فضای هاسدورف
اصول جداسازی در فضاهای توپولوژی | |
---|---|
طبقه بندی کولموگوروف | |
(کولموگوروف) | |
(فرشه) | |
(هاسدورف) | |
(اوریسون) | |
کاملاً | (کاملاً هاسدورف) |
(هاسدورف منظم) | |
(تیخونوف) | |
(هاسدورف نرمال) | |
(کاملاً نرمال/هاسدورف) | |
(نرمال بینقص/هاسدورف) | |
در توپولوژی و شاخه های مرتبط با آن در ریاضیات، یک فضای هاسدورف (به انگلیسی: Hausdorff Space)، فضای جداسازی شده یا فضای یک فضای توپولوژی است که در آن بین هر دو نقطه مجزا همسایگی ای برای هر کدام وجود دارد به گونه ای که از همسایگی دیگری جدا باشد. در بین بسیاری از اصول جداسازی که می توان روی یک فضای توپولوژی اعمال کرد، "شرایط هاسدورف" بودن () اغلب مورد استفاده و بحث قرار می گیرد. این اصل یکتا بودن حدود دنباله ها، شبکه ها و فیلترها را اعمال می کند.[۱]
فضاهای هاسدورف به افتخار فلیکس هاسدورف، یکی از بنیانگذاران توپولوژی نامگذاری شده است. تعریف اولیه هاسدورف از یک فضای توپولوژی (در ۱۹۱۴ میلادی) شامل شرط هاسدورف در قالب یک اصل بوده است.
تعاریف
[ویرایش]نقاط x و y در یک فضای توپولوژی چون X را می توان به کمک همسایهها جداسازی کرد اگر وجود داشته باشد یک همسایگی از x چون U و یک همسایگی از y چون V به گونه ای که U و V مجزا باشند (). فضای X را یک فضای هاسدورف گویند اگر تمام نقاط مجزای آن دو به دو توسط چنین همسایگی هایی جداپذیر باشند. این شرط بعد از شروط و سومین اصل جداسازی است، به همین دلیل به فضاهای هاسدورف هم می گویند. برای این فضاها نام فضای جدا شده هم به کار می رود.
یک مفهوم مرتبط اما ضعیف تر، مفهوم فضای پیشمنظم است. X را فضای پیشمنظم گویند اگر هر دو نقطه متمایز توپولوژیکی (نقاطی که تمام همسایگی هایشان یکی نباشند) را بتوان توسط همسایگی های مجزا جداسازی کرد. فضاهای پیشمنظم را فضاهای هم می گویند.
رابطه بین این دو شرط به این صورت است: یک فضای توپولوژی هاسدورف است است اگر و تنها اگر هم پیشمنظم باشد (یعنی نقاط متمایز توپولوژیکی آن توسط همسایگی ها جداسازی شود) و هم کولموگوروف (یعنی نقاط متمایز آن به صورت توپولوژیکی هم متمایز باشند). یک فضای توپولوژیکی پیشمنظم است اگر و تنها اگر خارج قسمت کولموگوروف آن هاسدورف باشد.
ارجاعات
[ویرایش]- ↑ «separation axioms in nLab». ncatlab.org. دریافتشده در ۲۰۲۴-۰۲-۲۹.
منابع
[ویرایش]- Arkhangelskii, A.V., L.S. Pontryagin, General Topology I, (1990) Springer-Verlag, Berlin. شابک ۳−۵۴۰−۱۸۱۷۸−۴.
- Bourbaki; Elements of Mathematics: General Topology, Addison-Wesley (1966).
- "Hausdorff space", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Willard, Stephen (2004). General Topology. Dover Publications. ISBN 0-486-43479-6.
- مشارکتکنندگان ویکیپدیا. «Hausdorff Space». در دانشنامهٔ ویکیپدیای انگلیسی، بازبینیشده در ۱۶ اوت ۲۰۱۹.