Kitin

egy hosszú polimer láncmolekula, melyet N-acetilglükózamin molekulák alkotnak és a természetben sok helyen előfordul
Ez a közzétett változat, ellenőrizve: 2023. október 16.

A kitin (C8H13O5N)n egy hosszú polimer láncmolekula, melyet N-acetilglükózamin molekulák alkotnak és a természetben sok helyen előfordul. A poliszacharidok közé tartozik. Nevét a görög khitón (χιτών = ruha, takaró) szóból kapta.[1]

A kitin molekulaszerkezete: az ismétlődő N-acetilglükózamin alegységek béta-1,4 kötéssel hosszú láncokat alkotnak

A gombák sejtfalának fő komponense, valamint az ízeltlábúak (rákok, rovarok) külső vázának alkotója is. A rákok és a rovarok páncélanyagában található kitin könnyen elkülöníthető, mert a kitin kémiailag nagyon ellenálló. Vízben, híg savakban és lúgokban oldhatatlan. Csak tömény savval való melegítés hatására hidrolizál. Hidrolízisekor először N-acetil-d-glükózamin, majd d-glükóz és ecetsav képződik. Szerkezete a cellulózéval analóg, az N-acetil-d-glükózamin egységek között β (1→4) kötések találhatók.

A kitint számos orvosi és ipari területen felhasználják.

A kitin mint nyersanyag

szerkesztés

Míg Japánban évi 300 tonna kitinből készítenek töltőanyagot az ivóvizet tisztító berendezések céljára, a világ többi országában kitinből alig készül valami. Igaz, a kitin csak nagy energiafordítással dolgozható fel, mégis sok szakember szerint az így kapott anyagok a termelési költségeiknél jóval drágábban értékesíthetők.

Az orvostudomány szerint a kitin vegyileg módosított formájával, kitozánnal égési sebek kezelhetők. Több kísérlet tanúsága szerint nagy felületű égési sebeket eredményesen gyógyíthatunk kitozán-acetát-filmmel. A vízben oldódó film átereszti az oxigént, s felszívja a sebfolyadékot. Majd a filmet a seb lizozim nevű enzimje lassanként lebontja. Más kísérletek azt mutatták, hogy a kitozán gátolja a baktériumok szaporodását és a bőrgombák fejlődését. S talán készíthetnek belőle véralvasztót is.

Botanikusok szerint a kitozánt növényvédő szerként szintén alkalmazhatnák, lévén, hogy a haszonnövényeket megóvja a gombafertőzésektől. Noha ennek még nem ismerik a pontos mechanizmusát, azt máris megállapították, hogy vele a borsónövények megvédhetők a gombafertőzésektől. Annak a lencsének és azoknak a búzafajtáknak, amelyeknek a magjait kitozánnal kezelték, 10–30 százalékkal lesz több a terméshozamuk.

Japán kutatók azt állapították meg, hogy a talajba kevert kitozánnal javítható a mezőgazdaságilag hasznosított homoktalajok vízháztartása. A kitozán és származékai, noha nincs bennük fehérje, a takarmányhoz is adagolhatók. Azok a csibék és borjak, amelyeknek a takarmányába egy kevés kitozánt kevertek, könnyen lebontják a tejcukrot. Ez módot ad arra, hogy ezeket az állatokat a sajtkészítő üzemekben keletkező tejsavóval etessék.

  1. Fülöp József: Rövid kémiai értelmező és etimológiai szótár. Celldömölk: Pauz–Westermann Könyvkiadó Kft. 1998. 79. o. ISBN 963 8334 96 7  
  • Élet és Tudomány: A kitin mint nyersanyag (Frankfurter Allgemeine Zeitung)
  • Tang, WJ; Fernandez, JG; Sohn, JJ; Amemiya, CT. "Chitin is endogenously produced in vertebrates". Curr Biol. 25: 897–900. PMC 4382437 Freely accessible. PMID 25772447. doi:10.1016/j.cub.2015.01.058.
  • Auguste Odier (presented: 1821 ; published: 1823) "Mémoire sur la composition chimique des parties cornées des insectes" (Memoir on the chemical composition of the horny parts of insects), Mémoires de la Société d'Histoire Naturelle de Paris, 1 : 29-42. From page 35: "… la Chitine (c'est ainsi que je nomme cette substance de chiton, χιτον, enveloppe) …" (… chitine (it is thus that I name this substance from chiton, χιτον, covering) …)
  • Hofmann hydrolyzed chitin using a crude preparation of the enzyme chitinase, which he obtained from the snail Helix pomatia. See:
  • A. Hofmann (1929) "Über den enzymatischen Abbau des Chitins und Chitosans" (On the enzymatic degradation of chitin and chitosan), Ph.D. thesis, University of Zurich (Zurich, Switzerland).
  • P. Karrer and A. Hofmann (1929) "Polysaccharide XXXIX. Über den enzymatischen Abbau von Chitin and Chitosan I," Helvetica Chimica Acta, 12 (1) : 616-637.
  • Nathaniel S. Finney and Jay S. Siegel (2008) "In Memorian: Albert Hofmann (1906-2008)," Chimia, 62 (5) : 444-447 ; see page 444. Available on-line at: University of Zurich
  • Campbell, N. A. (1996) Biology (4th edition) Benjamin Cummings, New Work. p.69 ISBN 0-8053-1957-3
  • Gilbert, Lawrence I. (2009). Insect development : morphogenesis, molting and metamorphosis. Amsterdam Boston: Elsevier/Academic Press. ISBN 978-0-12-375136-2.
  • Saranathan V, Osuji CO, Mochrie SG, Noh H, Narayanan S, Sandy A, Dufresne ER, Prum RO (2010). "Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales". Proc Natl Acad Sci U S A. 107 (26): 11676–81. PMC 2900708 Freely accessible. PMID 20547870. doi:10.1073/pnas.0909616107.
  • Dasi Espuig M (16 August 2014). "Beetles' whiteness understood". BBC News: Science and Environment. Retrieved 15 November 2014.
  • Burresi, Matteo; Cortese, Lorenzo; Pattelli, Lorenzo; Kolle, Mathias; Vukusic, Peter; Wiersma, Diederik S.; Steiner, Ullrich; Vignolini, Silvia (2014). "Bright-white beetle scales optimise multiple scattering of light". Scientific Reports. 4: 6075. PMC 4133710 Freely accessible. PMID 25123449. doi:10.1038/srep06075.
  • Kudô, K. Nest materials and some chemical characteristics of nests of a New World swarm-founding polistine wasp, (Hymenoptera Vespidae). Ethology, ecology & evolution 13.4 Oct 2001: 351-360. Dipartimento di biologia animale e genetica, Università di Firenze. 16 Oct 2014.
  • Bedian, L; Villalba-Rodríguez, AM; Hernández-Vargas, G; Parra-Saldivar, R; Iqbal, HM (May 2017). "Bio-based materials with novel characteristics for tissue engineering applications - A review.". International journal of biological macromolecules. 98: 837–846. PMID 28223133. doi:10.1016/j.ijbiomac.2017.02.048.
  • Elieh Ali Komi, D; Sharma, L; Dela Cruz, CS (1 March 2017). "Chitin and Its Effects on Inflammatory and Immune Responses.". Clinical Reviews in Allergy & Immunology. PMID 28251581. doi:10.1007/s12016-017-8600-0.
  • Gour, N; Lajoie, S (September 2016). "Epithelial Cell Regulation of Allergic Diseases.". Current allergy and asthma reports. 16 (9): 65. PMID 27534656. doi:10.1007/s11882-016-0640-7.
  • Gómez-Casado, C; Díaz-Perales, A (October 2016). "Allergen-Associated Immunomodulators: Modifying Allergy Outcome.". Archivum Immunologiae et Therapiae Experimentalis. 64 (5): 339–47. PMID 27178664. doi:10.1007/s00005-016-0401-2.
  • Sánchez-Vallet, A; Mesters, JR; Thomma, BP (March 2015). "The battle for chitin recognition in plant-microbe interactions.". FEMS microbiology reviews. 39 (2): 171–83. ISSN 0168-6445. PMID 25725011. doi:10.1093/femsre/fuu003.
  • Sharp, Russell G. (21 November 2013). "A Review of the Applications of Chitin and Its Derivatives in Agriculture to Modify Plant-Microbial Interactions and Improve Crop Yields". Agronomy. 3 (4): 757–793. doi:10.3390/agronomy3040757.
  • Rovenich, H; Zuccaro, A; Thomma, BP (December 2016). "Convergent evolution of filamentous microbes towards evasion of glycan-triggered immunity.". The New phytologist. 212 (4): 896–901. PMID 27329426. doi:10.1111/nph.14064.
  • Kettles, GJ; Kanyuka, K (15 April 2016). "Dissecting the Molecular Interactions between Wheat and the Fungal Pathogen Zymoseptoria tritici". Frontiers in plant science. 7: 508. PMC 4832604 Freely accessible. PMID 27148331. doi:10.3389/fpls.2016.00508.
  • Briggs, DEG (29 January 1999). "Molecular taphonomy of animal and plant cuticles: selective preservation and diagenesis". Philosophical Transactions of the Royal Society B: Biological Sciences. 354 (1379): 7–17. PMC 1692454 Freely accessible. doi:10.1098/rstb.1999.0356.
  • El Hadrami, A; Adam, L. R.; El Hadrami, I; Daayf, F (2010). "Chitosan in Plant Protection". Marine Drugs. 8 (4): 968–987. PMC 2866471 Freely accessible. doi:10.3390/md8040968.
  • Chitosan#Agricultural .26 Horticultural use
  • Shahidi, F.; Arachchi, J.K.V.; Jeon, Y.-J. (1999). "Food applications of chitin and chitosans". Trends in Food Science & Technology. 10: 37–51. doi:10.1016/s0924-2244(99)00017-5.
  • Hosokawa J, Nishiyama M, Yoshihara K, Kubo T (1990). "Biodegradable film derived from chitosan & homogenized cellulose". Ind.Eng.Chem.Res. 44: 646–650.
  • Gaellstedt M, Brottman A, Hedenqvist MS (2005). "Packaging related properties of protein and chitosan coated paper". Packaging Technology and Science. 18: 160–170.
  • Cheung, R. C.; Ng, T. B.; Wong, J. H.; Chan, W. Y. (2015). "Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications". Marine Drugs. 13 (8): 5156–5186. PMC 4557018 Freely accessible. doi:10.3390/md13085156.
  • Ducheyne, Paul; Healy, Kevin; Hutmacher, Dietmar E.; Grainger, David W.; Kirkpatrick, C. James, eds. (2011). Comprehensive biomaterials. Amsterdam: Elsevier. p. 230. ISBN 9780080552941.
  • "Harvard researchers develop bioplastic made from shrimp shells". Fox News. 16 May 2014. Retrieved 24 May 2014.
  • Ifuku, Shinsuke (2014). "Chitin and Chitosan Nanofibers: Preparation and Chemical Modifications". Molecules. 19 (11): 18367–80. PMID 25393598. doi:10.3390/molecules191118367.