פונקציה גזירה בקבוצה אם לכל ב- מתקיים ש- גזירה ב-. פונקציה גזירה אם היא גזירה בתחום שלה.
על פונקציה שהנגזרת שלה רציפה נאמר כי היא גזירה ברציפות. אם הנגזרת של פונקציה גזירה בעצמה, נאמר כי הפונקציה "גזירה פעמיים", ובאופן כללי אם לפונקציה יש נגזרת n-ית נאמר כי היא גזירה n-פעמים או גזירה מסדר n. פונקציה שהיא גזירה n-פעמים לכל n היא פונקציה גזירה אינסוף פעמים, או פשוט פונקציה חלקה.
קבוצת הפונקציות שגזירות n-פעמים ברציפות מסומנת , כאשר היא קבוצת הפונקציות הרציפות ו- היא קבוצת הפונקציות החלקות. לכל n, מכילה את כאשר וכולן מכילות את .
פונקציה היא גזירה למקוטעין בקטע אם קיים אוסף בן מנייה (ואולי אף סופי) של נקודות עבורו לכל בקטע פתוח מתקיים כי גזירה ב-.
פונקציה היא גזירה מימין או גזירה משמאל כאשר הגבול המגדיר את הנגזרת קיים מימין או משמאל בהתאמה.
כאשר דנים בפונקציות בכמה משתנים, אז פונקציה גזירה חלקית לפי x אם קיימת לה נגזרת חלקית לפי המשתנה x. תנאי חזק שמכליל גזירות בכמה משתנים הוא דיפרנציאביליות. פונקציה דיפרנציאבילית היא פונקציה שניתן לקרב ליניארית, ובפרט היא גזירה חלקית לפי כל משתנה. במשתנה אחד המונחים פונקציה דיפרנציאבילית ופונקציה גזירה מתלכדים.
כל פונקציה גזירה היא בהכרח רציפה (ולכן גם אינטגרבילית). ניתן להוכיח זאת ישירות מהגדרת הנגזרת. אם אינה רציפה ב- אז ולכן הגבול המגדיר נגזרת אינו קיים (הוא ביטוי מהצורה "" כאשר a שונה מאפס). ההפך אינו נכון - לא כל פונקציה רציפה היא גם גזירה. למשל פונקציית הערך המוחלט רציפה בנקודה x=0 אך אינה גזירה שם, כי הנגזרת מימין והנגזרת משמאל שונות זו מזו. רוב הפונקציות הרציפות השימושיות גזירות כמעט בכל נקודה. אולם ב-1872 מצא קארל ויירשטראס דוגמה ראשונה לפונקציה רציפה שאינה גזירה באף נקודה: פונקציית ויירשטראס. לפי משפט הקטגוריה של בייר כמעט כל הפונקציות הרציפות אינן גזירות באף נקודה.
^המקומיות היא על פי הטופולוגיה על האובייקט הגאומטרי המתאים. לדוגמה, פונקציות שוורץ מוגדרות על יריעות אלגבריות ממשיות (או באופן כללי יותר יריעות נאש), לכן המקומיות היא על פי הטופולוגיה של זריצקי (או הטופולוגה המוגבלת על יריעות נאש).
^השיכון מוגדר רק כאשר שני המרחבים מוגדרים. לדוגמה מרחב הפולינומים מוגדר עבור יריעה אלגברית ומרחב הפונקציות החלקות מוגדר עבור יריעה חלקה. מרחב הפולינומים מהווה תת-מרחב במרחב הפונקציות החלקות אם עבור יריעה אלגברית ממשית חלקה.
^ 12רלוונטי רק כאשר האובייקט הגאומטרי הוא חבורה אבלית (בדרך כלל כאשר הוא מרחב אוקלידי)
^ 12ניתן להגדיר מרחב זה עבור ממשי כלשהו, אולם אם אינו מספר טבעי אז ההגדרה מורכבת מעט יותר.
^ 12המרחבים ו - יכולים להית מוגדרים גם על אובייקטים שעליהם לא מוגדר. די בכך שהאובייקטים יראו באופן מקומי כמו אלה שעליהם מוגדר. לדוגמה מוגדר עבור כל יריעה חלקה.