-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathcustomlid.py
78 lines (50 loc) · 2.81 KB
/
customlid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import fasttext
import numpy as np
from huggingface_hub import hf_hub_download
class CustomLID:
def __init__(self, model_path, languages = -1, mode='before'):
self.model = fasttext.load_model(model_path)
self.output_matrix = self.model.get_output_matrix()
self.labels = self.model.get_labels()
# compute language_indices
if languages !=-1 and isinstance(languages, list):
self.language_indices = [self.labels.index(l) for l in list(set(languages)) if l in self.labels]
else:
self.language_indices = list(range(len(self.labels)))
# limit labels to language_indices
self.labels = list(np.array(self.labels)[self.language_indices])
# predict
self.predict = self.predict_limit_after_softmax if mode=='after' else self.predict_limit_before_softmax
def predict_limit_before_softmax(self, text, k=1):
# sentence vector
sentence_vector = self.model.get_sentence_vector(text)
# dot
result_vector = np.dot(self.output_matrix[self.language_indices, :], sentence_vector)
# softmax
softmax_result = np.exp(result_vector - np.max(result_vector)) / np.sum(np.exp(result_vector - np.max(result_vector)))
# top k predictions
top_k_indices = np.argsort(softmax_result)[-k:][::-1]
top_k_labels = [self.labels[i] for i in top_k_indices]
top_k_probs = softmax_result[top_k_indices]
return tuple(top_k_labels), top_k_probs
def predict_limit_after_softmax(self, text, k=1):
# sentence vector
sentence_vector = self.model.get_sentence_vector(text)
# dot
result_vector = np.dot(self.output_matrix, sentence_vector)
# softmax
softmax_result = np.exp(result_vector - np.max(result_vector)) / np.sum(np.exp(result_vector - np.max(result_vector)))
# limit softmax to language_indices
softmax_result = softmax_result[self.language_indices]
# top k predictions
top_k_indices = np.argsort(softmax_result)[-k:][::-1]
top_k_labels = [self.labels[i] for i in top_k_indices]
top_k_probs = softmax_result[top_k_indices]
return tuple(top_k_labels), top_k_probs
# download model
## cache_dir: path to the folder where the downloaded model will be stored/cached.
model_path = hf_hub_download(repo_id="cis-lmu/glotlid", filename="model.bin", cache_dir=None)
# to make sure these languages are available in GlotLID check the list of supported labels in model.labels
limited_languages = ['__label__eng_Latn', '__label__arb_Arab', '__label__rus_Cyrl', '__label__por_Latn', '__label__pol_Latn', '__label__hin_Deva']
model = CustomLID(model_path, languages = limited_languages , mode='before')
model.predict("Hello, world!", 3)