Edukira joan

Archaea

Artikulu hau Wikipedia guztiek izan beharreko artikuluen zerrendaren parte da
Wikipedia, Entziklopedia askea
Theklan (eztabaida | ekarpenak)(r)en berrikusketa, ordua: 23:33, 14 urtarrila 2024

Archaea
Sailkapen zientifikoa
Domeinua Archaea
Azpibanaketa
Datu orokorrak
MugimenduaErrodadura
AurkitzaileaCarl Woese (en) Itzuli eta George E. Fox

Archaea edo Arkeoak[oh 1]. izaki bizidun zelulabakarren domeinu bat da. Organismo hauek ez dute zelula nukleorik, eta beraz prokariotoak dira. Hasiera batean bakterioen barruan sailkatzen ziren, eta horregatik deitzen zitzaien Archaebacteria edo arkeobakterio, baina termino hau jada ez da hainbeste erabiltzen[4].

Archaea zelulek beste bi domeinuetatik, Bacteria eta Eukaryota, bereizten dituzten ezaugarriak dituzte. Archaea hainbat filumetan bereizten da. Hala ere, sailkapena zaila da, gehienak ez direlako laborategian isolatu eta soilik inguruneetako laginetan hartutako sekuentzia genetiko bidez identifikatu direlako. Ez dago argi detektatutako horiek endosporak sortzeko gai ote diren.

Oro har, arkeoak eta bakterioak antzekoak dira tamainari eta formari dagokienez, nahiz eta arkeo batzuek oso forma desberdinak izan, hala nola Haloquadratum walsbyi zelula lau eta karratuak[5]. Bakterioekin antzekotasun morfologiko hori izan arren, arkeoek eukariotoekin lotura estuagoa duten geneak eta zenbait bide metaboliko dituzte, batez ere transkripzioan eta itzulpenean parte hartzen duten entzimentzat. Arkeoen biokimikaren beste alderdi batzuk bakarrak dira, hala nola eter lipidoekiko mendekotasuna zelula-mintzetan[6], arkeoloak barne. Arkeoek eukariotoek baino energia-iturri gehiago erabiltzen dituzte: konposatu organikoak, hala nola azukreak, amoniakoa, ioi metalikoak edo hidrogeno-gasa. Gatzarekiko tolerantzia duen Haloarchaeak, eguzki-argia erabiltzen dute energia-iturri gisa, eta beste arkeoa espezie batzuek karbonoa finkatzen dute (autotrofoak dira), baina, landareek eta zianobakterioek ez bezala, ez da ezagutzen arkeorik biak batera egiten duenik. Arkeoak asexualki ugaltzen dira fisio bitarraren, fragmentazio edo gemazio bidez; bakterioak ez bezala, ez da endosporak eratzen dituen espezie ezagunik. Behatutako lehen arkeoak extremofiloak ziren eta muturreko inguruneetan bizi ziren, iturri termaletan eta laku gazietan, beste organismorik gabe. Molekulak detektatzeko tresnak hobetuta, ia habitat guztietan arkeoak aurkitu ziren, lurzoruan[7], ozeanoetan eta paduretan barne. Arkeoak oso ugariak dira ozeanoetan, eta planktonean dauden arkeoak planetako organismo-talde ugarienetako bat izan daitezke.

Arkeoak Lurreko biziaren zati garrantzitsua dira. Organismo guztien mikrobiotaren parte dira. Giza mikrobioman garrantzitsuak dira hestean, ahoan eta azalean[8]. Aniztasun morfologiko, metaboliko eta geografikoari esker, hainbat funtzio ekologiko bete ditzakete: karbonoa finkatzea, nitrogenoaren zikloa, konposatu organikoak berritzea eta mikrobio-komunitate sinbiotiko eta sintrofikoak mantentzea, adibidez[9].

Ez da ezagutzen arkeo patogenoen edo parasitoen adibide garbirik. Aldiz, mutualistak edo komentsalistak izan ohi dira, hala nola metanogenoak (metanoa sortzen duten anduiak), gizakien eta hausnarkarien traktu gastrointestinalean bizi direnak, non kopuru handiak digestioa errazten baitu. Metanogenoak biogasa ekoizteko eta hondakin-urak tratatzeko ere erabiltzen dira, eta bioteknologiak tenperatura altuak eta disolbatzaile organikoak jasan ditzaketen arkeo extremofiloen entzimak ustiatzen ditu.

Historia

Kontzeptuaren sorrera

Arkeobakterioak gune termaletan aurkitu zituzten lehenengoz, adibidez Yellowstone Parke Nazionalean dagoen Iturri Prismatiko Handian.

XX. mendearen zati handi batean, prokariotak organismo-talde bakartzat hartu ziren, eta beren biokimikaren, morfologiaren eta metabolismoaren arabera sailkatu ziren. Mikroorganismoak sailkatzeko, haien zelula-hormen egiturak, formak eta kontsumitzen dituzten substantziak hartu zituzten oinarri mikrobiologoek[10]. 1965ean, Emile Zuckerkandlek eta Linus Paulingek[11] prokariotetako geneen sekuentziak erabiltzea proposatu zuten, haien ahaidetasuna jakiteko. Ikuspegi filogenetiko hori da gaur egun erabiltzen den metodo nagusia[12].

1977an, Carl Woesek eta George E. Foxek lehen aldiz sailkatu zituzten arkeak eta bakterioak, RNA erribosomikoaren (rRNA) geneetan oinarrituta[13]. (Garai hartan metanogenoak baino ez ziren ezagutzen). Talde horiei Urkingdom Archaebacteria eta Eubacteria deitu zieten, baina beste ikertzaile batzuek erresuma edo azpierresuma gisa tratatu zituzten. Woesek eta Foxek lehen frogak aurkeztu zituzten, hots, arkeobakterioek "ondorengotza-lerro" independentea osatzen dutela: 1. Zelula-hormetan peptidoglikanorik ez izatea, 2. ezohiko bi koentzima, 3. RNA erribosomikoaren 16S genearen sekuentziazioaren emaitzak. Alde hori azpimarratzeko, Woese, Otto Kandler eta Mark Wheelisek geroago proposatu zuten organismoak hiru domeinuen sistemarekin birsailkatzea: Eukarya, Bacteria eta Archaea[14]. Gaur egun, Woesear iraultza deitzen zaio[15].

Archaea hitza antzinako grezierako ἀρχαῖα hitzetik dator, eta "gauza zaharrak" esan nahi du; izan ere, Archaea domeinuko lehen ordezkariak metanogenoak ziren, eta haien metabolismoak Lurraren hasierako atmosfera eta organismoen antzinatasuna islatzen zituen, baina habitat berriak aztertu ahala, organismo gehiago aurkitu ziren. Mikrobio halofiloak[16] eta muturreko hipertermotofiloak[17] ere Archaean sartu ziren. Denbora luzez, muturreko habitatetan soilik zeuden arkeoak, hala nola ur termaletan eta laku gazietan, baina XX. mendearen amaieran arkeoak ere identifikatu ziren muturrekoak ez ziren inguruneetan. Gaur egun, jakina da naturan oparo banatutako organismo-multzo zabal eta askotarikoa osatzen dutela[18]. Arkeoen garrantzia eta nonahikotasuna berriro hautemateko, polimerasaren kate-erreakzioa (PCR) erabili zen, prokariotak detektatzeko, ingurumeneko laginetan (ura edo lurzorua, esaterako), gene erribosomikoak biderkatuz. Horri esker, laborategian landu ez diren organismoak hauteman eta identifika daitezke[19][20].

Sailkapena

ARMAN taldea 2000ko hamarkadan meatzetako drainatze azidoan aurkitu zen.

Arkeoen eta, oro har, prokarioten sailkapena bilakaera azkarreko eta polemikoko eremua da. Gaur egungo sailkapen-sistemen helburua da ezaugarri estrukturalak eta arbaso komunak dituzten organismo-multzoetan antolatzea arkeoak[21]. Sailkapen horiek, neurri handi batean, RNA erribosomikoaren gene-sekuentziaren erabileran oinarritzen dira, organismoen arteko erlazioak ezagutarazteko (filogenetika molekularra)[22]. Kultibatu daitezkeen eta ondo ikertutako arkea espezie gehienak bi filum nagusi hauetakoak dira: "Euryarchaeota" eta "Thermoproteota" (lehen Crenarchaeota)[23]. Beste talde batzuk sortu dira behin-behinekoz, hala nola Nanoarchaeum equitans espezie berezia, 2003an aurkitu zena eta bere filum propioa duena, "Nanoarchaeota". Beste filum bat ere proposatu da, "Korarchaeota". Ohikoak ez diren espezie termofiloen talde txiki bat du, bi filum nagusien ezaugarriak partekatzen dituztenak, baina lotura estuagoa du Thermoproteotarekin[24][25]. Antzemandako beste arkea espezie batzuk talde horietako batzuekin bakarrik daude lotuta, hala nola Archaeal Richmond Mine acidophilic nanoorganisms edo ARMAN, Micrarchaeota eta Parvarchachaeota barnean dituen nanoorganismo azidofiloak. 2006an aurkitu ziren[26], eta horietako batzuk ezagutzen diren organismo txikienak dira[27].

2011n proposatu zen TACK superfiloak, Thaumarchaeota (orain Nitrososphaerota), "Aigarchaeota", Crenarchaeota (orain Thermoproteota) eta "Korarchaeota", eukarioten jatorriarekin zerikusia zuela[28]. 2017an proposatu zen Asgard superfiloa, berriki aurkitu eta bataiatua, lotura estuagoa zuela jatorrizko eukariotarekin, eta TACKen talde ahizpa bat zela[29].

2013an, DPANN superfiloa proposatu zen, "Nanoarchaeota", "Nanohaloarchaeota", "Archaeal Richmond Mine acidophilic nanoorganisms" (ARMAN, "Mikrarchaeota" eta "Parvarchaeota") eta antzeko beste arkeo batzuk biltzeko. Arkeo-superfilo horrek gutxienez 10 lerro desberdin hartzen ditu, eta tamaina oso txikiko zelula eta genomak eta ahalmen metaboliko mugatuak dituzten organismoak hartzen ditu. Beraz, DPANNko kide asko beste organismo batzuekiko elkarrekintza sinbiotikoen mende egon daitezke nahitaez, baita parasito berriak ere. Hala ere, beste azterketa filogenetiko batzuetan ikusi zen DPANN ez dela talde monofiletikoa, eta adar luzeen erakarpenaren ondorioz taldekatu zirela horrela. Horrek aditzera ematen du leinu horiek guztiak "Euryarchaeota"koak direla[30][31].

Kladograma

Tom A. Williams et al. (2017)[32] eta Castelle & Banfield (2018)ren arabera[33], eta GTDB 08-RS214ren arabera (2023ko apirila)[34][35]:

Tom A. Williams et al. 2017[32] eta Castelle & Banfield 2018[33] 08-RS214 (2023ko apirilaren 28)[34][35]
Archaea
DPANN

"Altarchaeales"

"Diapherotrites"

"Micrarchaeota"

"Aenigmarchaeota"

"Nanohaloarchaeota"

"Nanoarchaeota"

"Pavarchaeota"

"Mamarchaeota"

"Woesarchaeota"

"Pacearchaeota"

"Euryarchaeota"

Thermococci

Pyrococci

Methanococci

Methanobacteria

Methanopyri

Archaeoglobi

Methanocellales

Methanosarcinales

Methanomicrobiales

Halobacteria

Thermoplasmatales

Methanomassiliicoccales

Aciduliprofundum boonei

Thermoplasma volcanium

"Proteoarchaeota"
TACK

"Korarchaeota"

Thermoproteota

"Aigarchaeota"

"Geoarchaeota"

Nitrososphaerota

"Bathyarchaeota"

"Eukaryomorpha"
Asgard

"Odinarchaeota"

"Thorarchaeota"

"Lokiarchaeota"

"Helarchaeota"[36]

"Heimdallarchaeota"

(+α-Proteobacteria)

Eukaryota

Archaea

"Undinarchaeota"

"Huberarchaeaota"

"Aenigmarchaeota"

"Nanohalarchaeota"

"Nanoarchaeota"

"Altarchaeota"

"Iainarchaeota"

"Micrarchaeota"

"Hadarchaeota"

Methanobacteriota_B

Thermococci

"Methanomada"

"Hydrothermarchaeota"

"Methanobacteriota"

Methanopyri

Methanococci

Methanobacteria

"Neoeuryarchaeota"
"Thermoplasmatota"

"Izemarchaea" (MBG-D, E2)

"Poseidoniia" (MGII & MGIII)

Thermoplasmata

"Halobacteriota"

Archaeoglobia

"Methanoliparia"

"Syntropharchaeia"

"Methanocellia"

"Methanosarcinia"

Methanosarcinia_A

Methanomicrobia

Methanonatronarchaeia

Halobacteria

"Proteoarchaeota"
"Asgardaeota"

"Sifarchaeia"

"Wukongarchaeia"

"Heimdallarchaeia" (inc. Eukaryota)

"Jordarchaeia"

"Baldrarchaeia"

"Thorarchaeia" (MBG-B)

"Odinarchaeia" (LCB_4)

"Hermodarchaeia"

"Lokiarchaeia"

Thermoproteota

"Korarchaeia"

"Bathyarchaeia"

Nitrososphaeria_A

Nitrososphaeria

"Sulfobacteria"

"Methanomethylicia"

"Thermoproteia"

"Sulfolobia"

Espezie kontzeptua

Arkeoak espezieetan sailkatzea ere eztabaidagarria da. Ernst Mayrrek honela definitu zuen espezie bat: elkarrekin gurutzatzen diren eta ugalkortasunez bakartuta dauden organismoen taldea, baina horrek ez du ezertarako balio, arkeoak asexualki baino ez baitira ugaltzen[37].

Arkeoek geneen transferentzia horizontal handia erakusten dute lerroen artean. Ikertzaile batzuek iradokitzen dute indibiduoak antzeko populazioetan taldeka daitezkeela, oso antzekoak diren genometan, eta geneen transferentzia ezohikoa dela harreman gutxiagoko genomak dituzten zeluletara/zeluletatik, hala nola Ferroplasma generoan[38]. Bestalde, Halorubrumi buruzko azterketetan, lotura txikiagoa duten populazioekiko/horietatik egindako transferentzia genetiko esanguratsua ikusi zen, eta horrek irizpidearen aplikagarritasuna mugatzen du[39]. Ikertzaile batzuek galdetzen dute ea espezie izendapen horiek esanahi praktikoa duten[40].

Arkeoen dibertsitate genetikoari buruzko gaur egungo ezagutzak zatikatuak dira, eta, beraz, espezie-kopurua ezin da zehatz-mehatz zenbatetsi. Filum-kopuruaren zenbatespenak 18 eta 23 bitartekoak dira, eta horietatik 8k bakarrik dituzte zuzenean landu eta aztertu diren ordezkariak. Talde hipotetiko horietako asko rRNA sekuentzia bakar baten bidez ezagutzen dira, eta horrek adierazten du organismo horien arteko aniztasuna iluna dela oraindik[41]. Bakterioek kultibatu gabeko mikrobio asko ere badituzte, eta mikrobio horiek antzeko ondorioak dituzte karakterizatzeko[42].

Filumak

Filum baliagarriak

Kode Bakteriologikoaren arabera argitaratu diren filum baliagarriak hauek dira[43]:

Hautagaiak

Honako filum hauek proposatu dira, baina ez dira oraindik Kode Bakteriologikoaren arabera modu egokian argitaratu. Horietako batzuek Candidatus izaera dute:

Jatorria eta eboluzioa

Lurraren adina 4.540 milioi urte ingurukoa da[44][45][46]. Froga zientifikoen arabera, bizia duela 3.500 milioi urte hasi zen Lurrean[47][48]. Lurreko lehenengo biziaren frogak hauek dira: Groenlandiako mendebaldean[49] aurkitutako 3.700 milioi urteko arroka metasedimentarioetan biogenikotzat jotako grafitoa eta Australiako mendebaldean aurkitutako 3.480 milioi urteko hareharrietan aurkitutako mikrobio-esteren fosilak[50]. 2015ean, Mendebaldeko Australian 4.100 milioi urteko arroketan aurkitu ziren materia biotikoaren hondarrak[51].

Nahiz eta zelula prokariotoetako fosil probableak duela 3.500 milioi urtekoak izan, prokariota gehienek ez dute morfologia bereizgarririk, eta forma fosilak ezin dira erabili arkeo gisa identifikatzeko[52]. Aldiz, lipido bakarreko fosil kimikoak informazio gehiago ematen dute, konposatu horiek ez baitira beste organismo batzuetan gertatzen[53]. Argitalpen batzuen arabera, duela 2.700 milioi urteko eskistoetan arkea- edo eukariota-lipidoen hondakinak daude[54], nahiz eta datu horiek zalantzan jarri diren ordutik[55]. Groenlandiako mendebaldeko arroka are zaharragoetan ere hauteman dira lipido horiek. Mota horretako hondakin zaharrenak Isuako barrutikoak dira, Lurreko sedimentu zaharrenak barne, duela 3.800 milioi urte eratuak[56]. Arkeen leinua Lurreko zaharrena izan daiteke[57].

Woesek bakterioek, arkeoek eta eukariotoek organismoen antzinako kolonia batetik goiz aldendu ziren ondorengotza-lerro bereiziak adierazten dituztela argudiatu zuen[58][59]. Aukera bat da bereizte hori zelulen eboluzioaren aurretik gertatzea[60], ohiko zelula-mintz baten gabeziak murrizketarik gabeko geneen transferentzia horizontala ahalbidetzen zuenean, eta hiru domeinuetako arbaso komunak gene-azpimultzo espezifikoak finkatzearen ondorioz sortzea. Baliteke bakterioen eta arkeoen azken arbaso komuna termofiloa izatea, eta horrek aukera ematen du tenperatura baxuenak "muturreko inguruneak" izateko arkeoentzat, eta ingurune hotzenetan bizi diren organismoak geroago agertzeko[61]. Arkeoak eta bakterioak eukariotoekin baino ahaidetasun handiagorik ez dutenez, prokariota terminoak haien arteko antzekotasun faltsua adieraz dezake[62]. Hala ere, askotan, antzekotasun estrukturalak eta funtzionalak izaten dira leinuen artean, antzinako ezaugarri partekatuen edo konbergentzia ebolutiboaren ondorioz. Antzekotasun horiei gradu esaten zaie, eta prokariotak bizi-gradutzat hartzen dira, zenbait ezaugarri bereizgarri dituztelako, hala nola, mintzei lotutako organulurik eza.

Beste domeinu batzuekin alderaketa

Taula honek hiru domeinuen arteko ezaugarriak alderatzen ditu, berdintasunak eta aldeak argiago ikus daitezen[63].

Ezaugarria Archaea Bacteria Eukaryota
Zelula mintza Eterrekin-lotutako lipidoak Esterrekin-lotutako lipidoak Esterrekin-lotutako lipidoak
Zelula horma Glukoproteinaa, edo S-geruza; oso gutxitan pseudopeptiglikanoa Peptidoglikanoa, S-geruza, edo hormarik ez Hainbat egitura
Gene egitura Kromosoma zirkularrak, Eukaryotaren itzulpen eta transkripzio antzekoa Kromosoma zirkularrak, itzulpen eta transkripzio bakuna Kromosoma lineal ugari, baina itzulpen eta transkripzioa Archaearen antzekoa
Zelularen barne egitura Mintzak mugatu gabeko organulorik[64] edo nukleorik Mintzak mugatu gabeko organulu eta nukleorik Mintzek mugatutako organulu eta nukleoa.
Metabolismoa[65] Asko, diazotrofia barne, eta metanogenesia arkeek bakarrik egin dezakete Asko, fotosintesia, arnasketa aerobikoa eta arnasketa anaerobikoa, hartzidura, diazotrofia eta autotrofia barne Fotosintesia, arnasketa zelularra eta hartzidura; diazotrofiarik ez
Ugalketa Ugalketa asexuala eta geneen transferentzia horizontala Ugalketa asexuala eta geneen transferentzia horizontala Ugalketa asexuala eta sexu ugalketa.
Proteinen sintesiaren iniziazioa Metionina Formilmetionina Metionina
RNA polimerasa Bat Bat Asko
EF-2/EF-G Difteriaren toxinarekiko sentikorra Difteriaren toxinari erresistentea Difteriaren toxinarekiko sentikorra

Arkeoak hirugarren domeinu batean banatu ziren, RNA erribosomikoaren egituran alde handiak zeudelako. rRNA 16S molekula partikularra funtsezkoa da organismo guztietan proteinak sortzeko. Funtzio hori bizitzarako hain funtsezkoa denez, rRNA 16S-an mutazioak dituzten organismoek bizitzeko aukera gutxi dute, eta horrek egonkortasun handia dakar (baina ez erabatekoa) polinukleotido horren egituran, belaunaldiz belaunaldi. 16S rRNA organismo bakoitzaren berariazko aldaketak erakusteko bezain handia da, baina azkar alderatu ahal izateko bezain txikia. 1977an, organismoen sekuentzia genetikoak aztertzen zituen mikrobiologo batek (Carl Woese) beste konparazio-metodo bat garatu zuen: RNA zatitu, eta beste organismo batzuen zatiekin alderatu. Espezieen arteko patroiak zenbat eta antzekoagoak izan, orduan eta ahaidetasun handiagoa dute[66].

Woesek rRNA konparatzeko metodo berria erabili zuen hainbat organismo sailkatzeko eta kontrastatzeko. Hainbat espezie alderatu zituen, eta edozein prokariota edo eukariota ezagunek ez bezalako RNA bat zuen metanogeno-talde bat aurkitu zuen[67]. Metanogeno horiek beste organismo batzuk baino askoz ere antzekoagoak ziren, eta, horren ondorioz, Woesek arkeoen domeinu berria proposatu zuen. Esperimentuek erakutsi zuten arkeoak eukariotoen antz handiagoa zutela prokariotena baino, nahiz eta haien egitura prokariotena baino handiagoa izan. Ondorioz, Archaeak eta Eukaryak Eukarya eta Bacteria baino arbaso komun berriago bat partekatzen zuten. Bakteria eta arbaso komun horren arteko zatiketaren ondoren garatu zen nukleoa[68].

Arkeoen propietate esklusibo bat da eterrarekin lotutako lipidoen erabilera ugaria beren zelula-mintzean. Eterreko loturak bakterioen eta eukarioten lotura esterrak baino egonkorragoak dira kimikoki, eta horrek lagundu dezake arkeo asko gai izaten zelula-mintzak presio handien eraginpean jartzen dituzten muturreko inguruneetan bizirik irauteko, hala nola beroan eta gazitasunean. Arkeoetako genomen azterketa konparatiboak ere hainbat kontserbatutako sinadura indel eta proteina molekular identifikatu ditu, eta horiek arkeo guztietan edo arkeo talde nagusietan baino ez dira agertzen[69][70][71]. Beste organismoren batean ez dagoen arkeoen beste ezaugarri bat metanogenesia da (metanoaren ekoizpen metabolikoa). Arkeo metanogenikoek funtsezko zeregina dute ekosistemetan, metanoaren oxidaziotik energia lortzen duten organismoak dauden lekuetan. Organismo horietako asko bakterioak dira, metano-iturri garrantzitsua izan ohi baitira ingurune horietan, eta eragile primarioak izan daitezke. Metanogenoek ere funtsezko zeregina dute karbonoaren zikloan, karbono organikoa metanoan deskonposatzen baitute, eta hori ere berotegi-efektuko gas nagusietako bat da[72].

Bakterioen eta arkeoen egitura biokimikoan dagoen desberdintasun hori eboluzio-prozesuen bidez azaldu dute ikertzaileek. Teorizatzen da bi domeinuak ur sakonetako iturri hidrotermal alkalinoetan sortu zirela. Gutxienez bitan, mikrobioek lipidoen biosintesia eta zelula-paretaren biokimika garatu zituzten. Azken arbaso komun unibertsala bizitza librerik gabeko organismoa izan zela iradoki da[73]. Baliteke mintz iragazkorra izatea, kate bakuneko bakterio-anfifiloz (gantz-azidoak) osatua, arkeoen kate bakuneko anfifiloak barne (isoprenoideak). Horiek gantz-azidoen mintzak egonkortu egiten dituzte itsasoko uretan; propietate horrek bakterioen eta arkeoen mintzen dibergentzia bultza dezake, "ondoren fosfolipidoen biosintesiarekin, eta, horren ondorioz, G1P eta G3P buru-taldeak sortu ziren, arkeo eta bakterio bakarrak, hurrenez hurren". Hala bada, mintzezko isoprenoideek emandako propietateek lipidoen banaketa bizitzaren jatorrian kokatzen dute"[74].

Bakterioekin harremana

EuryarchaeotaNanoarchaeotaThermoproteotaProtozoaAlgaLandareOnddo lirdingatsuAnimaliaOnddoBakterio gram-positiboChlamydiotaChloroflexotaActinomycetotaPlanctomycetotaSpirochaetotaFusobacteriotaCyanobacteriaThermophilesAcidobacteriotaPseudomonadota

Hiru domeinuen arteko harremanak funtsezkoak dira biziaren jatorria ulertzeko. Bide metaboliko gehienak, organismo baten gene gehienen objektu direnak, Archaean eta Bacterian komunak dira; genomaren adierazpenean parte hartzen duten gene gehienak, berriz, Archaeen eta Eukaryen komunak dira[75]. Prokariotetan, arkeoen zelula-egitura bakterio gram-positiboen oso antzekoa da, neurri handi batean biek geruza bikoitz lipidiko bakarra[76] dutelako eta osaera kimiko aldakorreko sakulu lodi bat (exoeskeleto bat) izaten dutelako[77]. Zenbait zuhaitz filogenetikotan, homologo prokariotoen geneen/proteinen sekuentzia desberdinetan oinarrituta, arkeoen homologoek lotura estuagoa dute bakterio gram-positiboekin. Arkepek eta bakterio gram-positiboek zenbait proteina garrantzitsutan kontserbatutako indelak ere partekatzen dituzte, hala nola Hsp70 eta glutamina sintetasa I[78]; baina gene horien filogenia domeinuen arteko gene-transferentziaren adierazgarri gisa interpretatu zen[79][80], eta baliteke ez islatzea organismoen arteko erlazioa[81].

Proposatu da arkeoak bakterio gram-positiboetatik abiatuta eboluzionatu zutela, antibiotikoek eragindako hautespen-presioaren ondorioz[76][78][82]. Ideia babesten du arkeoak bakterio gram-positiboek bereziki eragindako antibiotiko mota askorekiko erresistenteak direla ikusteak, eta antibiotiko horiek nagusiki bakterioak eta arkeoak bereizten dituzten geneetan eragiten dutela[76][78]. Proposamena da antibiotiko gram-positiboek sortutako erresistentziarekiko presio selektiboa nahikoa izan zela, azkenean, antibiotikoen diana-gene askotan aldaketa handiak eragiteko, eta andui horiek egungo Archaearen arbasoak direla[83]. Hautespen antibiotikoari edo lehiarako beste edozein presiori erantzunez, arkeoek izan duten eboluzioak ere azal lezake muturreko inguruneetara (tenperatura altuetara edo azidotasunera) nola egokitzen diren, antibiotikoak sortzen dituzten organismoetatik ihes egiteko nitxo hutsak bilatzearen ondorioz; Cavalier-Smithek antzeko iradokizuna egin zuen[84]. Proteinen egiturazko erlazioak ikertzen dituzten beste lan batzuek[85] eta bakterio gram-positiboak prokariotetan adarkatutako lehen leinuak izan daitezkeela iradokitzen duten ikerketek ere babesten dute proposamen hori[86].

Eukariotoekin harremana

Sakontzeko, irakurri: «Sinbiogenesi»
Sinbiogenesiaren teorian, Asgard arkeo baten eta bakterio aerobio baten fusioak eukariotoak sortu zituen, mitokondria aerobioekin; bigarren fusio batek kloroplastoak gehitu zituen eta landare berdeak sortu zituen[87].

Arkeoen eta eukariotoen arteko eboluzio-harremana oraindik ez dago argi. Zelularen egituran eta funtzioan aurrerago aipatzen diren antzekotasunez gain, zuhaitz genetiko askok biak biltzen dituzte[88].

Egoera zailtzen duten faktoreen artean hainbat faktore daude, adibidez eukariotoen eta Thermoproteota filumaren arteko harremana handiagoa dela "Euryarchaeota" eta Thermoproteota filumarena baino[89]. Thermotoga maritima arkeoak hainbat bakterioren geneak ditu, akaso geneen transferentzia horizontalaren ondorioz[90]. Hipotesi estandarraren arabera, eukariotoen arbasoa oso goiz bereizi zen arkeoetatik[91][92], eta eukariotak sinbiogenesiaren, arkeo baten eta mitokondrioak sortu zituen eubakterio baten fusioaren ondorioz sortu ziren; hipotesi horrek azaltzen ditu taldeen arteko antzekotasun genetikoak. Eozitoen hipotesiaren arabera, ordea, nahiko berandu sortu ziren eukariotak arkeoetatik abiatuta[93].

Lokiarchaeum ("Lokiarchaeota" izeneko proposatutako filumekoa), Ozeano Artikoko Loki Gaztelua izeneko iturri hidrotermalean 2015ean aurkitua, ordura arte ezagutzen zen eukariotoekin lotura estuena zuen arkeoa zen. Prokarioten eta eukariotoen arteko trantsizio-organismoa deitu izan zaio[94][95]. Harrezkero, "Lokiarchaeota"ren zazpi filum-ahizpa aurkitu dira (Thorarchaeota, Odinarchaeota, Heimdallarchaeota), eta guztiek supertalde berri bat osatu dute, Asgard izenekoa[96].

Oraindik aztertzen ari dira Asgardeko kideen eta eukariotoen arteko harremanaren xehetasunak[97], baina, 2020ko urtarrilean, zientzialariek jakinarazi zuten Candidatus Prometheoarchaeum syntrophicum, Asgard arkeo mota bat, lotura izan daitekeela duela bi mila milioi urteko mikroorganismo prokarioto sinple eta eukarioto konplexuen artean[98][99][100].

Morfologia

Haloquadratum walsby arkeo karratua, bitxikeria bat formen artean.

Banakako arkeoek 0,1 mikrometro (μm) eta 15 μm arteko diametroa dute, eta hainbat formatan aurkezten dira, eskuarki esfera, hagatxo, espiral edo plaka gisa[101]. Thermoproteotaren barruan beste morfologia batzuk daude, hala nola zelula lobulatuak dituzte forma irregularrean Sulfolobusen, mikrometro erdia baino zabalera txikiagoa duten orratz moduko filamentuak Thermofilumen, eta hagaxka ia erabat angeluzuzenak Thermoproteus eta Pyrobaculumen. Haloquadratum generoko arkeoak, hala nola Haloquadratum walsbyi, urmael hipergazietan bizi diren espezie lau eta karratuak dira[102]. Forma ezohiko horiek, seguru asko, zelula-hormei eta zitoeskeleto prokariotoari esker mantentzen dira. Arkeoetan beste organismo batzuetako zitoeskeletoaren osagaiekin lotutako proteinak daude[103], eta haien zeluletan harizpiak sortzen dira[104], baina, beste organismo batzuetan ez bezala, zelula-egitura horiek ez dira ondo ezagutzen[105]. Thermoplasman eta Ferroplasman, zelula-paretarik ez dagoenez, zelulek forma irregularrak dituzte eta ameben antzekoak dira[106].

Espezie batzuek 200 μm arteko zelula-agregatuak edo -harizpiak eratzen dituzte[107]. Organismo horiek biofilmetan garrantzitsuak dira[108]. Bereziki, Thermococcus coalescens zelulen agregatuak kultiboetan fusionatzen dira eta banakako zelula erraldoiak sortzen dituzte[109]. Pyrodictium generoko arkeoek zelula anitzeko kolonia oso landua sortzen dute. Kolonia horrek hodi huts luze eta finen multzoak ditu, zelulen azaletik irten eta zuhaixka baten antzeko aglomerazio trinko bat eratuz lotzen dituztenak[110]. Kanula horien funtzioa ez dago argi, baina baliteke inguruko zelulekin elikagaiak trukatu edo komunikatzea[111]. Badira kolonia multiespezifikoak, hala nola 2001ean Alemaniako urtegi batean aurkitutako "perla-lepokoaren" komunitatea. Euryarchaeota espezie berri bateko kolonia biribilak eta zurixkak 15 zentimetro luze arteko luzera izan dezaketen harizpi finetan zehar sakabanatuta daude; harizpi horiek bakterio espezie berezi batez osatuta daude[112].

Egitura eta ekintzak

Arkeoek eta bakterioek, oro har, antzeko zelula-egitura dute, baina zelularen osaerak eta antolaketak arkeoak bereizten dituzte. Bakterioek bezala, arkeoek ez dute barne-mintz eta organulurik. Bakterioak bezala, arkeoetako zelula-mintzak zelula horma batek mugatzen ditu, eta flagelo bat edo gehiago erabiliz igeri egiten dute[113]. Egiturari dagokionez, arkeoek bakterio gram-positiboen antz handiagoa dute. Gehienek mintz plasmatiko bakarra eta zelula-pareta dute, eta ez dute espazio periplasmatikorik; arau orokor horren salbuespena Ignicoccus da, mintzean lotutako besikulak dituen eta kanpoko mintz batez inguratuta dagoen periplasma bereziki handia baitu[114].

Zelula hormak eta arkaelak

Arkeo gehienek (baina ez Thermoplasmak eta Ferroplasmak) zelula-horma dute. Arkeo gehienetan, gainazaleko geruzako proteinek osatzen dute pareta, eta S geruza bat eratzen dute[115]. Zelularen kanpoaldea estaltzen duten molekula proteikoen multzo zurruna da S geruza (sare-kota bat bezala)[116]. Geruza horrek babes kimikoa eta fisikoa ematen du, eta makromolekulek zelula-mintza ukitzea eragotz dezake[117]. Bakterioek ez bezala, arkeoek ez dute peptidoglikanorik beren zelula-hormetan. Metanobakterioek badituzte zelula-paretak, pseudopeptidoglikanoa dutenak (peptidoglikano eubakterianoaren antzekoa da morfologian, funtzioan eta egitura fisikoan), baina pseudopeptidoglikanoa desberdina da egitura kimikoan[118]; ez du D-aminoazidorik eta azido N-azetilmuramikorik; azken horren ordez azido N-azetiltalosaminuronikoa erabiltzen dute[117].

Arkeoetako flageloei arkaela deritze, eta bakterio-flageloek bezala funtzionatzen dute: haien zurtoin luzeak oinarrian motor birakariek bultzatzen dituzte. Mintzean zehar protoi-gradiente batek eragiten ditu motor horiek, baina arkaelak oso desberdinak dira osaeran eta garapenean. Bi flagelo-motak arbaso desberdinetatik abiatuta garatu ziren. Bakterio-flageloak III. motako jariatze-sistemaren arbaso bera du[119][120]; arkeoetako flageloek, berriz, IV. motako bakterio-pilusetatik aurrera eboluzionatu dutela dirudi[121]. Bakterio-flageloa hutsa da eta erdiko porotik flageloaren puntaraino igotzen diren azpiunitateen bidez mihiztatzen da; araelak, berriz, oinarrian azpiunitateak gehituz sintetizatzen dira[122].

Mintzak

Mintzeko egiturak. Goian, arkeoen fosfolipido bat: 1, isopreno-kateak; 2, eter-loturak; 3, L-glizerolaren frakzioa; 4, fosfato-taldea. Erdian, bakterio edo eukarioto baten fosfolipido bat: 5, gantz-azidoen kateak; 6, ester loturak; 7, D-glizerolaren frakzioa; 8, fosfato taldea. Behean: 9, bakterio eta eukariotoen geruza bikoitz lipidikoa; 10, arkeo batzuen geruza lipidikoa.

Arkeoen mintzak gainerako talde bizidunenen oso bestelakoak dira, eta horrek frogatzen du arkeoak urrutitik baino ez daudela lotuta bakterioekin eta eukariotoekin[123]. Organismo guztietan, zelula-mintzak fosfolipido izeneko molekulez osatuta daude. Molekula horiek uretan disolbatzen den zati polar bat dute (fosfato-burua), eta disolbatzen ez den zati "koipetsu" ez-polar bat (lipido-buztana). Zati horiek glizerol-frakzio batek lotzen ditu. Uretan, fosfolipidoak elkartu egiten dira, burua uretara begira dutela, eta isatsak kontrako noranzkoan. Zelula-mintzen egitura nagusia fosfolipido horien geruza bikoitza da, geruza bikoitz lipidikoa deritzona[124].

Arkeoen fosfolipidoak ez dira ohikoak lau alderditan:

  • Glizerol-eter lipidoz osatutako mintzak dituzte; bakterioek eta eukariotoek, berriz, batez ere glizerol-ester lipidoz osatutako mintzak dituzte[125]. Bien arteko aldea da lipidoak glizerolaren frakzioarekin lotzen dituen lotura-mota; bi motak horiz ageri dira eskuineko irudian. Ester-lipidoetan, ester-lotura da; eter-lipidoetan, berriz, eter-lotura[126].
  • Arkeoen glizerol-frakzioaren estereokimika beste organismo batzuen irudi espekularra da. Glizerolaren frakzioa bi eratara ager daiteke: bata bestearen ispilu-irudiak, enantiomero deritzenak. Eskuineko esku bat ezkerreko eskularru batean erraz sartzen ez den bezala, mota bateko enantiomeroak normalean ezin dira bestearentzat egokitutako entzimek erabili edo fabrikatu. Arkeoen fosfolipidoak sn-glizerol-1-fosfatozko eskeleto baten gainean eraikitzen dira. Eskeleto hori sn-glizerol-3-fosfatoaren, bakterio eta eukariotoetan aurkitzen den eskeleto fosfolipidikoaren, enantiomero bat da. Horrek esan nahi du arkeoek erabat desberdinak diren entzimak erabiltzen dituztela fosfolipidoak sintetizatzeko, bakterioekin eta eukariotoekin alderatuta. Entzima horiek oso goiz garatu ziren biziaren historian, eta horrek adierazten du beste bi domeinuetatik goiz bereizi zirela[127].
  • Arkeoen isats lipidikoak eta beste organismo batzuenak desberdinak dira; izan ere, alboetan adarkatze ugari dituzten isoprenoide kate luzeetan oinarritzen dira, batzuetan ziklopropano edo ziklohexanozko eraztunekin[128]. Beste organismo batzuetako mintzen gantz-azidoek, aldiz, alboko adarkadurarik eta eraztunik gabeko kate zuzenak dituzte. Organismo askoren biokimikan isoprenoideek zeregin garrantzitsua duten arren, arkeoek bakarrik erabiltzen dituzte fosfolipidoak egiteko. Adarkatutako kate horiek lagungarriak izan daitezke, tenperatura altuetan, arkeoen mintzak ihesik izan ez dezan[129].
  • Arkeo batzuetan, geruza bikoitz lipidikoaren ordez geruza bakarra jartzen da. Izan ere, arkeoek bi fosfolipido-molekularen isatsak molekula bakar batean fusionatzen dituzte bi buru polarrekin (bolaanfifilo bat); fusio horren ondorioz, mintzak zurrunagoak izan daitezke eta kontrako inguruneei hobeto eusten diete[130]. Adibidez, Ferroplasmako lipidoak mota horretakoak dira, eta, beraz, organismo horrek bere habitat oso azidoan bizirik irauten du[131].

Metabolismoa

Arkeoek askotariko erreakzio kimikoak dituzte metabolismoan, eta energia-iturri asko erabiltzen dituzte. Erreakzio horiek elikadura-multzotan sailkatzen dira, energia- eta karbono-iturrien arabera. Zenbait arkeok sufrea eta amoniakoa bezalako konposatu ez-organikoetatik energia lortzen dute (kimiotrofoak dira). Horien artean daude nitrifikatzaileak, metanogenoak eta metanoaren oxidatzaile anaerobioak[132]. Erreakzio horietan, konposatu batek elektroiak pasatzen ditu beste batera (erredox erreakzio batean), eta energia askatzen du zelularen jarduerak elikatzeko. Konposatu batek elektroi-emaile gisa jarduten du, eta beste batek elektroi-hartzaile gisa. Askatutako energia adenosina-trifosfatoa (ATP) kimiosmosiaren bidez sortzeko erabiltzen da, zelula eukariotoen mitokondrioan gertatzen den oinarrizko prozesu bera[133].

Beste arkeo-talde batzuek eguzki-argia erabiltzen dute energia-iturri gisa (fototrofoak dira), baina oxigenoa sortzen duen fotosintesia ez da gertatzen organismo horietan. Bizimodu guztiek oinarrizko ibilbide metaboliko asko partekatzen dituzte; adibidez, arkeoek glukolisi-forma aldatu bat (Entner-Doudoroff ibilbidea) eta azido zitrikoaren ziklo oso edo partzial bat erabiltzen dituzte[134]. Beste organismo batzuekiko antzekotasun horiek, seguru asko, biziaren historian izan dituzten jatorri goiztiarrak eta eraginkortasun maila handia islatzen dituzte[135].

Nutritional types in archaeal metabolism
Nutritional type Source of energy Source of carbon Examples
 Phototrophs   Sunlight   Organic compounds   Halobacterium 
 Lithotrophs  Inorganic compounds  Organic compounds or carbon fixation  Ferroglobus, Methanobacteria or Pyrolobus 
 Organotrophs  Organic compounds   Organic compounds or carbon fixation   Pyrococcus, Sulfolobus or Methanosarcinales

Genetika

Geneen transferentzia eta elkartrukea

Arkeoen birusak

Ugalketa

Portaera

Komunikazioa

Ekologia

Habitata

Ziklo biokimikoetan duten papera

Beste organismo batzuekin elkarrekintzak

Sakontzeko, irakurri: «Interakzio biologiko»

Mutualismoa

Komentsalismoa

Parasitismoa

Garrantzia industrian

Sakontzeko, irakurri: «Bioteknologia»

Oharrak

  1. Euskaraz gutxitan erabili da terminoa, arkeobakterio erabili delako testu gehienetan. Testuetan ikusten denean Arkea ere ager liteke, baina Arkeo terminoa hobesten da[3]

Erreferentziak

  1. (Ingelesez) Woese, C R; Kandler, O; Wheelis, M L. (1990-06). «Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya.» Proceedings of the National Academy of Sciences 87 (12): 4576–4579.  doi:10.1073/pnas.87.12.4576. ISSN 0027-8424. PMID 2112744. PMC PMC54159. (Noiz kontsultatua: 2024-01-08).
  2. Petitjean, Céline; Deschamps, Philippe; López-García, Purificación; Moreira, David. (2014-12-19). «Rooting the Domain Archaea by Phylogenomic Analysis Supports the Foundation of the New Kingdom Proteoarchaeota» Genome Biology and Evolution 7 (1): 191–204.  doi:10.1093/gbe/evu274. ISSN 1759-6653. PMID 25527841. PMC PMC4316627. (Noiz kontsultatua: 2024-01-08).
  3. «Arkeo» Euskalterm (Noiz kontsultatua: 2024-01-10).
  4. (Ingelesez) Pace, Norman R.. (2006-05). «Time for a change» Nature 441 (7091): 289–289.  doi:10.1038/441289a. ISSN 1476-4687. (Noiz kontsultatua: 2024-01-08).
  5. (Ingelesez) Stoeckenius, W. (1981-10). «Walsby's square bacterium: fine structure of an orthogonal procaryote» Journal of Bacteriology 148 (1): 352–360.  doi:10.1128/jb.148.1.352-360.1981. ISSN 0021-9193. PMID 7287626. PMC PMC216199. (Noiz kontsultatua: 2024-01-09).
  6. (Ingelesez) «Archaea» Basic Biology (Noiz kontsultatua: 2024-01-09).
  7. (Ingelesez) Chow, Chanelle; Padda, Kiran Preet; Puri, Akshit; Chanway, Chris P.. (2022-09-20). «An Archaic Approach to a Modern Issue: Endophytic Archaea for Sustainable Agriculture» Current Microbiology 79 (11): 322.  doi:10.1007/s00284-022-03016-y. ISSN 1432-0991. (Noiz kontsultatua: 2024-01-09).
  8. (Ingelesez) Bang, Corinna; Schmitz, Ruth A.. (2015-09). Narberhaus, Franz ed. «Archaea associated with human surfaces: not to be underestimated» FEMS Microbiology Reviews 39 (5): 631–648.  doi:10.1093/femsre/fuv010. ISSN 1574-6976. (Noiz kontsultatua: 2024-01-09).
  9. Moissl-Eichinger, Christine; Pausan, Manuela; Taffner, Julian; Berg, Gabriele; Bang, Corinna; Schmitz, Ruth A.. (2018-01). «Archaea Are Interactive Components of Complex Microbiomes» Trends in Microbiology 26 (1): 70–85.  doi:10.1016/j.tim.2017.07.004. ISSN 0966-842X. (Noiz kontsultatua: 2024-01-09).
  10. (Ingelesez) Staley, James T. (2006-11-29). «The bacterial species dilemma and the genomic–phylogenetic species concept» Philosophical Transactions of the Royal Society B: Biological Sciences 361 (1475): 1899–1909.  doi:10.1098/rstb.2006.1914. ISSN 0962-8436. PMID 17062409. PMC PMC1857736. (Noiz kontsultatua: 2024-01-09).
  11. Zuckerkandl, Emile; Pauling, Linus. (1965-03-01). «Molecules as documents of evolutionary history» Journal of Theoretical Biology 8 (2): 357–366.  doi:10.1016/0022-5193(65)90083-4. ISSN 0022-5193. (Noiz kontsultatua: 2024-01-09).
  12. (Ingelesez) Parks, Donovan H.; Chuvochina, Maria; Waite, David W.; Rinke, Christian; Skarshewski, Adam; Chaumeil, Pierre-Alain; Hugenholtz, Philip. (2018-11). «A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life» Nature Biotechnology 36 (10): 996–1004.  doi:10.1038/nbt.4229. ISSN 1546-1696. (Noiz kontsultatua: 2024-01-09).
  13. (Ingelesez) Woese, Carl R.; Fox, George E.. (1977-11). «Phylogenetic structure of the prokaryotic domain: The primary kingdoms» Proceedings of the National Academy of Sciences 74 (11): 5088–5090.  doi:10.1073/pnas.74.11.5088. ISSN 0027-8424. PMID 270744. PMC PMC432104. (Noiz kontsultatua: 2024-01-09).
  14. (Ingelesez) Woese, C R; Kandler, O; Wheelis, M L. (1990-06). «Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya.» Proceedings of the National Academy of Sciences 87 (12): 4576–4579.  doi:10.1073/pnas.87.12.4576. ISSN 0027-8424. PMID 2112744. PMC PMC54159. (Noiz kontsultatua: 2024-01-09).
  15. (Ingelesez) Sapp, Jan. (2009-07-24). The New Foundations of Evolution: On the Tree of Life. Oxford University Press ISBN 978-0-19-988917-4. (Noiz kontsultatua: 2024-01-09).
  16. (Ingelesez) Magrum, Linda J.; Luehrsen, Kenneth R.; Woese, Carl R.. (1978-03-01). «Are extreme halophiles actually “bacteria”?» Journal of Molecular Evolution 11 (1): 1–8.  doi:10.1007/BF01768019. ISSN 1432-1432. (Noiz kontsultatua: 2024-01-09).
  17. Stetter, K. O.. (1996). «Hyperthermophiles in the history of life» Ciba Foundation Symposium 202: 1–10; discussion 11–18. ISSN 0300-5208. PMID 9243007. (Noiz kontsultatua: 2024-01-09).
  18. DeLong, Edward F. (1998-12-01). «Everything in moderation: Archaea as ‘non-extremophiles’» Current Opinion in Genetics & Development 8 (6): 649–654.  doi:10.1016/S0959-437X(98)80032-4. ISSN 0959-437X. (Noiz kontsultatua: 2024-01-09).
  19. (Ingelesez) Theron, J.; Cloete, T. E.. (2000-01). «Molecular Techniques for Determining Microbial Diversity and Community Structure in Natural Environments» Critical Reviews in Microbiology 26 (1): 37–57.  doi:10.1080/10408410091154174. ISSN 1040-841X. (Noiz kontsultatua: 2024-01-09).
  20. Schmidt, Thomas M.. (2006-09). «The maturing of microbial ecology» International Microbiology: The Official Journal of the Spanish Society for Microbiology 9 (3): 217–223. ISSN 1139-6709. PMID 17061212. (Noiz kontsultatua: 2024-01-09).
  21. (Ingelesez) Gevers, Dirk; Dawyndt, Peter; Vandamme, Peter; Willems, Anne; Vancanneyt, Marc; Swings, Jean; De Vos, Paul. (2006-11-29). «Stepping stones towards a new prokaryotic taxonomy» Philosophical Transactions of the Royal Society B: Biological Sciences 361 (1475): 1911–1916.  doi:10.1098/rstb.2006.1915. ISSN 0962-8436. PMID 17062410. PMC PMC1764938. (Noiz kontsultatua: 2024-01-10).
  22. Robertson, Charles E; Harris, J Kirk; Spear, John R; Pace, Norman R. (2005-12-01). «Phylogenetic diversity and ecology of environmental Archaea» Current Opinion in Microbiology 8 (6): 638–642.  doi:10.1016/j.mib.2005.10.003. ISSN 1369-5274. (Noiz kontsultatua: 2024-01-10).
  23. Huber, Harald; Hohn, Michael J.; Rachel, Reinhard; Fuchs, Tanja; Wimmer, Verena C.; Stetter, Karl O.. (2002-05-01). «A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont» Nature 417: 63–67.  doi:10.1038/417063a. ISSN 0028-0836. (Noiz kontsultatua: 2024-01-10).
  24. (Ingelesez) Barns, S M; Delwiche, C F; Palmer, J D; Pace, N R. (1996-08-20). «Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences.» Proceedings of the National Academy of Sciences 93 (17): 9188–9193.  doi:10.1073/pnas.93.17.9188. ISSN 0027-8424. PMID 8799176. PMC PMC38617. (Noiz kontsultatua: 2024-01-10).
  25. (Ingelesez) Elkins, James G.; Podar, Mircea; Graham, David E.; Makarova, Kira S.; Wolf, Yuri; Randau, Lennart; Hedlund, Brian P.; Brochier-Armanet, Céline et al.. (2008-06-10). «A korarchaeal genome reveals insights into the evolution of the Archaea» Proceedings of the National Academy of Sciences 105 (23): 8102–8107.  doi:10.1073/pnas.0801980105. ISSN 0027-8424. PMID 18535141. PMC PMC2430366. (Noiz kontsultatua: 2024-01-10).
  26. (Ingelesez) Baker, Brett J.; Tyson, Gene W.; Webb, Richard I.; Flanagan, Judith; Hugenholtz, Philip; Allen, Eric E.; Banfield, Jillian F.. (2006-12-22). «Lineages of Acidophilic Archaea Revealed by Community Genomic Analysis» Science 314 (5807): 1933–1935.  doi:10.1126/science.1132690. ISSN 0036-8075. (Noiz kontsultatua: 2024-01-10).
  27. (Ingelesez) Baker, Brett J.; Comolli, Luis R.; Dick, Gregory J.; Hauser, Loren J.; Hyatt, Doug; Dill, Brian D.; Land, Miriam L.; VerBerkmoes, Nathan C. et al.. (2010-05-11). «Enigmatic, ultrasmall, uncultivated Archaea» Proceedings of the National Academy of Sciences 107 (19): 8806–8811.  doi:10.1073/pnas.0914470107. ISSN 0027-8424. PMID 20421484. PMC PMC2889320. (Noiz kontsultatua: 2024-01-10).
  28. Guy, Lionel; Ettema, Thijs J.G.. (2011-12). «The archaeal ‘TACK’ superphylum and the origin of eukaryotes» Trends in Microbiology 19 (12): 580–587.  doi:10.1016/j.tim.2011.09.002. ISSN 0966-842X. (Noiz kontsultatua: 2024-01-10).
  29. (Ingelesez) Zaremba-Niedzwiedzka, Katarzyna; Caceres, Eva F.; Saw, Jimmy H.; Bäckström, Disa; Juzokaite, Lina; Vancaester, Emmelien; Seitz, Kiley W.; Anantharaman, Karthik et al.. (2017-01). «Asgard archaea illuminate the origin of eukaryotic cellular complexity» Nature 541 (7637): 353–358.  doi:10.1038/nature21031. ISSN 1476-4687. (Noiz kontsultatua: 2024-01-10).
  30. academic.oup.com (Noiz kontsultatua: 2024-01-10).
  31. (Ingelesez) Petitjean, Céline; Deschamps, Philippe; López-García, Purificación; Moreira, David. (2015-01). «Rooting the Domain Archaea by Phylogenomic Analysis Supports the Foundation of the New Kingdom Proteoarchaeota» Genome Biology and Evolution 7 (1): 191–204.  doi:10.1093/gbe/evu274. ISSN 1759-6653. PMID 25527841. PMC PMC4316627. (Noiz kontsultatua: 2024-01-10).
  32. a b (Ingelesez) Williams, Tom A.; Szöllősi, Gergely J.; Spang, Anja; Foster, Peter G.; Heaps, Sarah E.; Boussau, Bastien; Ettema, Thijs J. G.; Embley, T. Martin. (2017-06-06). «Integrative modeling of gene and genome evolution roots the archaeal tree of life» Proceedings of the National Academy of Sciences 114 (23)  doi:10.1073/pnas.1618463114. ISSN 0027-8424. PMID 28533395. PMC PMC5468678. (Noiz kontsultatua: 2024-01-10).
  33. a b Castelle, Cindy J.; Banfield, Jillian F.. (2018-03). «Major New Microbial Groups Expand Diversity and Alter our Understanding of the Tree of Life» Cell 172 (6): 1181–1197.  doi:10.1016/j.cell.2018.02.016. ISSN 0092-8674. (Noiz kontsultatua: 2024-01-10).
  34. a b (Ingelesez) «GTDB - About» gtdb.ecogenomic.org (Noiz kontsultatua: 2024-01-10).
  35. a b «GTDB - Taxon History» gtdb.ecogenomic.org (Noiz kontsultatua: 2024-01-10).
  36.  doi:10.1038/s41467-019-09364-x. PMID 31015394. Bibcode2019NatCo..10.1822S..
  37. (Ingelesez) de Queiroz, Kevin. (2005-05-03). «Ernst Mayr and the modern concept of species» Proceedings of the National Academy of Sciences 102 (suppl_1): 6600–6607.  doi:10.1073/pnas.0502030102. ISSN 0027-8424. PMID 15851674. PMC PMC1131873. (Noiz kontsultatua: 2024-01-10).
  38. academic.oup.com  doi:10.1534/genetics.107.072892. PMID 17603112. PMC PMC2013692. (Noiz kontsultatua: 2024-01-10).
  39. (Ingelesez) Papke, R. Thane; Zhaxybayeva, Olga; Feil, Edward J.; Sommerfeld, Katrin; Muise, Denise; Doolittle, W. Ford. (2007-08-28). «Searching for species in haloarchaea» Proceedings of the National Academy of Sciences 104 (35): 14092–14097.  doi:10.1073/pnas.0706358104. ISSN 0027-8424. PMID 17715057. PMC PMC1955782. (Noiz kontsultatua: 2024-01-10).
  40. (Ingelesez) Kunin, Victor; Goldovsky, Leon; Darzentas, Nikos; Ouzounis, Christos A.. (2005-07-01). «The net of life: Reconstructing the microbial phylogenetic network» Genome Research 15 (7): 954–959.  doi:10.1101/gr.3666505. ISSN 1088-9051. PMID 15965028. PMC PMC1172039. (Noiz kontsultatua: 2024-01-10).
  41. Hugenholtz, Philip. (2002-01-29). «Exploring prokaryotic diversity in the genomic era» Genome Biology 3 (2): reviews0003.1.  doi:10.1186/gb-2002-3-2-reviews0003. ISSN 1474-760X. PMID 11864374. PMC PMC139013. (Noiz kontsultatua: 2024-01-10).
  42. (Ingelesez) Rappé, Michael S.; Giovannoni, Stephen J.. (2003-10). «The Uncultured Microbial Majority» Annual Review of Microbiology 57 (1): 369–394.  doi:10.1146/annurev.micro.57.030502.090759. ISSN 0066-4227. (Noiz kontsultatua: 2024-01-10).
  43. Oren, Aharon; Garrity, George M.. (2021). «Valid publication of the names of forty-two phyla of prokaryotes» International Journal of Systematic and Evolutionary Microbiology 71 (10): 005056.  doi:10.1099/ijsem.0.005056. ISSN 1466-5034. (Noiz kontsultatua: 2024-01-10).
  44. «Geologic Time: Age of the Earth» pubs.usgs.gov (Noiz kontsultatua: 2024-01-10).
  45. (Ingelesez) crossref. «Chooser» chooser.crossref.org  doi:10.1144/gsl.sp.2001.190.01.14. (Noiz kontsultatua: 2024-01-10).
  46. Manhes, Gérard; Allègre, Claude J.; Dupré, Bernard; Hamelin, Bruno. (1980-05-01). «Lead isotope study of basic-ultrabasic layered complexes: Speculations about the age of the earth and primitive mantle characteristics» Earth and Planetary Science Letters 47 (3): 370–382.  doi:10.1016/0012-821X(80)90024-2. ISSN 0012-821X. (Noiz kontsultatua: 2024-01-10).
  47. «The Beginnings of Life on Earth » American Scientist» web.archive.org 2017-06-06 (Noiz kontsultatua: 2024-01-10).
  48. (Ingelesez) Timmer, John. (2012-09-04). «3.5 billion year old organic deposits show signs of life» Ars Technica (Noiz kontsultatua: 2024-01-10).
  49. (Ingelesez) Ohtomo, Yoko; Kakegawa, Takeshi; Ishida, Akizumi; Nagase, Toshiro; Rosing, Minik T.. (2014-01). «Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks» Nature Geoscience 7 (1): 25–28.  doi:10.1038/ngeo2025. ISSN 1752-0908. (Noiz kontsultatua: 2024-01-10).
  50. Noffke, Nora; Christian, Daniel; Wacey, David; Hazen, Robert M.. (2013-12). «Microbially Induced Sedimentary Structures Recording an Ancient Ecosystem in the ca. 3.48 Billion-Year-Old Dresser Formation, Pilbara, Western Australia» Astrobiology 13 (12): 1103–1124.  doi:10.1089/ast.2013.1030. ISSN 1531-1074. PMID 24205812. PMC PMC3870916. (Noiz kontsultatua: 2024-01-10).
  51. (Ingelesez) Bell, Elizabeth A.; Boehnke, Patrick; Harrison, T. Mark; Mao, Wendy L.. (2015-11-24). «Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon» Proceedings of the National Academy of Sciences 112 (47): 14518–14521.  doi:10.1073/pnas.1517557112. ISSN 0027-8424. PMID 26483481. PMC PMC4664351. (Noiz kontsultatua: 2024-01-10).
  52. (Ingelesez) Schopf, J. William. (2006-06-29). «Fossil evidence of Archaean life» Philosophical Transactions of the Royal Society B: Biological Sciences 361 (1470): 869–885.  doi:10.1098/rstb.2006.1834. ISSN 0962-8436. PMID 16754604. PMC PMC1578735. (Noiz kontsultatua: 2024-01-10).
  53. (Ingelesez) Chappe, B.; Albrecht, P.; Michaelis, W.. (1982-07-02). «Polar Lipids of Archaebacteria in Sediments and Petroleums» Science 217 (4554): 65–66.  doi:10.1126/science.217.4554.65. ISSN 0036-8075. (Noiz kontsultatua: 2024-01-10).
  54. (Ingelesez) Brocks, Jochen J.; Logan, Graham A.; Buick, Roger; Summons, Roger E.. (1999-08-13). «Archean Molecular Fossils and the Early Rise of Eukaryotes» Science 285 (5430): 1033–1036.  doi:10.1126/science.285.5430.1033. ISSN 0036-8075. (Noiz kontsultatua: 2024-01-10).
  55. (Ingelesez) Rasmussen, Birger; Fletcher, Ian R.; Brocks, Jochen J.; Kilburn, Matt R.. (2008-10). «Reassessing the first appearance of eukaryotes and cyanobacteria» Nature 455 (7216): 1101–1104.  doi:10.1038/nature07381. ISSN 1476-4687. (Noiz kontsultatua: 2024-01-10).
  56. Hahn, Jürgen; Haug, Pat. (1986-05-01). «Traces of archaebacteria in ancient sediments» Systematic and Applied Microbiology 7 (2): 178–183.  doi:10.1016/S0723-2020(86)80002-9. ISSN 0723-2020. (Noiz kontsultatua: 2024-01-10).
  57. (Ingelesez) Wang, Minglei; Yafremava, Liudmila S.; Caetano-Anollés, Derek; Mittenthal, Jay E.; Caetano-Anollés, Gustavo. (2007-11-01). «Reductive evolution of architectural repertoires in proteomes and the birth of the tripartite world» Genome Research 17 (11): 1572–1585.  doi:10.1101/gr.6454307. ISSN 1088-9051. PMID 17908824. PMC PMC2045140. (Noiz kontsultatua: 2024-01-10).
  58. (Ingelesez) Woese, Carl R.; Gupta, Ramesh. (1981-01). «Are archaebacteria merely derived ‘prokaryotes’?» Nature 289 (5793): 95–96.  doi:10.1038/289095a0. ISSN 1476-4687. (Noiz kontsultatua: 2024-01-10).
  59. (Ingelesez) Woese, Carl. (1998-06-09). «The universal ancestor» Proceedings of the National Academy of Sciences 95 (12): 6854–6859.  doi:10.1073/pnas.95.12.6854. ISSN 0027-8424. (Noiz kontsultatua: 2024-01-10).
  60. (Ingelesez) Wiegel, Juergen; Michael, Adams W. W.. (1998-08-27). Thermophiles: The Keys to the Molecular Evolution and the Origin of Life?. CRC Press ISBN 978-1-4822-7304-5. (Noiz kontsultatua: 2024-01-10).
  61. (Ingelesez) Gribaldo, Simonetta; Brochier-Armanet, Celine. (2006-06-29). «The origin and evolution of Archaea: a state of the art» Philosophical Transactions of the Royal Society B: Biological Sciences 361 (1470): 1007–1022.  doi:10.1098/rstb.2006.1841. ISSN 0962-8436. (Noiz kontsultatua: 2024-01-10).
  62. (Ingelesez) Woese, C R. (1994). «There must be a prokaryote somewhere: microbiology's search for itself.» Microbiological Reviews 58 (1): 1–9.  doi:10.1128/MMBR.58.1.1-9.1994. ISSN 0146-0749. (Noiz kontsultatua: 2024-01-10).
  63. Willey, Joanne M.; Sherwood, Linda; Woolverton, Christopher J.; Prescott, Lansing M. Microbiology. (2008). Prescott, Harley, and Klein's microbiology. New York : McGraw-Hill Higher Education ISBN 978-0-07-299291-5. (Noiz kontsultatua: 2024-01-10).
  64. Heimerl, Thomas; Flechsler, Jennifer; Pickl, Carolin; Heinz, Veronika; Salecker, Benjamin; Zweck, Josef; Wanner, Gerhard; Geimer, Stefan et al.. (2017-06-13). «A Complex Endomembrane System in the Archaeon Ignicoccus hospitalis Tapped by Nanoarchaeum equitans» Frontiers in Microbiology 8  doi:10.3389/fmicb.2017.01072. ISSN 1664-302X. PMID 28659892. PMC PMC5468417. (Noiz kontsultatua: 2024-01-10).
  65. Jurtshuk, Peter. (1996). Baron, Samuel ed. «Bacterial Metabolism» Medical Microbiology (University of Texas Medical Branch at Galveston) ISBN 978-0-9631172-1-2. PMID 21413278. (Noiz kontsultatua: 2024-01-10).
  66. (Ingelesez) Howland, John L.. (2000). The Surprising Archaea: Discovering Another Domain of Life. Oxford University ISBN 978-0-19-511183-5. (Noiz kontsultatua: 2024-01-11).
  67. (Ingelesez) Woese, Carl R.; Fox, George E.. (1977-11). «Phylogenetic structure of the prokaryotic domain: The primary kingdoms» Proceedings of the National Academy of Sciences 74 (11): 5088–5090.  doi:10.1073/pnas.74.11.5088. ISSN 0027-8424. PMID 270744. PMC PMC432104. (Noiz kontsultatua: 2024-01-11).
  68. (Ingelesez) Cavicchioli, Ricardo. (2011-01). «Archaea — timeline of the third domain» Nature Reviews Microbiology 9 (1): 51–61.  doi:10.1038/nrmicro2482. ISSN 1740-1534. (Noiz kontsultatua: 2024-01-11).
  69. (Ingelesez) Gupta, Radhey S.; Shami, Ali. (2011-02-01). «Molecular signatures for the Crenarchaeota and the Thaumarchaeota» Antonie van Leeuwenhoek 99 (2): 133–157.  doi:10.1007/s10482-010-9488-3. ISSN 1572-9699. (Noiz kontsultatua: 2024-01-11).
  70. Gao, Beile; Gupta, Radhey S.. (2007-03-29). «Phylogenomic analysis of proteins that are distinctive of Archaea and its main subgroups and the origin of methanogenesis» BMC Genomics 8 (1): 86.  doi:10.1186/1471-2164-8-86. ISSN 1471-2164. PMID 17394648. PMC PMC1852104. (Noiz kontsultatua: 2024-01-11).
  71. Gupta, Radhey S.; Naushad, Sohail; Baker, Sheridan. (2015). «Phylogenomic analyses and molecular signatures for the class Halobacteria and its two major clades: a proposal for division of the class Halobacteria into an emended order Halobacteriales and two new orders, Haloferacales ord. nov. and Natrialbales ord. nov., containing the novel families Haloferacaceae fam. nov. and Natrialbaceae fam. nov.» International Journal of Systematic and Evolutionary Microbiology 65 (Pt_3): 1050–1069.  doi:10.1099/ijs.0.070136-0. ISSN 1466-5034. (Noiz kontsultatua: 2024-01-11).
  72. Deppenmeier, Uwe. (2002-01-01). «The unique biochemistry of methanogenesis» Progress in Nucleic Acid Research and Molecular Biology (Academic Press) 71: 223–283.  doi:10.1016/s0079-6603(02)71045-3. (Noiz kontsultatua: 2024-01-11).
  73. (Ingelesez) Martin, William; Russell, Michael J.. (2003-01-29). Allen, J. F. ed. «On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells» Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 358 (1429): 59–85.  doi:10.1098/rstb.2002.1183. ISSN 0962-8436. PMID 12594918. PMC PMC1693102. (Noiz kontsultatua: 2024-01-12).
  74. (Ingelesez) Jordan, Sean F.; Nee, Eloise; Lane, Nick. (2019-12-06). «Isoprenoids enhance the stability of fatty acid membranes at the emergence of life potentially leading to an early lipid divide» Interface Focus 9 (6): 20190067.  doi:10.1098/rsfs.2019.0067. ISSN 2042-8898. PMID 31641436. PMC PMC6802135. (Noiz kontsultatua: 2024-01-12).
  75. (Ingelesez) Koonin, Eugene V.; Mushegian, Arcady R.; Galperin, Michael Y.; Walker, D. Roland. (1997-08). «Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea» Molecular Microbiology 25 (4): 619–637.  doi:10.1046/j.1365-2958.1997.4821861.x. ISSN 0950-382X. (Noiz kontsultatua: 2024-01-12).
  76. a b c (Ingelesez) Gupta, Radhey S.. (1998-12). «Protein Phylogenies and Signature Sequences: A Reappraisal of Evolutionary Relationships among Archaebacteria, Eubacteria, and Eukaryotes» Microbiology and Molecular Biology Reviews 62 (4): 1435–1491.  doi:10.1128/MMBR.62.4.1435-1491.1998. ISSN 1092-2172. PMID 9841678. PMC PMC98952. (Noiz kontsultatua: 2024-01-12).
  77. Koch, Arthur L.. (2003-04). «Were Gram-positive rods the first bacteria?» Trends in Microbiology 11 (4): 166–170.  doi:10.1016/s0966-842x(03)00063-5. ISSN 0966-842X. (Noiz kontsultatua: 2024-01-12).
  78. a b c (Ingelesez) Gupta, Radhey S.. (1998-08). «What are archaebacteria: life's third domain or monoderm prokaryotes related to Gram‐positive bacteria? A new proposal for the classification of prokaryotic organisms» Molecular Microbiology 29 (3): 695–707.  doi:10.1046/j.1365-2958.1998.00978.x. ISSN 0950-382X. (Noiz kontsultatua: 2024-01-12).
  79. (Ingelesez) Gogarten, J. Peter. (1994-11-01). «Which is the most conserved group of proteins? Homology-orthology, paralogy, xenology, and the fusion of independent lineages» Journal of Molecular Evolution 39 (5): 541–543.  doi:10.1007/BF00173425. ISSN 1432-1432. (Noiz kontsultatua: 2024-01-12).
  80. (Ingelesez) Brown, J.R.; Masuchi, Y.; Robb, F.T.; Doolittlel, W.F.. (1994-06-01). «Evolutionary relationships of bacterial and archaeal glutamine synthetase genes» Journal of Molecular Evolution 38 (6): 566–576.  doi:10.1007/BF00175876. ISSN 1432-1432. (Noiz kontsultatua: 2024-01-12).
  81. (Ingelesez) Katz, Laura A.. (2015-09-26). «Recent events dominate interdomain lateral gene transfers between prokaryotes and eukaryotes and, with the exception of endosymbiotic gene transfers, few ancient transfer events persist» Philosophical Transactions of the Royal Society B: Biological Sciences 370 (1678): 20140324.  doi:10.1098/rstb.2014.0324. ISSN 0962-8436. PMID 26323756. PMC PMC4571564. (Noiz kontsultatua: 2024-01-12).
  82. (Ingelesez) Gupta, Radhey S.. (2000-01). «The Natural Evolutionary Relationships among Prokaryotes» Critical Reviews in Microbiology 26 (2): 111–131.  doi:10.1080/10408410091154219. ISSN 1040-841X. (Noiz kontsultatua: 2024-01-13).
  83. (Ingelesez) Gupta, Radhey S.. (2000-01). «The Natural Evolutionary Relationships among Prokaryotes» Critical Reviews in Microbiology 26 (2): 111–131.  doi:10.1080/10408410091154219. ISSN 1040-841X. (Noiz kontsultatua: 2024-01-13).
  84. Cavalier-Smith, T. (2002). «The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification.» International Journal of Systematic and Evolutionary Microbiology 52 (1): 7–76.  doi:10.1099/00207713-52-1-7. ISSN 1466-5034. (Noiz kontsultatua: 2024-01-13).
  85. Valas, Ruben E.; Bourne, Philip E.. (2011-02-28). «The origin of a derived superkingdom: how a gram-positive bacterium crossed the desert to become an archaeon» Biology Direct 6 (1): 16.  doi:10.1186/1745-6150-6-16. ISSN 1745-6150. PMID 21356104. PMC PMC3056875. (Noiz kontsultatua: 2024-01-13).
  86. Skophammer, Ryan G.; Herbold, Craig W.; Rivera, Maria C.; Servin, Jacqueline A.; Lake, James A.. (2006-06-26). «Evidence that the Root of the Tree of Life Is Not within the Archaea» Molecular Biology and Evolution 23 (9): 1648–1651.  doi:10.1093/molbev/msl046. ISSN 1537-1719. (Noiz kontsultatua: 2024-01-13).
  87. (Ingelesez) Gargaud, Muriel; López-Garcìa, Purificación; Martin, Hervé. (2011-01-06). Origins and Evolution of Life: An Astrobiological Perspective. Cambridge University Press ISBN 978-1-139-49459-5. (Noiz kontsultatua: 2024-01-13).
  88. (Ingelesez) Eme, Laura; Spang, Anja; Lombard, Jonathan; Stairs, Courtney W.; Ettema, Thijs J. G.. (2017-12). «Archaea and the origin of eukaryotes» Nature Reviews Microbiology 15 (12): 711–723.  doi:10.1038/nrmicro.2017.133. ISSN 1740-1534. (Noiz kontsultatua: 2024-01-13).
  89. (Ingelesez) Lake, James A.. (1988-01). «Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences» Nature 331 (6152): 184–186.  doi:10.1038/331184a0. ISSN 1476-4687. (Noiz kontsultatua: 2024-01-13).
  90. (Ingelesez) Nelson, Karen E.; Clayton, Rebecca A.; Gill, Steven R.; Gwinn, Michelle L.; Dodson, Robert J.; Haft, Daniel H.; Hickey, Erin K.; Peterson, Jeremy D. et al.. (1999-05). «Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima» Nature 399 (6734): 323–329.  doi:10.1038/20601. ISSN 1476-4687. (Noiz kontsultatua: 2024-01-13).
  91. (Ingelesez) Gouy, Manolo; Li, Wen-Hsiung. (1989-05). «Phylogenetic analysis based on rRNA sequences supports the archaebacterial rather than the eocyte tree» Nature 339 (6220): 145–147.  doi:10.1038/339145a0. ISSN 1476-4687. (Noiz kontsultatua: 2024-01-13).
  92. Yutin, N.; Makarova, K. S.; Mekhedov, S. L.; Wolf, Y. I.; Koonin, E. V.. (2008-04-23). «The Deep Archaeal Roots of Eukaryotes» Molecular Biology and Evolution 25 (8): 1619–1630.  doi:10.1093/molbev/msn108. ISSN 0737-4038. PMID 18463089. PMC PMC2464739. (Noiz kontsultatua: 2024-01-13).
  93. (Ingelesez) Williams, Tom A.; Foster, Peter G.; Cox, Cymon J.; Embley, T. Martin. (2013-12). «An archaeal origin of eukaryotes supports only two primary domains of life» Nature 504 (7479): 231–236.  doi:10.1038/nature12779. ISSN 1476-4687. (Noiz kontsultatua: 2024-01-13).
  94. (Ingelesez) Zimmer, Carl. (2015-05-06). «Under the Sea, a Missing Link in the Evolution of Complex Cells» The New York Times ISSN 0362-4331. (Noiz kontsultatua: 2024-01-13).
  95. (Ingelesez) Spang, Anja; Saw, Jimmy H.; Jørgensen, Steffen L.; Zaremba-Niedzwiedzka, Katarzyna; Martijn, Joran; Lind, Anders E.; van Eijk, Roel; Schleper, Christa et al.. (2015-05). «Complex archaea that bridge the gap between prokaryotes and eukaryotes» Nature 521 (7551): 173–179.  doi:10.1038/nature14447. ISSN 1476-4687. PMID 25945739. PMC PMC4444528. (Noiz kontsultatua: 2024-01-13).
  96. (Ingelesez) Seitz, Kiley W.; Lazar, Cassandre S.; Hinrichs, Kai-Uwe; Teske, Andreas P.; Baker, Brett J.. (2016-07). «Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction» The ISME Journal 10 (7): 1696–1705.  doi:10.1038/ismej.2015.233. ISSN 1751-7370. PMID 26824177. PMC PMC4918440. (Noiz kontsultatua: 2024-01-13).
  97. (Ingelesez) MacLeod, Fraser; Kindler, Gareth S.; Wong, Hon Lun; Chen, Ray; Burns, Brendan P.; MacLeod, Fraser; Kindler, Gareth S.; Wong, Hon Lun et al.. (2019). «Asgard archaea: Diversity, function, and evolutionary implications in a range of microbiomes» AIMS Microbiology 5 (1): 48–61.  doi:10.3934/microbiol.2019.1.48. ISSN 2471-1888. PMID 31384702. PMC PMC6646929. (Noiz kontsultatua: 2024-01-13).
  98. (Ingelesez) Zimmer, Carl. (2020-01-15). «This Strange Microbe May Mark One of Life’s Great Leaps» The New York Times ISSN 0362-4331. (Noiz kontsultatua: 2024-01-13).
  99. (Ingelesez) Imachi, Hiroyuki; Nobu, Masaru K.; Nakahara, Nozomi; Morono, Yuki; Ogawara, Miyuki; Takaki, Yoshihiro; Takano, Yoshinori; Uematsu, Katsuyuki et al.. (2020-01). «Isolation of an archaeon at the prokaryote–eukaryote interface» Nature 577 (7791): 519–525.  doi:10.1038/s41586-019-1916-6. ISSN 1476-4687. PMID 31942073. PMC PMC7015854. (Noiz kontsultatua: 2024-01-13).
  100. (Ingelesez) Tirumalai, Madhan R.; Sivaraman, Raghavan V.; Kutty, Layla A.; Song, Eric L.; Fox, George E.. (2023-09-29). «Ribosomal Protein Cluster Organization in Asgard Archaea» Archaea 2023: e5512414.  doi:10.1155/2023/5512414. ISSN 1472-3646. (Noiz kontsultatua: 2024-01-13).
  101. Garrity, George M.; Brenner, Don J.; Krieg, Noel R.; Staley, James T.. (2005). Bergey's manual of systematic bacteriology. (Second ed. argitaraldia) Springer ISBN 978-0-387-24143-2. (Noiz kontsultatua: 2024-01-13).
  102. Walsby, A. E.. (1980-01-01). «A square bacterium» Nature 283: 69–71.  doi:10.1038/283069a0. ISSN 0028-0836. (Noiz kontsultatua: 2024-01-13).
  103. (Ingelesez) Hara, Futoshi; Yamashiro, Kan; Nemoto, Naoki; Ohta, Yoshinori; Yokobori, Shin-ichi; Yasunaga, Takuo; Hisanaga, Shin-ichi; Yamagishi, Akihiko. (2007-03). «An Actin Homolog of the Archaeon Thermoplasma acidophilum That Retains the Ancient Characteristics of Eukaryotic Actin» Journal of Bacteriology 189 (5): 2039–2045.  doi:10.1128/JB.01454-06. ISSN 0021-9193. PMID 17189356. PMC PMC1855749. (Noiz kontsultatua: 2024-01-13).
  104. (Ingelesez) Trent, Jonathan D.; Kagawa, Hiromi K.; Yaoi, Takuro; Olle, Eric; Zaluzec, Nestor J.. (1997-05-13). «Chaperonin filaments: The archaeal cytoskeleton?» Proceedings of the National Academy of Sciences 94 (10): 5383–5388.  doi:10.1073/pnas.94.10.5383. ISSN 0027-8424. PMID 9144246. PMC PMC24687. (Noiz kontsultatua: 2024-01-13).
  105. Hixon, William G.; Searcy, Dennis G.. (1993-01-01). «Cytoskeleton in the archaebacterium Thermoplasma acidophilum? Viscosity increase in soluble extracts» Biosystems 29 (2): 151–160.  doi:10.1016/0303-2647(93)90091-P. ISSN 0303-2647. (Noiz kontsultatua: 2024-01-13).
  106. Golyshina, O V; Pivovarova, T A; Karavaiko, G I; Kondratéva, T F; Moore, E R; Abraham, W R; Lünsdorf, H; Timmis, K N et al.. (2000). «Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea.» International Journal of Systematic and Evolutionary Microbiology 50 (3): 997–1006.  doi:10.1099/00207713-50-3-997. ISSN 1466-5034. (Noiz kontsultatua: 2024-01-13).
  107. Garrity, George M.; Brenner, Don J.; Krieg, Noel R.; Staley, James T.. (2005). Bergey's manual of systematic bacteriology. (Second ed. argitaraldia) Springer ISBN 978-0-387-24143-2. (Noiz kontsultatua: 2024-01-13).
  108. (Ingelesez) Hall-Stoodley, Luanne; Costerton, J. William; Stoodley, Paul. (2004-02). «Bacterial biofilms: from the Natural environment to infectious diseases» Nature Reviews Microbiology 2 (2): 95–108.  doi:10.1038/nrmicro821. ISSN 1740-1534. (Noiz kontsultatua: 2024-01-13).
  109. Kuwabara, Tomohiko; Minaba, Masaomi; Iwayama, Yukihiro; Inouye, Isao; Nakashima, Miwako; Marumo, Katsumi; Maruyama, Akihiko; Sugai, Akihiko et al.. (2005). «Thermococcus coalescens sp. nov., a cell-fusing hyperthermophilic archaeon from Suiyo Seamount» International Journal of Systematic and Evolutionary Microbiology 55 (6): 2507–2514.  doi:10.1099/ijs.0.63432-0. ISSN 1466-5034. (Noiz kontsultatua: 2024-01-13).
  110. Nickell, Stephan; Hegerl, Reiner; Baumeister, Wolfgang; Rachel, Reinhard. (2003-01-01). «Pyrodictium cannulae enter the periplasmic space but do not enter the cytoplasm, as revealed by cryo-electron tomography» Journal of Structural Biology 141 (1): 34–42.  doi:10.1016/S1047-8477(02)00581-6. ISSN 1047-8477. (Noiz kontsultatua: 2024-01-13).
  111. (Ingelesez) Horn, Christian; Paulmann, Bernd; Kerlen, Gertraude; Junker, Norbert; Huber, Harald. (1999-08-15). «In Vivo Observation of Cell Division of Anaerobic Hyperthermophiles by Using a High-Intensity Dark-Field Microscope» Journal of Bacteriology 181 (16): 5114–5118.  doi:10.1128/JB.181.16.5114-5118.1999. ISSN 1098-5530. PMID 10438790. PMC PMC94007. (Noiz kontsultatua: 2024-01-13).
  112. (Ingelesez) Rudolph, Christian; Wanner, Gerhard; Huber, Robert. (2001-05). «Natural Communities of Novel Archaea and Bacteria Growing in Cold Sulfurous Springs with a String-of-Pearls-Like Morphology» Applied and Environmental Microbiology 67 (5): 2336–2344.  doi:10.1128/AEM.67.5.2336-2344.2001. ISSN 0099-2240. PMID 11319120. PMC PMC92875. (Noiz kontsultatua: 2024-01-13).
  113. Thomas, Nikhil A.; Bardy, Sonia L.; Jarrell, Ken F.. (2001-04). «The archaeal flagellum: a different kind of prokaryotic motility structure» FEMS Microbiology Reviews 25 (2): 147–174.  doi:10.1111/j.1574-6976.2001.tb00575.x. ISSN 1574-6976. (Noiz kontsultatua: 2024-01-14).
  114. (Ingelesez) Rachel, Reinhard; Wyschkony, Irith; Riehl, Sabine; Huber, Harald. (NaN/NaN/NaN). «The ultrastructure of Ignicoccus: Evidence for a novel outer membrane and for intracellular vesicle budding in an archaeon» Archaea 1: 9–18.  doi:10.1155/2002/307480. ISSN 1472-3646. PMID 15803654. PMC PMC2685547. (Noiz kontsultatua: 2024-01-14).
  115. (Ingelesez) Sára, Margit; Sleytr, Uwe B.. (2000-02-15). «S-Layer Proteins» Journal of Bacteriology 182 (4): 859–868.  doi:10.1128/JB.182.4.859-868.2000. ISSN 0021-9193. PMID 10648507. PMC PMC94357. (Noiz kontsultatua: 2024-01-14).
  116. Engelhardt, Harald; Peters, Jürgen. (1998-12-15). «Structural Research on Surface Layers: A Focus on Stability, Surface Layer Homology Domains, and Surface Layer–Cell Wall Interactions» Journal of Structural Biology 124 (2): 276–302.  doi:10.1006/jsbi.1998.4070. ISSN 1047-8477. (Noiz kontsultatua: 2024-01-14).
  117. a b (Ingelesez) Kandler, O.; König, H.. (1998-04-01). «Cell wall polymers in Archaea (Archaebacteria)» Cellular and Molecular Life Sciences CMLS 54 (4): 305–308.  doi:10.1007/s000180050156. ISSN 1420-9071. (Noiz kontsultatua: 2024-01-14).
  118. Howland, John L.. (2000). The surprising archaea: discovering another domain of life. Oxford University Press ISBN 978-0-19-511183-5. (Noiz kontsultatua: 2024-01-14).
  119. Gophna, Uri; Ron, Eliora Z.; Graur, Dan. (2003-07-17). «Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events» Gene 312: 151–163.  doi:10.1016/S0378-1119(03)00612-7. ISSN 0378-1119. (Noiz kontsultatua: 2024-01-14).
  120. Nguyen, L.; Paulsen, I. T.; Tchieu, J.; Hueck, C. J.; Saier, M. H.. (2000-04). «Phylogenetic analyses of the constituents of Type III protein secretion systems» Journal of Molecular Microbiology and Biotechnology 2 (2): 125–144. ISSN 1464-1801. PMID 10939240. (Noiz kontsultatua: 2024-01-14).
  121. Ng, Sandy Y.M.; Chaban, Bonnie; Jarrell, Ken F.. (2006-09-21). «Archaeal Flagella, Bacterial Flagella and Type IV Pili: A Comparison of Genes and Posttranslational Modifications» Journal of Molecular Microbiology and Biotechnology 11 (3-5): 167–191.  doi:10.1159/000094053. ISSN 1464-1801. (Noiz kontsultatua: 2024-01-14).
  122. Bardy, Sonia L.; Ng, Sandy Y. M.; Jarrell, Ken F.. (2003). «Prokaryotic motility structures» Microbiology 149 (2): 295–304.  doi:10.1099/mic.0.25948-0. ISSN 1465-2080. (Noiz kontsultatua: 2024-01-14).
  123. (Ingelesez) Koga, Yosuke; Morii, Hiroyuki. (2007-03). «Biosynthesis of Ether-Type Polar Lipids in Archaea and Evolutionary Considerations» Microbiology and Molecular Biology Reviews 71 (1): 97–120.  doi:10.1128/MMBR.00033-06. ISSN 1092-2172. PMID 17347520. PMC PMC1847378. (Noiz kontsultatua: 2024-01-14).
  124. Youssefian, Sina; Rahbar, Nima; Van Dessel, Steven. (2018-05-02). «Thermal conductivity and rectification in asymmetric archaeal lipid membranes» The Journal of Chemical Physics 148 (17)  doi:10.1063/1.5018589. ISSN 0021-9606. (Noiz kontsultatua: 2024-01-14).
  125. (Ingelesez) De Rosa, M; Gambacorta, A; Gliozzi, A. (1986). «Structure, biosynthesis, and physicochemical properties of archaebacterial lipids.» Microbiological Reviews 50 (1): 70–80.  doi:10.1128/MMBR.50.1.70-80.1986. ISSN 0146-0749. (Noiz kontsultatua: 2024-01-14).
  126. Balleza, Daniel; Garcia-Arribas, Aritz B.; Sot, Jesús; Ruiz-Mirazo, Kepa; Goñi, Félix M.. (2014-09). «Ether- versus Ester-Linked Phospholipid Bilayers Containing either Linear or Branched Apolar Chains» Biophysical Journal 107 (6): 1364–1374.  doi:10.1016/j.bpj.2014.07.036. ISSN 0006-3495. PMID 25229144. PMC PMC4167531. (Noiz kontsultatua: 2024-01-14).
  127. (Ingelesez) Koga, Yosuke; Morii, Hiroyuki. (2007-03). «Biosynthesis of Ether-Type Polar Lipids in Archaea and Evolutionary Considerations» Microbiology and Molecular Biology Reviews 71 (1): 97–120.  doi:10.1128/MMBR.00033-06. ISSN 1092-2172. PMID 17347520. PMC PMC1847378. (Noiz kontsultatua: 2024-01-14).
  128. Damsté, Jaap S.Sinninghe; Schouten, Stefan; Hopmans, Ellen C.; van Duin, Adri C.T.; Geenevasen, Jan A.J.. (2002-10). «Crenarchaeol» Journal of Lipid Research 43 (10): 1641–1651.  doi:10.1194/jlr.m200148-jlr200. ISSN 0022-2275. (Noiz kontsultatua: 2024-01-14).
  129. academic.oup.com  doi:10.1271/bbb.69.2019. (Noiz kontsultatua: 2024-01-14).
  130. (Ingelesez) Hanford, Michael J.; Peeples, Tonya L.. (2002-01-01). «Archaeal tetraether lipids» Applied Biochemistry and Biotechnology 97 (1): 45–62.  doi:10.1385/ABAB:97:1:45. ISSN 1559-0291. (Noiz kontsultatua: 2024-01-14).
  131. (Ingelesez) Macalady, Jennifer L.; Vestling, Martha M.; Baumler, David; Boekelheide, Nick; Kaspar, Charles W.; Banfield, Jillian F.. (2004-10-01). «Tetraether-linked membrane monolayers in Ferroplasma spp: a key to survival in acid» Extremophiles 8 (5): 411–419.  doi:10.1007/s00792-004-0404-5. ISSN 1433-4909. (Noiz kontsultatua: 2024-01-14).
  132. (Ingelesez) Valentine, David L.. (2007-04). «Adaptations to energy stress dictate the ecology and evolution of the Archaea» Nature Reviews Microbiology 5 (4): 316–323.  doi:10.1038/nrmicro1619. ISSN 1740-1534. (Noiz kontsultatua: 2024-01-14).
  133. (Ingelesez) Schäfer, Günter; Engelhard, Martin; Müller, Volker. (1999-09). «Bioenergetics of the Archaea» Microbiology and Molecular Biology Reviews 63 (3): 570–620.  doi:10.1128/MMBR.63.3.570-620.1999. ISSN 1092-2172. PMID 10477309. PMC PMC103747. (Noiz kontsultatua: 2024-01-14).
  134. Zillig, Wolfram. (1991-12-01). «Comparative biochemistry of Archaea and Bacteria» Current Opinion in Genetics & Development 1 (4): 544–551.  doi:10.1016/S0959-437X(05)80206-0. ISSN 0959-437X. (Noiz kontsultatua: 2024-01-14).
  135. Romano, A. H.; Conway, T.. (1996-07-01). «Evolution of carbohydrate metabolic pathways» Research in Microbiology 147 (6): 448–455.  doi:10.1016/0923-2508(96)83998-2. ISSN 0923-2508. (Noiz kontsultatua: 2024-01-14).

Ikus, gainera

Kanpo estekak