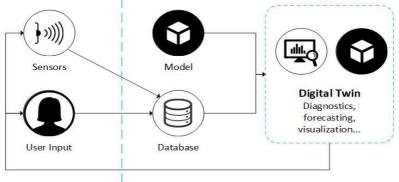
FTTR (Fiber to The Room) is a telecommunications infrastructure concept that involves deploying fiber optic cables directly to individual rooms or living areas within a building or facility. In the FTTR architecture, fiber-optic connectivity extends into the end-user space, providing high-speed, high-bandwidth communication services directly to each individual location.

|                                                                                                                | Functional Requirements                                                                                                                                                                                                                               |                                                                                                                                                                                                       |  |  |
|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| High-speed<br>internet<br>connectivity <sup>[1]</sup>                                                          | The main purpose of FTTR is to provide fast and reliable internet<br>connectivity to every room in the building. The network must be<br>able to support high-bandwidth applications such as video<br>streaming, online gaming, and video conferencing |                                                                                                                                                                                                       |  |  |
| Scalability <sup>[2]</sup>                                                                                     |                                                                                                                                                                                                                                                       | gned to support future network growth and<br>users and devices are added to the system                                                                                                                |  |  |
| Reliability <sup>[1]</sup>                                                                                     | Networks should be designed with redundancy and <i>failover</i> mechanisms to ensure uninterrupted connectivity even in the event of fiber or equipment failure                                                                                       |                                                                                                                                                                                                       |  |  |
| Security <sup>[1]</sup>                                                                                        | FTTR networks must be secure to prevent unauthorized access and protect user data from cyber threats                                                                                                                                                  |                                                                                                                                                                                                       |  |  |
| Compatibility <sup>[1]</sup>                                                                                   | The network must be compatible with a wide range of devices<br>and operating systems, including smartphones, laptops, tablets,<br>and smart home devices                                                                                              |                                                                                                                                                                                                       |  |  |
| Management <sup>[1]</sup>                                                                                      | FTTR networks should be easy to manage and monitor, with tools and software for network administrators to troubleshoot and optimize performance                                                                                                       |                                                                                                                                                                                                       |  |  |
| Cost-<br>effectiveness                                                                                         | FTTR networks should be designed to minimize costs, with efficient installation and maintenance procedures, and energy-efficient equipment and technology                                                                                             |                                                                                                                                                                                                       |  |  |
| Hard                                                                                                           | lware                                                                                                                                                                                                                                                 | Software                                                                                                                                                                                              |  |  |
| <ul> <li>Optical receiver</li> <li>Network equipment</li> <li>Fiber cable</li> <li>Media conversion</li> </ul> |                                                                                                                                                                                                                                                       | <ul> <li>Guest Wi-Fi Management<br/>Software</li> <li>Network Management Software</li> <li>Billing and Revenue<br/>Management Software</li> <li>Fiber Optic Test and Analysis<br/>Software</li> </ul> |  |  |





Figure 3. Fiber-to-the-Room (FTTR) System


| Reference Standard     |                                                                                                                                     |  |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|
| ISO 33.180             | Fibre Optic Communication                                                                                                           |  |
| ISO 20780:2018         | Space systems — Fiber optic components — Design and verification requirements                                                       |  |
| IEEE 802.11            | Wireless LAN Standards                                                                                                              |  |
| IEEE 802.3             | Ethernet                                                                                                                            |  |
| ISO 14302              | Space systems — Electromagnetic compatibility requirements                                                                          |  |
| ISO 27001:2022         | Information security, cybersecurity, privacy protection                                                                             |  |
| ISO/IEC 29794-5-1:2022 | FTTR network topology                                                                                                               |  |
| ISO/IEC 14763-3:2019   | Information technology - Implementation and operation<br>of customer premises cabling - Part 3: Testing of<br>optical fibre cabling |  |
| Others                 | and other applicable regulations or standards                                                                                       |  |



#### 5.1.4 Digital Twin

Digital Twin refers to a virtual representation of a physical object, system or process, which is a digital replica that reflects the real world in real-time, capturing its physical and behavioral characteristics. This technology combines multiple data sources, such as sensors, IoT devices, and simulations, to create dynamic, interactive models that reflect the current state and behavior of the physical entities they represent.

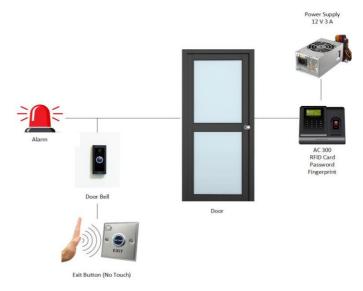
| Functional Requirements                                                                                       |                                                                                                                                                                                                                          |                                                                                              |  |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|
| Accurate<br>representation                                                                                    | The digital twin must provide an accurate representation of the physical asset or system, including its geometry, behavior, and interactions with other systems.                                                         |                                                                                              |  |
| Real-time data <sup>[2]</sup>                                                                                 | The digital twin must be updated in real-time with data from sensors, devices, and other sources to reflect the current state of the physical asset or system.                                                           |                                                                                              |  |
| Visualization <sup>[2]</sup>                                                                                  | The digital twin must provide visualizations that enable users to<br>interact with and explore the virtual replica of the physical asset<br>or system.                                                                   |                                                                                              |  |
| Analysis and simulation <sup>[2]</sup>                                                                        | The digital twin must support analysis and simulation capabilities,<br>such as predictive maintenance, energy optimization, and fault<br>detection, to help optimize the performance of the physical asset<br>or system. |                                                                                              |  |
| Integration <sup>[2]</sup>                                                                                    | The digital twin must be able to integrate with other systems and<br>platforms, such as building management systems or<br>manufacturing control systems, to enable seamless data<br>exchange and interoperability.       |                                                                                              |  |
| Security and privacy <sup>[2]</sup>                                                                           | The digital twin must be designed with security and privacy in mind, with measures in place to protect against unauthorized access and data breaches.                                                                    |                                                                                              |  |
| Scalability <sup>[2]</sup>                                                                                    | The digital twin must be scalable to support large and complex assets or systems, and be able to handle increasing amounts of data and users over time.                                                                  |                                                                                              |  |
| Hardware So                                                                                                   |                                                                                                                                                                                                                          | Software                                                                                     |  |
| <ul> <li>AR (Augmentation Reality) Devices</li> <li>VR (Virtual Reality) Devices</li> <li>Computer</li> </ul> |                                                                                                                                                                                                                          | <ul> <li>Digital twin software</li> <li>Augmentation and virtual reality software</li> </ul> |  |



Feedback

Figure 4. Digital Twin System

| Reference Standard |                                                                                             |  |
|--------------------|---------------------------------------------------------------------------------------------|--|
| ISO 16739          | Digital twin framework for manufacturing                                                    |  |
| ISO 23247          | The Digital Twin framework for manufacturing.                                               |  |
| ITU-T F.746.10     | Developed by the International Telecommunication<br>Union                                   |  |
| SNI 7512:2008      | Information Technology - Security Engineering -<br>Information security incident management |  |
| ISO 27001:2022     | Information security, cybersecurity, privacy protection                                     |  |
| IPC-2551           | International Standard for Digital Twin                                                     |  |
| IEEE P3144         | Standards for the Twin Digital Maturity Model and Assessment Methodology in Industry        |  |
| Others             | and other applicable regulations or standards                                               |  |


## **5.2 Access Control System**

#### **5.2.1 Touchless Access Control**

Touchless Access Control is a security system or technology that allows access to a specific area or facility without requiring physical contact with a device or surface.

| Functional Requirements                                                                                                                                     |                                                                                                                                                       |                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Authentication <sup>[2]</sup>                                                                                                                               | the user's identity t                                                                                                                                 | control system must be able to authenticate<br>through various means, such as facial<br>ing, or voice recognition.                                                             |
| Access control <sup>[2]</sup>                                                                                                                               | •                                                                                                                                                     | ble to grant or deny access to the user based status and the level of access granted.                                                                                          |
| Physical access <sup>[2]</sup>                                                                                                                              | physical access to are                                                                                                                                | s control system must be able to control<br>eas or equipment, such as doors, elevators,<br>equiring the user to touch any surfaces.                                            |
| Remote access <sup>[2]</sup>                                                                                                                                | The system must be able to provide remote access to users, such as via mobile devices or other wireless technologies.                                 |                                                                                                                                                                                |
| Temperature<br>Checking <sup>[3]</sup>                                                                                                                      | •                                                                                                                                                     | able to monitor visitors body temperature to ondition and to protect others.                                                                                                   |
| Integration <sup>[2]</sup>                                                                                                                                  | The touchless access control system must be integrated with other building automation systems, including HVAC, CCTV, and alarm systems.               |                                                                                                                                                                                |
| User<br>management <sup>[2]</sup>                                                                                                                           | The system must have a user management interface for adding,<br>modifying, and deleting users, as well as assigning access levels<br>and permissions. |                                                                                                                                                                                |
| Scalability <sup>[2]</sup>                                                                                                                                  | The touchless access control system must be scalable to adapt to changes in user volume, new access points, and evolving security requirements        |                                                                                                                                                                                |
| Hardware                                                                                                                                                    |                                                                                                                                                       | Software                                                                                                                                                                       |
| <ul> <li>Biometric Sensor</li> <li>Motion Sensor</li> <li>Bluetooth-enabled locks</li> <li>RFID cards and readers</li> <li>Automatic doors/gates</li> </ul> |                                                                                                                                                       | <ul> <li>Biometric software</li> <li>Mobile apps</li> <li>RFID card management</li> <li>Access control management<br/>software</li> <li>Visitor management software</li> </ul> |





## Figure 5. Touchless Access Control System

| Reference Standard           |                                                                                       |  |
|------------------------------|---------------------------------------------------------------------------------------|--|
| IEC 60839-11-1 dan -11-<br>2 | Electronic Access Control Systems and Application<br>Guidelines                       |  |
| ISO/IEC 19794-6:2019         | Information technology - Biometric data interchange formats - Part 6: Iris image data |  |
| ISO/IEC 19794-5:2011         | Information technology - Biometric data interchange formats - Part 5: Face image data |  |
| ISO 16484                    | Building automation and control systems                                               |  |
| ISO 27001:2022               | Information security, cybersecurity, privacy protection                               |  |
| IEEE 2410-2020               | Standard for Biometrics Open Protocol Extended<br>Frameworks (OPEN)                   |  |
| ISO 27001:2022               | Information security, cybersecurity, privacy protection                               |  |
| Others                       | and other applicable regulations or standards                                         |  |



#### 5.2.2 Visitor Management

Visitor management is a systematic and efficient management of visitors, guests and individuals entering or leaving a building or facility, which involves the use of advanced technology and integrated systems to streamline the process of welcoming, monitoring and controlling visitor access to the venue.

| Functional Requirements                |                                                                                                                                                                                                                                                    |                                                                                                           |  |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|
| Mobile check-in <sup>[3]</sup>         |                                                                                                                                                                                                                                                    | have a mobile check-in feature that enables orehand using a mobile app or website.                        |  |
| Real-time<br>tracking <sup>[2]</sup>   | The system must be capable of following guests around the building in real-time, giving hosts or security personnel precise location data.                                                                                                         |                                                                                                           |  |
| Predictive<br>analytics <sup>[2]</sup> | The system ought to make use of predictive analytics to foresee visitor traffic and offer insights for building management, such as optimizing staffing levels or modifying HVAC settings.                                                         |                                                                                                           |  |
| Personalization <sup>[3]</sup>         | Depending on the visitor's preferences, the system must be able<br>to tailor the experience they have while they are there, for<br>example, by pointing them in the direction of meeting spaces they<br>prefer or recommending amenities close by. |                                                                                                           |  |
| Environmental controls <sup>[2]</sup>  | Depending on the volume of visitors and the occupancy levels,<br>the system must be able to modify the lighting, temperature, and<br>other environmental elements.                                                                                 |                                                                                                           |  |
| Reporting <sup>[2]</sup>               | The system must be able to generate reports on user activity, access attempts, and system events for audit and compliance purposes.                                                                                                                |                                                                                                           |  |
| Integration <sup>[2]</sup>             | To improve building performance and efficiency, the system must<br>be able to integrate with other smart building technologies,<br>including IoT sensors, smart lighting, and energy management<br>systems.                                        |                                                                                                           |  |
| Hard                                   | dware                                                                                                                                                                                                                                              | Software                                                                                                  |  |
| o Camera                               |                                                                                                                                                                                                                                                    | <ul> <li>Visitor management software</li> <li>Building automation systems</li> <li>Mobile apps</li> </ul> |  |



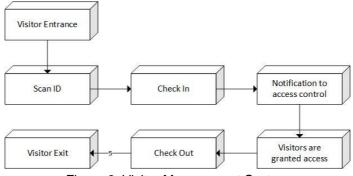



Figure 6. Visitor Management System

| Reference Standard       |                                                                                                            |  |
|--------------------------|------------------------------------------------------------------------------------------------------------|--|
| ISO 14762                | Information technology — Functional safety requirements for<br>Home and Building Electronic Systems (HBES) |  |
| ISO 16484                | Building automation and control systems                                                                    |  |
| IEC 60839-11-1 dan -11-2 | Electronic Access Control Systems and Application<br>Guidelines                                            |  |
| ISO/IEC 19794-6:2019     | Information technology - Biometric data interchange formats -<br>Part 6: Iris image data                   |  |
| ISO/IEC 19794-5:2011     | Information technology - Biometric data interchange formats -<br>Part 5: Face image data                   |  |
| ISO 27001:2022           | Information security, cybersecurity, privacy protection                                                    |  |
| Others                   | and other applicable regulations or standards                                                              |  |

# **5.3 Communication System**

#### 5.3.1 Intercom System

The intercom system is an internal communication system that allows users or building occupants to communicate by voice or video with other people in the building, designed to facilitate communication between building occupants or between users and security or administrative officers without having to move from their place.

| Functional Requirements                             |                                                                                                                                                                               |                                                                                                                                   |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Remote access                                       |                                                                                                                                                                               | n system must be accessible remotely,<br>nswer calls and grant access from their<br>mputers.                                      |
| Video<br>Intercom <sup>[3]</sup>                    | users to see and spe                                                                                                                                                          | ave a video intercom feature that allows<br>eak with visitors before granting access.                                             |
| Access control <sup>[2]</sup>                       | The system must be able to grant or deny access to visitors based on user authorization levels and visitor permissions.                                                       |                                                                                                                                   |
| Visitor<br>management <sup>[2]</sup>                | The system must be integrated with visitor management systems to streamline the visitor check-in process and provide accurate visitor information to users.                   |                                                                                                                                   |
| Two-way<br>communication<br><sup>[2]</sup>          | The system must support two-way communication between users and visitors with video quality and clear audio.                                                                  |                                                                                                                                   |
| Integration <sup>[2]</sup>                          | The smart intercom system must be integrated with other smart<br>building technologies, such as security cameras, access control<br>systems, and building automation systems. |                                                                                                                                   |
| Mobile app <sup>[3]</sup>                           | Users must be allowed to answer calls, receive notifications,<br>and manage access control settings through mobile apps from<br>their mobile devices.                         |                                                                                                                                   |
| Customizeable settings <sup>[2]</sup>               | The system must be customizable, allowing users to adjust settings such as microphone sensitivity, camera quality, and access control rules.                                  |                                                                                                                                   |
| Hardware                                            |                                                                                                                                                                               | Software                                                                                                                          |
| <ul> <li>Video and audio intercom system</li> </ul> |                                                                                                                                                                               | <ul> <li>Building automation system</li> <li>Visitor management system</li> <li>Intercom software</li> <li>Mobile apps</li> </ul> |



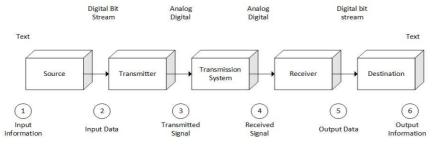



Figure 7. Intercom System

| Reference Standard |                                                                                                         |  |
|--------------------|---------------------------------------------------------------------------------------------------------|--|
| DS/EN 62820        | Building intercom system                                                                                |  |
| TIA-570            | Residential Telecommunications Infrastructure<br>Standard                                               |  |
| ISO 14762          | Information technology — Functional safety requirements for Home and Building Electronic Systems (HBES) |  |
| ISO 27001:2022     | Information security, cybersecurity, privacy protection                                                 |  |
| Others             | And other applicable regulations or standards                                                           |  |



#### 5.3.2 Audio Visual & Digital Signage

Audio Visual & Digital Signage is a technology system that enables the display of information, images and other multimedia content in an interactive and attractive digital form, and can be integrated with other systems, such as security systems or building management systems.

| Functional Requirements                                                                                                                                           |                                                                                                                                                                                                                                      |                                                                                                             |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|
| Centralized<br>control <sup>[2]</sup>                                                                                                                             | The system must have a centralized control panel that allows<br>users to manage and monitor all audiovisual and digital signage<br>components from one control system.                                                               |                                                                                                             |  |
| Customizable content <sup>[2]</sup>                                                                                                                               | The system must allow users to create or display custom content<br>such as graphics, videos, or announcements, on digital signage<br>displays.                                                                                       |                                                                                                             |  |
| Real-time<br>updates <sup>[2]</sup>                                                                                                                               | The system must be able to provide real-time updates on<br>building events, schedules, or emergency notifications through<br>digital signage displays.                                                                               |                                                                                                             |  |
| Interactive<br>features <sup>[2]</sup>                                                                                                                            | The system must support interactive features, such as touch<br>screens or motion sensors, to enhance user engagement and<br>promote building interactivity.                                                                          |                                                                                                             |  |
| Accessibility <sup>[2]</sup>                                                                                                                                      | The system must adhere to accessibility guidelines, such as offering text-to-speech features or larger fonts for users who are blind or visually handicapped.                                                                        |                                                                                                             |  |
| Integration <sup>[2]</sup>                                                                                                                                        | To maximize building performance and efficiency, the smart AV<br>and digital building signage system must be able to integrate with<br>other smart building technologies, such as occupancy sensors or<br>energy management systems. |                                                                                                             |  |
| Analytics <sup>[2]</sup>                                                                                                                                          | In order to give information for content improvement, the system must provide analytics on user involvement, such as the quantity of interactions or clicks on digital signage displays.                                             |                                                                                                             |  |
| Personalization <sup>[3]</sup>                                                                                                                                    | The system must be able to personalize the user experience<br>based on individual preferences, such as displaying personalized<br>content or adjusting display settings.                                                             |                                                                                                             |  |
| Multilingual support <sup>[2]</sup>                                                                                                                               | The system must provide multilingual support, including signage<br>and audio cues in different languages to accommodate visitors<br>from diverse backgrounds.                                                                        |                                                                                                             |  |
| На                                                                                                                                                                | rdware                                                                                                                                                                                                                               | Software                                                                                                    |  |
| <ul> <li>Screen display</li> <li>Media player</li> <li>Camera</li> <li>Sensor</li> <li>Power distribution system</li> <li>Communication infrastructure</li> </ul> |                                                                                                                                                                                                                                      | <ul> <li>Real-time voice transcription and<br/>translation</li> <li>Interactive display features</li> </ul> |  |





Figure 8. Audio Visual and Digital Signage

| Reference Standard |                                                                                                                                                                                                                              |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ISO 2846           | Graphic technology                                                                                                                                                                                                           |  |
| ISO/IEC 23488:2022 | Information technology — Computer graphics, image<br>processing and environment data representation —<br>Object/environmental representation for image-based<br>rendering in virtual/mixed and augmented reality<br>(VR/MAR) |  |
| ISO 17049:2013     | Accessible design — Application of braille on signage, equipment and appliances                                                                                                                                              |  |
| ISO 27001:2022     | Information security, cybersecurity, privacy protection                                                                                                                                                                      |  |
| ISO 27010:2015     | Information security controls for sharing data                                                                                                                                                                               |  |
| IEC 62443-4-1      | Secure product development lifecycle requirements                                                                                                                                                                            |  |
| Others             | And other applicable regulations or standards                                                                                                                                                                                |  |

## 5.4 Energy System

#### 5.4.1 Automatic Meter Readers

Automatic Meter Reader is a technology system used to automate the collection and monitoring of data on energy usage, such as electricity, water or gas, that occurs inside certain buildings or facilities, by utilizing sensor technology and remote communication to automatically collect data from various meters measurements installed in the building.

| Functional Requirements                   |                                                                                                                                                                                                               |  |  |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Automatic meter<br>reading <sup>[1]</sup> | The system must automatically read and record the data of the meter, so that the personnel of the electricity company does not have to read the meter manually.                                               |  |  |
| Real-time data <sup>[1]</sup>             | The system must provide real-time data on energy usage and<br>other metrics so that users can monitor and adjust energy usage<br>in real time.                                                                |  |  |
| Remote access                             | The system must be remotely accessible so users can monitor<br>meter activity and energy usage from their mobile devices or<br>computers.                                                                     |  |  |
| Integration <sup>[1]</sup>                | The smart meter reader system must be able to integrate with<br>other smart building technologies, such as energy management<br>systems or HVAC controls, to optimize building performance and<br>efficiency. |  |  |
| Analytics <sup>[1]</sup>                  | The system must provide analytics on energy use, such as peak<br>usage times or energy-saving opportunities, to provide insights<br>for energy optimization.                                                  |  |  |
| Customizable<br>alerts <sup>[1]</sup>     | The system must allow users to set up customizable alerts for<br>abnormal energy usage or meter readings, to notify them of<br>potential issues.                                                              |  |  |
| Compatibility <sup>[1]</sup>              | The system must be compatible with existing meters and support<br>multiple communication protocols, such as cellular or Wi-Fi, to<br>accommodate different building configurations.                           |  |  |
| Scalability <sup>[2]</sup>                | The system must be scalable to accommodate changes in building occupancy, user volume, and evolving energy management needs.                                                                                  |  |  |
| Maintenance <sup>[1]</sup>                | The system must have maintenance features in place, such as<br>reporting and tracking meter issues or requesting repairs, to<br>ensure accurate and reliable meter readings.                                  |  |  |
| Security <sup>[1]</sup>                   | The system must prioritize security by implementing appropriate data protection measures and secure access controls to prevent unauthorized access or breach.                                                 |  |  |



| Hardware                                                                                                                      | Software                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Smart electric meter</li> <li>Smart gas meter</li> <li>Smart current sensor</li> <li>Smart voltage sensor</li> </ul> | <ul> <li>Energy management software</li> <li>Building automation software</li> <li>Data analytics software</li> <li>Visualization software</li> </ul> |

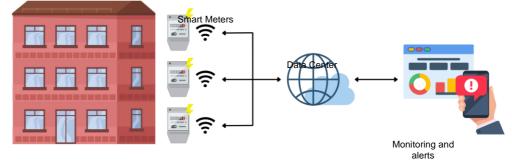



Figure 9. Automatic Meter Readers

| Reference Standard                                                         |                                               |  |
|----------------------------------------------------------------------------|-----------------------------------------------|--|
| Minister of Public<br>Works and Housing<br>Regulation Number 21<br>of 2021 | Green Building Performance Assessment         |  |
| SNI 62053                                                                  | Electric Meter Equipment                      |  |
| ISO 16484                                                                  | Building automation and control systems       |  |
| Others                                                                     | and other applicable regulations or standards |  |



#### 5.4.2 Automatic Sub-meter Readers

Automatic Sub-meter Reader is an automatic system used to monitor and measure electricity consumption specifically at the sub-meter level inside a building that is installed on a certain circuit or device, such as electronic equipment, lighting, heating systems, air conditioning, and others, which has a separate electrical load from the main meter of the building. Automatic Sub-meter readers work automatically and in real-time to collect energy consumption data from sub-meters installed at various locations in the building.

| Functional Requirements                   |                                                                                                                                                                                                                      |  |  |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Automated<br>meter reading <sup>[3]</sup> | The system must automatically read and record sub-meter data, eliminating the need for manual meter reading by building management or tenants.                                                                       |  |  |
| Real-time data <sup>[3]</sup>             | The system must provide real-time data on energy usage and<br>other sub-meter readings, allowing users to monitor and adjust<br>energy usage in real-time.                                                           |  |  |
| Granular<br>monitoring <sup>[3]</sup>     | The system must provide granular monitoring of energy usage<br>for individual tenants or sub-zones, to help identify energy-<br>saving opportunities and allocate energy costs accurately.                           |  |  |
| Integration <sup>[3]</sup>                | The smart sub-meter reader system must be able to integrate<br>with other smart building technologies, such as energy<br>management systems or billing software, to optimize building<br>performance and efficiency. |  |  |
| Analytics <sup>[3]</sup>                  | The system must provide analytics on energy usage, such as<br>peak usage times or energy-saving opportunities, to provide<br>insights for energy optimization and cost reduction.                                    |  |  |
| Customizable<br>alerts <sup>[3]</sup>     | The system must allow users to set up customizable alerts for<br>abnormal energy usage or meter readings, to notify them of<br>potential issues or opportunities for cost reduction.                                 |  |  |
| Scalability <sup>[3]</sup>                | The system must be scalable to accommodate changes in building occupancy, user volume, and evolving energy management needs.                                                                                         |  |  |
| Maintenance <sup>[3]</sup>                | The system must have maintenance features in place, such as<br>reporting and tracking sub-meter issues or requesting repairs,<br>to ensure accurate and reliable sub-meter readings.                                 |  |  |



| Hardware                                         | Software                                       |  |
|--------------------------------------------------|------------------------------------------------|--|
| <ul> <li>Smart sub-meter</li> </ul>              | <ul> <li>Energy management software</li> </ul> |  |
| <ul> <li>Data concentrator</li> </ul>            | <ul> <li>Building automation system</li> </ul> |  |
| <ul> <li>Communication Infrastructure</li> </ul> | <ul> <li>Cloud-based platforms</li> </ul>      |  |

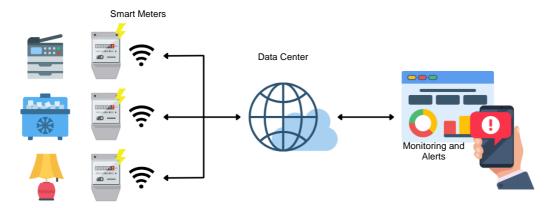



Figure 10. Automatic Sub-meter Readers

| Reference Standard                                                         |                                               |  |
|----------------------------------------------------------------------------|-----------------------------------------------|--|
| Minister of Public<br>Works and Housing<br>Regulation Number 21<br>of 2021 | Green Building Performance Assessment         |  |
| SNI 62053                                                                  | Electric Meter Equipment                      |  |
| ISO 16484                                                                  | Building automation and control systems       |  |
| Others                                                                     | and other applicable regulations or standards |  |



#### 5.4.3 Electricity Load Balancing

Electrical Load Balancing is a technique used to ensure a balanced distribution of electrical loads throughout a building's electrical system, which aims to avoid load imbalances between various electrical circuits or devices in a building, thus preventing overloading on one circuit or device and optimizing efficient use of power.

| Functional Requirements                 |                                                                                                                                                                                                                                           |  |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Real-time<br>monitoring <sup>[1]</sup>  | The system must provide real-time monitoring of electricity demand<br>and supply, allowing for quick adjustments to load balancing.                                                                                                       |  |
| Automatic load balancing <sup>[1]</sup> | The system must automatically balance the electrical load of the building or building, ensuring efficient distribution of energy consumption.                                                                                             |  |
| Load shedding <sup>[1]</sup>            | The system must be able to automatically shed non-critical loads<br>during peak periods to prevent system overload and ensure a<br>stable power supply.                                                                                   |  |
| Predictive<br>analytics <sup>[1]</sup>  | The system must use predictive analysis to predict future demand<br>and adjust load balancing accordingly to optimize energy<br>consumption and minimize costs.                                                                           |  |
| Integration <sup>[1]</sup>              | The load balancing system must be able to integrate with other<br>smart building technologies, such as HVAC controls or lighting<br>systems, to optimize building performance and efficiency.                                             |  |
| Scalability <sup>[2]</sup>              | The system must be scalable according to changes in building occupancy, number of users and changing energy management needs.                                                                                                             |  |
| Energy storage <sup>[2]</sup>           | The load balancing system must be capable of incorporating energy<br>storage solutions such as batteries or other storage systems to<br>store excess energy during periods of low demand and release it<br>during periods of peak demand. |  |
| Renewable                               | The system must be able to integrate with renewable energy                                                                                                                                                                                |  |
| energy<br>integration <sup>[2]</sup>    | sources such as solar panels or wind turbines to optimize energy consumption and reduce dependence on the grid.                                                                                                                           |  |
| Fault detection <sup>[1]</sup>          | The system must be able to detect faults or anomalies in the load<br>balancing process and alert building management or maintenance<br>for quick resolution.                                                                              |  |
| Security <sup>[1]</sup>                 | The system must prioritize security by implementing appropriate<br>data protection measures and secure access control measures to<br>prevent unauthorized access or unauthorized modification of load<br>balancing information.           |  |



|                               | Hardware         |   | Software                   |
|-------------------------------|------------------|---|----------------------------|
| <ul> <li>Smart me</li> </ul>  | eter             | 0 | Energy management software |
| <ul> <li>Power ma</li> </ul>  | anagement system | 0 | Building automation system |
| <ul> <li>Energy st</li> </ul> | orage system     | 0 | Cloud-based platforms      |

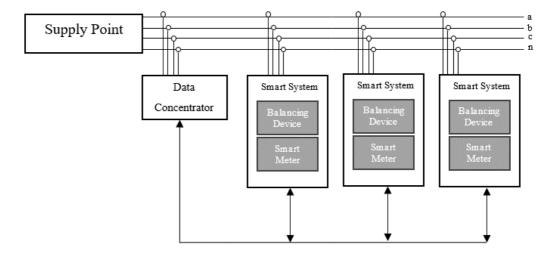



Figure 11. Electricity Load Balancing

| Reference Standard                                                         |                                                                                          |  |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|
| Minister of Public<br>Works and Housing<br>Regulation Number 21<br>of 2021 | Green Building Performance Assessment                                                    |  |
| SNI 6390-2020                                                              | Energy conservation of building air conditioning systems                                 |  |
| SNI 6197-2020                                                              | Energy conservation in lighting systems                                                  |  |
| SNI 62053                                                                  | Electric Meter Equipment                                                                 |  |
| ISO 16484                                                                  | Building automation and control systems                                                  |  |
| ISO 23045:2008                                                             | Building environment design — Guidelines to assess<br>energy efficiency of new buildings |  |
| Others                                                                     | and other applicable regulations or standards                                            |  |



#### 5.4.4 Public Electric Vehicle Charging Stations

Public Electric Vehicle Charging Stations are facilities designed to recharge electric vehicle batteries in general, which can be used by the public with the aim of providing accessible and reliable infrastructure.

| Functional Requirements                 |                                                                   |  |  |
|-----------------------------------------|-------------------------------------------------------------------|--|--|
| Fast charging [3]                       | The system should have sufficient energy output so that it can    |  |  |
|                                         | charge electric vehicles quickly.                                 |  |  |
| <b>O</b> a man a tile illite a [2]      | The system should support various charging standards to           |  |  |
| Compatibility <sup>[2]</sup>            | ensure the system can serve different types of electric vehicles. |  |  |
|                                         | The system should have a user-friendly user interface that        |  |  |
| User-friendly                           | allows property managers or maintenance workers to easily         |  |  |
| user interface [3]                      | monitor and control the system. It also increases user comfort    |  |  |
|                                         | in operating the system.                                          |  |  |
| Renewable                               | The system should be able to integrate with renewable energy      |  |  |
| energy                                  | sources such as solar panels or wind turbines to optimize         |  |  |
| integration <sup>[2]</sup>              | energy consumption and reduce dependence on the grid.             |  |  |
|                                         | The system should have maintenance features, such as testing      |  |  |
| Maintenance <sup>[2]</sup>              | and inspection schedules, to ensure that the system is working    |  |  |
|                                         | and coded correctly.                                              |  |  |
|                                         | The system should provide real-time data on energy usage and      |  |  |
| Real-time data <sup>[2]</sup>           | other metrics so that users can monitor and adjust energy usage   |  |  |
|                                         | in real time.                                                     |  |  |
| Remote access                           | The system should be remotely accessible so that users can        |  |  |
| [2]                                     | monitor meter activity and energy usage from their mobile         |  |  |
|                                         | devices or computers.                                             |  |  |
| • • • • • • • • • • • • • • • • • • • • | The system should prioritize security by implementing             |  |  |
| Security <sup>[2]</sup>                 | appropriate data protection measures and secure access            |  |  |
|                                         | controls to prevent breaches or unauthorized access.              |  |  |
| Customizable                            | The system should allow users to set customizable alerts for      |  |  |
| alerts <sup>[2]</sup>                   | users or building management, to notify them of potential         |  |  |
| Bd a na dh a ra a ra                    | emergencies and prompt action.                                    |  |  |
| More than one                           | The system must have more than one charging port to               |  |  |
| charging port <sup>[2]</sup>            | simultaneously accommodate multiple vehicle charging.             |  |  |



| Hardware                                                                                                                                        | Software                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Charging station</li> <li>Control panel</li> <li>Authentication system</li> <li>Payment system</li> <li>Internet connection</li> </ul> | <ul> <li>Charging management system</li> <li>User interface</li> <li>Monitoring system</li> <li>Integration with other energy<br/>systems</li> <li>Power loading algorithm</li> </ul> |

| Reference Standard                                                            |                                                                                                                                           |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Minister of Public<br>Works and Housing<br>Regulation Number 21<br>of 2021    | Green Building Performance Assessment                                                                                                     |
| Minister of Energy and<br>Mineral Resources<br>Regulation Number 1<br>of 2023 | Provision of Electric Charging Infrastructure for<br>Battery-based Electric Motor Vehicles                                                |
| ISO 15118                                                                     | Road vehicles – Vehicle to grid communication interface                                                                                   |
| IEEE 1547-2018                                                                | Standard for Interconnection and Interoperability of<br>Distributed Energy Resources with Associated Electric<br>Power Systems Interfaces |
| IEC 61851                                                                     | Electric vehicle conductive charging system                                                                                               |
| Others                                                                        | and other applicable regulations or standards                                                                                             |

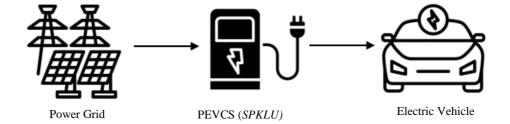



Figure 12. Public Electric Vehicle Charging Station

### 5.5 Safety System

#### 5.5.1 Active Disaster Response System

Active Disaster Response System is a technology used to provide a fast and efficient response in dealing with emergency or disaster situations with the help of artificial intelligence, Internet of Things (IoT), and integration with related parties.

| Functional Requirements                                 |                                                                                                                                                                                                                                                      |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sensor and<br>monitoring<br>system <sup>[2]</sup>       | The system must include a network of sensors and monitoring devices that detect changes in temperature, humidity, air quality and the presence of smoke, gas and other hazards.                                                                      |
| Alert system <sup>[2]</sup>                             | The system must be able to quickly alert building occupants and<br>emergency responders when a potential threat is detected. This<br>could include audible alarms, visual alerts, and/or automated<br>notifications to smartphones or other devices. |
| Communication system <sup>[3]</sup>                     | The system must provide a reliable communication channel for<br>building occupants and emergency responders to communicate<br>with each other and coordinate response efforts.                                                                       |
| Automatic shut-<br>off system <sup>[2]</sup>            | The system must automatically shut-off systems for utilities such as gas, water, and electricity in case of emergency situations.                                                                                                                    |
| Automated<br>emergency<br>lighting <sup>[2]</sup>       | The system must include automatic emergency lighting that turns<br>on in the event of a power outage or other emergency situation.                                                                                                                   |
| Remote access<br>to building<br>controls <sup>[2]</sup> | The system must provide remote access to building controls, such<br>as HVAC systems and elevators, to enable building managers<br>and emergency responders to adjust settings as needed.                                                             |
| Real-time data<br>analysis <sup>[2]</sup>               | The system must include machine learning and artificial intelligence algorithms to analyze data from sensors and devices in real-time to identify patterns and anomalies that may indicate potential threats.                                        |
| Disaster<br>recovery system<br><sup>[2]</sup>           | The system must have a disaster recovery plan in place to ensure<br>that critical data and systems can be quickly restored in case of a<br>disaster.                                                                                                 |
| Integration <sup>[2]</sup>                              | The system must be integrated with other systems in order to maintain the safety of building occupants                                                                                                                                               |
| Manual override [2]                                     | The system must be able to be controlled manually when there is<br>an automatic system failure in the event of a disaster.                                                                                                                           |



| Hardware                                                                                                                                                   | Software                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Sensors and detectors</li> <li>Alarms and alerts</li> <li>Communication devices</li> <li>Control devices</li> <li>Data storage devices</li> </ul> | <ul> <li>Disaster response software</li> <li>Alert management software</li> <li>Data analysis software</li> <li>Remote access software</li> <li>User interface software</li> <li>Building management system</li> </ul> |
| Sensors and Alarm and Commun                                                                                                                               |                                                                                                                                                                                                                        |

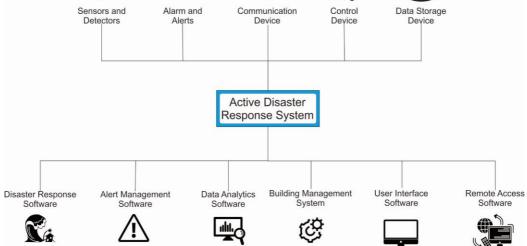



Figure 13. Active Disaster Response System



| Reference Standard |                                                                                                    |
|--------------------|----------------------------------------------------------------------------------------------------|
| ISO 22329          | Security and Resilience – Emergency management                                                     |
| ISO 16484          | Building automation and control systems                                                            |
| ISO 8201:2017      | Alarm systems                                                                                      |
| ISO 30061:2007     | Emergency lighting                                                                                 |
| ISO 20414:2020     | Fire safety engineering — Verification and validation protocol for building fire evacuation models |
| SNI 8840           | Early warning system                                                                               |
| SNI ISO 22320-2012 | Public safety - Emergency management - Requirements for incident handling (ISO 22320:2011, IDT)    |
| Others             | And other applicable regulations or standards                                                      |



#### 5.5.2 Smart Fire Suppression System

Smart Fire Suppression System is a technology used to detect, track and respond to fires quickly and efficiently with the help of Internet of Things (IoT) devices and integration with other building systems.

| Functional Requirements                        |                                                                                                                                                                                                                                                              |  |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Real-time<br>monitoring <sup>[1]</sup>         | The system must enable real-time monitoring of the building or facility for potential fire hazards or outbreaks of fires.                                                                                                                                    |  |
| Automatic fire suppression <sup>[2]</sup>      | The system must automatically detect and extinguish fires<br>using sprinklers or other fire suppression methods to minimize<br>damage and protect passengers.                                                                                                |  |
| Alert system <sup>[1]</sup>                    | The system must be able to quickly alert building occupants<br>and emergency responders when a potential fire threat is<br>detected. This could include audible alarms, visual alerts,<br>and/or automated notifications to smartphones or other<br>devices. |  |
| Integration <sup>[2]</sup>                     | To optimize building safety and efficiency, a fire suppression<br>system must be able to integrate with other smart building<br>technologies, such as smoke detectors.                                                                                       |  |
| Scalability <sup>[2]</sup>                     | The system must be scalable according to building occupancy, number of users and changing security requirements.                                                                                                                                             |  |
| Redundancy <sup>[2]</sup>                      | The system must have redundant parts, such as multiple water<br>sources or backup power sources, to ensure reliable operation<br>in case of failure or emergency.                                                                                            |  |
| Maintenance <sup>[1]</sup>                     | The system must have maintenance features, such as testing<br>and inspection schedules, to ensure that the system is working<br>and coded correctly.                                                                                                         |  |
| User-friendly<br>user interface <sup>[2]</sup> | The system must have a user-friendly user interface that allows<br>property managers or maintenance workers to easily monitor<br>and control the system.                                                                                                     |  |
| Customizable<br>alerts <sup>[3]</sup>          | The system must allow users to set custom alerts for potential fires or system failures, notify them of potential problems, and act quickly.                                                                                                                 |  |



|   | Hardware              | Software                                         |
|---|-----------------------|--------------------------------------------------|
| 0 | Temperature sensor    | - Building Automation System                     |
| 0 | Smoke sensor          | <ul> <li>Building Automation System</li> </ul>   |
| 0 | Flow sensor           | (BAS)                                            |
| 0 | Water supply and pump | • Fire Alarm and Control Software                |
| 0 | Sprinkler head        | <ul> <li>Fire Suppression and Control</li> </ul> |
| 0 | Fire extinguisher     | Software                                         |

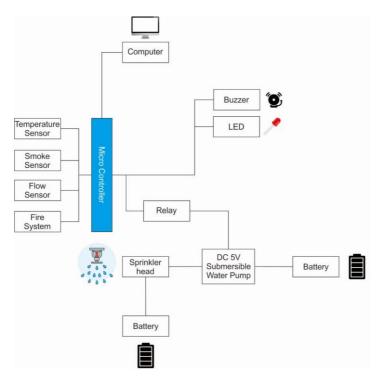



Figure 14. Smart Fire Supression System



| Reference Standard |                                                                                                                          |
|--------------------|--------------------------------------------------------------------------------------------------------------------------|
| ISO 7240           | Fire detection and alarm systems                                                                                         |
| ISO 8201:2017      | Alarm systems                                                                                                            |
| ISO 30061:2007     | Emergency lighting                                                                                                       |
| ISO 16484          | Building automation and control systems                                                                                  |
| ISO 20414:2020     | Fire safety engineering — Verification and validation protocol for building fire evacuation models                       |
| ISO 16738:2009     | Fire-safety engineering — Technical information on methods for evaluating behaviour and movement of people               |
| SNI 03-6571-2001   | Sistem pengendali asap kebakaran pada bangunan gedung                                                                    |
| SNI 03-3985-2000   | Procedures for planning, installation, and testing of fire detection and alarm systems for fire prevention in buildings. |
| SNI 03-3987-1995   | Procedures for planning, installation of light fire<br>extinguishers for fire prevention in houses and<br>buildings.     |
| SNI ISO 22320-2012 | Public safety - Emergency management -<br>Requirements for incident handling (ISO 22320:2011,<br>IDT)                    |
| Others             | And other applicable regulations or standards                                                                            |



#### 5.5.3 Emergency Button

Emergency Button is a technology designed to provide quick assistance and emergency response in situations that threaten the life or safety of a person through integration with relevant parties.

| Functional Requirements                                                                                |                                                                                                                                                                                                             |                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quick response                                                                                         | •                                                                                                                                                                                                           | provide quick response in case of<br>ng occupants to quickly and easily request                                                                                                    |
| Integration <sup>[2]</sup>                                                                             | The emergency button system must be able to integrate with<br>other smart building technologies, such as security cameras or<br>access control systems, to optimize building safety and<br>efficiency.      |                                                                                                                                                                                    |
| Scalability <sup>[2]</sup>                                                                             | The system must be scalable to accommodate changes in building occupancy, user volume, and evolving safety requirements.                                                                                    |                                                                                                                                                                                    |
| Location<br>tracking <sup>[2]</sup>                                                                    | The system must be able to track the location of the emergency<br>button activation, to facilitate quick response and efficient<br>allocation of resources.                                                 |                                                                                                                                                                                    |
| Customizable<br>alerts <sup>[3]</sup>                                                                  | The system must allow users to set up customizable alerts for<br>emergency response teams or building management, to notify<br>them of potential emergencies and prompt action.                             |                                                                                                                                                                                    |
| User-friendly interface [2]                                                                            | The system must have a user-friendly interface that allows building occupants to easily locate and activate emergency buttons.                                                                              |                                                                                                                                                                                    |
| Compatibility <sup>[2]</sup>                                                                           | The system must be compatible with different types of<br>emergency buttons and support multiple communication<br>protocols, such as cellular or Wi-Fi, to accommodate different<br>building configurations. |                                                                                                                                                                                    |
| Maintenance <sup>[2]</sup>                                                                             | The system must have maintenance features in place, such as testing and inspection schedules, to ensure that the system is functioning properly and up to code.                                             |                                                                                                                                                                                    |
| Hard                                                                                                   | Hardware Software                                                                                                                                                                                           |                                                                                                                                                                                    |
| <ul> <li>Emergency bu</li> <li>Intercom syste</li> <li>Access control</li> <li>Panic alarms</li> </ul> | m                                                                                                                                                                                                           | <ul> <li>Building Automation System (BAS)</li> <li>Emergency response management<br/>software</li> <li>Incident management software</li> <li>Mass notification software</li> </ul> |



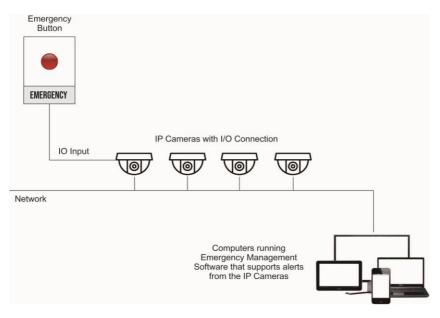



Figure 15. Emergency Button System

| Reference Standard |                                                                                                                  |
|--------------------|------------------------------------------------------------------------------------------------------------------|
| ISO 8201:2017      | Alarm systems                                                                                                    |
| ISO 30061:2007     | Emergency lighting                                                                                               |
| ISO 16484          | Building automation and control systems                                                                          |
| ISO 20414:2020     | Fire safety engineering — Verification and validation protocol for building fire evacuation models               |
| ISO 16738:2009     | Fire-safety engineering — Technical information on<br>methods for evaluating behaviour and movement of<br>people |
| SNI ISO 22320-2012 | Public safety - Emergency management -<br>Requirements for incident handling (ISO 22320:2011,<br>IDT)            |
| Others             | and other applicable regulations or standards                                                                    |



#### 5.5.4 Fire Safety Device Maintenance

Fire Safety Device Maintenance is a technology used to ensure proper maintenance of fire equipment through scheduling inspections and detecting damage or loss of equipment.

| Functional Requirements                           |                                                                                                                                                               |  |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Real-time<br>monitoring <sup>[3]</sup>            | The system must provide real-time monitoring of fire safety devices, such as smoke detectors or fire extinguishers to ensure they are working.                |  |
| Predictive<br>maintenance <sup>[3]</sup>          | The system must use predictive analytics to detect potential equipment failures before they occur, enabling preventative maintenance.                         |  |
| Documentation <sup>[3]</sup>                      | The system must maintain documentation of all maintenance activities, including inspection results, repairs, and replacement records.                         |  |
| User-friendly<br>interface <sup>[3]</sup>         | The system must have a user-friendly interface that allows<br>building management or maintenance staff to easily access<br>maintenance records and schedules. |  |
| Hardware Software                                 |                                                                                                                                                               |  |
| <ul> <li>PIR/Weight se</li> <li>Camera</li> </ul> | ensor<br>o Fire Alarm Maintenance Software<br>o Inspection Software<br>o Preventive Maintenance Software                                                      |  |



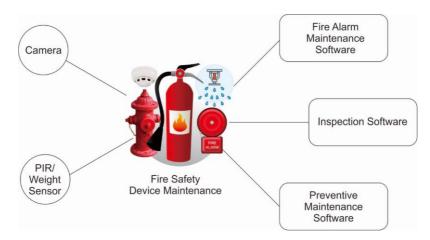



Figure 16. Fire Safety Device Maintenance

| Reference Standard |                                                                                                                                                  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| ISO 16484          | Building automation and control systems                                                                                                          |
| ISO/IEC 27037:2012 | Information technology — Security techniques —<br>Guidelines for identification, collection, acquisition<br>and preservation of digital evidence |
| SNI 6570-2023      | Fixed pump installation for fire protection                                                                                                      |
| SNI 03-6571-2001   | Fire smoke control system in buildings                                                                                                           |
| SNI 03-6462-2000   | Fire damper installation procedure                                                                                                               |
| SNI 03-1746-2000   | Procedures for planning and installing means of egress for rescue against fire hazards in buildings                                              |
| SNI 03-3987-1995   | Procedures for planning, installation of light fire<br>extinguishers for fire prevention in houses and<br>buildings.                             |
| Others             | and other applicable regulations or standards                                                                                                    |



#### 5.5.5 Animal Hazard Protection

Animal Hazard Protection is a technology that is able to detect the presence of animals in the vicinity of buildings and provide measures to safely remove these animals and alert building occupants automatically.

| Functional Requirements                     |                                                                                                                                                                                                   |                                                 |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Monitoring<br>system <sup>[3]</sup>         | Smart building technology must include surveillance systems<br>such as sensors and cameras to detect the presence of<br>insects and animals in and around buildings.                              |                                                 |
| Real-time alerts                            | The monitoring systems must be able to provide real-time<br>alerts to building managers and occupants when insects or<br>animals are detected.                                                    |                                                 |
| Automated pest control <sup>[3]</sup>       | The system must include automated pest control mechanisms such as insecticide sprays or traps to control insect populations and prevent infestations.                                             |                                                 |
| Automated                                   | Smart building technology can be used to install automated                                                                                                                                        |                                                 |
| deterrent                                   |                                                                                                                                                                                                   | that use lights, sound, or other means to       |
| systems [3]                                 | scare animals away from the building.                                                                                                                                                             |                                                 |
| Air curtains <sup>[3]</sup>                 | Smart building technology can be used to install air curtains<br>that can create a barrier between indoor and outdoor<br>environments, preventing insects from entering the building.             |                                                 |
| Data analytics <sup>[3]</sup>               | Smart building technology can be used to analyze data on<br>insect populations and environmental factors to identify<br>patterns and develop strategies to prevent future insect<br>infestations. |                                                 |
| Hard                                        | ware                                                                                                                                                                                              | Software                                        |
|                                             |                                                                                                                                                                                                   | <ul> <li>Wild animal monitoring</li> </ul>      |
| <ul> <li>Sensors</li> </ul>                 |                                                                                                                                                                                                   | <ul> <li>Safe zone integration</li> </ul>       |
| <ul> <li>Cameras</li> </ul>                 |                                                                                                                                                                                                   | <ul> <li>Smart pesticides monitoring</li> </ul> |
| <ul> <li>Pest control mechanisms</li> </ul> |                                                                                                                                                                                                   | <ul> <li>Automated pest control</li> </ul>      |
| <ul> <li>Animal repellent</li> </ul>        |                                                                                                                                                                                                   | <ul> <li>Automated deterrent systems</li> </ul> |
|                                             |                                                                                                                                                                                                   | <ul> <li>Real-time alert system</li> </ul>      |



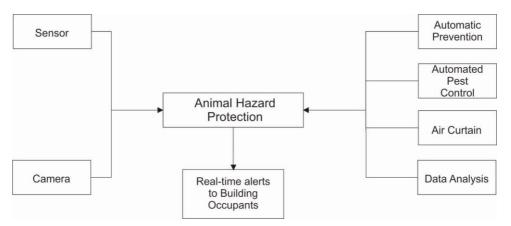



Figure 17. Animal Hazards Protection

| Reference Standard                                |                                                                                                                                                  |  |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Minister of Health<br>Regulation No. 2 of<br>2023 | Implementation regulation of government regulation<br>number 66 of 2014 concerning Environmental<br>Health                                       |  |
| ISO 16484                                         | Building automation and control systems                                                                                                          |  |
| ISO/IEC 18025:2014                                | Information technology — Environmental Data<br>Coding Specification (EDCS)                                                                       |  |
| ISO/IEC 27037:2012                                | Information technology — Security techniques —<br>Guidelines for identification, collection, acquisition<br>and preservation of digital evidence |  |
| Others                                            | and other applicable regulations or standards                                                                                                    |  |

# 5.6 Heating, Ventilation, and Air Conditioning (HVAC) System

#### 5.6.1 Indoor and Outdoor Air Quality Monitoring

Indoor and outdoor air quality monitoring is a system to measure and monitor air quality both inside buildings and outdoors. Indoor air quality monitoring identifies and reduces indoor pollution, as well as maintaining a healthy environment for occupants. Meanwhile, outdoor air quality monitoring involves measuring pollutants in the outdoor air of buildings and surrounding environments to understand the level of outdoor air pollution and identify efforts that can be made to minimize its impact on occupant health

| Functional Requirements                                                 |                                                                                                                                                                                                                                               |                                                                             |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Sensor-based<br>monitoring <sup>[1]</sup>                               | -                                                                                                                                                                                                                                             | ilize sensors to measure and monitor air according to the building and room |
| Real-time<br>monitoring <sup>[1]</sup>                                  | The system must provide real-time monitoring of indoor air quality, alerts, and reporting of potential deviations from desired indoor air quality levels.                                                                                     |                                                                             |
| Historical data<br>analysis <sup>[1]</sup>                              | The system must collect and analyze historical data on air<br>quality, providing insights and recommendations to improve<br>building ventilation, air filtration, or other actions to enhance<br>indoor air quality.                          |                                                                             |
| Integration <sup>[1]</sup>                                              | The air quality monitoring system must be integrated with other<br>smart building technologies, such as demand-driven<br>ventilation systems or building automation systems, to<br>optimize the building's energy use and indoor air quality. |                                                                             |
| Maintenance <sup>[1]</sup>                                              | The system must provide alerts and notifications for maintenance and repair needs, such as sensor calibration or replacement.                                                                                                                 |                                                                             |
| Hardware                                                                |                                                                                                                                                                                                                                               | Software                                                                    |
| <ul> <li>Air quality monitoring sensor</li> <li>Connectivity</li> </ul> |                                                                                                                                                                                                                                               | <ul><li>Building automation system</li><li>Monitoring software</li></ul>    |



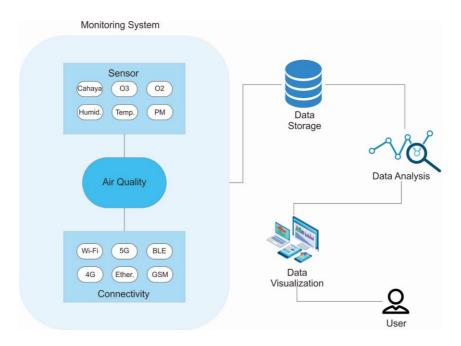



Figure 18. Indoor and Outdoor Air Quality Monitoring

| Reference Standard                                                         |                                                                                                                              |  |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--|
| Minister of Public<br>Works and Housing<br>Regulation Number 21<br>of 2021 | Green Building Performance Assessment                                                                                        |  |
| Minister of Health<br>Regulation No. 2 of<br>2023                          | Implementation regulation of government regulation number 66 of 2014 concerning Environmental Health                         |  |
| ISO 16484                                                                  | Building automation and control systems                                                                                      |  |
| ISO 16813:2006                                                             | Building environment design — Indoor environment<br>— General principles                                                     |  |
| ISO 16814:2008                                                             | Building environment design — Indoor air quality —<br>Methods of expressing the quality of indoor air for<br>human occupancy |  |
| ISO 1777-1:2017                                                            | Energy performance of buildings — Overall energy<br>performance assessment procedures                                        |  |
| Others                                                                     | and other applicable regulations or standards                                                                                |  |



#### 5.6.2 Air Conditioning System

Air Conditioning System is a technological system that regulates and controls the air temperature inside a building with the aim of creating a comfortable environment for its occupants, by lowering the air temperature inside the building when the outside conditions are too hot or increasing the temperature when the outside conditions are too cold, thus creating interior climate conditions optimally according to the preferences of the occupants.

| Functional Requirements                   |                                                                                                                                                                                                                                                   |  |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Temperature<br>control <sup>[1]</sup>     | The system must be able to maintain a comfortable temperature<br>in the building, adjusting automatically according to the<br>preferences of the occupants.                                                                                       |  |
| Energy<br>efficiency <sup>[1]</sup>       | The system must be energy-efficient, reducing energy consumption and costs by optimizing cooling and heating based on occupancy, ambient temperature, and other factors.                                                                          |  |
| Remote access                             | The system must allow building management or occupants to<br>remotely access and control the air conditioning system, using a<br>mobile app or web portal.                                                                                        |  |
| Integration <sup>[1]</sup>                | The smart air conditioning system must be able to integrate with<br>other smart building technologies, such as building automation<br>systems, occupancy sensors, or weather forecasting systems, to<br>optimize building energy use and comfort. |  |
| Zoning <sup>[2]</sup>                     | The system must support zoning, allowing different parts of the building to be cooled or heated independently, based on occupancy or other criteria.                                                                                              |  |
| Maintenance [1]                           | The system must provide alerts and notifications for maintenance<br>and repair needs, such as filter replacement, refrigerant leaks, or<br>system failures.                                                                                       |  |
| Data analytics <sup>[1]</sup>             | The system must collect and analyze data on energy use,<br>temperature settings, and occupancy patterns, providing insights<br>and recommendations for optimizing building energy efficiency<br>and comfort.                                      |  |
| Automation <sup>[1]</sup>                 | The system will manage the condition of indoor air automatically<br>from recommendations given by data analytics, but it can be<br>interrupted by humans.                                                                                         |  |
| User-friendly<br>interface <sup>[2]</sup> | The system must have a user-friendly interface that allows<br>building occupants or management to easily adjust temperature<br>settings, view energy consumption data, and access other<br>system features.                                       |  |

| Hardware                                | Software                                       |
|-----------------------------------------|------------------------------------------------|
| <ul> <li>Heavy-duty pressure</li> </ul> |                                                |
| Thermal sensor                          | <ul> <li>Building automation system</li> </ul> |
| Gas quality sensor                      | <ul> <li>Monitoring software</li> </ul>        |
| Humidity sensor                         |                                                |

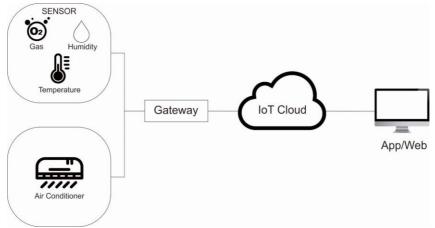



Figure 19. Air Conditioning System

| Reference Standard                                                         |                                                                                                                                     |  |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|
| SNI 6390:2020                                                              | Energy conservation of air conditioning systems in buildings                                                                        |  |
| SNI 03-6572-2001                                                           | Procedures for designing ventilation and air<br>conditioning systems in buildings                                                   |  |
| Minister of Public<br>Works and Housing<br>Regulation Number 21<br>of 2021 | Green Building Performance Assessment                                                                                               |  |
| Minister of Health<br>Regulation No. 2 of<br>2023                          | Implementation regulation of government regulation<br>number 66 of 2014 concerning Environmental Health                             |  |
| ISO 16484                                                                  | Building automation and control systems                                                                                             |  |
| ISO 16813:2016                                                             | Building environment design — Indoor environment — General principles                                                               |  |
| IEEE 3004.8-2016                                                           | Recommended Practice for the Application of Low<br>Voltage (600 V and below) Air Conditioning and Heat<br>Pump Equipment            |  |
| ISO 17772-2:2017                                                           | Energy performance of buildings - Ventilation for<br>buildings - Part 2: Ventilation requirements for non-<br>residential buildings |  |
| Others                                                                     | and other applicable regulations or standards                                                                                       |  |



#### 5.6.3 Air Purification and Filter Monitoring

Air Purification and Filter Monitoring is a technology system that can clean and monitor air quality inside buildings with the goal of creating a healthy and comfortable environment for occupants by removing dust particles, dirt, pollutants, and allergens from the air, as well as regulating humidity and temperature levels to create an optimal indoor environment.

| Functional Requirements                                                                                                                                  |                                                                                                                                                                                                                                                             |                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Sensor-based<br>monitoring <sup>[1]</sup>                                                                                                                | air quality parameters<br>compounds (VOCs)<br>sensitivity and low er                                                                                                                                                                                        |                                                                                            |
| Air purification                                                                                                                                         | The system must be equipped with air purification capabilities,<br>such as HEPA filters or activated carbon, chlorine, nitrogen, etc<br>filters, to remove gas pollutants from the air.                                                                     |                                                                                            |
| Real-time<br>monitoring <sup>[1]</sup>                                                                                                                   | The system must provide real-time monitoring of indoor air quality, with alerts and notifications for any deviation from the desired indoor air quality levels.                                                                                             |                                                                                            |
| Filter monitoring [2]                                                                                                                                    | The system must monitor the status of air filters, alerting users<br>when it's time for replacement, and track the history of filter<br>replacements devices and sensors.                                                                                   |                                                                                            |
| Integration <sup>[1]</sup>                                                                                                                               | The air purification and filter monitoring system must be able to<br>integrate with other smart building technologies, such as building<br>automation systems or air quality monitoring systems, to<br>optimize building energy use and indoor air quality. |                                                                                            |
| User-friendly<br>interface <sup>[2]</sup>                                                                                                                | The system must have a user-friendly interface that allows<br>building occupants or management to easily access and view<br>indoor air quality data, receive alerts, and access other system<br>features, including filter replacement.                     |                                                                                            |
| Maintenance <sup>[1]</sup>                                                                                                                               | The system must provide alerts and notifications for maintenance and repair needs, such as filter replacement or system cleaning.                                                                                                                           |                                                                                            |
| Data analytics <sup>[1]</sup>                                                                                                                            | The system must collect and analyze data on indoor air quality parameters, providing insights and recommendations for optimizing air purification and filter replacement.                                                                                   |                                                                                            |
| Hard                                                                                                                                                     | Iware                                                                                                                                                                                                                                                       | Software                                                                                   |
| <ul> <li>Gas Quality set</li> <li>Airflow sensor</li> <li>Humidity sens</li> <li>Particle senso</li> <li>Basic switch</li> <li>Thermal sensor</li> </ul> | or<br>r                                                                                                                                                                                                                                                     | <ul> <li>Simulation software</li> <li>Monitoring HVAC</li> <li>Controlling HVAC</li> </ul> |



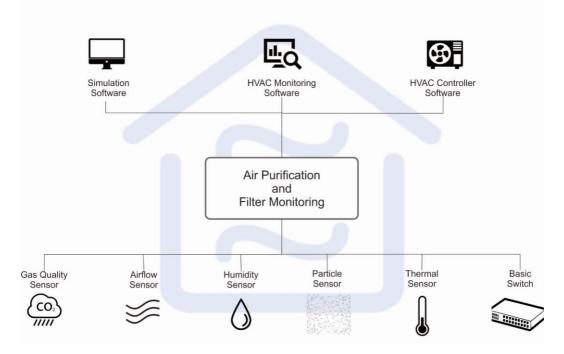



Figure 20. Air Purification and Filter Monitoring

| Reference Standard                                                         |                                                                                                                              |  |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--|
| Minister of Public<br>Works and Housing<br>Regulation Number 21<br>of 2021 | Green Building Performance Assessment                                                                                        |  |
| Minister of Health<br>Regulation No. 2 of<br>2023                          | Implementation regulation of government regulation<br>number 66 of 2014 concerning Environmental Health                      |  |
| ISO 16813:2006                                                             | Building environment design — Indoor environment — General principles                                                        |  |
| ISO 16484                                                                  | Building automation and control systems                                                                                      |  |
| ISO 16814:2008                                                             | Building environment design — Indoor air quality —<br>Methods of expressing the quality of indoor air for human<br>occupancy |  |
| ISO 1777-1:2017                                                            | Energy performance of buildings — Overall energy<br>performance assessment procedures                                        |  |
| Others                                                                     | and other applicable regulations or standards                                                                                |  |



#### 5.6.4 Demand Controlled Ventilation (DCV)

DCV is a ventilation system that automatically adjusts the amount of fresh air brought into the building based on real-time occupancy and air quality data that optimizes indoor air quality while minimizing energy consumption by providing ventilation in response to actual demand.

| Functional Requirements                                                                                                                                            |                                                                                                                                                                                                                                             |                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Sensor-based ventilation <sup>[1]</sup>                                                                                                                            | quality parameters                                                                                                                                                                                                                          | se sensors to detect occupancy and air<br>according to the building and room<br>the level of ventilation and appropriate |
| Energy<br>efficiency <sup>[1]</sup>                                                                                                                                | The system must be energy-efficient, reducing energy consumption and costs by optimizing ventilation based on occupancy, air quality, and other factors                                                                                     |                                                                                                                          |
| Integration <sup>[1]</sup>                                                                                                                                         | The Demand-based ventilation systems should be integrable<br>with other smart building technologies, such as building<br>automation systems or air quality monitoring systems, to<br>optimize building energy usage and indoor air quality. |                                                                                                                          |
| Zoning <sup>[2]</sup>                                                                                                                                              | The system must support zoning, allowing various parts of the building to ventilate independently based on occupancy or other criteria.                                                                                                     |                                                                                                                          |
| User preerences [1]                                                                                                                                                | The system must allow building occupants to adjust ventilation levels based on their preferences or health conditions.                                                                                                                      |                                                                                                                          |
| Maintenance <sup>[1]</sup>                                                                                                                                         | The system must provide alerts and notifications for maintenance and repair needs, such as filter replacement or sensor calibration.                                                                                                        |                                                                                                                          |
| Data analytics <sup>[1]</sup>                                                                                                                                      | The system must collect and analyze data on occupancy, air quality, and energy usage, providing insights and recommendations to optimize building energy efficiency and indoor air quality.                                                 |                                                                                                                          |
| Automation <sup>[1]</sup>                                                                                                                                          | The system will manage ventilation automatically based on data analytics recommendations but can be intervened by humans.                                                                                                                   |                                                                                                                          |
| Hardware                                                                                                                                                           |                                                                                                                                                                                                                                             | Software                                                                                                                 |
| <ul> <li>Humidity sensor</li> <li>Gas quality sensor</li> <li>Particle sensor</li> <li>Thermal sensor</li> <li>Occupancy sensor</li> <li>Airflow sensor</li> </ul> |                                                                                                                                                                                                                                             | <ul> <li>Building Automation System (BAS)</li> <li>Monitoring dashboard</li> </ul>                                       |






Figure 21. Demand Controlled Ventilation

| Reference Standard                                                         |                                                                                                                                                    |  |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| SNI 6390:2020                                                              | Energy conservation of air conditioning systems in buildings                                                                                       |  |
| SNI 03-6572-2001                                                           | Procedures for designing ventilation and air<br>conditioning systems in buildings                                                                  |  |
| Minister of Public<br>Works and Housing<br>Regulation Number 21<br>of 2021 | Green Building Performance Assessment                                                                                                              |  |
| ISO 16484                                                                  | Building automation and control systems                                                                                                            |  |
| ISO 16813:2006                                                             | Building environment design — Indoor environment — General principles                                                                              |  |
| ISO 1777-1:2017                                                            | Energy performance of buildings                                                                                                                    |  |
| ISO 16798-3:2019                                                           | Energy performance of buildings - Part 3: Ventilation<br>for buildings - Performance requirements for ventilation<br>and room-conditioning systems |  |
| Others                                                                     | and other applicable regulations or standards                                                                                                      |  |



#### 5.6.5 Climate Detection System

A system that monitors and controls various climate parameters inside buildings to create optimal and comfortable environmental conditions for occupants while optimizing energy use.

| Functional Requirements                    |                                                                                                                                                                                                                          |  |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Sensor-based monitoring <sup>[1]</sup>     | The system must use sensors to measure and monitor indoor<br>climate parameters such as temperature, humidity, and air<br>pressure.                                                                                      |  |
| Real-time<br>monitoring <sup>[1]</sup>     | The system must provide real-time monitoring of indoor climate conditions, with alerts and notifications for any deviation from the desired indoor climate levels.                                                       |  |
| Historical data<br>analysis <sup>[1]</sup> | The system must collect and analyze historical data on indoor<br>climate conditions, providing insights and recommendations for<br>improving building energy efficiency, comfort, and indoor air<br>quality.             |  |
| Integration <sup>[1]</sup>                 | The climate detection system must be able to integrate with other<br>smart building technologies, such as HVAC systems or building<br>automation systems, to optimize building energy use and indoor<br>climate control. |  |
| User-friendly<br>interface <sup>[2]</sup>  | The system must have a user-friendly interface that allows<br>building occupants or management to easily access and view<br>indoor climate data, receive alerts, and access other system<br>features.                    |  |
| Maintenance [1]                            | The system must provide alerts and notifications for maintenance<br>and repair needs, such as sensor calibration or replacement.                                                                                         |  |
| Security <sup>[1]</sup>                    | The system must prioritize security by implementing appropriate data protection measures and secure access controls to prevent unauthorized access or tampering of system data.                                          |  |
| Compliance <sup>[1]</sup>                  | The system must comply with relevant indoor climate standards<br>and guidelines, such as the American Society of Heating,<br>Refrigerating and Air-Conditioning Engineers (ASHRAE)<br>standards or local building codes. |  |
| Mobile access <sup>[2]</sup>               | The system must provide mobile access to indoor climate data<br>and alerts, allowing building occupants to monitor indoor climate<br>remotely and take necessary actions to improve comfort and<br>indoor air quality.   |  |

| Hardware                               | Software                                               |
|----------------------------------------|--------------------------------------------------------|
| <ul> <li>Humidity sensor</li> </ul>    | <ul> <li>Data processing application</li> </ul>        |
| <ul> <li>Air quality sensor</li> </ul> | <ul> <li>Air quality monitoring algorithms,</li> </ul> |
| <ul> <li>Thermal sensor</li> </ul>     | notifications and automatic actions                    |
| <ul> <li>IoT device</li> </ul>         | <ul> <li>Control dashboard</li> </ul>                  |

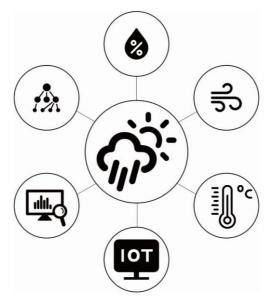



Figure 22. Climate Detection System

| Reference Standard                                                         |                                                                                                         |  |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|
| Minister of Health<br>Regulation No. 2 of<br>2023                          | Implementation regulation of government regulation<br>number 66 of 2014 concerning Environmental Health |  |
| ISO 16484                                                                  | Building automation and control systems                                                                 |  |
| SNI 6390:2020                                                              | Energy conservation of air conditioning systems in<br>buildings                                         |  |
| SNI 03-6572-2001                                                           | Procedures for designing ventilation and air conditioning systems in building                           |  |
| Minister of Public<br>Works and Housing<br>Regulation Number 21<br>of 2021 | Green Building Performance Assessment                                                                   |  |
| ISO 16813:2006                                                             | Building environment design — Indoor environment — General principles                                   |  |
| Others                                                                     | and other applicable regulations or standards                                                           |  |

## 5.7 Lighting System

#### 5.7.1 Sistem Pencahayaan Cerdas

A lighting system equipped with intelligent technology capable of detecting the environment and set automatically or through smart control. Intelligent lighting systems are able to adjust lighting levels so as to minimize energy use and maintain occupant comfort.

| Functional Requirements                   |                                                                                                                                                                                                                |  |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Automated<br>controls <sup>[1]</sup>      | The system must be able to automatically turn lights on or off based on occupancy, time of day, or other specified conditions.                                                                                 |  |
| Sensor-based controls <sup>[1]</sup>      | The system must use sensors to detect occupancy or daylight levels, allowing for more precise and energy-efficient lighting control.                                                                           |  |
| Customizable settings <sup>[1]</sup>      | The system must allow for customization of lighting settings,<br>such as dimming levels, color temperature, or lighting scenes, to<br>meet the needs of different spaces or tasks.                             |  |
| Integration <sup>[1]</sup>                | The lighting system must be able to integrate with other smart<br>building technologies, such as building automation systems or<br>occupancy sensors, to optimize building energy use and lighting<br>control. |  |
| User-friendly<br>interface <sup>[2]</sup> | The system must have a user-friendly interface that allows<br>building occupants or management to easily adjust lighting<br>settings, schedule lighting scenes, or access other system<br>features.            |  |
| Maintenance <sup>[1]</sup>                | The system must provide alerts and notifications for maintenance and repair needs, such as bulb replacement or sensor cleaning.                                                                                |  |
| Energy<br>monitoring <sup>[1]</sup>       | The system must be able to monitor energy use and provide<br>insights and recommendations for optimizing lighting control and<br>energy efficiency.                                                            |  |
| Security <sup>[1]</sup>                   | The system must prioritize security by implementing appropriate data protection measures and secure access controls to prevent unauthorized access or tampering of system data.                                |  |
| Compliance <sup>[1]</sup>                 | The system must comply with relevant lighting standards and guidelines, such as the Illuminating Engineering Society (IES) standards or local building codes.                                                  |  |
| Mobile access <sup>[2]</sup>              | The system must provide mobile access to lighting control and settings, allowing building occupants to adjust lighting remotely and increase energy savings.                                                   |  |

| Hardware                                                             | Software                                                                                                        |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| <ul> <li>Motion (PIR) sensor</li> <li>Illumination sensor</li> </ul> | <ul> <li>Intelligent algorithm</li> <li>Lighting analysis software</li> <li>Lighting design software</li> </ul> |

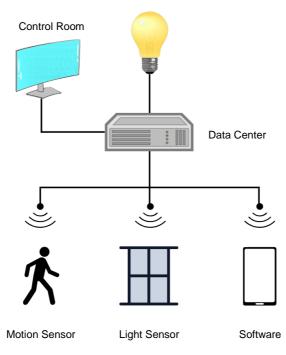



Figure 23. Lighting System

| Reference Standard                                                         |                                                                                                      |  |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|
| SNI 6197:2020                                                              | Energy Conservation in Lighting System                                                               |  |
| Minister of Public<br>Works and Housing<br>Regulation Number 21<br>of 2021 | Green Building Performance Assessment                                                                |  |
| Minister of Health<br>Regulation No. 2 of<br>2023                          | Implementation regulation of government regulation number 66 of 2014 concerning Environmental Health |  |
| ISO/CIE 20086:2019                                                         | Light and lighting — Energy performance of lighting in buildings                                     |  |
| Others                                                                     | and other applicable regulations or standards                                                        |  |

# **5.8 Mobility System**

#### 5.8.1 Smart Escalator and Autowalk

Escalator and/or autowalk systems are systems that can improve safety and energy efficiency by detecting the presence of users, dangerous behavior, and integration with other building systems. The system is able to adjust the operating speed according to the user's presence and automatically stop in case of an emergency.

|                                           | Functional Requirements                                                                                                                                                                                                                         |  |  |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Safety <sup>[2]</sup>                     | The smart escalator and autowalk system must prioritize safety, by<br>implementing appropriate safety features such as anti-skid surfaces,<br>emergency stop buttons, and handrail speed monitoring.                                            |  |  |
| Efficiency <sup>[2]</sup>                 | The smart escalator and autowalk system must prioritize efficiency and reduce waiting times, by using algorithms to calculate the most optimal escalator and autowalk routing and speed control.                                                |  |  |
| Integration <sup>[2]</sup>                | The smart escalator and autowalk system must integrate with other<br>smart building technologies, such as building automation systems or<br>occupancy sensors, to optimize building operations and<br>escalator/autowalk usage.                 |  |  |
| User-friendly<br>interface <sup>[3]</sup> | The system must have a user-friendly interface that allows building occupants to easily access and use the escalator or autowalk, view system status, and receive alerts or notifications.                                                      |  |  |
| Emergency<br>management <sup>[2]</sup>    | The smart escalator and autowalk system must have an emergency management system, such as fire service mode, earthquake mode, and blackout mode, to ensure the safe evacuation of occupants in emergency situations.                            |  |  |
| Maintenance <sup>[2]</sup>                | The system must provide alerts and notifications for maintenance and repair needs, such as mechanical failures or wear and tear, allowing for proactive maintenance and minimizing downtime.                                                    |  |  |
| Energy efficiency                         | The smart escalator and autowalk system must prioritize energy efficiency, by using features such as regenerative braking, low-energy LED lighting, and sleep mode to reduce energy consumption.                                                |  |  |
| Security <sup>[2]</sup>                   | The smart escalator and autowalk system must prioritize security by<br>implementing appropriate access controls, data protection measures,<br>and secure communication protocols to prevent unauthorized access or<br>tampering of system data. |  |  |
| Real-time<br>monitoring <sup>[2]</sup>    | The smart escalator and autowalk system must provide real-time<br>monitoring of escalator and autowalk usage, traffic patterns, and other<br>relevant data, allowing for continuous improvement and optimization.                               |  |  |
| Automation <sup>[2]</sup>                 | The system will change slowly or fast automatically from recommendations given by data analytics, but it can be interrupted by humans.                                                                                                          |  |  |

| Hardware                                | Software                                        |
|-----------------------------------------|-------------------------------------------------|
| ○ Sensor                                | <ul> <li>Escalator management system</li> </ul> |
| <ul> <li>Controller</li> </ul>          | <ul> <li>User interface</li> </ul>              |
| <ul> <li>Motors</li> </ul>              | • Predictive maintenance software               |
| <ul> <li>Steps and handrails</li> </ul> | <ul> <li>Energy management software</li> </ul>  |

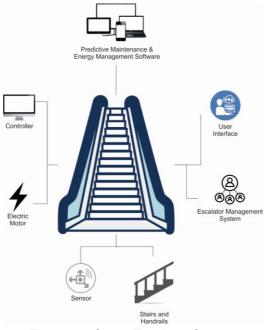



Figure 24. Smart Escalator System

| Reference Standard                                        |                                                                     |  |
|-----------------------------------------------------------|---------------------------------------------------------------------|--|
| Minister of<br>Manpower<br>Regulation Number 6<br>of 2017 | Elevator Occupational Safety & Health                               |  |
| EN 115-1:2017                                             | Safety of escalators and moving walks                               |  |
| EN 115-2:2010                                             | Safety of escalators and moving walks                               |  |
| ISO 25745                                                 | Energy performance of lifts, escalators, and moving walks           |  |
| ISO 27001:2022                                            | Information security, cybersecurity, privacy protection             |  |
| ISO 27010:2015                                            | Information security controls for cloud services                    |  |
| IEC 62443-4-1                                             | Secure product development lifecycle requirements                   |  |
| IEC 62443-4-2                                             | Industrial Automation & Control - Technical security<br>requirement |  |
| Others                                                    | and other applicable regulations or standards                       |  |

### 5.8.2 Elevator Cerdas

Smart Elevator is elevator system that improves energy efficiency, user experience and safety by detecting user presence, determining effective routes, and integration with emergency systems.

| Functional Requirements                                                                    |                                                                                                                                                                                                                                   |                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Efficiency <sup>[2]</sup>                                                                  | -                                                                                                                                                                                                                                 | em must prioritize efficiency and reduce algorithms to calculate the most optimal tor group control.                                                                 |
| Access<br>Control <sup>[2]</sup>                                                           |                                                                                                                                                                                                                                   | tem must have secure access control,<br><i>r</i> iduals to access specific floors or areas<br>ls.                                                                    |
| Integration <sup>[2]</sup>                                                                 | building technologies, s                                                                                                                                                                                                          | stem must integrate with other smart<br>uch as building automation systems or<br>ptimize building operations and elevator                                            |
| User-friendly<br>interface <sup>[3]</sup>                                                  | building occupants to                                                                                                                                                                                                             | e a user-friendly interface that allows<br>easily select their desired floor or<br>rator status, and receive alerts or                                               |
| Emergency<br>management <sup>[2]</sup>                                                     | management system, s                                                                                                                                                                                                              | system must have an emergency<br>such as fire service mode, earthquake<br>ode, to ensure the safe evacuation of<br>v situations.                                     |
| Maintenance <sup>[2]</sup>                                                                 | The system must provide alerts and notifications for<br>maintenance and repair needs, such as mechanical failures or<br>wear and tear, allowing for proactive maintenance and<br>minimizing downtime.                             |                                                                                                                                                                      |
| Energy<br>efficiency <sup>[2]</sup>                                                        | using features such as                                                                                                                                                                                                            | em must prioritize energy efficiency, by<br>regenerative braking, low-energy LED<br>to reduce energy consumption.                                                    |
| Security <sup>[2]</sup>                                                                    | The smart elevator system must prioritize security by<br>implementing appropriate access controls, data protection<br>measures, and secure communication protocols to prevent<br>unauthorized access or tampering of system data. |                                                                                                                                                                      |
| Real-time<br>monitoring <sup>[2]</sup>                                                     | The smart elevator system must provide real-time monitoring of<br>elevator usage, traffic patterns, and other relevant data, allowing<br>for continuous improvement and optimization.                                             |                                                                                                                                                                      |
| Ha                                                                                         | rdware                                                                                                                                                                                                                            | Software                                                                                                                                                             |
| <ul> <li>Sensor (Weigh</li> <li>Controller</li> <li>Motor</li> <li>Elevator car</li> </ul> | nt, motion)                                                                                                                                                                                                                       | <ul> <li>Elevator management system</li> <li>User interface &amp; IoT device</li> <li>Predictive maintenance software</li> <li>Energy management software</li> </ul> |



Figure 25. Smart Elevator System

| Reference Standard                                                         |                                                                  |  |
|----------------------------------------------------------------------------|------------------------------------------------------------------|--|
| Minister of Manpower<br>Regulation Number 6 of<br>2017                     | Elevator Occupational Safety & Health                            |  |
| Minister of Public<br>Works and Housing<br>Regulation Number 21<br>of 2021 | Green Building Performance Assessment                            |  |
| SNI 03-6573:2001                                                           | Design procedure for vertical transportation system              |  |
| SNI 03-7017.1:2004                                                         | Handover inspection and testing                                  |  |
| SNI 03-7017.2:2014                                                         | Periodic inspection and testing                                  |  |
| SNI 05-7052:2004                                                           | General requirements for roomless elevator machine construction  |  |
| EN 81-20:2014                                                              | Safety rules for the construction and installation of lifts      |  |
| EN 81-50:2014                                                              | Design rules, calculations, examinations                         |  |
| ISO 25745                                                                  | Energy performance of lifts, escalators, and moving walks        |  |
| ISO 8100-34:2021                                                           | Measurement of lift ride quality                                 |  |
| ISO 27001:2022                                                             | Information security, cybersecurity, privacy protection          |  |
| ISO 27010:2015                                                             | Information security controls for cloud services                 |  |
| IEC 62443-4-1                                                              | Secure product development lifecycle requirements                |  |
| IEC 62443-4-2                                                              | Industrial Automation & Control - Technical security requirement |  |
| Others                                                                     | and other applicable regulations or standards                    |  |

### 5.8.3 Smart Parking System

Smart Parking System is a technology system that uses various sensors and smart devices to optimize and manage the parking process in building parking areas to improve efficiency, safety and user experience.

| Functional Requirements                       |                                                                                                                                                                                                                    |  |  |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Real-time                                     | The system must provide real-time monitoring of parking                                                                                                                                                            |  |  |
| monitoring <sup>[3]</sup>                     | occupancy and availability.                                                                                                                                                                                        |  |  |
| Accurate                                      | The system must be able to accurately detect the presence or                                                                                                                                                       |  |  |
| detection [3]                                 | absence of vehicles using sensors and/or cameras.                                                                                                                                                                  |  |  |
| Easy                                          | The system must provide clear and easy-to-follow navigation                                                                                                                                                        |  |  |
| navigation [3]                                | to available parking spaces.                                                                                                                                                                                       |  |  |
| Reservation                                   | The system must allow users to reserve parking spots in                                                                                                                                                            |  |  |
| system [3]                                    | advance, either through a mobile app or a web interface.                                                                                                                                                           |  |  |
| Payment<br>system <sup>[3]</sup>              | The system must provide a payment system that allows users<br>to pay for parking with credit cards, mobile payments or other<br>payment methods.                                                                   |  |  |
| Integration with other systems <sup>[3]</sup> | The system must be integrated with other building systems, such as security systems, building automation systems, and transportation systems.                                                                      |  |  |
| Maintenance <sup>[3]</sup>                    | The system must provide alerts and notifications for<br>maintenance and repair needs, such as mechanical failures or<br>wear and tear, allowing for proactive maintenance and<br>minimizing downtime.              |  |  |
| Security <sup>[3]</sup>                       | The system must prioritize security by implementing<br>appropriate access controls, data protection measures, and<br>secure communication protocols to prevent unauthorized<br>access or tampering of system data. |  |  |
| Energy                                        | The system must prioritize energy efficiency, by using low-                                                                                                                                                        |  |  |
| efficiency [3]                                | power sensors and sleep mode to reduce energy consumption.                                                                                                                                                         |  |  |
| Compliance <sup>[3]</sup>                     | The system must comply with relevant parking and transportation regulations, such as accessibility requirements and local parking codes.                                                                           |  |  |
| Data analysis <sup>[3]</sup>                  | The system must analyze parking data over time, identifying patterns and trends, and provide data-driven insights to building management for decision making.                                                      |  |  |
| User<br>experience <sup>[3]</sup>             | The system must provide a positive user experience, with intuitive interfaces, clear instructions, and responsive customer service.                                                                                |  |  |

|   | Hardware                                 | Software                                                                |
|---|------------------------------------------|-------------------------------------------------------------------------|
| 0 | Sensors (Ultrasonic, magnetic, infrared) | <ul> <li>Parking management system</li> <li>User application</li> </ul> |
| 0 | Cameras                                  | <ul> <li>Dashboard control and monitoring</li> </ul>                    |
| 0 | LED displays                             |                                                                         |
| 0 | Communication devices                    |                                                                         |
| 0 | Barrier gates                            |                                                                         |
| 0 | Parking systems                          |                                                                         |
| 0 | Central server or cloud                  |                                                                         |





| Reference Standard                                                         |                                                               |  |
|----------------------------------------------------------------------------|---------------------------------------------------------------|--|
| Minister of Public<br>Works and Housing<br>Regulation Number 21<br>of 2021 | Green Building Performance Assessment                         |  |
| ISO 16787:2017                                                             | Intelligent transport systems — Assisted parking system (APS) |  |
| Others                                                                     | and other applicable regulations or standards                 |  |

# 5.9 Security System

### 5.9.1 Intelligent Video Surveillance

Intelligent Video Surveillance is a security system that uses surveillance camera technology equipped with artificial intelligence to increase effectiveness and efficiency in surveillance and security monitoring through motion, face, object and action detection as well as integration with related parties.

| Functional Requirements                                                             |                                                                                                                                                                                                                                                                |                                                                                                                                                    |  |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| High-quality<br>video<br>resolution <sup>[2]</sup>                                  | The video surveillance system must provide high-resolution video footage to capture clear and detailed images of all areas within the building.                                                                                                                |                                                                                                                                                    |  |
| Real-time<br>monitoring <sup>[1]</sup>                                              | The video surveillance system must provide real-time monitoring<br>of all areas within the building, allowing security personnel to<br>quickly respond to any security incidents.                                                                              |                                                                                                                                                    |  |
| Intelligent video<br>analytics <sup>[1]</sup>                                       | The video surveillance system must incorporate intelligent video<br>analytics technology to detect and alert security personnel of any<br>suspicious behavior or security threats. This includes facial<br>recognition, object detection, and people counting. |                                                                                                                                                    |  |
| Automated alerts <sup>[1]</sup>                                                     | The video surveillance system must be able to send automated<br>alerts to security personnel when suspicious behavior or security<br>threats are detected.                                                                                                     |                                                                                                                                                    |  |
| Integration with<br>other security<br>systems <sup>[1]</sup>                        | The video surveillance system must be able to integrate with<br>other security systems such as access control systems, alarm<br>systems, and intercom systems to provide a comprehensive<br>security solution.                                                 |                                                                                                                                                    |  |
| Storage and retrieval <sup>[1]</sup>                                                | The video surveillance system must be able to store and retrieve video footage for a predetermined amount of time, allowing security personnel to review past footage for investigations.                                                                      |                                                                                                                                                    |  |
| Remote<br>monitoring <sup>[1]</sup>                                                 | The video surveillance system must be accessible remotely,<br>allowing authorized personnel to view live footage and access<br>recordings from a remote location.                                                                                              |                                                                                                                                                    |  |
| Compliance with<br>data protection<br>regulations <sup>[1]</sup>                    | The video surveillance system must comply with data protection regulations, including GDPR, by ensuring that the data captured is used and stored securely and only accessed by authorized personnel.                                                          |                                                                                                                                                    |  |
| Hardware                                                                            |                                                                                                                                                                                                                                                                | Software                                                                                                                                           |  |
| <ul> <li>Biometric Rea</li> <li>Camera</li> <li>Barriers</li> <li>Buzzer</li> </ul> | ders                                                                                                                                                                                                                                                           | <ul> <li>Video Management Software</li> <li>Access Control Software</li> <li>Artificial Intelligence (AI) and<br/>Machine Learning (ML)</li> </ul> |  |

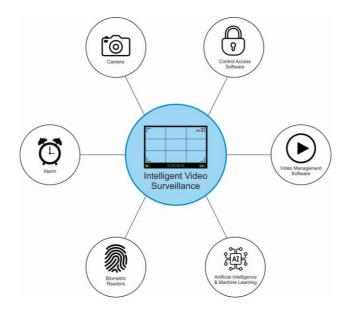



Figure 27. Intelligent Video Surveillance

| Reference Standard |                                                                                                                                                  |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ISO 30137          | Information technology - Use of biometrics in video<br>surveillance systems                                                                      |  |
| ISO/IEC 27037:2012 | Information technology — Security techniques —<br>Guidelines for identification, collection, acquisition and<br>preservation of digital evidence |  |
| ISO 27001:2022     | Information security, cybersecurity, privacy protection                                                                                          |  |
| ISO 27010:2015     | Information security controls for cloud services                                                                                                 |  |
| IEC 62443-4-1      | Secure product development lifecycle requirements                                                                                                |  |
| IEEE 2410-2020     | Standard for Biometrics Open Protocol Extended<br>Frameworks (OPEN)                                                                              |  |
| Others             | and other applicable regulations or standards                                                                                                    |  |

#### 5.9.2 Smart Locking System

Smart Locking System is a technology that can increase the efficiency and security of access control and door locking by selecting various locking methods, integration with applications and related parties, real-time data collection and detection of restricted access.

| Functional Requirements                                                                                                              |                                                                                                                                                                         |                                                                                                                                           |  |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|
| Access control <sup>[1]</sup>                                                                                                        | The system must provide access control, allowing only<br>authorized personnel to enter the building or specific areas<br>within the building.                           |                                                                                                                                           |  |
| Security <sup>[1]</sup>                                                                                                              | The system must provide a high level of security to prevent<br>unauthorized entry, such as using strong encryption, tamper-<br>proof hardware, and intrusion detection. |                                                                                                                                           |  |
| Ease of use <sup>[1]</sup>                                                                                                           | The system must be easy to use for authorized personnel, requiring minimal training to operate and providing clear feedback on access status.                           |                                                                                                                                           |  |
| Scalability <sup>[2]</sup>                                                                                                           | The system must be scalable, allowing for easy expansion to accommodate growing building needs and changing access requirements.                                        |                                                                                                                                           |  |
| Remote<br>management <sup>[1]</sup>                                                                                                  | The system must provide remote management capabilities, allowing administrators to control access from a centralized location and monitor access logs.                  |                                                                                                                                           |  |
| Integration <sup>[1]</sup>                                                                                                           | The system must integrate with other building systems, such as security systems and building automation systems, to optimize building operations and security.          |                                                                                                                                           |  |
| Emergency<br>access <sup>[1]</sup>                                                                                                   | The system must provide emergency access to authorized personnel in case of emergency, such as using emergency override keys or providing access to first responders.   |                                                                                                                                           |  |
| Durability and reliability [1]                                                                                                       | The system must be durable and reliable, able to withstand frequent use and exposure to harsh environmental conditions.                                                 |                                                                                                                                           |  |
| Compliance <sup>[1]</sup>                                                                                                            | The system must comply with relevant building codes and regulations, such as ADA requirements and fire safety codes.                                                    |                                                                                                                                           |  |
| Cost-<br>effectiveness <sup>[1]</sup>                                                                                                | The system must be cost-effective, providing value for money while meeting building security needs.                                                                     |                                                                                                                                           |  |
| Hardware                                                                                                                             |                                                                                                                                                                         | Software                                                                                                                                  |  |
| <ul> <li>Biometric Sens</li> <li>RFID Reader</li> <li>Camera</li> <li>Battery</li> <li>IOT device</li> <li>Door locking e</li> </ul> |                                                                                                                                                                         | <ul> <li>Door locking system</li> <li>Monitoring dashboard</li> <li>Access control software</li> <li>Alarm management software</li> </ul> |  |

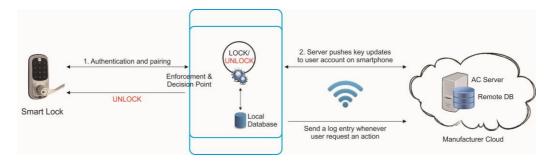



Figure 28. Smart Locking System

| Reference Standard |                                                                                                                                                  |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ISO 30137          | Information technology - Use of biometrics in video<br>surveillance systems                                                                      |  |
| ISO/IEC 27037:2012 | Information technology — Security techniques —<br>Guidelines for identification, collection, acquisition and<br>preservation of digital evidence |  |
| ISO 27001:2022     | Information security, cybersecurity, privacy protection                                                                                          |  |
| ISO 27010:2015     | Information security controls for cloud services                                                                                                 |  |
| IEC 62443-4-1      | Secure product development lifecycle requirements                                                                                                |  |
| IEEE 2410-2020     | Standard for Biometrics Open Protocol Extended<br>Frameworks (OPEN)                                                                              |  |
| Others             | and other applicable regulations or standards                                                                                                    |  |

#### 5.9.3 Virtual Gates

Virtual Gate is a technology that can control access to an area without the need to use a physical door or a conventional gate, but with smart devices such as surveillance cameras and sensors. Integration with other building systems is needed so that building managers can manage occupant access and get warnings if violations occur.

| Functional Requirements                                                                                                     |                                                                                                                                                                          |                                                                                                                  |  |
|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|
| Access control <sup>[3]</sup>                                                                                               | The system must be able to verify the user's identity and grant access or deny access based on their permission level.                                                   |                                                                                                                  |  |
| Integration with hardware <sup>[3]</sup>                                                                                    | When a virtual gateway is used to control physical access points,<br>it must be integrated with hardware such as card readers or<br>biometric scanners.                  |                                                                                                                  |  |
| Real-time<br>monitoring <sup>[3]</sup>                                                                                      | The system must be able to monitor the status of the port and<br>provide real-time alerts about potential problems such as<br>unauthorized access attempts.              |                                                                                                                  |  |
| Customization [3]                                                                                                           | A virtual gateway must be customizable to meet the specific needs of the organization, such as setting access levels, managing user profiles, and defining access rules. |                                                                                                                  |  |
| Reporting and analysis <sup>[3]</sup>                                                                                       | The system must provide detailed reporting and analysis to help<br>organizations understand and optimize their access control<br>practices.                              |                                                                                                                  |  |
| Scalability [3]                                                                                                             | The system must be designed to scale as the organization grows and accommodate future expansion.                                                                         |                                                                                                                  |  |
| User interface [3]                                                                                                          | The virtual port must have an intuitive and user-friendly interface that makes it easy for users to interact with the system.                                            |                                                                                                                  |  |
| Access control <sup>[3]</sup>                                                                                               | The system must be able to verify the user's identity and grant access or deny access based on their permission level.                                                   |                                                                                                                  |  |
| Hardware                                                                                                                    |                                                                                                                                                                          | Software                                                                                                         |  |
| <ul> <li>Depth camera</li> <li>Network video recorders</li> <li>Access control systems</li> <li>Proximity Sensor</li> </ul> |                                                                                                                                                                          | <ul> <li>Video analytics software</li> <li>Access control software</li> <li>Alarm management software</li> </ul> |  |

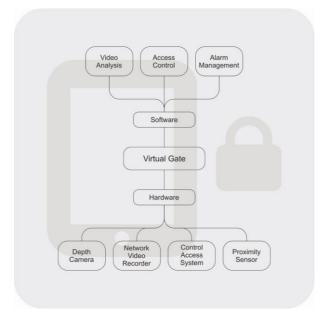



Figure 29. Virtual Gates

| Reference Standard |                                                                                                                                                  |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ISO 30137          | Information technology - Use of biometrics in video<br>surveillance systems                                                                      |  |
| ISO/IEC 27037:2012 | Information technology — Security techniques —<br>Guidelines for identification, collection, acquisition and<br>preservation of digital evidence |  |
| ISO 27001:2022     | Information security, cybersecurity, privacy protection                                                                                          |  |
| ISO 27010:2015     | Information security controls for cloud services                                                                                                 |  |
| IEC 62443-4-1      | Secure product development lifecycle requirements                                                                                                |  |
| IEEE 2410-2020     | Standard for Biometrics Open Protocol Extended<br>Frameworks (OPEN)                                                                              |  |
| Others             | and other applicable regulations or standards                                                                                                    |  |

### 5.9.4 Occupancy Monitoring

Occupancy Monitoring is a technology that is able to detect and observe the occupancy level of a building to improve security and safety through accurate occupancy tracking, real-time data collection, and integration with other building systems

| Functional Requirements                                                                                                                                                         |                                                                                                                                                                         |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Accurate<br>occupancy<br>tracking <sup>[2]</sup>                                                                                                                                | The system must accurately track the number of people in a building or specific areas of the building using sensors, cameras, or other technology.                      |  |  |
| Real-time data <sup>[2]</sup>                                                                                                                                                   | The system must provide real-time data on occupancy levels,<br>allowing building management to make informed decisions about<br>building operations and resources.      |  |  |
| Data analytics <sup>[2]</sup>                                                                                                                                                   | The system must provide data analytics on occupancy patterns<br>and trends, enabling building management to identify<br>opportunities for optimization and improvement. |  |  |
| Privacy<br>protection <sup>[2]</sup>                                                                                                                                            | The system must protect the privacy of occupants by using<br>anonymous data collection and ensuring compliance with<br>relevant privacy regulations.                    |  |  |
| Integration with other systems <sup>[2]</sup>                                                                                                                                   | The system must integrate with other building systems, such as HVAC, lighting, and security, to optimize building operations and energy efficiency.                     |  |  |
| Customizable<br>alerts and<br>notifications <sup>[2]</sup>                                                                                                                      | The system must provide customizable alerts and notifications based on occupancy levels, enabling building management to respond to changing conditions.                |  |  |
| Scalability [2]The system must be scalable to accommodate buildings of<br>different sizes and complexities, from small offices to large<br>commercial or residential buildings. |                                                                                                                                                                         |  |  |
| Energy<br>efficiency <sup>[2]</sup>                                                                                                                                             | The system must prioritize energy efficiency by using low-power sensors and sleep mode to reduce energy consumption.                                                    |  |  |
| Remote<br>monitoring and<br>control <sup>[2]</sup>                                                                                                                              | The system must allow building management to remotely monitor<br>and control occupancy levels through a centralized platform or<br>mobile app.                          |  |  |
| Health and safety <sup>[2]</sup>                                                                                                                                                | The system must prioritize health and safety by ensuring compliance with relevant regulations and codes related to occupancy levels and building capacity.              |  |  |
| Cost-<br>effectiveness <sup>[2]</sup>                                                                                                                                           | The system must be cost-effective, providing value for money while meeting building occupancy monitoring needs.                                                         |  |  |
| Flexibility <sup>[2]</sup>                                                                                                                                                      | The system must be flexible enough to accommodate different occupancy tracking methods and technologies, depending on the needs of the building and occupants.          |  |  |

| Hardware                                       | Software                                          |
|------------------------------------------------|---------------------------------------------------|
| <ul> <li>Motion sensor</li> </ul>              | <ul> <li>Occupancy management software</li> </ul> |
| <ul> <li>RFID tag</li> </ul>                   | <ul> <li>Indoor positioning software</li> </ul>   |
| <ul> <li>Bluetooth low energy (BLE)</li> </ul> | <ul> <li>People counting software</li> </ul>      |
| beacon                                         | <ul> <li>Video analytics software</li> </ul>      |
| o Camera                                       | -                                                 |



Figure 30. Occupancy Monitoring

| Reference Standard |                                                                                                                                                  |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ISO 30137          | Information technology - Use of biometrics in video surveillance systems                                                                         |  |
| ISO/IEC 27037:2012 | Information technology — Security techniques —<br>Guidelines for identification, collection, acquisition and<br>preservation of digital evidence |  |
| ISO 27001:2022     | Information security, cybersecurity, privacy protection                                                                                          |  |
| ISO 27010:2015     | Information security controls for cloud services                                                                                                 |  |
| IEC 62443-4-1      | Secure product development lifecycle requirements                                                                                                |  |
| IEEE 2410-2020     | Standard for Biometrics Open Protocol Extended<br>Frameworks (OPEN)                                                                              |  |
| Others             | and other applicable regulations or standards                                                                                                    |  |

# 5.10 Resource System

#### 5.10.1 Smart Water Management

Smart Water Management is a technology system used to optimize the management of water resources by collecting precise and real-time data regarding water infrastructure and usage. An intelligent water management system is designed to detect leaks and measure water quality automatically and alert building managers.

|                              | Functional Requirements                                            |  |  |
|------------------------------|--------------------------------------------------------------------|--|--|
| Water quality                | The system must be able to continuously monitor water quality      |  |  |
| monitoring <sup>[1]</sup>    | to ensure it fulfills health and safety standards.                 |  |  |
|                              | The system must be able to detect leaks and alert the building     |  |  |
| Leak detection [1]           | managers in real-time to minimize water damage and prevent         |  |  |
|                              | waste.                                                             |  |  |
| Water usage                  | The system must track water use and provide analysis of usage      |  |  |
| tracking <sup>[1]</sup>      | patterns to enable facility managers to identify areas of waste    |  |  |
| tracking * *                 | and optimize water use.                                            |  |  |
| Water                        | The system must be able to identify inefficient water fixtures and |  |  |
| conservation <sup>[1]</sup>  | suggest upgrades or replacements that will reduce water usage.     |  |  |
|                              | The system must include smart irrigation controls that adjust      |  |  |
| Smart irrigation             | irrigation schedules based on weather conditions and soil          |  |  |
| [1]                          | moisture to reduce water waste and maintain healthy                |  |  |
|                              | landscaping.                                                       |  |  |
| Remote                       | The system must allow building managers to remotely monitor        |  |  |
| monitoring and               | and control water usage through a centralized platform or mobile   |  |  |
| control <sup>[2]</sup>       | app.                                                               |  |  |
| Integration with             | The system must be integrated with other building systems, such    |  |  |
| other systems <sup>[2]</sup> | as lighting systems and HVAC, to optimize water usage and          |  |  |
| other systems                | improve overall building performance.                              |  |  |
|                              | The system must alert and notify for maintenance and repair        |  |  |
| Maintenance [1]              | needs, such as leaks, clogs, or malfunctioning equipment,          |  |  |
|                              | allowing for proactive maintenance and minimizing downtime.        |  |  |
| Energy                       | The system must prioritize energy efficiency by using low-power    |  |  |
| efficiency [1]               | sensors and sleep mode to reduce energy consumption.               |  |  |
| User                         | The system must provide a positive user experience, with           |  |  |
| experience <sup>[2]</sup>    | intuitive interfaces, clear instructions, and responsive customer  |  |  |
|                              | service.                                                           |  |  |



|   | Hardware                          |   | Software                       |
|---|-----------------------------------|---|--------------------------------|
| 0 | Smart water meters                | 0 | Smart Irrigation Controller    |
| 0 | IoT pump switch                   | 0 | Smart Metering                 |
| 0 | Water level sensor                | 0 | Waste Management and Treatment |
| 0 | Flow sensor                       |   | Controller                     |
| 0 | Automated valves                  |   |                                |
| 0 | Leak detection sensor             |   |                                |
| 0 | Water quality sensor              |   |                                |
| 0 | Water filtration and purification |   |                                |
|   | system                            |   |                                |
| 0 | Soil moisture level sensor        |   |                                |
| 0 | Automated irrigation sprinkler    |   |                                |

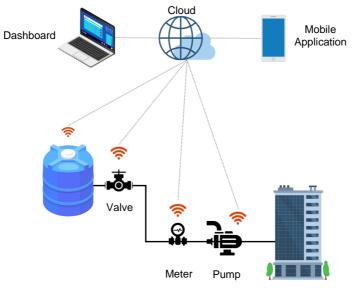



Figure 31. Smart Water Management

| Reference Standard                                                         |                                                                                                                                                                                      |  |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Minister of Public<br>Works and Housing<br>Regulation Number 21<br>of 2021 | Green Building Performance Assessment                                                                                                                                                |  |
| Minister of Health<br>Regulation No. 2 of<br>2023                          | Implementation regulation of government regulation number 66 of 2014 concerning Environmental Health                                                                                 |  |
| ISO/IEC 18025:2014                                                         | Information technology — Environmental Data Coding Specification (EDCS)                                                                                                              |  |
| ISO 24512:2007                                                             | Activities relating to drinking water and wastewater<br>services — Guidelines for the management of drinking<br>water utilities and for the assessment of drinking water<br>services |  |
| Others                                                                     | and other applicable regulations or standards                                                                                                                                        |  |



#### 5.10.2 Smart Drinking Water Fountain

Smart Drinking Water Fountain is a smart facility designed to provide reliable drinking water to the public by ensuring water hygiene, providing a good user experience and minimizing water wastage.

| Functional Requirements                                                                                                                                             |                                                                                                                                                                                                    |                                                                                                                         |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|
| Dispensing<br>water <sup>[3]</sup>                                                                                                                                  | The fountain must be able to dispense water when activated by a user.                                                                                                                              |                                                                                                                         |  |
| Controlling water temperature <sup>[3]</sup>                                                                                                                        | The fountain must be able to control the temperature of the water<br>that is dispensed, allowing users to choose between cold, room<br>temperature, and hot water.                                 |                                                                                                                         |  |
| Filtration<br>system <sup>[3]</sup>                                                                                                                                 | The fountain must have a filtration system that removes impurities from the water, ensuring that the water is safe and clean to drink.                                                             |                                                                                                                         |  |
| Water level<br>monitoring <sup>[3]</sup>                                                                                                                            |                                                                                                                                                                                                    | be able to monitor the water level in its<br>aintenance staff when the water level is low.                              |  |
| Touchless<br>operation <sup>[3]</sup>                                                                                                                               | The fountain must have a touchless operation mode, allowing<br>users to activate the fountain without touching any buttons or<br>handles.                                                          |                                                                                                                         |  |
| Automatic shut-<br>off <sup>[3]</sup>                                                                                                                               | The fountain must be equipped with an automatic shut-off feature<br>that turns off the water flow after a certain amount of time to<br>prevent water wastage.                                      |                                                                                                                         |  |
| Maintenance<br>alerts <sup>[3]</sup>                                                                                                                                | The fountain must be able to send alerts to maintenance staff<br>when filters need to be replaced or when other maintenance tasks<br>need to be performed.                                         |                                                                                                                         |  |
| User interface [3]                                                                                                                                                  | The fountain must have an easy-to-use user interface that allows<br>users to select the water temperature and activate the fountain.                                                               |                                                                                                                         |  |
| Water usage<br>monitoring <sup>[3]</sup>                                                                                                                            | The fountain must be able to monitor the amount of water<br>dispensed over a certain period of time to help facility managers<br>keep track of water usage and identify any leaks or other issues. |                                                                                                                         |  |
| Connectivity <sup>[3]</sup>                                                                                                                                         | The fountain must be able to connect to a network, allowing maintenance staff to remotely monitor and control the fountain, and to collect data for analytics purposes.                            |                                                                                                                         |  |
| Harc                                                                                                                                                                | lware                                                                                                                                                                                              | Software                                                                                                                |  |
| <ul> <li>Dispenser mechanism</li> <li>Water tank</li> <li>Filtration system</li> <li>Temperature control system</li> <li>Sensors</li> <li>User interface</li> </ul> |                                                                                                                                                                                                    | <ul> <li>Firmware</li> <li>User interface software</li> <li>Maintenance software</li> <li>Analytics software</li> </ul> |  |



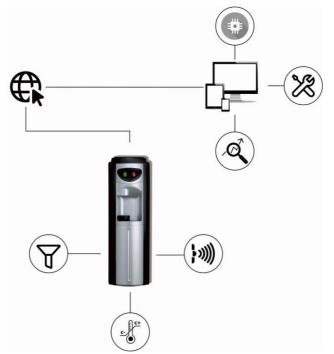



Figure 32. Smart Drinking Water Foundation

| Reference Standard                             |                                                                                                                                                                                      |  |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Minister of Health<br>Regulation No. 2 of 2023 | Implementation regulation of government regulation<br>number 66 of 2014 concerning Environmental Health                                                                              |  |
| SNI 2547-2019                                  | Specification of potable water meter                                                                                                                                                 |  |
| SNI 7831-2012                                  | Water supply system planning                                                                                                                                                         |  |
| ISO/IEC 18025:2014                             | Information technology — Environmental Data Coding Specification (EDCS)                                                                                                              |  |
| ISO 24512:2007                                 | Activities relating to drinking water and wastewater<br>services — Guidelines for the management of drinking<br>water utilities and for the assessment of drinking water<br>services |  |
| Others                                         | and other applicable regulations or standards                                                                                                                                        |  |



#### 5.10.3 Smart Waste Chute

Smart Waste Chute is a technology system used to optimize waste management efficiently and integratedly by collecting precise and real-time data, optimizing waste collection routes, and integrating with authorities.

| Functional Requirements                                                                                          |                                                                                                                                                                                             |                                                                                   |  |
|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|
| Automated waste disposal <sup>[2]</sup>                                                                          | The system must enable automated waste disposal by integrating with waste collection vehicles and providing real-time data on the fill levels of the waste chutes.                          |                                                                                   |  |
| Waste sorting<br>and recycling <sup>[3]</sup>                                                                    | The system must enable waste sorting and recycling by including sensors and cameras to identify and sort different types of waste.                                                          |                                                                                   |  |
| Data analytics <sup>[2]</sup>                                                                                    | The system must provide data analytics on waste generation<br>patterns, enabling building management to identify opportunities<br>for waste reduction and recycling.                        |                                                                                   |  |
| Maintenance and repair <sup>[2]</sup>                                                                            | The system must provide alerts and notifications for maintenance and repair needs, such as equipment malfunctions or blockages, allowing for proactive maintenance and minimizing downtime. |                                                                                   |  |
| Energy<br>efficiency <sup>[2]</sup>                                                                              | The system must prioritize energy efficiency by using low-power sensors and sleep mode to reduce energy consumption.                                                                        |                                                                                   |  |
| User<br>experience <sup>[3]</sup>                                                                                | The system must provide a positive user experience, with intuitive interfaces, clear instructions, and responsive customer service.                                                         |                                                                                   |  |
| Integration [2]                                                                                                  | The system must integrate with waste management companies to ensure efficient collection and disposal of waste.                                                                             |                                                                                   |  |
| Remote<br>monitoring and<br>control <sup>[3]</sup>                                                               | The system must allow building management to monitor and control waste disposal and recycling remotely through a centralized platform or mobile app.                                        |                                                                                   |  |
| Health and safety <sup>[2]</sup>                                                                                 | The system must prioritize health and safety by ensuring proper<br>waste disposal and minimizing risks associated with waste<br>handling and storage.                                       |                                                                                   |  |
| Sustainability <sup>[2]</sup>                                                                                    | The system must prioritize sustainability by enabling waste reduction and recycling, and promoting environmentally responsible practices.                                                   |                                                                                   |  |
| Hardware                                                                                                         |                                                                                                                                                                                             | Software                                                                          |  |
| <ul> <li>Smart trash chutes</li> <li>Compactors</li> <li>Waste sorting stations</li> <li>CCTV cameras</li> </ul> |                                                                                                                                                                                             | Waste management software<br>Building automation systems<br>Cloud-based platforms |  |



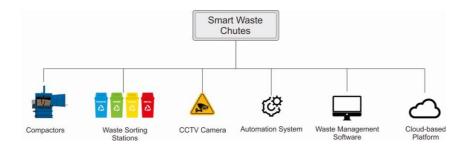



Figure 33. Smart Waste Chute System

| Reference Standard                                                         |                                                                                 |  |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|
| Government Regulation<br>Number 81 of 2012                                 | Management of Household Waste and Waste Similar to<br>Household Waste           |  |
| Minister of Public<br>Works and Housing<br>Regulation Number 21<br>of 2021 | Green Building Performance Assessment                                           |  |
| SNI 8632-2018                                                              | The procedure for planning operational techniques for<br>urban waste management |  |
| Others                                                                     | and other applicable regulations or standards                                   |  |



#### 5.10.4 Smart Bin

The Smart Waste Bin is a technology used to optimize waste management through the use of sensors and integration with relevant parties. This technology can determine the operation schedule of the system, detect the level of container fullness, and alert relevant parties about waste collection..

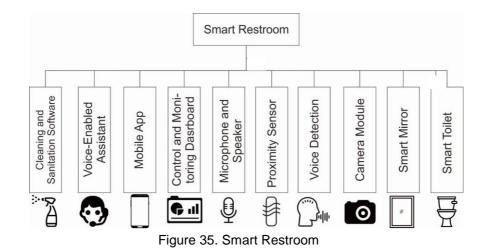
|                                                                                                     | Functional Requirements                                                                                                                                                             |                                                                                                                                                                     |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Automated<br>waste sorting <sup>[3]</sup>                                                           |                                                                                                                                                                                     | sensors and/or cameras to sort waste<br>es automatically, such as recyclables,<br>eneral waste.                                                                     |  |  |  |  |
| Real-time data <sup>[3]</sup>                                                                       | levels and categories                                                                                                                                                               | vide real-time data on waste volume<br>, enabling building management to make<br>bout waste management and collection.                                              |  |  |  |  |
| Data analytics <sup>[3]</sup>                                                                       |                                                                                                                                                                                     | vide data analytics on waste patterns and<br>ing management to identify opportunities<br>nprovement.                                                                |  |  |  |  |
| Remote<br>monitoring and<br>control <sup>[3]</sup>                                                  | The system must allow building management to monitor and control waste levels and collection remotely through a centralized platform or mobile app.                                 |                                                                                                                                                                     |  |  |  |  |
| Customizable<br>alerts and<br>notifications <sup>[3]</sup>                                          | The system must provide customizable alerts and notifications<br>based on waste levels and collection schedules, enabling<br>building management to respond to changing conditions. |                                                                                                                                                                     |  |  |  |  |
| Health and safety <sup>[3]</sup>                                                                    | The system must prioritize health and safety by ensuring compliance with relevant regulations and codes related to waste management and collection.                                 |                                                                                                                                                                     |  |  |  |  |
| Durability and<br>weather<br>resistance <sup>[3]</sup>                                              | The system must be durable and weatherproof to withstand outdoor conditions and daily use.                                                                                          |                                                                                                                                                                     |  |  |  |  |
| User-friendly<br>interface <sup>[3]</sup>                                                           | The system must hav<br>building occupants to                                                                                                                                        | e a user-friendly interface that is easy for use and understand.                                                                                                    |  |  |  |  |
| Energy<br>efficiency <sup>[3]</sup>                                                                 |                                                                                                                                                                                     | ritize energy efficiency by using low-<br>eep mode to reduce energy consumption.                                                                                    |  |  |  |  |
| Flexibility <sup>[3]</sup>                                                                          | bility <sup>[3]</sup> The system must be flexible enough to meet different waste<br>management needs and requirements, depending on the nee<br>of the building and occupants.       |                                                                                                                                                                     |  |  |  |  |
| Harc                                                                                                | lware                                                                                                                                                                               | Software                                                                                                                                                            |  |  |  |  |
| <ul> <li>Camera Modu</li> <li>Proximity Sension</li> <li>Load Sensor</li> <li>GPS module</li> </ul> | -                                                                                                                                                                                   | <ul> <li>Garbage type recognition algorithm</li> <li>Data processing applications,<br/>notifications and automated actions</li> <li>Dashboard monitoring</li> </ul> |  |  |  |  |





Figure 34. Smart Bin System

| Reference Standard                                                         |                                                                              |  |  |  |  |  |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|--|--|--|
| Minister of Public<br>Works and Housing<br>Regulation Number 21<br>of 2021 | Green Building Performance Assessment                                        |  |  |  |  |  |
| Government Regulation<br>Number 81 of 2012                                 | Management of Household Waste and Waste Similar to<br>Household Waste        |  |  |  |  |  |
| SNI 8632-2018                                                              | The procedure for planning operational techniques for urban waste management |  |  |  |  |  |
| ISO 24533:2019                                                             | Smart community infrastructures - Smart waste management                     |  |  |  |  |  |
| Others                                                                     | and other applicable regulations or standards                                |  |  |  |  |  |




#### 5.10.5 Smart Restroom

Toilet Cerdas adalah teknologi yang digunakan untuk meningkatkan efisiensi sumber daya dan pengalaman pengguna melalui penggunaan utilitas hemat sumber daya, sensor, dan integrasi dengan sistem bangunan lainnya.

|                                                         | Functional Requirements                                                                                                                                                                           |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Automated<br>cleaning and<br>maintenance <sup>[3]</sup> | The system must have automated cleaning and maintenance<br>features, such as self-cleaning toilets and floors, and automated<br>refill of consumables like soap and paper towels.                 |
| Real-time<br>occupancy<br>monitoring <sup>[3]</sup>     | The system must use sensors to monitor restroom occupancy in real-time, enabling building management to optimize cleaning schedules and avoid congestion.                                         |
| Queue<br>management <sup>[3]</sup>                      | The system must provide real-time information on restroom<br>availability and queue times to help users plan their visits.<br>The system must have sensors to monitor air quality, temperature,   |
| Environmental<br>monitoring <sup>[3]</sup>              | and humidity in the restroom to ensure user's comfort and hygiene.                                                                                                                                |
| Remote<br>monitoring and<br>control <sup>[3]</sup>      | The system must allow building management to monitor and control the restroom's status remotely, including occupancy, cleaning, and maintenance.                                                  |
| Accessibility <sup>[3]</sup>                            | The system must provide accessible features such as wheelchair-<br>accessible stalls, grab bars, and audio cues for the visually<br>impaired.                                                     |
| Hygiene and sanitation <sup>[3]</sup>                   | The system must prioritize hygiene and sanitation, using contactless technology and self-cleaning features to minimize the spread of germs and bacteria.                                          |
| Sustainability <sup>[3]</sup>                           | The system must prioritize sustainability by using water-saving appliances, smart LED lighting, and other energy-efficient features to minimize environmental impact.                             |
| User feedback <sup>[3]</sup>                            | The system must provide a feedback system, such as a mobile<br>app or touch screen display, to allow visitors to provide feedback<br>on their restroom experience and suggest improvements.       |
| Privacy and security <sup>[3]</sup>                     | The system must ensure privacy and security, using features such<br>as private stalls, locks, and surveillance cameras to ensure visitor<br>safety and deter vandalism.                           |
| Multilingual<br>support <sup>[3]</sup>                  | The system must provide multilingual support, including signage<br>and audio cues in different languages to accommodate visitors<br>from diverse backgrounds.                                     |
| Data analytics <sup>[3]</sup>                           | The system must provide data analytics on restroom usage,<br>occupancy patterns, and maintenance needs, enabling building<br>management to optimize operations and improve visitor<br>experience. |

|   | Hardware             |   | Software                         |
|---|----------------------|---|----------------------------------|
| 0 | Smart Mirror         | 0 | Control and monitoring dashboard |
| 0 | Smart Toilet         | 0 | Mobile Applications              |
| 0 | Camera module        | 0 | Voice-enabled Assistants         |
| 0 | Voice detection      | 0 | Cleaning and Sanitizing Software |
| 0 | Proximity Sensor     |   |                                  |
| 0 | Microphone & Speaker |   |                                  |



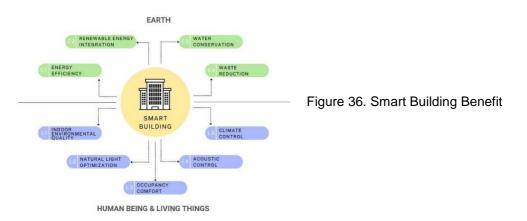
|                                                                            | Reference Standard                                                                                                                                                                   |  |  |  |  |  |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Minister of Public<br>Works and Housing<br>Regulation Number 21<br>of 2021 | Green Building Performance Assessment                                                                                                                                                |  |  |  |  |  |
| Minister of Health<br>Regulation No. 2 of<br>2023                          | Implementation regulation of government regulation number 66 of 2014 concerning Environmental Health                                                                                 |  |  |  |  |  |
| ISO 30500                                                                  | Non-sewered sanitation systems — Prefabricated<br>integrated treatment units — General safety and<br>performance requirements for design and testing                                 |  |  |  |  |  |
| ISO/IEC 18025:2014                                                         | Information technology — Environmental Data Coding Specification (EDCS)                                                                                                              |  |  |  |  |  |
| ISO 24512:2007                                                             | Activities relating to drinking water and wastewater<br>services — Guidelines for the management of drinking<br>water utilities and for the assessment of drinking water<br>services |  |  |  |  |  |
| Others                                                                     | and other applicable regulations or standards                                                                                                                                        |  |  |  |  |  |

## 6. Implementation of Smart Building in Nusantara



#### 6.1 Implementation Stages

The implementation of smart building is aimed to support the vision of Nusantara Capital City, namely 'World City for All' through sustainable development in the energy, water, waste, environment & biodiversity, economy, tourism, security, and technology sectors. The application of smart technologies should be integrated within the whole building design as an approach to achieve the targeted performance. To ensure the achievement of the smart building performance, the implementation of smart building in Nusantara consists of several stages, from planning and design, performance review, implementation, and performance evaluation.


The planning and design stage should be conducted based on the targeted performance of each building project, which should support the Nusantara targeted performance. Each building project should define the specific targeted priority in relation to the specific building uses. Depending on the building type, some building projects could have different priorities regarding the energy efficiency, increased productivity, and occupant comfort and safety. The site of each building project should also become a consideration in defining the targeted priority. Building project located on different sites might need to apply different smart technologies to respond to the specific environmental contexts and conditions. The planning and design stage should integrate various smart building systems as stated in this guideline in accordance to the targeted performance.

Based on the smart building design proposed for each building project, performance review should be conducted on the proposed smart building system design to ensure that the proposed system could achieve the targeted performance. This stage is necessary to ensure the use of appropriate smart technologies that are relevant to the targeted performance while at the same time fit to the building environmental context. Each aspect of smart building design should be reviewed in accordance with the relevant standard of performance. The performance review result will become the basis for finalizing the smart building design. The implementation stage of smart building integrates the smart building technologies within the process building construction. The of implementation stage should demonstrate the sustainable construction process from the beginning to the completion. The process should adhere to the principles of efficiency and effectiveness, and utilize the smart technologies and relevant platforms for monitoring and coordinating the process of implementation.

The success of a smart building system can only be proven after the building is used and occupied. Post-occupancy evaluation to assess the performance of the smart building should become an integral part of the smart building implementation. Regular monitoring and reporting of the smart building performance should be conducted continuously to ensure the achievement of performance targets throughout the lifecycle of the building.

Through the implementation of smart building systems for the building projects in Nusantara from the planning and design stage to evaluation stage, it is expected that the buildings in Nusantara could implement the appropriate smart technologies that could support the achievement of targeted performance.

#### 6.2 Benefits of Smart Building



Smart buildings play a crucial role in creating a more sustainable and energy-efficient built environment, which benefits both living things and mother earth. By incorporating advanced technologies such as Internet of Things (IoT) sensors, artificial intelligence, and machine learning, smart buildings can, among other things, optimize energy consumption, reduce pollution, and enhance indoor air quality.

| Code | Benefit                            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E1   | Energy<br>efficiency               | By automating and optimizing systems such as heating,<br>ventilation, and lighting, smart building technologies can help<br>reduce energy consumption and improve energy efficiency,<br>leading to lower carbon emissions and a decreased carbon<br>footprint. For example, the monitoring and controlling systems<br>for the humidity levels, temperature, and air quality that enhance<br>the indoor air quality in smart buildings can also help reduce the<br>need for ventilation systems that are energy intensive.<br>Moreover, smart buildings can determine when a room is vacant<br>using occupancy sensors, allowing for the optimization of<br>heating, ventilation, and lighting systems that further decreases<br>energy consumption and contributes to a smaller carbon<br>footprint. |
| E2   | Renewable<br>energy<br>integration | Smart buildings can be designed to integrate renewable energy<br>sources like solar, wind, and geothermal power. These systems<br>produce clean energy and can aid in decreasing reliance on<br>fossil fuels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| E3   | Water<br>conservation              | To reduce water usage and conserve water resources, smart<br>buildings incorporate water-saving technologies such as low-<br>flow fixtures, rainwater harvesting, and intelligent irrigation<br>systems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| E4   | Waste<br>reduction                 | Waste management technologies, such as recycling and decomposition systems, can be installed in smart buildings to reduce waste. Moreover, this technology also lowers greenhouse gas emissions and aids in conserving natural resources.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

#### Table 1. Environmental Benefits of Smart Building



From the human perspective, smart buildings can provide greater comfort and convenience for occupants through automated lighting, temperature control, and security systems. In addition, they can boost productivity and well-being by optimizing illumination and air quality to create a healthier and more comfortable indoor environment.

| Code | Benefit                                  | Description                                                                                                                                                                                                                                                                                                                                  |
|------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L1   | Improved indoor<br>environmental quality | Smart building technologies can monitor and control<br>temperature, humidity, air quality, and ventilation,<br>improving indoor air quality and reducing the risk of<br>respiratory illnesses. This can benefit both humans and<br>animals                                                                                                   |
| L2   | Natural light optimization               | Smart building technologies can control lighting systems to optimize natural light exposure, which has been shown to improve mental health, productivity, and the overall well-being of occupants.                                                                                                                                           |
| L3   | Occupancy comfort                        | Smart building technologies can monitor occupancy<br>levels and adjust heating, cooling, and lighting systems<br>to ensure optimal comfort levels for occupants.<br>Occupant safety is also supported by smart building<br>technology, creating a sense of comfort for occupants.<br>This can enhance productivity and reduce stress levels. |
| L4   | Sound<br>Management/Acoustic<br>Control  | Smart buildings can use noise reduction technologies<br>like acoustic panels to improve sound quality and<br>reduce noise pollution. This can lead to a more peaceful<br>environment for both humans and animals.                                                                                                                            |
| L5   | Climate control                          | Smart building technologies can optimize heating and<br>cooling systems to create a comfortable environment<br>for living things. This is especially important for plants<br>and animals that require specific temperature and<br>humidity conditions.                                                                                       |

Table 2. Occupant Benefits of Smart Building

| Features                                  | Benefits                   |
|-------------------------------------------|----------------------------|
| Touchless Access Control                  | L3                         |
| Visitor Management                        | L3                         |
| Intercom system                           | L3                         |
| AV & Digital Signage                      | L3                         |
| Smart Meter Readers                       | E1, E2, E3                 |
| Automatic Sub-Meter Readers               | E1, E2, E3                 |
| Electricity Load Balancing                | E1, E2                     |
| Public Electric Vehicle Charging Station  | E1, E2                     |
| Active Disaster Response System           | L3                         |
| Smart Fire Suppression System             | L3                         |
| Emergency Button                          | L3                         |
| Fire Safety Device Maintenance            | L3                         |
| Animal Hazard Protection                  | L3                         |
| Indoor and Outdoor Air Quality Monitoring | L1, L3, L5, E1             |
| Air Conditioning System                   | L1, L3, L5, E1             |
| Air Purification and Filter Monitoring    | L1, L3, L5, E1             |
| Demand Controlled Ventilation (DCV)       | L1, L3, L5, E1             |
| Climate detection system                  | L1, L3, L5, E1             |
| Smart Lighting System                     | L1, L2, L3, E1             |
| Smart Escalator and/or Autowalk           | E1                         |
| Smart Elevator                            | E1                         |
| Smart Parking System                      | L3                         |
| Intelligent Video Surveillance            | L3                         |
| Smart Locking System                      | L3                         |
| Virtual Gates using CCTV Cameras          | L3                         |
| Occupancy Monitoring                      | L3                         |
| Smart Drinking Water Fountain             | E1, E3                     |
| Smart Water Management                    | E1, E3                     |
| Smart Waste Chutes                        | E4                         |
| Smart Bin                                 | E4                         |
| Smart Restroom                            | L1, L2, L3, L4, L5, E1, E3 |

Table 3. Benefits of Each Smart Building Features

The effectiveness of smart buildings ultimately depends on how they are designed, implemented, and used. Smart buildings must prioritize both environmental sustainability and human well-being instead of focusing merely on one or the other. Additionally, it is essential to ensure that smart building technology is accessible and affordable.



Smart building feature implementation guidelines are determined for state building based on the state building classification as shown in Table 4 and the implementation matrix in Table 5.

| Classification | Definition                                                           |  |  |  |  |
|----------------|----------------------------------------------------------------------|--|--|--|--|
| Simple         | Buildings with simple technology and specifications include:         |  |  |  |  |
|                | 1. Office buildings and other state buildings with the number of     |  |  |  |  |
|                | floors up to 2 (two) floors;                                         |  |  |  |  |
|                | 2. Office buildings and other state buildings with an area of up to  |  |  |  |  |
|                | 500 square meters (m2); and                                          |  |  |  |  |
|                | 3. State houses include country houses type C, type D, and type      |  |  |  |  |
|                | E.                                                                   |  |  |  |  |
| Not Simple     | Buildings with technology and specifications are not simple include: |  |  |  |  |
|                | 1. Office buildings and other state buildings with more than 2       |  |  |  |  |
|                | (two) floors;                                                        |  |  |  |  |
|                | 2. Office buildings and other state buildings with an area of more   |  |  |  |  |
|                | than 500 m2; and                                                     |  |  |  |  |
|                | 3. State houses include type A and type B country houses             |  |  |  |  |
| Special        | Be:                                                                  |  |  |  |  |
|                | 1. State building that has special standards, as well as in its      |  |  |  |  |
|                | planning and implementation requires special completion or           |  |  |  |  |
|                | technology;                                                          |  |  |  |  |
|                | 2. State building which has a high level of confidentiality in the   |  |  |  |  |
|                | national interest;                                                   |  |  |  |  |
|                | 3. State building whose implementation can endanger the              |  |  |  |  |
|                | surrounding community; and                                           |  |  |  |  |
|                | 4. State building that has a high risk of harm                       |  |  |  |  |
|                | Include                                                              |  |  |  |  |
|                | 1. State palace;                                                     |  |  |  |  |
|                | 2. House of office of former presidents and/or former Vice           |  |  |  |  |
|                | Presidents;                                                          |  |  |  |  |
|                | 3. House of ministerial posts;                                       |  |  |  |  |
|                | 4. State guesthouse;                                                 |  |  |  |  |
|                | 5. Nuclear installation building;                                    |  |  |  |  |
|                | 6. Radioactive buildings;                                            |  |  |  |  |
|                | 7. Defense installation building;                                    |  |  |  |  |
|                | 8. Police of the Republic of Indonesia building with special uses    |  |  |  |  |
|                | and standards;                                                       |  |  |  |  |
|                | 9. Air, sea and land terminal buildings;                             |  |  |  |  |
|                | 10. Railway station;                                                 |  |  |  |  |
|                | 11. Stadiums or sports halls;                                        |  |  |  |  |
|                | 12. High-security detention centers;                                 |  |  |  |  |
|                | 13. Data centers;                                                    |  |  |  |  |
|                | 14. Dangerous goods warehouse                                        |  |  |  |  |
|                | 15. Buildings are monumental;                                        |  |  |  |  |
|                | 16. Heritage building; and                                           |  |  |  |  |
|                | 17. State representative building of the Republic of Indonesia       |  |  |  |  |

Table 4. Building Class Classification (State Building)

| Not SimpleNot SimpleSpecialIntegrated Building Management<br>System✓✓✓Control Room and Data Center✓✓✓Fiber-to-the Room (FTTR)✓✓✓Digital Twin✓✓✓Touchless Access Control+✓✓Visitor Management+✓✓Intercom system+✓✓AV & Digital Signage++✓✓Smart Meter Readers✓✓✓Automatic Sub-Meter Readers+++++Electricity Load Balancing✓✓✓Automatic Sub-Meter Readers+✓✓Station✓✓✓✓Active Disaster Response System+✓✓Fire Safety Device Maintenance+++Indoor and Outdoor Air Quality<br>Monitoring✓✓✓Air Conditioning System✓✓✓Air Conditioning System✓✓✓Climate detection system✓✓✓Mart Lighting System✓✓✓Smart Lighting System<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Frating                                | State building Classification |              |              |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------|--------------|--------------|--|--|--|--|
| System✓✓Control Room and Data Center✓✓Fiber-to-the Room (FTTR)✓✓Digital Twin✓✓Touchless Access Control+✓Visitor Management+✓Intercom system+✓AV & Digital Signage+✓Mart Meter Readers✓✓Automatic Sub-Meter Readers++Electricity Load Balancing✓✓Public Electric Vehicle Charging<br>Station✓✓Active Disaster Response System+✓Fire Suppression System✓✓Fire Safety Device Maintenance++Andon and Outdoor Air Quality<br>Monitoring✓✓Air Conditioning System✓✓Air Conditioning System✓✓V✓✓Air Conditioning System✓✓Vire Disater Response System✓✓Y✓✓Smart Fire Suppression System✓✓Y✓✓Safety Device Maintenance++Indoor and Outdoor Air Quality<br>Monitoring✓✓Air Conditioning System✓✓Y✓✓Smart Lighting System✓✓Y✓✓Smart Lighting System✓✓Y✓✓Smart Lighting System✓✓Y✓✓Smart Lighting System✓✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Features                               | Simple                        | Not Simple   | Special      |  |  |  |  |
| Fiber-to-the Room (FTTR)✓✓Digital Twin✓✓Touchless Access Control+✓Yisitor Management+✓Intercom system+✓AV & Digital Signage+✓Smart Meter Readers✓✓Vutomatic Sub-Meter Readers++Electricity Load Balancing✓✓Public Electric Vehicle Charging<br>Station✓✓Active Disaster Response System+✓✓✓✓Smart Fire Suppression System✓✓Fire Safety Device Maintenance++Indoor and Outdoor Air Quality<br>Monitoring✓✓✓✓✓✓Air Conditioning System✓✓✓✓✓Air Conditioning System✓✓✓✓✓Air Conditioning System✓✓✓✓✓✓✓✓Smart Elevator✓✓Smart Lighting System✓✓✓✓✓Smart Elevator✓✓Smart Lighting System✓✓✓✓✓Smart Locking System✓✓✓✓✓Smart Lighting System✓✓✓✓✓Smart Lighting System✓✓✓✓✓Smart Locking System✓✓✓✓✓Smart Locking Sys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        | $\checkmark$                  | ~            | $\checkmark$ |  |  |  |  |
| Digital Twin✓✓Touchless Access Control+✓Visitor Management+✓Intercom system+✓AV & Digital Signage+✓Smart Meter Readers✓✓Automatic Sub-Meter Readers++Electricity Load Balancing✓✓Public Electric Vehicle Charging<br>Station✓✓Active Disaster Response System+✓✓✓✓Smart Fire Suppression System✓✓✓✓✓Fire Safety Device Maintenance++Anironing System✓✓✓✓✓Air Conditioning System✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓ <t< td=""><td>Control Room and Data Center</td><td></td><td>✓</td><td><math>\checkmark</math></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Control Room and Data Center           |                               | ✓            | $\checkmark$ |  |  |  |  |
| Touchless Access Control+✓Visitor Management+✓Intercom system+✓AV & Digital Signage+✓Smart Meter Readers✓✓Automatic Sub-Meter Readers++Electricity Load Balancing✓✓Public Electric Vehicle Charging<br>Station✓✓Active Disaster Response System+✓✓✓✓Smart Fire Suppression System✓✓✓✓✓Emergency Button+✓++Indoor and Outdoor Air Quality<br>Monitoring✓✓✓✓✓Air Conditioning System✓✓✓✓✓Øbernand Controlled Ventilation<br>(DCV)✓✓✓✓✓✓Smart Escalator and/or Autowalk✓✓✓✓✓✓Smart Lighting System✓✓✓✓✓✓✓✓Smart Locking System✓✓✓✓✓Smart Locking System✓✓✓✓✓✓✓✓Smart Locking System✓✓✓✓✓✓✓✓Smart Lighting System✓✓✓✓✓✓✓✓Smart Locking System✓✓✓✓✓✓✓✓ </td <td>Fiber-to-the Room (FTTR)</td> <td><math>\checkmark</math></td> <td>√</td> <td><math>\checkmark</math></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Fiber-to-the Room (FTTR)               | $\checkmark$                  | √            | $\checkmark$ |  |  |  |  |
| Visitor Management+/Intercom system+/AV & Digital Signage+/AV & Digital Signage//Smart Meter Readers//Automatic Sub-Meter Readers++Electricity Load Balancing//Public Electric Vehicle Charging<br>Station//Rutow Disaster Response System+/Active Disaster Response System//Y//Smart Fire Suppression System//Y//Fire Safety Device Maintenance++Indoor and Outdoor Air Quality//Monitoring///Air Conditioning System//Air Purification and Filter Monitoring//V///Smart Escalator and/or Autowalk//Smart Elevator//Smart Lighting System/////Smart Lighting System/// <td< td=""><td>Digital Twin</td><td></td><td>√</td><td><math>\checkmark</math></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Digital Twin                           |                               | √            | $\checkmark$ |  |  |  |  |
| Intercom system+✓✓AV & Digital Signage+✓Smart Meter Readers✓✓✓Automatic Sub-Meter Readers+++Electricity Load Balancing✓✓✓Public Electric Vehicle Charging<br>Station✓✓✓Active Disaster Response System+✓✓Smart Fire Suppression System✓✓✓Fire Safety Device Maintenance+++Animal Hazard Protection+++Indoor and Outdoor Air Quality<br>Monitoring✓✓✓Air Conditioning System✓✓✓Air Conditioning System✓✓✓Air Conditioning System✓✓✓Air Purification and Filter Monitoring✓✓✓Smart Lighting System✓✓✓Smart Lighting System✓✓✓Smart Lighting System✓✓✓Smart Lighting System✓✓✓Smart Lighting System✓✓✓Smart Lighting System✓✓✓Smart Parking System✓✓✓Virtual Gates using CCTV Cameras++Occupancy Monitoring+✓✓Smart Water Management✓✓✓Smart Bin++Smart Bin++Smart Bin++Smart Bin++Smart Bin <t< td=""><td>Touchless Access Control</td><td>+</td><td><math>\checkmark</math></td><td><math>\checkmark</math></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Touchless Access Control               | +                             | $\checkmark$ | $\checkmark$ |  |  |  |  |
| AV & Digital Signage+✓Smart Meter Readers✓✓✓Automatic Sub-Meter Readers+++Electricity Load Balancing✓✓✓Public Electric Vehicle Charging<br>Station✓✓✓Active Disaster Response System+✓✓Smart Fire Suppression System✓✓✓Fire Safety Device Maintenance+++Animal Hazard Protection+++Indoor and Outdoor Air Quality<br>Monitoring✓✓✓Air Conditioning System✓✓✓Outdoor Air Quality<br>Monitoring✓✓✓Air Conditioning System✓✓✓Smart Lighting System✓✓✓Smart Lighting System✓✓✓Smart Lighting System✓✓✓Smart Lighting System✓✓✓Smart Locking System✓✓✓Smart Locking System✓✓✓Smart Locking System✓✓✓Virtual Gates using CCTV Cameras++Helligent Video Surveillance✓✓Smart Locking System✓✓✓Smart Drinking Water Fountain++Smart Bin++Smart Bin+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Visitor Management                     |                               | +            | $\checkmark$ |  |  |  |  |
| Smart Meter Readers✓✓Automatic Sub-Meter Readers++Electricity Load Balancing✓✓Public Electric Vehicle Charging<br>Station✓✓Active Disaster Response System+✓✓✓✓Smart Fire Suppression System✓✓✓✓✓Emergency Button+✓+✓✓Fire Safety Device Maintenance++Animal Hazard Protection++Indoor and Outdoor Air Quality✓✓✓✓✓Air Conditioning System✓✓✓✓✓Outdoor Air Quality✓✓✓✓✓Monitoring✓✓✓✓✓Smart Lighting System✓✓✓✓✓Smart Lighting System✓✓✓✓✓Smart Lighting System✓✓✓✓✓Smart Locking System✓✓✓✓✓Smart Locking System✓✓✓✓✓✓✓✓Smart Locking System✓✓✓✓✓✓✓✓Smart Locking System✓✓✓✓✓✓✓✓Smart Locking System✓✓✓✓✓✓✓✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Intercom system                        | +                             | $\checkmark$ | $\checkmark$ |  |  |  |  |
| Automatic Sub-Meter Readers++Electricity Load Balancing✓✓Public Electric Vehicle Charging<br>Station✓✓Active Disaster Response System+✓✓✓✓Smart Fire Suppression System✓✓✓✓✓Emergency Button+✓+×✓Fire Safety Device Maintenance++Animal Hazard Protection++Indoor and Outdoor Air Quality<br>Monitoring✓✓Air Conditioning System✓✓✓✓✓Demand Controlled Ventilation<br>(DCV)✓✓Climate detection system✓✓✓✓✓Smart Elevator✓✓Smart Lighting System✓✓✓✓✓Smart Locking System✓✓✓✓✓Smart Locking System✓✓✓✓✓Smart Locking System✓✓✓✓✓Smart Locking System✓✓✓✓✓Smart Water Management✓✓✓✓✓Smart Drinking Water Fountain+Hellin+Hellin+Smart Bin++✓Smart Bin++✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AV & Digital Signage                   |                               | +            | $\checkmark$ |  |  |  |  |
| Electricity Load BalancingImage: Mark StationImage: Mark StationPublic Electric Vehicle Charging<br>StationImage: Mark StationImage: Mark StationActive Disaster Response SystemImage: Mark StationImage: Mark StationActive Disaster Response SystemImage: Mark StationImage: Mark StationSmart Fire Suppression SystemImage: Mark StationImage: Mark StationImage: Mark StationImage: Mark StationImage: Mark StationFire Safety Device MaintenanceImage: Mark StationImage: Mark StationAnimal Hazard ProtectionImage: Mark StationImage: Mark StationIndoor and Outdoor Air Quality<br>MonitoringImage: Mark StationImage: Mark StationAir Conditioning SystemImage: Mark StationImage: Mark StationImage: Mark Station Controlled Ventilation<br>(DCV)Image: Mark StationImage: Mark StationClimate detection systemImage: Mark StationImage: Mark StationImage: Mark Lighting SystemImage: Mark Station </td <td>Smart Meter Readers</td> <td><math>\checkmark</math></td> <td><math>\checkmark</math></td> <td><math>\checkmark</math></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Smart Meter Readers                    | $\checkmark$                  | $\checkmark$ | $\checkmark$ |  |  |  |  |
| Public Electric Vehicle Charging<br>Station✓✓Active Disaster Response System+✓✓Smart Fire Suppression System✓✓✓Emergency Button+✓✓Fire Safety Device Maintenance++Animal Hazard Protection++Indoor and Outdoor Air Quality<br>Monitoring✓✓Air Conditioning System✓✓Air Conditioning System✓✓Air Conditioning System✓✓✓✓✓Demand Controlled Ventilation<br>(DCV)✓✓Smart Lighting System✓✓✓✓✓Smart Escalator and/or Autowalk✓✓Smart Lighting System✓✓✓✓✓Smart Locking System✓✓✓✓✓Smart Locking System✓✓✓✓✓✓✓✓Smart Locking System✓✓✓✓✓✓✓✓Smart Locking System✓✓✓✓✓✓✓✓Smart Water Management✓✓✓✓✓✓✓Smart Bin++✓✓Smart Bin++✓✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Automatic Sub-Meter Readers            | +                             | +            | +            |  |  |  |  |
| StationVVActive Disaster Response System+✓Smart Fire Suppression System✓✓Emergency Button+✓Fire Safety Device Maintenance++Animal Hazard Protection++Indoor and Outdoor Air Quality<br>Monitoring✓✓Air Conditioning System✓✓Air Conditioning System✓✓Air Purification and Filter Monitoring✓✓Demand Controlled Ventilation<br>(DCV)✓✓Climate detection system✓✓✓✓✓Smart Lighting System✓✓Smart Elevator✓✓Smart Locking System✓✓Virtual Gates using CCTV Cameras++Nortural Gates using CCTV Cameras✓✓Smart Water Management✓✓✓Smart Drinking Water Fountain++Smart Bin++Smart Bin++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Electricity Load Balancing             | $\checkmark$                  | $\checkmark$ | $\checkmark$ |  |  |  |  |
| Smart Fire Suppression SystemImage: Mark                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                               | $\checkmark$ | $\checkmark$ |  |  |  |  |
| Emergency Button+✓✓Fire Safety Device Maintenance+++Animal Hazard Protection+++Indoor and Outdoor Air Quality<br>Monitoring✓✓✓Air Conditioning System✓✓✓Air Conditioning System✓✓✓Air Purification and Filter Monitoring✓✓✓Demand Controlled Ventilation<br>(DCV)✓✓✓Climate detection system✓✓✓Smart Lighting System✓✓✓Smart Escalator and/or Autowalk✓✓✓Smart Elevator✓✓✓Smart Parking System✓✓✓Virtual Gates using CCTV Cameras++Occupancy Monitoring+✓✓Smart Water Management✓✓✓Smart Water Management✓✓✓Smart Bin++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Active Disaster Response System        | +                             | $\checkmark$ | $\checkmark$ |  |  |  |  |
| Fire Safety Device Maintenance++Animal Hazard Protection+++Indoor and Outdoor Air Quality<br>Monitoring✓✓✓Air Conditioning System✓✓✓Air Conditioning System✓✓✓Air Purification and Filter Monitoring✓✓✓Demand Controlled Ventilation<br>(DCV)✓✓✓Climate detection system✓✓✓Smart Lighting System✓✓✓Smart Escalator and/or Autowalk✓✓✓Smart Elevator✓✓✓Smart Parking System✓✓✓Virtual Gates using CCTV Cameras++Occupancy Monitoring+✓✓Smart Water Management✓✓✓Smart Drinking Water Fountain++Smart Bin++Smart Bin++And Water Bin++Smart Bin++Smart Bin++Smart Bin++Smart Bin++Smart Bin++Smart Bin++Smart Bin++Smart Bin++Anite State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Smart Fire Suppression System          | $\checkmark$                  | $\checkmark$ | $\checkmark$ |  |  |  |  |
| Animal Hazard Protection++Indoor and Outdoor Air Quality<br>Monitoring✓✓✓Air Conditioning System✓✓✓Air Purification and Filter Monitoring✓✓✓Demand Controlled Ventilation<br>(DCV)✓✓✓Climate detection system✓✓✓Smart Lighting System✓✓✓Smart Escalator and/or Autowalk✓✓✓Smart Elevator✓✓✓Smart Locking System✓✓✓Virtual Gates using CCTV Cameras++Occupancy Monitoring+✓✓Smart Drinking Water Fountain✓✓✓Smart Bin++Smart Bin++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Emergency Button                       | +                             | $\checkmark$ | $\checkmark$ |  |  |  |  |
| Indoor and Outdoor Air Quality<br>MonitoringImage: Conditional SystemImage: Conditional SystemImag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fire Safety Device Maintenance         |                               | +            | +            |  |  |  |  |
| MonitoringVVVAir Conditioning System✓✓✓Air Purification and Filter Monitoring✓✓✓Demand Controlled Ventilation<br>(DCV)✓✓✓Climate detection system✓✓✓Smart Lighting System✓✓✓Smart Escalator and/or Autowalk✓✓✓Smart Elevator✓✓✓Smart Parking System✓✓✓Smart Locking System✓✓✓Virtual Gates using CCTV Cameras++Occupancy Monitoring+✓✓Smart Water Management✓✓✓Smart Waste Chutes✓✓✓Smart Bin++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Animal Hazard Protection               | +                             | +            | +            |  |  |  |  |
| Air Purification and Filter MonitoringImage: mail of the systemImage: mail of the systemDemand Controlled Ventilation<br>(DCV)Image: mail of the systemImage: mail of the systemClimate detection systemImage: mail of the systemImage: mail of the systemSmart Lighting SystemImage: mail of the systemImage: mail of the systemSmart Escalator and/or AutowalkImage: mail of the systemImage: mail of the systemSmart ElevatorImage: mail of the systemImage: mail of the systemSmart Parking SystemImage: mail of the systemImage: mail of the systemIntelligent Video SurveillanceImage: mail of the systemImage: mail of the systemSmart Locking SystemImage: mail of the systemImage: mail of the systemVirtual Gates using CCTV CamerasImage: mail of the systemImage: mail of the systemOccupancy MonitoringImage: mail of the systemImage: mail of the systemImage: mail water ManagementImage: mail of the systemImage: mail of the systemImage: mail water ChutesImage: mail of the systemImage: mail of the systemImage: mail water ChutesImage: mail of the systemImage: mail of the systemImage: mail water BinImage: mail of the systemImage: mail of the systemImage: mail water BinImage: mail of the systemImage: mail of the systemImage: mail water BinImage: mail of the systemImage: mail of the systemImage: mail water BinImage: mail of the systemImage: mail of the systemImage: mail water BinIma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        | $\checkmark$                  | $\checkmark$ | $\checkmark$ |  |  |  |  |
| Demand Controlled Ventilation<br>(DCV)Image: Controlled Ventilation<br>(DCV)Image: Controlled Ventilation<br>(DCV)Climate detection systemImage: Ventor ventorImage: Ventor ventorImage: Ventor ventor ventor ventorImage: Ventor                                                                    | Air Conditioning System                | $\checkmark$                  | $\checkmark$ | $\checkmark$ |  |  |  |  |
| (DCV)Image: Constraint of the systemImage: Constraint of the systemImage: Constraint of the systemClimate detection systemImage: Constraint of the systemImage: Constraint of the systemImage: Constraint of the systemSmart ElevatorImage: Constraint of the systemImage: Constraint of the systemImage: Constraint of the systemSmart Locking SystemImage: Constraint of the systemImage: Constraint of the systemImage: Constraint of the systemSmart Locking SystemImage: Constraint of the systemImage: Constraint of the systemImage: Constraint of the systemVirtual Gates using CCTV CamerasImage: Constraint of the systemImage: Constraint of the systemImage: Constraint of the systemOccupancy MonitoringImage: Constraint of the systemImage: Constraint of the systemImage: Constraint of the systemSmart Water ManagementImage: Constraint of the systemImage: Constraint of the systemImage: Constraint of the systemSmart BinImage: Constraint of the systemImage: Constraint of the systemImage: Constraint of the systemSmart BinImage: Constraint of the systemImage: Constraint of the systemImage: Constraint of the systemSmart BinImage: Constraint of the systemImage: Constraint of the systemImage: Constraint of the systemSmart BinImage: Constraint of the systemImage: Constraint of the systemImage: Constraint of the systemSmart BinImage: Constraint of the systemImage: Constraint of the systemImage: Constraint of the systemImage: Constraint of the system <td>Air Purification and Filter Monitoring</td> <td><math>\checkmark</math></td> <td><math>\checkmark</math></td> <td><math>\checkmark</math></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Air Purification and Filter Monitoring | $\checkmark$                  | $\checkmark$ | $\checkmark$ |  |  |  |  |
| Smart Lighting SystemImage: Mark SystemImage: Mark SystemSmart Escalator and/or AutowalkImage: Image: Mark SystemImage: Image: Mark SystemSmart ElevatorImage: Image: Image                                                                         |                                        | $\checkmark$                  | $\checkmark$ | $\checkmark$ |  |  |  |  |
| Smart Escalator and/or AutowalkImage: mail of the state interval of the state interva | Climate detection system               | $\checkmark$                  | √            | $\checkmark$ |  |  |  |  |
| Smart ElevatorImage: Constraint of the systemImage:                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Smart Lighting System                  | $\checkmark$                  | √            | $\checkmark$ |  |  |  |  |
| Smart Parking System++Intelligent Video Surveillance✓✓Smart Locking System✓✓Virtual Gates using CCTV Cameras++Occupancy Monitoring+✓Smart Water Management✓✓✓✓✓Smart Drinking Water Fountain++Smart Bin+✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Smart Escalator and/or Autowalk        |                               | √            | +            |  |  |  |  |
| Intelligent Video SurveillanceImage: Image: Ima | Smart Elevator                         |                               | $\checkmark$ | $\checkmark$ |  |  |  |  |
| Smart Locking SystemImage: Amount of the systemImage: Amount of the systemVirtual Gates using CCTV Cameras++Occupancy Monitoring+Image: Amount of the systemSmart Water ManagementImage: Amount of the systemImage: Amount of the systemSmart Drinking Water Fountain++Smart Waste ChutesImage: Amount of the systemImage: Amount of the systemSmart Bin++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Smart Parking System                   |                               | +            | +            |  |  |  |  |
| Virtual Gates using CCTV Cameras++Occupancy Monitoring+✓Smart Water Management✓✓Smart Drinking Water Fountain++Smart Waste Chutes✓✓Smart Bin++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Intelligent Video Surveillance         | $\checkmark$                  | $\checkmark$ | $\checkmark$ |  |  |  |  |
| Occupancy Monitoring+Image: Image: Ima          | Smart Locking System                   | $\checkmark$                  | $\checkmark$ | $\checkmark$ |  |  |  |  |
| Smart Water ManagementImage: Image water for the second secon | Virtual Gates using CCTV Cameras       |                               | +            | +            |  |  |  |  |
| Smart Drinking Water Fountain++Smart Waste ChutesSmart Bin++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Occupancy Monitoring                   | +                             | $\checkmark$ | $\checkmark$ |  |  |  |  |
| Smart Waste ChutesImage: Image: I | Smart Water Management                 | $\checkmark$                  | $\checkmark$ | $\checkmark$ |  |  |  |  |
| Smart Bin + + √                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Smart Drinking Water Fountain          |                               | +            | +            |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Smart Waste Chutes                     |                               | $\checkmark$ | $\checkmark$ |  |  |  |  |
| Smart Restroom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Smart Bin                              | +                             | +            | ✓            |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Smart Restroom                         | +                             | +            | +            |  |  |  |  |

 $\checkmark$  = Mandatory implementation + = Recommended to implement

Guidelines for the implementation of smart features in smart buildings are also specified for non-state buildings, with building class classifications as listed in Table 6 and Table 7.

| Building<br>Class | Definition                                                                                                                                                                                          | Example                                                                                                                          |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Class 1a          | One single house, one or more articulated houses separated by fireproof walls                                                                                                                       | Simple houses, row houses, villas, garden houses                                                                                 |
| Class 1b          | Dormitories, hostels or the like with a maximum area of 300 m2 and not occupied by more than 12 people                                                                                              | Boarding houses, inns,<br>hostels that cover an area of<br>no more than 300 m2 and<br>are inhabited by no more<br>than 12 people |
| Class 2           | Residential buildings consisting of 2 or more residential units, each of which is a separate residence                                                                                              | Complex houses                                                                                                                   |
| Class 3           | Residential buildings outside classes 1 and 2,<br>which are commonly used as old or<br>temporary residences by a number of<br>unrelated people                                                      | Dormitories, guest houses,<br>inns, and the like                                                                                 |
| Class 4           | Residential buildings that are located within a building of class 5, 6, 7, 8, or 9 and is a residence within the building                                                                           | Mixed-use apartments                                                                                                             |
| Class 5           | Buildings used for professional business<br>purposes, administrative management, or<br>commercial enterprises, outside of class 6, 7,<br>8, or 9 buildings                                          | Office buildings, government buildings, and its kind                                                                             |
| Class 6           | Shop buildings or other buildings used for retail sales of goods or direct needs services to the community                                                                                          | Shops, restaurants, markets, car showrooms, and its kind                                                                         |
| Class 7           | Building used as storage                                                                                                                                                                            | Public buildings and parking lots                                                                                                |
| Class 8           | Laboratory buildings and buildings used for<br>processing a production, assembly, change,<br>repair, packing, finishing, or cleaning of<br>production goods in the context of trading or<br>selling | Laboratories, auto repair<br>shops, factories and its kind                                                                       |
| Class 9a          | Public building for health care services                                                                                                                                                            | Hospital                                                                                                                         |
| Class 9b          | Public meeting building that does not include<br>any part of a building that constitutes another<br>class                                                                                           | Schools, places of worship,<br>places of culture, workshops,<br>and its kind                                                     |
| Class             | Non-residential buildings in the form of                                                                                                                                                            | Private garages, public                                                                                                          |
| 10a               | facilities or infrastructure built separately                                                                                                                                                       | garages and its kind                                                                                                             |
| Class<br>10b      | Structure in the form of facilities or infrastructure built separately                                                                                                                              | Fences, antennas (masts),<br>swimming pool, and<br>its kind                                                                      |

Table 6. Building Class Classification (Non-State Building)

### Tabel 7. Smart Building Feature Matrix Based on Non-State Building Classification

| Factures                                     | Non-State Building Classification |              |              |              |              |              |              |              |              |              |              |              |
|----------------------------------------------|-----------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Features                                     | 1                                 | 2            | 3            | 4            | 5            | 6            | 7            | 8            | 9a           | 9b           | 10a          | 10b          |
| Integrated Building Management<br>System     | √                                 | √            | √            | √            | √            | √            | $\checkmark$ | √            | √            | √            | +            |              |
| Control Room and Data Center                 |                                   |              |              | $\checkmark$ | $\checkmark$ |              |              | +            | $\checkmark$ | +            |              |              |
| Fiber-to-the Room (FTTR)                     | $\checkmark$                      | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | +            |              |
| Digital Twin                                 |                                   |              |              | $\checkmark$ | $\checkmark$ |              |              | +            | $\checkmark$ | +            |              |              |
| Touchless Access Control                     | +                                 | +            | +            | $\checkmark$ | $\checkmark$ |              |              | $\checkmark$ | $\checkmark$ | $\checkmark$ | +            | +            |
| Visitor Management                           |                                   |              | +            | +            | +            |              |              | +            | $\checkmark$ | $\checkmark$ | +            | +            |
| Intercom system                              | +                                 | +            | +            | $\checkmark$ | $\checkmark$ |              |              | +            | $\checkmark$ | $\checkmark$ | +            | +            |
| AV & Digital Signage                         |                                   |              |              | +            | +            | +            |              | +            | $\checkmark$ | +            |              |              |
| Smart Meter Readers                          | $\checkmark$                      | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Automatic Sub-Meter Readers                  | +                                 | +            | +            | +            | +            | +            |              | +            | $\checkmark$ | +            |              |              |
| Electricity Load Balancing                   | $\checkmark$                      | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Public Electric Vehicle Charging Station     |                                   |              |              | $\checkmark$ | $\checkmark$ |              | +            |              | $\checkmark$ | +            | +            |              |
| Active Disaster Response System              | +                                 | +            | +            | <            | <            | +            | +            | $\checkmark$ | <            | $\checkmark$ | +            | +            |
| Smart Fire Suppression System                | $\checkmark$                      | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Emergency Button                             | +                                 | +            | +            | $\checkmark$ | $\checkmark$ | $\checkmark$ | +            | $\checkmark$ | $\checkmark$ | $\checkmark$ | +            | +            |
| Fire Safety Device Maintenance               |                                   |              |              | +            | +            |              |              | +            | +            | +            |              |              |
| Animal Hazard Protection                     | +                                 | +            | +            | +            | +            | +            |              |              | +            | +            |              |              |
| Indoor and Outdoor Air Quality<br>Monitoring | ~                                 | ~            | $\checkmark$ | ~            | ~            | $\checkmark$ | $\checkmark$ | ~            | $\checkmark$ | ~            |              |              |
| Air Conditioning System                      | $\checkmark$                      | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |              |
| Air Purification and Filter Monitoring       | $\checkmark$                      | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |              |
| Demand Controlled Ventilation (DCV)          | $\checkmark$                      | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |              |
| Climate detection system                     | $\checkmark$                      | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |              |
| Smart Lighting System                        | $\checkmark$                      | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Smart Escalator and/or Autowalk              |                                   |              |              | $\checkmark$ | $\checkmark$ |              |              |              | $\checkmark$ | +            |              |              |
| Smart Elevator                               |                                   |              |              | $\checkmark$ | $\checkmark$ |              |              |              | $\checkmark$ | $\checkmark$ |              |              |
| Smart Parking System                         |                                   |              |              | +            | +            |              | +            |              | +            | +            | +            |              |
| Intelligent Video Surveillance               | $\checkmark$                      | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | +            |
| Smart Locking System                         | $\checkmark$                      | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |              | $\checkmark$ | $\checkmark$ | $\checkmark$ | +            | +            |
| Virtual Gates using CCTV Cameras             |                                   |              |              | +            | +            |              |              |              | $\checkmark$ | +            |              |              |
| Occupancy Monitoring                         | +                                 | +            | +            | $\checkmark$ | $\checkmark$ | +            | +            | +            | $\checkmark$ | $\checkmark$ | +            | +            |
| Smart Water Management                       | $\checkmark$                      | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | +            | $\checkmark$ | $\checkmark$ | $\checkmark$ | +            | +            |
| Smart Drinking Water Fountain                |                                   |              |              | +            | +            |              |              |              | +            | +            |              |              |
| Smart Waste Chutes                           |                                   |              |              | $\checkmark$ | $\checkmark$ |              |              |              | $\checkmark$ | $\checkmark$ |              |              |
| Smart Bin                                    | +                                 | +            | +            | +            | +            | +            |              | +            | $\checkmark$ | $\checkmark$ |              |              |
| Smart Restroom                               | +                                 | +            | +            | +            | +            | +            |              | +            | $\checkmark$ | $\checkmark$ |              |              |

 $\checkmark$  = Mandatory implementation

+ = Recommended to implement

© Nusantara Capital Authority 2023



Determination of feature implementation obligations in table 5 and table 7 is determined as follows.

- 1. A feature becomes mandatory when it becomes a requirement for another feature.
- 2. A feature becomes mandatory when it is critical in saving a building's energy.
- 3. A feature becomes mandatory when its main function is to maintain the safety and security of the occupants.
- 4. A feature becomes mandatory if it can only be installed during the construction stage and cannot be installed as an add-on during the operational stage.

#### References

[1] ABB. (2020). ABB Smart Buildings.

[2] Aftab, J., & Ramage, M. (2018). The Edge Amsterdam – showcasing an exemplary IoT building. *University of Cambridge*, 22. https://www.cdbb.cam.ac.uk/system/files/documents/TheEdge\_Paper\_LOW1.pdf%0Ahttps://www .cdbb.cam.ac.uk/news/2018CaseTheEdge

[3] Al Dakheel, J., Del Pero, C., Aste, N., & Leonforte, F. (2020). Smart buildings features and key performance indicators: A review. *Sustainable Cities and Society*, *61*(June), 102328. <u>https://doi.org/10.1016/j.scs.2020.102328</u>

[4] AlGhamdi, R., & Sharma, S. K. (2022). IoT-Based Smart Water Management Systems for Residential Buildings in Saudi Arabia. Processes, 10(11). <u>https://doi.org/10.3390/pr10112462</u>

[5] Aliero, M. S., Asif, M., Ghani, I., Pasha, M. F., & Jeong, S. R. (2022). Systematic Review Analysis on Smart Building: Challenges and Opportunities. Sustainability (Switzerland), 14(5). https://doi.org/10.3390/su14053009

[6] Anjum, M., Shahab, S., & Umar, M. S. (2022). Smart waste management paradigm in perspective of IoT and forecasting models. International Journal of Environment and Waste Management, 29(1), 34–79. <u>https://doi.org/10.1504/IJEWM.2022.120621</u>

[7] Azhar Fakharuddin. (2012). A smart energy management system for monitoring and controlling time of power consumption. Scientific Research and Essays, 7(9). https://doi.org/10.5897/sre11.160

[8] Berawi, M. A., Miraj, P., Sayuti, M. S., & Berawi, A. R. B. (2017). Improving building performance using smart building concept: Benefit cost ratio comparison. AIP Conference Proceedings, 1903(November 2017). <u>https://doi.org/10.1063/1.5011508</u>

[9] Buckman, A. H., Mayfield, M., & Beck, S. B. M. (2014). What is a smart building? *Smart and Sustainable Built Environment*, *3*(2), 92–109. <u>https://doi.org/10.1108/SASBE-01-2014-0003</u>

[10] Chen, H., Chou, P., Duri, S., Lei, H., & Reason, J. (2009). The design and implementation of a smart building control system. Proceedings - IEEE International Conference on e-Business Engineering, ICEBE 2009; IEEE Int. Workshops - AiR 2009; SOAIC 2009; SOKMBI 2009; ASOC 2009, January, 255–262. https://doi.org/10.1109/ICEBE.2009.4

[11] City of Cape Town. (2012). City of Cape Town Smart Building Handbook.

[12] Ejidike, C. C., & Mewomo, M. C. (2023). Benefits of adopting smart building technologies in building construction of developing countries: review of literature. *SN Applied Sciences*, *5*(2). https://doi.org/10.1007/s42452-022-05262-y

[13] Ehrlich, P. (2014). Building automation. In Engineered Systems (Vol. 31, Issue 10). https://doi.org/10.1515/9783035612912-008

[14] Energy Technologies and Systems, ICSETS 2019, September, 297–301. https://doi.org/10.1109/ICSETS.2019.8744873

[15] Smart M2M: Smart Escalator IoT System.

[16] Fang, H., Lo, S., & Lo, J. T. Y. (2021). Building fire evacuation: An IoT-aided perspective in the 5G era. Buildings, 11(12), 1–24. <u>https://doi.org/10.3390/buildings11120643</u>

[17] Femi, J. G. (2022). Smart Water Management System. International Journal of Smart Sensor and Adhoc Network., March, 9–15. <u>https://doi.org/10.47893/ijssan.2022.1213</u>

[18] Froufe, M. M., Chinelli, C. K., Guedes, A. L. A., Haddad, A. N., Hammad, A. W. A., & Soares, C. A. P. (2020). Smart buildings: Systems and drivers. Buildings, 10(9), 1–20. https://doi.org/10.3390/buildings10090153

[19] Füchtenhans, M., Grosse, E. H., & Glock, C. H. (2021). Smart lighting systems: state-of-theart and potential applications in warehouse order picking. International Journal of Production Research, 59(12), 3817–3839. <u>https://doi.org/10.1080/00207543.2021.1897177</u>

[20] Glouche, Y., & Couderc, P. (2013). A Smart Waste Management with Self-Describing objects. The Second International Conference on Smart Systems, Devices and Technologies (SMART'13), c, 63–70.

[21] Handri, H., Taqiuddin, Z., & Huda, K. (2021). Bangunan Pintar dan Penerapannya di Indonesia Smart Buildings and Its Application in Indonesia. Jurnal Arsitektur Dan Perencanaan, 10(2), 48–51.

[22] Hangli, G., Hamada, T., Sumitomo, T., & Koshizuka, N. (2020). Intellevator: An Intelligent Elevator System Proactive in Traffic Control for Time-Efficiency Improvement. IEEE Access, 8, 35535–35545. <u>https://doi.org/10.1109/ACCESS.2020.2975020</u>

[23] Hikvision. (2021). CCTV Solution Products

[24] Honeywell. Controlling the Future with Technology

[25] Huh, J. H., Choi, J. H., & Seo, K. (2021). Smart trash bin model design and future for smart city. Applied Sciences (Switzerland), 11(11). <u>https://doi.org/10.3390/app11114810</u>

[26] Ibrahim, S., Ziedan, I., & Ahmed, A. (2021). Study of Climate Change Detection in North-East Africa Using Machine Learning and Satellite Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14(November), 11080–11094. https://doi.org/10.1109/JSTARS.2021.3120987

[27] Intelligent Building Europe. (2020). Smart Building Case Studies.

[28] International Energy Agency. (2021). *Buildings: A source of enormous untapped efficiency potential*. https://www.iea.org/topics/buildings

[29] Kaushik, A. K., Arif, M., Syal, M. M. G., Rana, M. Q., Oladinrin, O. T., Sharif, A. A., & Alshdiefat, A. S. (2022). Effect of Indoor Environment on Occupant Air Comfort and Productivity in Office Buildings: A Response Surface Analysis Approach. *Sustainability (Switzerland)*, *14*(23). https://doi.org/10.3390/su142315719

[30] Khan, M. S., Woo, M., Nam, K., & Chathoth, P. K. (2017). Smart city and smart tourism: A case of Dubai. Sustainability (Switzerland), 9(12). <u>https://doi.org/10.3390/su9122279</u>

[31] Kumar, A., Shareef, A., Harn, K. T., Kar, P., & Panda, S. K. (2019). A Complete Hardware Setup for Smart Lighting System. 1st IEEE International Conference on Sustainable Energy Technologies and Systems, ICSETS 2019, February, 297–301. https://doi.org/10.1109/ICSETS.2019.8744873

[32] Knutson, T. R., Zhang, R., & Horowitz, L. W. (2016). Prospects for a prolonged slowdown in global warming in the early 21st century. Nature Communications, 7. https://doi.org/10.1038/ncomms13676

[33] Li, Z., Zhang, J., Li, M., Huang, J., & Wang, X. (2020). A review of smart design based on interactive experience in building systems. *Sustainability (Switzerland)*, *12*(17). <u>https://doi.org/10.3390/SU12176760</u> [34] Lizar, N. R. (2021). Penerapan Konsep Bangunan Cerdas Pada Desain Hunian Padat Di Kapuk. Jurnal Sains, Teknologi, Urban, Perancangan, Arsitektur (Stupa), 3(1), 455. https://doi.org/10.24912/stupa.v3i1.10910

[35] Lam, K. H., To, W. M., & Lee, P. K. C. (2023). Smart Building Management System (SBMS) for Commercial Buildings—Key Attributes and Usage Intentions from Building Professionals' Perspective. Sustainability (Switzerland), 15(1). <u>https://doi.org/10.3390/su15010080</u>

[36] Lê, Q., Nguyen, H. B., & Barnett, T. (2012). Smart Homes for Older People: Positive Aging in a Digital World. *Future Internet*, *4*(2), 607–617. <u>https://doi.org/10.3390/fi4020607</u>

[37] Lee, J., Khan, I., Choi, S., & Kwon, Y. W. (2019). A smart iot device for detecting and responding to earthquakes. Electronics (Switzerland), 8(12), 1–19. <u>https://doi.org/10.3390/electronics8121546</u>

[38] Lin, T. H., Huang, J. T., & Putranto, A. (2022). Integrated smart robot with earthquake early warning system for automated inspection and emergency response. Natural Hazards, 110(1), 765–786. <u>https://doi.org/10.1007/s11069-021-04969-2</u>

[39] Mahbub, P. K., & Darmawan, C. (2019). Fire Safety System Building. IOP Conference Series: Materials Science and Engineering, 662(4). <u>https://doi.org/10.1088/1757-899X/662/4/042001</u>

[40] Moor, M. (2022). *Meet the "Smartest Office Building in the World."* Techradar.Pro. https://www.techradar.com/news/meet-the-smartest-office-building-in-the-world

[41] Nurrahman, H., Permana, A. Y., & Susanti, I. (2021). Implementation of the Smart Building Concept in Parahyangan Office Rental Space and Apartment Design. Journal of Architectural Research and Education, 3(1), 31–43. <u>https://doi.org/10.17509/jare.v3i1.23870</u>

[42] Pham, N., Hassan, M., Nguyen, H. M., & Kim, D. (2017). GS1 Global Smart Parking System: One Architecture to Unify Them All. Proceedings - 2017 IEEE 14th International Conference on Services Computing, SCC 2017, July 2018, 479–482. <u>https://doi.org/10.1109/SCC.2017.69</u>

[43] Smarter Technologies. Smart Building Catalog.

[44] Sylvania. Unlock the Intelligent Building.

[45] Sun, Q., Cao, Y., & Chen, J. (2020). Smart Building Multifunctionality: A Review. Journal of Cleaner Production, 247, 119103. <u>https://doi.org/10.1016/j.jclepro.2019.119103</u>

[46] United Nations. (2016). Smart cities and infrastructure Report of the Secretary-General Economic and Social Council. *Economic and Social Council, E/CN.16/20*(February), 18. http://unctad.org/en/pages/MeetingDetails.aspx?meetingid=941.%0Ahttp://unctad.org/meetings/en/SessionalDocuments/ecn162016d2\_en.pdf

[47] USAID. Indonesia Smart City Project for Nusantara.

[48] Wang, J., Bai, Y., Cao, Y., & Qiao, H. (2016). The Design and Implementation of Data System for Magnetic Alloys. <u>https://doi.org/10.2991/isct-16.2016.23</u>

[49] Waste Tech. Waste Chute Systems.

[50] Xi, S., Zhang, C., Cai, Z., & Xu, Y. (2021). Cost Control and Project Cost Analysis of Intelligent Building under Internet of Things. Mobile Information Systems, 2021. https://doi.org/10.1155/2021/8217040

[51] Xue, N., Liang, L., Zhang, J., & Huang, X. (2016). An access control system for intelligent buildings. International Conference on Mobile Multimedia Communications (MobiMedia), January. https://doi.org/10.4108/eai.18-6-2016.2264493