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Abstract

Spinal Cord Imaging in Multiple Sclerosis Patients: Applications of Machine

Learning and Computer Vision Methods
Esha Datta

During the last few decades, researchers have struggled to find reliable biomarkers for
multiple sclerosis (MS) that could aid in diagnosis, measurement of disease progression,
evaluation of treatments in clinical trials, and prediction of treatment effect. Traditional metrics,
such as brain and lesion volumes, are poor contenders since they do not reliably reflect clinical
metrics. Until recently, spinal cord metrics were also poor contenders, due to the quality limitations
of spinal cord imaging. However, with recent technological advances, we are now able to acquire
better quality spinal cord images and capture these metrics more accurately. This thesis
investigates the potential of using spinal cord images clinically in MS through four different
studies. The first study investigates different spinal cord metrics and shows how spinal cord PSIR
gradient independently predicts EDSS in RRMS patients. The second study demonstrates two
different methods for how spinal cord gray matter can be automatically segmented so that metrics
can be easily obtained in a clinical setting. The third study is an investigation of how spinal cord
metrics change longitudinally. The fourth study is a voxel-wise analysis of spinal cord metrics that

shows local patterns of intensity, gradient, and deformation.
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Chapter 1 - Introduction

1.1 Multiple Sclerosis

MS is a disease that affects around 2.5 million people around the world. In the U.S., there
are over 400,000 affected around 200 new cases every week. MS often has a large impact on
quality of life, due to its accompanying symptoms, which vary depending on the location of the
affected nerves. These symptoms include muscle weakness, vision problems, coordination issues,
and sensory problems. The disease course of MS also varies. In relapsing-remitting MS (RRMS),
new symptoms occur in isolated attacks, while in progressive MS (PMS), symptoms build up over
time. The cause of MS is still not well understood, though we know that environmental factors and
genetic susceptibility both play a role. Currently, there is no cure for MS, though there are

treatments available to modify disease progression and alleviate symptoms.

MS is a disease in which the immune system mistakenly attacks the insulating covers of
nerve cells, called myelin, in the brain and spinal cord. T cells enter into the brain through
disruptions in the blood brain barrier and start attacking the myelin, triggering inflammation. The
destruction of myelin allows additional water to fill the breach, in addition to the fluid that
accumulates during initial swelling. These damaged areas with additional water content are seen
as lesions on MRI scans. The resulting myelin damage also affects the ability of nerves to
effectively send signals and communicate, which results in a wide variety of symptoms.
Neurodegenerative processes then gradually destroy the axons and nerve tissue to cause

irreversible atrophy.



Through the use of magnetic resonance imaging (MRI), we are able to visually assess the
damage that occurs in the brain and spinal cord from MS. The most notable sign of MS in an MRI
scan is the presence of lesions, that develop on the white matter. The effects of inflammation and
demyelination are primarily seen in the white matter, while the effects of neuronal and axonal loss

are primarily seen in the gray matter.

1.2 The Spinal Cord

The spinal cord is the main pathway for connecting the brain to the peripheral nervous
system. From each of its 31 segments, there is a pair of sensory nerve roots and a pair of motor
nerve roots. Like the brain, the spinal cord is also made up of white matter and gray matter. The
butterfly-shaped center of the cord is made up of the gray matter and different sections correspond
to either motor or sensory function. The surrounding white matter is made up of nerve fibers that
carry information back and forth from the brain to the rest of the body. These white matter tracts

are also organized regionally by function.

Spinal cord abnormalities, such as atrophy, diffuse abnormalities, and focal lesions, play
an important role in the diagnosis and prognosis of MS (Kearney, Miller, & Ciccarelli, 2015).
Around 90% of patients with clinically definite MS have spinal cord abnormalities (Lycklama et
al., 2003) and pathological studies (FOG, 1950) have looked at these abnormalities postmortem in
MS patients. According to the McDonald diagnostic criteria for MS, one sign of MS that
demonstrates dissemination in time is the presence of focal T2 lesions in the spinal cord
(Thompson et al., 2018). Focal spinal cord lesions are often associated with motor symptoms,

coordination problems, and bowel and bladder disfunction.



1.3 Motivation: The Search for a Biomarker

Multiple sclerosis is characterized by a complex pathophysiology, which includes
inflammation, demyelination, axonal degeneration, and neuronal loss (Kutzelnigg & Lassmann,
2014). For this reason, symptoms vary widely among individuals in type and severity. Because of
this broad heterogeneity, a biological marker that reflects the underlying disease process and
differentiates patients would prove very useful for tracking disease progression. In the past, studies
have relied on metrics such as brain volume and lesion load, but neither of these metrics has a
strong correlation with clinical metrics, such as the Expanded Disability Status Scale (EDSS)
score. Researchers continue to search for a quantitative and sensitive biological marker that
correlates well with clinical disability and can possibly be used to predict disease progression or

track progress in clinical trials.

It is well known that the spinal cord plays a large role in MS and may be responsible for
much of the motor disability of patients (Bernitsas et al., 2015). However, until recently, MS spinal
cord studies were limited due to the poor gray and white matter contrast and low spatial resolution
seen in conventional MRI as well as artifacts due to physiological motion of the cord and the
adjacent tissues (Stroman et al., 2014; Wheeler-Kingshott et al., 2014). Now, through the enhanced
T1 contrast offered by phase-sensitive inversion recovery (PSIR) imaging, we are able to capture
higher quality images of the spinal cord gray and white matter within a reasonably short acquisition
time (Papinutto et al., 2015). Now, spinal cord imaging has come to play a more vital role
(Wheeler-Kingshott et al., 2014) in the investigation of multiple sclerosis (Massimo Filippi &

Rocca, 2013).



Recent studies using this imaging modality have shown the promise of spinal cord gray
matter area at selected levels as a biomarker for MS (Schlaeger et al., 2014, 2015). Through the
use of a regression subset selection, this study showed that spinal cord gray matter area from the
C2/C3 axial level was a better predictor of EDSS score when compared to other traditional metrics
such as the gray matter and white matter volumes from the brain, the upper cervical spinal cord
area (UCCA), the T1 lesion load in the brain, the FLAIR lesion load in the brain, and the number
of T2 lesions in the spine. Prompted by this finding, this work aims to investigate the potential of

other metrics from the PSIR images of the spinal cord.

Spinal cord imaging has come to play a vital role (Wheeler-Kingshott et al., 2014) in the
investigation of many disorders, such as multiple sclerosis (Massimo Filippi & Rocca, 2013) and
traumatic spinal cord injury (Freund, Curt, Friston, & Thompson, 2013; Potter & Saifuddin,
2003)./n vivo gray and white matter volume estimates in the spinal cord may play a critical role in
improving our understanding of the disease process in disorders involving both gray and white
matter such as multiple sclerosis (Schlaeger et al., 2014, 2015) or in predominantly white matter
diseases such as adrenomyeloneuropathy (Israel, Ostendorf, Stiepani, & Ploner, 2005). Spinal cord
metrics may serve as biomarkers that reflect clinical outcomes and can be used for the prediction

or monitoring of disease progression.

1.4 Presented Studies

This thesis presents four different studies that investigate the potential of using PSIR spinal
cord images in a clinical setting for MS patients. The first study investigates intensity and gradient
metrics in the spinal cord. In this cohort, spinal cord PSIR gradient independently predicts EDSS

in RRMS patients, suggesting that the gradient may be a metric that estimates the microstructural



tissue damage. The second study presents an active countour method for segmenting spinal cord
gray matter. This method has competed favorably against 5 other methods in a challenge for
automatic spinal cord gray matter segmentation methods. Additionally, a convolutional neural
network method is also demonstrated for segmenting spinal cord gray matter. The third study is
an investigation of how spinal cord metrics change longitudinally. The fourth study is a voxel-
wise analysis of spinal cord metrics that shows local patterns of intensity, gradient, and

deformation.



Chapter 2 - Study of Spinal Cord PSIR Gradient and Intensity

Metrics

2.1 Introduction

Texture metrics provide a quantitative measurement of the patterns and relationships of
voxels in an image. These quantitative texture metrics are useful in studying medical images of
MS patients and can illuminate subtle differences that are not immediately apparent to the human
eye (Zhang, 2012). In the past, texture analysis has been used in multiple sclerosis to segment
lesions, normal-appearing white matter, and white matter and also to examine the relationship
between texture severity of lesions and disease progression. Texture features are a measure of the
structural regularity in an image, and thus they are a reflection of histopathology and the structural
property of a tissue. Several tools are used to study texture, including gray level co-occurrence
matrices that compute the probabilities of co-occurring intensity values and spatial frequency

analysis of images.

A very simple analysis for comparing image textures can be performed with first order
statistics, such as mean and variance of intensity and gradient. The spinal cord gray matter and
white matter regions are irregularly shaped areas made up of only a few pixels. For this reason, a
simple metric of gradient is more appropriate for capturing texture information than more
complicated methods, such as co-occurrence matrices. The gradient is a measure of how much the
image intensity changes across space. A low mean image gradient reflects a more uniform image,
while a high mean image gradient reflects an image with more variable intensities. Previous studies
have investigated global texture metrics in the spinal cord (Mathias, Tofts, & Losseft, 1999) and

shown that mean intensity and mean gradient in the spinal cord are correlated with EDSS scores.



This study focuses on regional metrics of gradient and intensity. Since gradient is a relative metric
and is less likely to be influenced by intensity differences caused by scanner variations, it may be

more useful than measurements of absolute intensity.

This study hypothesizes that intensity and gradient metrics from the upper cervical spinal
cord may be sensitive to microstructural damages of tissues and therefore be viable biomarkers
that are correlated with clinical disability to a greater degree than more traditional metrics. The
regional analysis described in this paper aims to shed further light onto the role of white and gray
matter in MS and lead us closer towards a biomarker that reflects clinical disability better than the

current standards.

2.2 Methods

The subjects in this study included 20 healthy controls, 92 40 relapsing MS (RMS) patients
and 37 18 progressive MS patients (PMS). The age and gender distribution of the control group
was similar to the group of RMS patients. The median EDSS score of RMS patients is 2 and the
median EDSS score of the PMS patients is 6. The clinical characteristics of the patients are
described in Figure 1. A study of gray and white matter area was previously performed in this
cohort and correlations with EDSS score were reported (Schlaeger et al., 2014). These correlations

are presented again in this study to provide a basis for comparison.



Controls Relapsing MS Progressive MS

Number 20 92 37
Mean Age+/- 48.6 +/-12.2 49.0 +/-9.3 579 +/-9.3
Standard Deviation
Percent Female 65.0% 63.0% 51.3%
Mean Disease 0+/-0.0 15.2+/-8.5 20.7 +/-10.9

Duration +/-
Standard Deviation
Median EDSS 0 (0-0) 2 (1.5-2.5) 6 (3.5-6.5)
(Interquartile
Range)

Figure 1: Subject Demographics

To test for reliability, texture and intensity metrics were also calculated on 8 different
healthy subjects who underwent two scans in the same session with repositioning in between scans.
The interclass correlations (ICC) were calculated for both the mean intensity and mean gradient

over the entire cord.

All subjects in the patient cohort received a standardized clinical neurological exam to
determine the EDSS score. In addition, all patients were scanned on a Siemens 3T Skyra scanner
equipped with a 20 channel neck-head coil and a 32 channel spine coil within two weeks of their
clinical examination. For each patient, axial 2D phase sensitive inversion recovery (PSIR) images
were acquired at the intervertebral disc level C2/C3 perpendicular to the cord. The acquisition

parameters are listed below.

Imaging Parameters:
3T Skyra scanner
20 channel neck/head coil
32 channel spinal coil
In-plane resolution =.78 X.78 mm"2
Slice thickness = 5 mm
TR = 4000 ms
TE =3.22 ms
TI=400 ms
Flip Angle = 10 degrees
3 averages

Figure 2: Imaging Parameters



For each phase sensitive reconstructed image, cord masks were generated on up-sampled
interpolated images through semi-automated segmentation using the software JIM6 (Horsfield et
al., 2010). In addition, gray matter masks were generated on these same images through manual
segmentation by a trained neurologist. To obtain white matter masks, the gray matter masks were
subtracted from the cord masks. At the C2/C3 level for each patient, the areas, mean intensities,

and the mean intensity gradients were calculated for both the white matter and the gray matter.

Initially, univariate analyses were performed and regression models were used to determine
the Spearman rank correlation between each of these metrics and the EDSS score. In addition, a
multivariable model was performed to determine how all of these metrics, in addition to covariates
such as age, disease duration, and sex, interact to provide a prediction for the EDSS score. A
stepwise regression model was used to determine the subset of variables that contribute most to
the prediction. Following that, a least squares regression model was used to determine the
relationship between the MRI metrics and EDSS score. All statistical analyses were performed

using the software JMP (v12).

2.3 Results

2.3.1 Reliability:

For the 8 instances of subjects who underwent two separate scans, the ICC for mean
intensity was 0.89 and the ICC for mean gradient was 0.85. A previous study (Schlaeger et al.,
2014) looked at the reliability of volumetric metric and calculated intraclass coetficients (ICC).
For the assessment of total cord area, the inter-rater I[CC was greater than 0.99. For the assessment
of gray matter area, the inta-rater reliabity showed an ICC of 0.98 and the inter-rater reliability

showed an ICC of 0.91.



2.3.2 Correlation with Clinical Outcomes:

The distribution of the mean intensity and mean gradient metrics in the control and disease
type groups are shown in the box and whisker plots below in Figure 3. From the plots it can be
observed that the intensity and gradient metrics are fairly consistent in healthy controls, but that
the ranges increase with RMS patients and are even larger in PMS patients. In addition, the mean
intensities and mean gradients are decreased in RMS patients and even lower for PMS patients
when compared with controls. If the disease type is treated as an ordinal variable, Spearman Rho
coefficients can be calculated to see how metrics relate to disease type. All of the intensity metrics
had p-values of less than 0.0001 when correlated with disease type. However, the correlation of

the gray matter area with disease type is the largest.

_ Box Plots Separated Out By Disease Type Spearman’s Rho
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Figure 3: Box and Whisker Plots of Metrics by Disease Type
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As seen in Figure 4, in a univariate linear regression analysis, both of the intensity metrics
were shown to be significantly correlated with EDSS (p-values less than 0.0001 and Spearman
rank correlation magnitudes above 0.3), suggesting that there may be global differences in image
intensity that relate to clinical disability. The white matter gradient, but not the gray matter
gradient, was shown to be significantly correlated with EDSS. However, the strongest correlation
by far was that of the spinal cord gray matter area (p-value < 0.0001, Spearman rank correlation =

-0.63),

WM Area <.0001

- Correlations With EDSS Score Spearman’s Rho
%0
RN
H . H . .
. . . _31
e, 1 - £

GM Area -.63 <.0001

Average WM

Intensity EH6 <.0001

Average GM

Intensity -38 <0001

Average WM

Gradient 47 <0001

=19 ..0202

'l
HI I | g =l

4
EDSS Score

Average GM o °
Gradient I . o
1 —r—
H i
0

Figure 4: Univariate Linear Regression of Metrics with EDSS Score

Upon further investigation, the gradient data was observed to have quadratic behavior, with
an upward trend in RMS patients with lower EDSS scores and a downward trend in PMS patients
with higher EDSS scores. Quadratic regression was performed on all of the gradient metrics with
EDSS score. The amount of variation in the gradient metrics explained by the EDSS score was
higher in the quadratic models for all cases. In particular, the fit of the quadratic models was
significantly better for the metrics involving white matter. The fit lines are shown below in

Figure 5.
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To capture the two different trends, the data was separated into two groups, RRMS patients
who tend to have lower EDSS scores and PMS patients who tend to have higher EDSS scores.
Remarkably, no significant correlations with EDSS score were found in progressive patients, while
strong correlations were found in patients with lower EDSS scores for gray matter area and average

white matter gradient.
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Figure 6: Linear Regression of Metrics with EDSS Score When Separated By Disease Type

To further explore the correlation of average white matter gradient with EDSS score in
RRMS patients, several other regions of interest were investigated as shown in Figure 7. A
boundary region was created from the single pixel boundary of the gray matter masks. The
remainder of the white matter was designated as a region as well. In addition, the total cord was

also used as a region of interest.

Figure 7: Gray Matter ROI shown in Blue, Boundary ROI shown in Yellow
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Figure 8: Correlations of Gradient Metrics with EDSS Scores in RMS Patients

The results showed that there was a correlation of gradient in the boundary area with EDSS
score, but that the correlation was weaker for areas further away from the gray matter. In addition,

the correlation is still seen strongly when the average gradient is taken over the entire spinal cord.

To determine how intensity and gradient metrics interact with more traditional metrics,
such as brain and lesion volumes, and other covariates, such as age, gender, and disease duration,
in patients with lower EDSS scores, a multivariate linear model was created as well. A stepwise
regression model determined the best subset of variables for predicting EDSS. The complete list

of metrics, as well as the list of those selected by the stepwise regression is summarized below.

Parameter Selected for Model Beta P-Value
Gray Matter Area Yes -33 .0003
Average Cord Gradient Yes 33 .0003
Age No - -
Gender No - -
Disease Duration No - -

Figure 9: Metrics Selected by Stepwise Regression to Predict EDSS for RMS Patients
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Using the selected subset of variables, a least squares multivariate model was performed
for the RMS patient group. In the final model, the mean cord gradient has a standard beta of .33
with a p-value of .0003 and the gray matter area has a standard beta of -.33 with a p-value of .0003.
The fact that both of these variables were selected in the stepwise regression suggests that they
both independently contribute to the model of EDSS. In this model, cord gradient and spinal cord
area explain 32% of EDSS variance. On its own, spinal cord gray matter area explains 22% of the

variance and on its own, cord gradient explains 22% of the variance.

2.4 Discussion:

Based on phase sensitive inversion recovery imaging, this study assesses the potential of
cervical spinal cord intensity and texture metrics as biomarkers through a study of the association
with clinical disability in a large single center cross sectional study of patients with MS. The
associations found between intensity and gradient metrics and disability also help to shed light on
the role of white and gray matter in the spinal cord on MS. In particular, white matter gradient
metrics were shown to have strong potential as reliable and easy to measure biomarkers with a

strong correlation with clinical disability

2.4.1 Reliability:

Of all the spinal cord metrics, total cord area is by far the most reliable, due to the automated
method of measurement. Gray matter area has a slightly lower ICC, due to variability from manual
operators. Though the mean intensity and mean gradient lag slightly behind, they are still reliable

enough to be used as predictors of clinical outcome.

In the future, we hope to investigate how robust these metrics are when obtained with

different scanners or different acquisition protocols. However, gradient and intensity metrics are
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expected to be quite robust since they are both relative measures. PSIR has been showed to be a
quantitative image modality (Papinutto et al., 2015). Since phase reconstruction is performed with
a reference image in addition to the acquisition image, the intensity metrics are obtained as relative
metrics. Gradient metrics are likely to be more insensitive to scanner or protocol differences than

intensity metrics, since they are relative measures of the intensities.

2.4.2 Ease of Measurement:

With PSIR imaging, it is now possible to acquire high quality spinal cord images at selected
levels in a very short acquisition time. Cord segmentation can be done automatically with programs
such as JIM. Once the cord has been segmented, obtaining the mean cord intensity and the mean
cord gradient is an easy task with software. In contrast, obtaining the metric of spinal cord gray
matter area requires gray matter segmentation in the cord, a process that is currently manual and

must be performed by a trained expert.

2.4.3 Correlation with Clinical Outcomes:

The results suggest that in addition to gray matter area, intensity metrics and the white

matter gradient metric from PSIR images are valuable in predicting clinical disability.

While intensity metrics are valuable when predicting EDSS score in the overall patient
population, they have lower correlations for patients with less severe EDSS scores. This suggests
that the linear regressions for intensity metrics in Figure 3 are driven mainly by the extreme values.
This would indicate that intensity metrics are better at predicting large differences in EDSS scores

and worse at predicting subtle differences in clinical disability.

White matter gradient is shown to correlate with EDSS score in the overall patient

population as well. However, white matter gradient is shown to be most valuable in predicting
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EDSS score for patients with less severe EDSS scores. When added together with spinal cord gray

matter area, white matter gradient boosts the amount of EDSS variation explained to 32%.

It is notable that unlike white matter gradient, the gray matter gradient did not show any
correlation with EDSS score. When investigating the white matter gradient, it was found that the
area of white matter directly surrounding the gray matter is the part that contributes most to this
correlation. However, this correlation can still be found when the average gradient is taken over

the entire cord, which means that meaningful gradient metrics are very easy to obtain.

Our results show that the metric of average spinal cord gradient adds information to the
prediction of EDSS and is particularly useful in distinguishing subtle differences in EDSS scores
for RMS patients with milder disability. The results of the multivariate analysis suggest that mean
cord gradient and gray matter area are independently associated with EDSS in patients with milder
disability. By using both of these complementary metrics in conjunction, clinical disability can be

predicted to a much higher degree.

2.4.4 Pathological Correlates:

Pathological studies suggest that the metric of gradient is a measure of tissue heterogeneity
that reflects the amount of microstructural damage. The metric of intensity is likely to be a

reflection of the tissue water content and thus a measure of demyelination.

While controls exhibit rather uniform gradient metrics, results show that the gradient
increases in the lower range of EDSS scores, peaking around a value of 4.5 before decreasing in
the higher range of EDSS scores. The quadratic behavior of the gradient metrics seen in this study
makes sense from a pathological perspective. A healthy spinal cord starts off with more uniform

intensity, but as the disease progresses, there is a mix of healthy and diseased tissue and the
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variation increases. Eventually, there is a return to uniformity as diseased tissue dominates the

spinal cord.

It is notable that white matter gradient has a strong correlation with EDSS scores, while
gray matter gradient does not. A previous study has shown that spinal cord gray matter area has a
strong correlation with EDSS score, while spinal cord white matter area does not. This finding
suggests that though there is no sign of atrophy in the white matter, damage is still occurring at a
microstructural level. Due to inflammation in the white matter, it is possible that atrophy can not
be detected by area changes but can be detected through changes in gradient. Since gray matter is
a less ordered tissue than white matter, it is also possible that the gradient metric reflects changes

in gray matter to a lesser degree.

A recent post-mortem study suggests that texture metrics, which measure the patterns and
relationships of intensity voxels in MRI, are reflections of micro scale structural pathological
changes in biological tissue. This study investigated how texture metrics based on the polar
Stockwell Transform correlated with tissue pathology in T2 weighted images of post-mortem MS
brains (Zhang et al., 2013). This study showed that texture heterogeneity was largest in lesions,
followed by diffuse appearing white matter, followed by normal appearing white matter. The
results suggest that texture heterogeneity is dominated by demyelination, and is also affected by

axonal injury and inflammation.

Texture analysis allows for detection of these more clinically relevant subtle structural
tissue alterations. Due to the small size and resolution of the spinal cord regions we are
investigating, this study focused on gradient, a very simple metric of texture. Just like the polar
Stockwell Transform metrics from the studies previously mentioned, the metric of gradient also

measures the coarseness of the image texture. From this, we can surmise that the metric of gradient
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similarly measures the homogeneity of the tissue and the degree of partial demyelination. With
future higher resolution images, gray-level co-occurrence matrices and spatial frequency methods

may prove more useful in uncovering more subtle structural tissue alterations.

2.5 Summary

While recent studies have shown how texture metrics in the overall spinal cord relate to
EDSS scores, this is the first study to investigate how these metrics relate to white and gray matter
of the cervical spinal cord and also to different disease courses. Our results suggest that structural
microdamage as reflected by the gradient in the white matter is much more important than
microdamage in the gray matter when predicting clinical disability in RMS patients. In addition,
correlations between intensity and disease course can be seen in all regions of the spinal cord,
suggesting that this effect is global. In addition, we can see how the boundary area between gray
matter and white matter may be the most important location of structural damage when predicting

clinical disability.

This study provides further evidence for the potential of spinal cord metrics as biomarkers
in multiple sclerosis. This study suggests that cord gradient provides a complementary correlate of
EDSS in RMS patients. Cord gradient may be particularly useful in a clinical setting, since it is an

easier metric to obtain than gray matter area, which requires segmentation.
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Chapter 3 - Gray Matter Segmentation with Active Contours

3.1 Introduction

Certain spinal cord metrics may serve as biomarkers that reflect clinical outcomes and can
be used for the prediction or monitoring of disease progression. For example, two recent imaging
studies have revealed the potential of cross sectional spinal cord gray matter area as a biomarker
correlated with clinical outcome in multiple sclerosis (Schlaeger et al., 2014, 2015). An automatic
method for spinal cord gray and white matter segmentation could provide an easy way to routinely
obtain these metrics in multiple sclerosis patients for both cross-sectional and longitudinal
assessments. This would allow evaluation of these metrics in their ability to capture disease
progression, to identify subjects at risk for worsening, as well as to potentially evaluate treatment

effects in clinical trials.

For this reason, tissue segmentation methods that were developed for brain MR images
have been largely unsuccessful in spinal cord images. Now, through sequences like the phase-
sensitive inversion recovery imaging (PSIR) (Papinutto et al., 2015) and T2* weighted MRI (Held,
Dorenbeck, Seitz, Friind, & Albrich, 2003; M.C. Yiannakas et al., 2012) we are able to acquire
higher quality images of the spinal cord reliably, and in a reasonably short acquisition time. The
added contrast in these images provides the opportunity of delineating the gray matter either

manually or automatically.

Studies of spinal gray matter have largely depended on manual segmentation, which is a
time consuming process that requires a trained expert and may be susceptible to operator bias.
Automatic segmentation methods would allow for spinal cord metrics to be computed routinely

for large populations. Furthermore, automatic methods would provide improved reliability given
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the natural need to employ multiple operators across cohorts and time for manual methods.
Automatic methods would improve the utility of spinal gray matter volumes and areas in multisite
studies. This actively developing area is in need of algorithms that can be optimized and tested

across sites and pulse sequences.

Few studies have explored algorithms for automatically segmenting spinal cord gray matter
(De Leener, Taso, Cohen-Adad, & Callot, 2016). A template-based registration method for
segmenting gray matter in the spinal cord (De Leener et al., 2017; Taso et al., 2015) works fairly
well for healthy controls but was not tested in patients with gray matter atrophy and on imaging
contrasts different from the template’s T2* weighting. A semi-automated method that uses a fuzzy
connector method has also been proposed, but it requires significant manual editing of the outputs
(M.C. Yiannakas et al., 2012). Another study used a multi-atlas method that incorporates non-local
statistical fusion (Asman, Smith, Reich, & Landman, 2013). This study required a database of
multiple atlases and reported an average Dice coefficient of around 0.75 compared to manual

segmentation.

My work focused on the development and evaluation of an automated spinal cord gray
matter segmentation method based on Morphological Geodesic Active Contour (MGAC) models.
Traditional active contour models are methods used in computer vision where a deformable spline
is warped, subject to certain constraints and image forces, until a predefined overall energy is
minimized (Kass, Witkin, & Terzopoulos, 1988). The standard solution for contour evolution
algorithms involves numerical methods of integration that are computationally costly and may
have issues with stability. The original active contours approach also depends on the
parameterization of the contour and has trouble handling changes in curve topology. The geodesic

active contour method addresses these issues, reduces the need for preprocessing since it utilizes
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fewer parameters, and is better able to recognize an object with non-ideal edges (Caselles, Kimmel,
& Sapiro, 1995). The morphological geodesic active contours method (Marquez-Neila, Baumela,
& Alvarez, 2014) is a variation on this approach that allows for fast, stable contour evolution,
increases recognition of objects with non-ideal edges, and reduces the need for image

preprocessing.

The proposed method is demonstrated on 2D axial images acquired at the intervertebral
disc level C2/C3, which has been shown to be clinically relevant in Multiple Sclerosis (Schlaeger
et al., 2014). Motion artifacts are also less likely to occur at C2/C3 than at lower levels. The method
can potentially be extended for use on other levels and with 3D volumes as well. The MGAC
method requires the cord edge delineation as an input. A cross-sectional cord shape template is
then registered with this input in an initial step that diminishes the need for pulse sequence
dependent templates. This is used in conjunction with an active contour algorithm. While almost
all brain and spinal cord automatic algorithms require some editing in a subset of cases, the degree
to which they are automated is judged by the frequency and subjective level of the post-hoc editing.
The MGAC method we present is shown to require obvious and predictable edits in the
segmentations, such as the removal of a small bump or the continuation of a leg, which are needed

with low frequency. The MGAC method can also be easily extended to other imaging protocols.

3.2 Methods

3.2.1 Image Acquisitions

45 healthy subjects and 58 multiple sclerosis patients were scanned for this study. Phase

sensitive inversion recovery (PSIR) images were acquired in all patients and 42 of the 45 healthy
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subjects, and T2* weighted images were acquired in 3 of the healthy subjects. Figure 10 shows the

number of subjects and scans acquired for each investigation.

Subject Scan Type Number of Total Number of Purpose
Type Subjects Scans
Healthy 2D PSIR 20 20 Template Creation
Controls
Healthy 2D PSIR 12 12 Accuracy Tests
Controls
Healthy 2D PSIR 8 16 Reproducibility Tests
Controls (20 including
unused scans)
Healthy 2D PSIR (low 1 2 Validity Tests on High
Controls and high Resolution Images
resolution)

Healthy 2D T2* 3 3 Versatility Tests on
Controls weighted T2* weighted images
Healthy 3D PSIR 1 1 Extension to 3D
Controls

MS 2D PSIR 58 58 Patient Data Tests
Patients

Figure 10: Number of Subjects and Scans Acquired

The acquisition parameters for each scan type are shown in Figure 11. The 2D scans were
acquired axially at the intervertebral disc level C2/C3 perpendicular to the cord. The T2* weighted
scans were obtained on 2 different scanners with a 2D MEDIC (Multi-Echo Data Image
Combination, 6 echo times: 8.1, 13.98, 19.86, 25. 74, 31.62, and 37.5 ms) protocol. One scan was
acquired at a higher resolution. The high resolution 2D PSIR scans and the 2D T2* weighted scans
utilized a 64-channel head/neck coil that was unavailable for the other 2D PSIR scans and the 3D
PSIR scan, previously acquired with a 20-channel head/neck coil. The 2D T2* weighted and 3D

PSIR scans were accelerated with a parallel imaging factor of 2.
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Scan Type 2D PSIR 2D PSIR 2D T2* 3D PSIR
(high weighted
resolution)
Intervertebral c2/C3 C2/C3 Cc2/C3 C2-C5
Levels:
Scanner: 3T Skyra 3T Skyra 3T Skyra 3T Skyra
scanner scanner scanner scanner
In plane .78x.78 mm? .5 x.5 mm?2 S5x.5mm?2  .625x.625 mm?
resolution:
Slice thickness: 5 mm 5 mm 5 mm 5 mm
Number of Slices: 1 1 1 12
Bandwidth 250 Hz/Px 250 Hz/Px 250 Hz/Px 250 Hz/Px
TR: 4000 ms 4000 ms 300 ms 4000 ms
TI 400 ms 400 ms 400 ms
TE 3.22ms 3.22ms 23 ms 423 ms
Flip Angle: 10 degrees 10 degrees 30 degrees 10 degrees
Head/neck coil 20 channels 64 channels 64 channels 20 channels
channels:
Number of 3 15 3 2
averages:
Acquisition Time: 1 minute 50 9 minutes 10 2 minutes 28 9 minutes 16
seconds seconds seconds seconds

Figure 11: Pulse Sequence Parameters

The patients were selected from a cohort investigated in a previously published study
(Schlaeger et al., 2014). The original cohort was screened to include subjects with a diagnosis of
MS according to international criteria who were greater than 18 years of age. Any patients with
relapses within 4 weeks prior to the visit, use of corticosteroids 4 weeks prior to the MRI exam, a
recent history of drug or alcohol abuse, a diagnosis of hepatitis B or C or human immunodeficiency
virus, participation in ongoing MS trials with unlicensed drugs, or any concurrent illness or
disability were excluded. In this study, we analyzed only those cases without obvious lesions at
the C2/C3 intervertebral disc level in the PSIR image, in order to evaluate the algorithm in cases
without lesions. Out of 127 patients, 14 were excluded due to image artifacts or lesions that
precluded manual gray matter segmentation. 55 additional patients were excluded due to lesions
that did not preclude manual segmentation. Figure 12 shows the demographics of the remaining

58 MS patients and the 45 healthy controls included in this study.
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Controls Relap_smg MS  Progr essive MS All Patients
Patients Patients
Number 45 46 12 58
Mean Age +/-
Standard 44.2 +/-14.6 49.6 +/- 8.5 60.7 +/-11.4 51.9 +/-10.2
Deviation
Percent 62.2% 63.0% 58.3% 62.1%
Female
Mean Disease
Duration +/- N/A 14.6 +/-7.7 17.7 +/-12.6 15.3+/-8.8
Standard
Deviation
e N/A 2 (1.5-2.5) 425 (35-65) 2 (1.5-3.75)
Range)
Mean Cross- /9-67 +/-7.12
Sec:l(‘):aa-li-(/:-ord (Calcull';ll;ler;lfzrom 41 77.23 +/' 7.73 67.66 +/' 6.85 75.25 +/- 8.49
Standard subjects with 2D PSIR mm? mmz2 mm?2
Deviation images)
Mean Cross-  19:59 +/-1.58
Sectional Gra mm? 17.68 +/- 2.28
MatterAreay (Calculated from 32 18.36 +/' 1.91 15.09 +/' 1.49 mn<2
+/-Standard  Subjects with manual mm?2 T
Deviation GM segmentations)

In order to obtain initial estimates for the gray matter segmentation for input into the

To create the templates, whole cord masks and gray matter masks were first created from

Figure 12: Subject Demographics

3.2.2 Creating a Template
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MGAC algorithm, templates were created and registered to each individual patient. A template of
the overall cross-sectional shape of the whole cord and a template of the cross-sectional spinal

cord gray-matter shape were built using 2D PSIR images at the C2/C3 level in 20 healthy subjects.

the images. In order to facilitate manual gray matter segmentations, all images were first up-
sampled by a factor of 10 using the python package SciPy and cropped to 300 voxels by 300
voxels. The field of view for each cropped image was thus 30 times the resolution of the original

image. For all of the 2D PSIR images analyzed, the cropped subsections used for analysis each



measured 23.4 mm by 23.4 mm. The edge of the whole spinal cord and the edge of the spinal cord
gray matter from 20 subjects were manually delineated to create masks using the software Jim (v.
6.0, Xinapse Systems, Northants, UK; www.xinapse.com). Distance maps were then created from

these masks, where the value of each voxel represented the closest distance from the contour.

To create a template for the shape of the whole cord using these distance maps, all subjects
were initially registered to a randomly chosen subject to create a mask reflecting the average affine
shape and size of the 20 subjects. Registrations were done with multi-resolution affine
transformations with 5 degrees of freedom (translation in x and y, scaling in x and y, and rotation).
In order to create a template representing the average shape of the whole spinal cord from 20
subjects, an iterative algorithm (Rueckert, Frangi, & Schnabel, 2003) with both multi-resolution
affine and nonlinear transformations (Vercauteren, Pennec, Perchant, & Ayache, 2008) was
employed. In each iteration, the whole cord masks of all spinal cords were fully registered to the
current template. The deformation fields from the nonlinear transformations were then averaged
and the inverse was applied to the current template to create a new template. The affine template
was used for the first iteration, and in the last iteration of this algorithm, the affine and nonlinear
transformations were also applied to the gray matter segmentations to create a probabilistic gray

matter template.

To create the gray matter template mask, a threshold of 0.5 was then applied to the
probabilistic template. Since only the whole cord mask is used to find the transformations, the
resulting probabilistic gray matter template is able to capture the variance in gray matter shape
from different individuals. All affine registrations were performed by representing segmentations
with distance fields (Carballido-Gamio et al., 2013), while all nonlinear registrations were

performed by representing the background with distance fields and the spinal cords with zeros.
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The registration software was an internally developed tool (Carballido-Gamio et al., 2013),
programmed in MATLAB (The Mathworks, Inc. Natick, MA) to enable distance map based
registrations (Reinertsen, Descoteaux, Drouin, Siddiqi, & Collins, 2004; Suh & Wyatt, 2006).
Figure 13 shows a diagram of the steps involved in the generation of the templates for the whole

cord shape and the spinal cord gray matter shape.

Cord Shape Distance
Fields used for Affine
Transformations

Average of the
nonlinear
displacement fields
and current template

Current template =
Average of affine
registrations to one

All subjects are
registered (Affine +
Nonlinear) to current

randomly selected template are used to create
subject new template
Cord Shape Template
Cord Shape Distance
Fields used for
Nonlinear Gray Matter
Transformations Shape Distance Fields

Apply same
transformations
found from creating n

cord template to
Gray Matter Distance

Fields Probabilistic Gray

Matter Template

Figure 13: Contour Driven Template Creation

3.2.3 Creating an Initial Guess for Gray Matter Segmentation Based on Registration

To segment the gray matter in an image of the spinal cord, an initial guess of the
segmentation must be provided to the active contours algorithm. This initial guess is based on the
non-linear transformation of the previously created whole cord template to the delineated whole

cord in the image. This process is shown in steps 1-5 in Figure 14. For each image to undergo gray
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matter segmentation, the delineation of the edge of the whole cord is required as an input to the
algorithm. This delineation is done with the software Jim in a semi-automatic process, which
requires the user to provide a landmark for the center of the spinal cord (Horsfield et al., 2010).
The previously created whole cord template is then registered with both affine and non-linear
transformations to the delineated whole cord shape of each subject. The computed affine and non-
linear transformations are then applied to the previously created spinal cord gray matter template.
The transformed gray matter template gives a rough idea of the gray matter segmentation in each

subject.

Steps for Segmentation with MGAC

Step 3:
Step 0: Apply same
Original Image " transformation to Gray
’ Matter Template (purple) ~
.. - - ‘ )
Step 4:
Step 1: The transformed gray
Segment cord with |IM matter template acts as a
. prior guess g
| -
Step 2: Step 5:
Cord Shape Template Apply active contours
* (purple) registered to Subject algorithm with prior guess
Cord (green) as input.

-

Figure 14: Steps for Segmentation with MGAC

3.2.4 Morphological Geodesic Active Contour Model

The registered gray matter template is used as an initial guess to initialize the geodesic
active contour algorithm. The MGAC algorithm uses an open source Python implementation of
the morphological geodesic active contour method (https://github.com/pmneila/morphsnakes). To
use this implementation, the user provides an initial contour which is then deformed in a method

driven by three image forces: a smoothing force that controls the smoothness of the contour, a
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balloon force that inflates or deflates the contour in areas where information is lacking, and an
image attraction force, which drives the contour to the maximum gradient areas in the image. Our
parameters were selected according to the methods and guidelines stated in the study that
developed this morphological geodesic active contour method (Marquez-Neila et al., 2014) and
are listed in Figure 15. While one of the 5 parameters (the sigma stopping criteria) varied with
acquisition resolution in this study, a consistent set of parameters can be used in practice provided

that the original images are zoomed and interpolated to the same level before the active contours

algorithm is applied.
Parameter Function Value:
a Stopping criteria of algorithm 1000
o Stopping criteria of algorithm 3 _forlower res (2D PSIR)
8 for mid res (3D PSIR)
10 for high res (2D PSIR, T2*W)
1 Number of successive 5
application of smoothing
algorithm
0 Threshold for application of 1
smoothing and ballooning
\Y Strength of the balloon force 1

Figure 15: Active Contour Model Parameters

3.3 Results

3.3.1 Accuracy

In the 12 test subjects, the spinal cord gray matter was manually segmented by an
experienced neurologist three separate times using the software Jim. These three sets of manual
segmentations were then used to validate the accuracy of the MGAC segmentations using Dice
similarity coefficients. Dice similarity coefficients were calculated for both the original manual
and MGAC segmentations that were created using interpolated images as well as the down

sampled manual and MGAC segmentations in the original resolution. In addition, the manual
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segmentations were compared against the MGAC segmentations using the Hausdorff distance,
which is defined as the greatest of all the distances from a point on one segmentation contour to

the closest point on the other segmentation contour.

The results of MGAC and one of the three sets of manual segmentations for the 12 controls
are shown in Figure 16. Figure 17 shows how the gray matter areas from MGAC segmentation
and manual segmentation compared to each other in the 12 subjects. All of the Hausdorff distances

between the MGAC and all three sets of manual segmentations were less than 1.0 mm.
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Manually
Segmented

MGAC
Segmentation

Dice
Similarity .88 .88 89 .89 .89 87
Coefficient

Low Res Dice
Similarity 85 86 89 89 86 .83
Coefficient

Hausdorff
Distance
(mm)

-
segmentations

.UQU@Q

Similarity .88 .87 85 87 .88 91 .88 (.82-.93)
Coefficient

Manually
Segmented

MGAC
Segmentation

Low Res Dice
Similarity .86 .83 84 .82 91 93 .88 (.81-.94)
Coefficient

Hausdorff
Distance .70 .55 .80 .60 .84 47 .61 (.33-99)
(mm)

Figure 16: Manual segmentation (shown in green) vs. MGAC segmentation (shown in red directly below)
of spinal cord gray matter for 12 healthy controls. Dice similarity coefficients are reported below the
images.

31



Manual vs MGAC GM Areas at C2-C3
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Figure 17: Comparison of spinal cord gray matter areas (in mm2) from the manual and MGAC
segmentations in 12 healthy controls. The linear fit line with its equation and the correlation are
displayed on the figure.

For comparison between manual and MGAC segmentations, a total of 34 PSIR images
acquired from 21 subjects were segmented. 12 subjects had one scan, 8 subjects had both a test
and a retest scan (and 2 out of these 8 had an additional test and retest scan that went unused), and
1 subject had both a regular and a high resolution scan. While all of the 34 MGAC segmentations
had slight differences from the manual segmentations, 4 had significant differences in the shape

topology, as shown in Figure 18. In one case, there was an incomplete continuation of the posterior
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horn to the edge of the cord in the MGAC segmentation. This topological difference is
understandable in cases with reduced gray matter contrast, where even manual operators find it
necessary to extrapolate due to the reduced contrast. In three other MGAC segmentation cases,
there was an additional bump on the side that did not appear in the manual segmentations. This
topological difference is caused by darker intensities in the white matter that appear on the side of
the gray matter. When this occurs, the algorithm detects the border of this hypointense area instead
of the border of the gray matter. Currently, these differences are small and can easily be fixed with
manual editing. In the future, these differences in topology can be avoided with modifications to
the algorithm to constrain the gray matter to hit the edge of the cord mask and also to constrain the
algorithm to look for a gradient where the hypointensity is on the correct side of the curve by

providing the image contrast as prior information to the algorithm.

MGAC
Segmentation Error

Area (mm?)

Correct MGAC

Segmentation on
Subsequent Scan of

Same Subject

Area (mm?) 18.24 1981 19.18

Figure 18: Topological Differences in MGAC Segmentations

3.3.2 Reproducibility

Eight additional subjects were scanned twice in the same session after repositioning.
Reproducibility of the MGAC spinal cord gray matter areas was assessed in terms of percent

change between test and retest scans. In addition, the intra-class correlation coefficient (ICC) was
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calculated between the automatically segmented areas and the average of the manually segmented

arcas.

The absolute value of the percent change in area between the two scans was calculated for
each pair and ranged from 0.54% to 6.61% with a mean of 2.85% and a standard deviation of
1.24%. The eight pairs of scans are shown in Figure 19. This variability corresponds to an
interclass correlation coefficient between the test and retest MGAC segmentation of gray matter
areas of .88. The twelve subjects with manual segmentations were segmented three times by a
neurologist. In comparison, the percent test-retest changes for the twelve subjects with manual

segmentations ranged from 0% to 6.51% with a mean of 2.38% and a standard deviation of 2.06%.
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Test Image
MGAC
Segmentation

Retest Image
MGAC
Segmentation

Percent Change -2.26% 0.66% 0.54% -6.61%

Test Image
MGAC
Segmentation

Retest Image
MGAC
Segmentation

Percent Change -5.43% -3.23% -0.95% 3.11%

Figure 19: Area percent changes for areas segmented with MGAC of 8 subjects who were each scanned
twice with repositioning
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Test vs. Retest MGAC GM Areas at C2-C3
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Figure 20: Comparison between the areas (in mm2) from the test and retest MGAC segmentations in 8
healthy controls. The linear fit line with its equation and correlation are displayed on the figure.

3.3.3 Validity

While no gold standard exists, we hypothesize that partial volume effects may overinflate
the estimation of gray matter area and that this over-inflation is larger with the manual
segmentation than with the MGAC segmentation. This hypothesis was formed after detecting a
bias between the MGAC and manual approaches with the MGAC method yielding systematically

lower gray matter area values for all subjects. We evaluated evidence for this hypothesis based on
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one subject scanned at both low and high resolution as described in Figure 11. As shown in Figure
21, each of these scans was both manually and automatically segmented for spinal cord gray
matter. Validity of the spinal cord gray matter areas computed from MGAC segmentation was

assessed in terms of the percent change in cross sectional area from scans of different resolution.

We assume that the higher resolution scans will provide a more realistic estimate of gray
matter segmentation than the low resolution scans, due to the higher level of detail. The percent
change was 25% between the manual segmentations from high and low resolution images, while
the percent change was 13% between the MGAC segmentations from high and low resolution
images. These results suggest that both manual and MGAC methods may overestimate the gray

matter area, with larger bias for the manual approach.

MGAC MGAC
Manual Segmentation:
Segmentation: Segmentation:
Low Resolution Lol High Resolution

Manual Segmentation:

Low Resolution

Image

n

Area (mm? 18.09 17.02 14.12 14.88

Figure 21: Manual and MGAC segmentations of low and high resolution images

For the higher resolution images, it was necessary to tune the parameters of the MGAC
algorithm in a different manner than for the lower resolution images. When keeping all other
parameters constant at o= 1000, u=15, 0 =1, v=1 while increasing sigma, the errors in the contour

decrease, but the detail in the horn contours also decreases.
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3.3.4 Versatility

As a proof of concept, 2D T2* weighted images from four subjects were also segmented
using the MGAC algorithm. Versatility of the MGAC method was assessed through visual

inspection of the segmented spinal cord gray matter area from the T2* weighted scans.

In Figure 22, successful gray matter segmentations from 3 T2* weighted images acquired
with the same protocol on 2 different Skyra scanners are shown. In two of the T2* subjects, there
were slight errors in the cord segmentation due to hypointense blood vessels, seen in the blue
contours in Figure 10. However, these minor errors did not have a large impact on the algorithm
and gray matter segmentation was still successful in these cases. In the future, we plan to assess
the performance on T2* weighted images with further testing on higher quality 3D T2* weighted

images.

Subject 1 Subject 3
Skyra 1 Skyra 2

T2* Image with
Cord
Segmentation

T2* GM MGAC
Segmentation

Figure 22: MGAC segmentation of T2* weighted images
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3.3.5 Potential for Clinical Applications

To demonstrate the potential for this method to be used in clinical applications, PSIR
images from 58 multiple sclerosis patients who did not have obvious lesions at the C2C3 level
were also segmented using the MGAC algorithm. The segmentations were assessed based on Dice
similarity coefficients and Hausdorff distances between the manual and MGAC segmentations.
Figure 23 shows the MGAC segmentations of these 58 patients in red overlaid with the manual
segmentations in green. Each patient is labeled with the Hausdorff distance between the MGAC
and manual segmentations. Of the 58 patients, 12 had Hausdorff distances greater than 1.0 mm,
signifying the presence of significant errors. These instances were not found to be associated with
the level of spinal cord atrophy or gray matter atrophy. Figure 24 shows how the gray matter areas
from MGAC segmentation and manual segmentation compared to each other in the 46 patients
with Hausdorff distances less than 1.0 mm between the segmentations. Figure 25 shows the

MGAC segmentation failures in several MS patients with lesions at the C2/C3 level.
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Figure 23: MGAC segmentation (red) and manual segmentation (green) of PSIR images from MS
patients. Hausdorff distances between the MGAC and manual segmentations, Dice Similarity
Coefficients, and Dice Similarity Coefficients in the original resolution are reported above each image.
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Figure 24: Comparison between the areas (in mm?2) from the manual and MGAC segmentations in 46 MS
patients. The equation of the linear fit model and the correlation is displayed on the graph.
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Figure 25: Examples of MGAC Segmentation Failures in MS Patients with Lesions

3.3.6 Extension to 3D Images and Other Cord Levels

One 3D PSIR image was used to demonstrate how this method could be extended for use
with three-dimensional scans or 2D multi-slice scans including different cord levels. The 2D
C2/C3 template was registered to every slice and the MGAC algorithm was applied in the usual
manner to every slice. Segmentations were assessed through visual inspection. While there are
errors in a few slices, the segmentation is still successful in several different levels of the spinal
cord with substantial differences in gray matter shape. Though the 2D template was made with
C2/C3 images, results show that it can still yield successful segmentations at surrounding levels
with roughly similar gray matter structure. This example demonstrates the potential for the more

general use of this algorithm in the future.
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Figure 26: MGAC segmentation of 12 slices from a 3D PSIR T1 weighted image

3.4 Discussion

The MGAC segmentation method presented in this study provides an accurate and
reproducible method of segmenting gray and white matter in the non-diseased spinal cord, thus
enabling the computation of valuable spinal cord metrics such as gray matter area. The value of
grey matter areas and volumes as future biomarkers of MS progression is indicated by previous
studies that suggest that manually segmented spinal cord gray matter area provides a strong
correlate with disability and progressive phenotype in multiple sclerosis. Additionally, these
regions of interest can be used to determine quantitative imaging metrics within the spinal cord
gray and white matter. Routine, robust estimates of spinal cord gray and white matter areas may

provide outcome markers in clinical trials and potentially be of prognostic value.

To prove useful in clinical practice, an algorithm should be sufficiently robust so that it can

be used on a variety of images acquired with a variety of scanners. The MGAC algorithm does not
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depend on the absolute intensity values of the acquired image. Since the MGAC algorithm is based
on finding the maximum gradient, it depends only on the relative intensity differences of the image.
In other words, the algorithm simply requires an image with sufficient contrast between gray and
white matter. In principle, the MGAC algorithm could be applied to other MR images that are used
for the spinal cord 10,11, provided they offer a sufficient level of gray to white contrast. Our results
showed that the MGAC algorithm was able to successfully segment gray matter areas in the T2*
weighted images that were tested. Furthermore, in contrast to methods using intensity-based
template registration 13,14, the dependence on pulse sequence specific generation of templates is
reduced since only the shapes of the cord and gray matter templates are used, and these form only
the initial input to the algorithm. The use of the same template was tested on another PSIR pulse
sequence with higher resolution with positive results. Future work is needed nonetheless to explore

and determine the sensitivity to shape templates for other different acquisition schemes.

Segmenting spinal cord gray matter with the MGAC algorithm is currently a semi-
automated process, since the algorithm requires the delineation of the cord as an input. This cord
delineation may be obtained with the software JIM in a semi-automatic process that requires a
landmark. Currently, there are several tools (Amann et al., 2016) in development to automate the
delineation of the edge of the spinal cord, such as PropSeg (Marios C. Yiannakas et al., 2016) from
the Spinal Cord Toolbox. In the future, as these tools develop, this initial step can be automated so

that MGAC will be fully automated.

The template used in this study was created using the manual gray matter segmentations of
20 2D PSIR images from healthy subjects. The number of subjects used to create this template is
similar to that of the publicly available template (Fonov et al., 2014) from the Spinal Cord Toolbox,

which was created with 16 subjects. Publicly available templates can be used with the MGAC
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algorithm, though cohort specific templates that better capture the contrast, signal to noise, and

other characteristics of a data set are likely to work best.

The MGAC gray matter areas tend to be slightly smaller than the gray matter areas from
manual segmentation. From our study of higher resolution images, we found that both manual and
MGAC approaches may be overestimating the gray matter areas, with larger bias for the manual
segmentations. This suggests that the MGAC segmentations may be more accurate than the manual
segmentations. From visual inspection, it appears that the MGAC segmentations may leave less of

a boundary around the gray matter in areas with partial volume averaging issues.

For the higher resolution images, it was necessary to tune the parameters of the MGAC
algorithm to different values from those used for the lower resolution images. While tuning
parameters, there is a tradeoff between segmentation errors that occur with complex contours and
the loss of detail that occurs with more simple contours. A more rigorous exploration of parameters

may help to alleviate this problem. It may also be beneficial to use a higher resolution template.

Automatic segmentation will enable routine measurements for tracking, but it is important
to ensure that these measurements are as consistent as those done by manual segmentation. The
mean percent change for the manual segmentations (2.38% +/- 2.06%) was slightly lower than
mean percent change for the MGAC segmentations (2.85% +/- 1.24%). However, the standard
deviation of the percent change for the manual segmentations is larger than that of the MGAC
segmentations. For this reason, the ICC may be a more meaningful metric. The ICC for the
reliability of the MGAC spinal cord gray matter segmentation was 0.88 when the algorithm was
tested on two different subsequent scans of the same person. One study (Papinutto et al., 2015)
reported an average coefficient of variation of 2.75% when the same operator segmented

subsequent C2/C3 PSIR scans of the same person and an ICC value of 0.916 when different
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operators manually segment the same C2/C3 PSIR scan from a healthy control. However, the ICC
for MGAC on test-retest data (0.88) is very similar to the ICC from the manual segmentation
results on the same data (0.91), signifying the reliability of this method. This level of accuracy
may still not be enough to detect annual changes in gray matter in the clinic. The expected annual
change to gray matter area in certain pathologies may be less than 2%, and thus would not be

reliably inferred by either manual segmentations or MGAC segmentations at a single subject level.

While several automated and semi-automated methods for the segmentation of spinal cord
gray matter area have been proposed, some of these require significant manual intervention, some
are lacking in accuracy or robustness, and none have been demonstrated with images of patients
with spinal cord atrophy. One proposed method based on a fuzzy connector method (M.C.
Yiannakas et al., 2012) requires a significant amount of input from a trained expert. This method
requires a seed region of interest to capture a partial segmentation and substantial manual editing

is required to capture the rest of the segmentation.

Another study presented an automatic multi-atlas non-local statistical fusion method
(Asman et al., 2013). The study exploring this method reported Dice similarity coefficients from
3D volumes ranging around 0.55 to 0.85 with a mean around 0.75. Our current method reports
Dice similarity coefficients ranging from 0.82 to 0.93 in the 2D slice at C2/C3, with a mean of
0.89 when validated against manual segmentations. In the future, we hope to conduct a direct

comparison of these two methods with the same data set.

Template-based tools (De Leener et al., 2017; Taso et al., 2015) have been shown to work
fairly well for healthy controls. One study used a method that registered a spinal cord template to
each individual subject to determine the segmented spinal cord gray matter area. This study

reported intra-observer Dice coefficients of 0.90+/- 0.01 and an ICC value of 0.80. In comparison,
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the MGAC method Dice coefficients are similar at 0.88 +/- 0.03 but the ICC is higher at 0.88. This
template-based segmentation method is based on registration with a template of normal spinal cord
structure and has not yet been tested on patients who experience gray matter atrophy that is
independent from overall cord atrophy or on subjects acquired with a different imaging protocol

from the template.

This method competed against five other methods in the Spinal Cord Gray Matter
Segmentation Challenge in 2015. The MGAC method scored high amongst the methods in True
Positive Rate, indicating the highest level of specificity. In addition, the MGAC method scored
amongst the highest in both Skelotonized Hausdorft Distance and Skelotonized Median Distance,
demonstrating the methods ability to determine the underlying shape of the GM. However, MGAC
did not score as highly in True Negative Rate, representing a lower level of sensitivity. This lower
sensitivity is also seen in the lower Mean Absolute Surface Difference and Positive Predictive
Value scores. These results suggest that the MGAC method is excellent at determining the
underlying shape of the GM, but may overestimate the GM volumes compared to human raters.
One strong advantage of the MGAC algorithm over the other methods is its ability to work on
images with different contrasts. This algorithm was developed for use on PSIR images, but has

also been shown to work well on T2*weighted images.

In the future, we plan to address the current limitations of the MGAC method. Of the 34
automatic segmentations performed on healthy controls, there was one case with a major
topological difference from the manual segmentation and three cases with minor topological
differences from the manual segmentation due to insufficient contrast in the image. Both of these

types of errors are due to issues with the balance of prior information and image information. By
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modifying the algorithm so that these common mistakes are recognized, these errors may be

avoided.

Our results show that in 46 out of 58 patient cases, the MGAC segmentation had a
Hausdorff distance less than 1.0 mm from the manual segmentation. However, there are still more
challenges to address for the clinical use of this algorithm. The patient cohort did not include
patients with obvious lesions that may confound the MGAC algorithm. Since the segmentation is
expected to be further from the prior contour in patients than in the controls, the balance of prior
information and image information may need to be adjusted for better recognition of atrophy. In
addition, the sample of 58 multiple sclerosis patients may not fully capture the variability of

morphological shapes that may be seen in other pathologies with gray matter atrophy.

This paper demonstrated the use of MGAC in 2D scans at the C2/C3 level, and used a
single case to show one method for extending the algorithm to other similar cord levels or to 3D
images. However, there are many other strategies that could be employed as well. Instead of using
registration of a 2D C2/C3 slice template to each slice, slice level cross-sectional templates can be
created for the other cervical and thoracic levels and applied appropriately. Another option is to
use a 3D template that can be registered to the 3D cord shape. Subsequently, a 3D morphological
geodesic active surface model can then be applied in a similar way. Alternatively, MGAC can be
applied to the C2/C3 slice of the volume that matches the template. The result can than be used as
the prior for the subsequent slice and using an iterative approach, the process can be propagated

throughout the 3D volume.

This study has shown that the MGAC segmentation method is successful in estimating gray
matter volume in healthy subjects and in MS patients without evident lesions at the imaged level.

However, the true power of this method will come from accurate segmentation in other types of
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patients, who may have confounding features. From our initial investigation, we have shown that
the presence of significant lesions often leads to errors and provides inaccurate results. In Figure
13, the first four examples shown could easily be corrected with simple edits, such as the removal
of a small bump or continuation of an existing curve. However, the last example shows a case
where the segmentation could not be salvaged with simple manual editing. In these cases, the lack
of contrast between lesions and gray matter may undermine the accuracy of any method, including
manual segmentation. With further tuning of these parameters, we can change the balance for how
much the algorithm depends on the prior shape information versus the intensity information in the
image. In the future, a lesion mask could also be input to the MGAC algorithm to aid in
segmentation. This should help the algorithm provide accurate assessments for the gray matter

area in patients with spinal cord lesions.

In conclusion, this study presents a semi-automated method for segmentation of spinal cord
gray and white matter that can be used with a variety of image protocols. Compared to other
proposed methods, the MGAC method shows a similar level of accuracy against manual
segmentations and a higher level of precision between test and retest scans. This method will allow
for easy and routine longitudinal measurements of spinal cord gray and white matter areas, which
can be used to further improve our understanding of neurodegenerative processes in disorders

affecting the spinal cord such as MS.

3.5 Additional Implementation of Convolutional Neural Networks for Spinal

Cord Gray Matter Segmentation

Convolutional neural networks have proven to be very effective in the use of classification

and segmentation tasks and this method has recently gained popularity in medical imaging
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(Greenspan, van Ginneken, & Summers, 2016). A neural network is an artificial intelligence
computing method that is inspired by biological neural processes. In a computational neural
network, a collection of nodes sends signals to each other through connections, just as biological
neurons send signals to each other via synapses. These nodes are organized in layers and signals
travel from the input layer to the output layer. The connections each have a weight that controls
the signal strength. Each node has a threshold and when the aggregate of the received signals
passes the threshold, the node sends its own signal. Using a technique called backpropagation, the
error from each neuron is calculated after processing a batch of data, and the network can learn the
correct signal weights with gradient descent. Neural networks gained popularity as Graphical
Processing Units (GPUs) made the computation of back-propagation possible for many layered
networks. Methods using neural networks won many international competitions in pattern

recognition, including

Convolutional neural networks (CNNs) are a specialized type of neural networks that have
an architecture explicitly designed for image inputs and constrained in a sensible way so that the
number of parameters decreases. In a convolutional neural network, there are convolutional layers
that are made up of a set of learnable filters. Each of these filters is slid across the width and height
of the input image to produce an output that gives a filter response at every pixel in the image. As
the network learns the correct weights, it will learn the correct filters that activate when they
encounter certain features, such as a horizontal edge or a circular pattern. In 2012, a convolutional
neural network method called AlexNet (Krizhevsky, Sutskever, & Hinton, 2017) won the
ImageNet Large-Scale Visual Recognition Challenge, and since that time, convolutional neural

networks have been used for many different applications.
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Several different architectures have shown to be useful in the field of semantic
segmentation at the pixel level. Originally, semantic segmentation was performed using a
traditional architecture of a convolutional neural network (Farabet, Couprie, Najman, & LeCun,
2013) to label each pixel with a label. A later study (Long, Shelhamer, & Darrell, 2015) proposed
using fully convolutional networks where convolutions with kernels covering the entire input
region were used instead of fully connected layers. This made semantic segmentation much more
efficient since it used fewer parameters. The most typical CNN architectures used in medical
imaging segmentation are fully convolutionalneural networks and U-Nets (Ronneberger, Fischer,
& Brox, 2015). U-Nets use data augmentation to use training data more effectively and were
specifically designed for the application of biomedical image segmentation with smaller training
data sets.A recent study investigated the application of spinal cord gray matter and used deep
dilated convolutions to segment in 3D MPRAGE images (Perone, Calabrese, & Cohen-Adad,
2018). This study was tested on the data set from the 2015 ISMRM Spinal Cord Gray Matter

Segmentation Challenge and achieved an overall dice similarity coefficient of .85.

3.6 Methods

In this work, I have implemented a similar architecture of deep dilated convolutions and
trained it solely on zoomed PSIR images from the C2/C3 area of the spinal cord taken from our
Siemens Skyra scanner. In this way, the weights learned by the network are more specific to our
application and the classification should be more accurate. I have also similarly used a Dice loss
function rather than a traditional loss function of cross-entropy, since only a small portion of the

original image is made up of the gray matter to be segmented.
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The model was implemented in Python using Keras with TensorFlow backend and the code
can be found on github at /zips.://github.com/edatia/SpinalCordGMSegmentCNN. A dataset of 130
patients and 20 healthy controls was used to train, validate, and test the model. The training set
consisted of 130 images, while the validation and test set each contained 15 images that were
randomly selected. The model was subsequently run on 883 images from 370 patients and the

results were assessed visually.

3.7 Results

After training and validating the model using 145 images, the resulting accuracy on the 15
image test set was .987 with a Dice coefficient of .789. The results of the test set are shown below
in Figure 27. The segmentations delineated by an expert neurologist are shown in blue, while the

results of the convolutional neural network are shown in blue.

Figure 27: Test Set Results
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3.8 Discussion

From the results, we can see some of the most common mistakes made by the convolutional
network. While the active contour method creates a single contour, the convolutional neural
network judges each voxel independently. For this reason, the resulting mask is often disconnected
or of the wrong topography. However, with a larger training set, we would expect that the

frequency of these mistakes would greatly decrease.

Many other common methods seem to rely too much on prior information and often find a
gray matter segmentation when there is little information in the image. For this reason, these
methods may be overestimating the accuracy rate. It is important to judge methods critically and
look at the accuracy rate only on images that can be judged by human readers as well. Our results
show that when segmentation fails on a certain time point for a certain subject, the segmentation
is likely to fail similarly at a later time point. This fact is reassuring since it indicates that these
failures are driven by biological differences rather than by image quality or by the algorithm.

algorithm. In the future, a more accurate model could be achieved by creating a larger training set.
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Chapter 4 - Piloting a Longitudinal Spinal Cord Study

4.1 Introduction

As new developments unfold, spinal cord imaging has grown increasingly important in the
investigation of multiple sclerosis (MS). MRI measures of cord size have been shown to be
sensitive to the axonal loss and pathological processes seen in MS (Kearney et al., 2015). Recent
studies have revealed the potential of cross-sectional spinal cord area from phase-sensitive
inversion recovery (PSIR) images as a biomarker correlated with clinical disability in MS
(Schlaeger et al., 2014, 2015). This finding suggests that cross-sectional spinal cord area may also
be useful as a metric in clinical trials to evaluate the effectiveness of treatments in improving

clinical disability.

In order to be used effectively in a clinical study, a metric must have a sufficiently large
effect size in the patient population that the improvement due to treatment can be observed with a
reasonable number of subjects. This means that if the longitudinal changes are small, the metric
must also be sensitive and highly reproducible. In addition, the metric should have a strong
correlation with clinical metrics since treatments are designed to improve disability and quality of
life and not just underlying biological effects of the disease. The aim of a clinical trial is to measure
the difference of the metric in a treatment group relative to a comparator group. If the treatment is
successful, the metric in the treated group should approach the value of the metric that is seen in

healthy subjects or MS patients with a milder disease course.

Traditionally, MS clinical trials have used metrics such as whole brain atrophy, cortical
gray matter atrophy, and subcortical gray matter atrophy to investigate the effectiveness of

treatments and many studies have attempted to quantify the sample sizes required to use these
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metrics in a clinical trial (Altmann et al., 2009; Anderson, Bartlett, Fox, Fisniku, & Miller, 2007;
Kim et al., 2017; Nakamura et al., 2014). However, none of these studies have taken into account
differences in atrophy that may be due to other covariates that may affect cohorts differently. Many
studies (Bakshi, Dandamudi, Neema, De, & Bermel, 2005; Bonati et al., 2011; Brex et al., 2001;
M Filippi et al., 1997; Furby et al., 2010; Lin, Tench, Evangelou, Jaspan, & Constantinescu, 2004;
Losseff et al., 1996; Lukas et al., 2015; Nijeholt et al., 1998; Rashid et al., 2006; M. A. Rocca et
al., 2011) have investigated the role of upper cervical cord area in MS. In addition, many studies
have been conducted to determine the relationship of spinal cord metrics with clinical disability
(Jacobsen et al., 2014; Sormani, Arnold, & De Stefano, 2014; Steenwijk et al., 2016). The majority
of these studies investigate the correlation of metrics with EDSS score. However, EDSS score is
an imperfect measure in many ways since it reflects a variety of motor, sensory, and cognitive
symptoms and none of these studies have compared the specific relationships of these metrics with

motor disability or cognitive disability.

Inherently, spinal cord atrophy is much more difficult to measure precisely than whole
brain or brain gray matter atrophy. Due to the small size of the spinal cord, segmentation mistakes
have a much larger effect when measuring the annual percent change between scans. Perhaps for
this reason, very few clinical trials have used spinal cord atrophy as an outcome measure (Kalkers,
Barkhof, Bergers, van Schijndel, & Polman, 2002; Leary et al., 2003; Montalban et al., 2009). As
spinal cord imaging has improved, recent studies (Cawley et al., 2018; Kearney et al., 2014) have
used small cohorts to conduct preliminary investigations into determining the potential of using
spinal cord atrophy in clinical trials and quantifying the effect sizes. One of these studies
determined that segmentations done with an active surface model on a PSIR image are much more

reproducible than those done with T1-weighted images or those done with an edge detection
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method (Kearney et al., 2014). In this study, we provide estimates based on active contour models
of 2D PSIR images (Papinutto et al., 2015) at the C2/C3 level, an efficient approach to quantify
spinal cord atrophy, using a large cohort that includes both progressive and relapse-onset MS

patients.

The study presented in this paper calculates the sample sizes required to detect a treatment
effect on atrophy rates in upper cervical cord area, whole brain volume, and brain gray matter
volume. The sample sizes are calculated by comparing patient cohorts to three different reference
groups that represent the ideal target for treated patients. These three groups represent non-
progressive patients with stable EDSS scores, without cognitive decline, and without motor
decline. The calculations were performed after the atrophy rates were adjusted for covariates, such

as age, gender, disease duration, and number of relapses in the previous two years.

4.2 Methods

4.2.1 Patient Cohort

The patients in this study were selected from a larger observational cohort that was screened
to include subjects who were older than 18 years of age with a diagnosis of MS or clinically
isolated syndrome (CIS) according to international criteria. The cohort included patients with
relapsing MS (RMS) and progressive MS (PMS). The PMS group included patients with both
primary progressive MS (PPMS) and secondary progressive MS (SPMS). Any patients who had
ongoing symptoms from a recent relpase, a recent history of drug or alcohol abuse, a diagnosis of
hepatitis B or C or human immunodeficiency virus, participation in ongoing MS trials with
unlicensed drugs, or any concurrent illness or disability were excluded. In this study, we analyzed

only those subjects who had undergone scans that were at least 180 days apart. In addition, any
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patients with active flare of MS symptoms were excluded as well. 196 patients were identified
who met these criteria. Many of these patients were treated with various medications as described
in Table 6 in the eAppendix. Our study did not include an analysis of the PPMS patient group,

since it only included 10 patients.

4.2.2 Reference Groups

In this study, we defined three different reference groups to represent the ideal clinically
responsive patients in a hypothetical clinical trial. All three of these groups were made up of RMS
patients. The first group represents patients without general disease progression and includes RMS
patients whose Expanded Disability Status Scale (EDSS) scores had not increased over the study
period. The second group represents patients without motor decline and includes RMS patients
whose dominant 9-hole peg test (9HPT) scores had not increased over time by more than 2
seconds. The third group represented patients without cognitive decline and included RMS patients
whose Symbol Digit Modalities Test (SDMT) scores had not decreased over time. We chose
conservative definitions of clinical stability by including only those patients showing no increase
in EDSS or SDMT and using only a 2 second allowance for increases in 9HPT. The remaining

patients were used as hypothetical comparator groups.

4.2.3 Image Acquisitions

For this study, 2D phase sensitive inversion recovery (PSIR) images were acquired axially
at the intervertebral disc level C2/C3 perpendicular to the cord in 196 MS patients with a 3T Skyra
scanner and a 20 channel head-neck coil. In addition, T1-weighted brain sagittal MPRAGE images

were acquired in the same patients. The acquisition parameters are shown in Table 1.
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T1-Weighted Image Acquisition Parameters | C2/C3 2D PSIR Acquisition Parameters
Voxel Size: 1x1x1mmA3 .78 x .78 x 5 mmA3
FOV: 240 x 256 x 176 mm 200 x 200 x 5 mm
TR: 2300 ms 4000 ms
TI: 900 ms 400 ms
TE: 2.98 ms 3.22 ms
Flip Angle: 9 degrees 10 degrees
Acquisition Time: 5 minute 12 seconds 1 minute 50 seconds

Table 1 Pulse sequence parameters for T1 weighted brain images

4.2.4 Measuring Atrophy Rates

At each time point, the cross sectional cord area at C2/C3 was measured using the software
JIM (Horsfield et al., 2010) to apply active contour models on 2D PSIR images (Papinutto et al.,
2015) and the brain gray matter volume was measured using SIENAX (Smith et al., 2002, 2004).
The annual percent change in spinal cord area and the annual percent change in brain gray matter
volume were both calculated. In addition, the whole brain percent volume change was measured
using SIENA (Smith et al., 2002, 2004). For each reference group and the corresponding patient
groups used for comparison, the average and standard deviation of the atrophy rates were
calculated. In this analysis, the clinically stable comparator cohorts are assumed to be the “treated”

group in a hypothetical study while the remaining patients are assumed to be in the “comparator”

group.

4.2.5 Adjusting for Covariates

To account for the effect of covariates such as the age, gender, disease duration, number of
relapses in the previous 2 years, and the baseline metric at the first timepoint, adjusted values were
computed using an ANCOVA analysis with LASSO regression used to aid in covariate selection.
For each analysis, a LASSO regression is performed with atrophy rate as the outcome variable and

reference group membership and the covariates as the input variables. For a hypothetical clinical
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study, the reference group membership variable represents whether the subject has received the
treatment or not. The adjusted mean and adjusted standard deviation are estimated using the least
squares mean and the root mean square error from this model. If the coefficient of reference group
membership is set to zero in the LASSO regression, this indicates that the atrophy rates cannot be
adequately distinguished based on reference group membership or that reference group

membership is highly correlated with one of the other covariates.
4.2.6 Power Calculation

The least square means and root mean square errors from the clinically stable reference
group and the hypothetically untreated group are then used to determine the required sample size
to distinguish a treatment effect. Since the clinically stable reference group is made up of patients,
power calculations were done for a 100% treatment effect which assumed that the metrics in the
hypothetically treated group would fully reach the levels of the clinically stable patients. Our
calculations were done for 80% power, which is equivalent to a 4 to 1 weighting of false negative
risk and false positive risk. We also assumed a Type I error rate or false positive risk of 5%. The
calculations assume a two-sample, one-sided test to determine whether the mean annual atrophy
rate of a treated patient group is detectably less than the mean annual atrophy rate of a patient

comparator group.

The sample sizes are calculated with the following formula:

Z1—q — Z1-8
n = (0} +of) ()
- . Ha — UB

In this formula, we specify the required sample size per arm, the least squares mean annual

atrophy rate from the clinically stable reference group, the least squares mean atrophy rate from
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the patient comparator group, the root mean square error from the model, the desired power, and

the desired Type I error rate.

4.3 Results

4.3.1 Demographics

Table 2 shows the demographics of the patient cohorts as well as the clinically stable

reference groups. In addition, the table shows the medications included in each treatment tier.

Rituximab and Tysabri

RMS SPMS All PMS All Patients RMS wo Increased EDSS | RMS wo Motor Decline | RMS wo Cognitive Decline
Number 159 27 37 196 20 144 86
Mean Age +/- SD 47.09 +/- 10.25 53.7 +/-9.8 53.49 +/- 10.71 48.3 +/- 10.61 46.8 +/- 10.46 46.99 +/- 10.19 47.02 +/- 10.27
% Female 71.7% 55.56% 56.76% 68.88% 68.89% 70.83% 70.93%
Mean Disease Duration +/- SD 13.3 +/- 8.96 20.67 +/-8.29 18.3 +/- 9.52 14.24 +/-9.26 12.94 +/-9.22 13.19 +/- 9.02 13.2 +/- 8.0
Mean Days Between Timepts +/- SD 753.66 +/- 267.07 | 738.85 +/- 254.01 | 783.57 +/- 236.06 | 759.31 +/- 261.18 751.54 +/- 263.23 775.58 +/- 262.19 747.21 +/- 274.02
Treatment Tiers (1/2/3/NR) 53/42/16/48 5/11/6/5 7113/6/11 60/55/22/59 32/22/14/22 47/39/15/43 31/19/9/27
Mean Number of Relapses in Previous 2 Years 0.45 +/- 0.75 0.19+/-0.4 0.14 +/- 0.35 0.39 +/-0.7 0.49 +/-0.77 0.45 +/- 0.72 0.4 +/-0.72
Median EDSS (Interquartile Range) 2.0 (1.5-2.5) 5.5 (4.0-6.0) 5.5 (4.0-6.0) 2.0 (1.5-3.5) 2.0 (1.62-3.0) 2.0 (1.5-2.62) 2.0 (1.5-2.5)
Mean Cross Sectional Cord Area at Baseline +/- SD 76.68 +/- 8.68 66.29 +/- 8.75 67.28 +/- 8.01 7491 4/-9.3 76.98 +/- 8.76 77.08 +/- 8.89 76.04 +/- 8.34
Mean Brain Volume at Baseline +/- SD 1504.7 +/- 83.62 | 1454.66 +/- 61.71 | 1461.06 +/- 63.57 | 1496.46 +/- 81.88 1509.64 +/- 82.41 1506.27 +/- 83.78 1499.44 +/- 85.1
Mean Brain GM at Baseline +/- SD 779.08 +/- 49.1 754.04 +/- 41.68 | 753.66 +/- 40.61 774.28 +/- 48.55 779.01 +/- 47.83 779.44 +/- 50.06 776.52 +/- 50.25
Mean Cortical GM at Baseline +/- SD 633.52 +/- 40.46 | 615.02 +/- 35.72 | 614.84 +/- 34.59 | 629.99 +/- 40.02 634.23 +/- 39.33 634.25 +/- 41.11 631.77 +/- 42.62
Treatment Tier Treatments
1 Copaxone, Avonex, Rebif, Betaseron, Aubagio, IVSM, Extavia, Ampyra, and Low Dose Naltrexone
2 Gilenya and Tecfidera
3

Table 2 Subject and reference group demographics

4.3.2 Spinal Cord, Whole Brain, and Brain Gray Matter Atrophy Rates

Table 3 lists the atrophy rates observed in the clinically stable “treated” reference groups

in comparison to the patient “comparator” groups.
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Reference Group

RRMS and CIS

SPMS

All PMS

All Patients

RMS wo Increased EDSS

Spinal Cord Annual Change
Brain Annual Change
Brain GM Annual Change
Cortical GM Annual Change

-0.23% +/- 1.53%
-0.42% +/- 0.39%
-0.52% +/- 1.06%
-0.78% +/- 1.87%

-0.56% +/- 1.56%
-0.41% +/- 0.49%
-0.74% +/- 1.41%
-1.37% +/- 2.56%

-0.96% +/- 2.04%

-0.42% +/- 0.3%

-0.43% +/- 0.92%
-0.44% +/- 1.81%

-1.03% +/- 1.95%
-0.54% +/- 0.43%
-0.78% +/- 1.24%
-1.3% +/- 2.78%

-0.72% +/- 1.72%
-0.46% +/- 0.48%
-0.75% +/- 1.35%
-1.34% +/- 2.64%

RMS wo Motor Decline

Spinal Cord Annual Change
Brain Annual Change
Brain GM Annual Change
Cortical GM Annual Change

-0.32% +/- 1.45%
-0.41% +/- 0.39%
-0.59% +/- 1.23%
-1.03% +/- 2.28%

-0.88% +/- 2.26%
-0.55% +/- 0.75%
-0.88% +/- 1.13%
-1.01% +/- 1.51%

-0.96% +/- 2.04%

-0.42% +/- 0.3%

-0.43% +/- 0.92%
-0.44% +/- 1.81%

-1.03% +/- 1.95%
-0.54% +/- 0.43%
-0.78% +/- 1.24%
-1.3% +/- 2.78%

-0.99% +/- 2.04%
-0.54% +/- 0.54%
-0.81% +/- 1.21%
-1.22% +/- 2.48%

RMS wo Cognitive Decline

Spinal Cord Annual Change
Brain Annual Change
Brain GM Annual Change
Cortical GM Annual Change

-0.33% +/- 1.41%
-0.36% +/- 0.43%
-0.45% +/- 1.34%
-0.82% +/- 2.44%

-0.43% +/- 1.71%
-0.49% +/- 0.44%
-0.81% +/- 1.05%
-1.28% +/- 1.88%

-0.96% +/- 2.04%

-0.42% +/- 0.3%

-0.43% +/- 0.92%
-0.44% +/- 1.81%

-1.03% +/- 1.95%
-0.54% +/- 0.43%
-0.78% +/- 1.24%
-1.3% +/- 2.78%

-0.63% +/- 1.81%
-0.51% +/- 0.43%
-0.8% +/- 1.12%
-1.29% +/- 2.23%

Table 3 Atrophy rates

4.3.3 Required Sample Size for a Clinical Study

For each analysis performed, Table 4 lists the sample size required to adequately detect a

100% treatment effect from a clinically stable “treated” group after atrophy rates are adjusted for

covariates. Table 5 lists the sample sizes calculated to adequately detect a treatment effect from an

assumed reference value of zero atrophy using unadjusted atrophy rates. Additional calculations

of sample size based on the original unadjusted atrophy rates are shown in Table 6. Note: NS

indicates that in this analysis, there was no significant difference between the adjusted values from

the “treated” group and the “comparator” group since treatment did not show up as a significant

covariate in the regression model. This could possibly indicate that our cohort was too small to

determine any actual difference.
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RRMS and CIS | SPMS | All PMS | All Patients
RMS wo Increased EDSS | Spinal Cord Annual Change NS 26 24 88
Brain Annual Change NS NS NS NS
Brain GM Annual Change NS NS NS 255
Cortical GM Annual Change 145 NS 116 139
RMSwo Motor Decline Spinal Cord Annual Change NS NS 53 41
Brain Annual Change NS NS NS NS
Brain GM Annual Change NS NS NS NS
Cortical GM Annual Change NS NS NS 631
RMS wo Cognitive Decline | Spinal Cord Annual Change NS NS 183 NS
Brain Annual Change NS NS NS 117
Brain GM Annual Change NS NS NS 158
Cortical GM Annual Change 568 NS NS 326

Table 4 Sample sizes calculated using adjusted atrophy rates and reference groups of clinically stable

patients
Treatment Effect | RMS | SPMS | All PMS | All Patients

Spinal Cord Annual Change 30% 1514 | 620 495 781
Spinal Cord Annual Change 50% 545 | 224 179 282
Brain Annual Change 30% 137 72 87 150
Brain Annual Change 50% 50 26 32 54
Brain GM Annual Change 30% 497 | 631 350 445
Brain GM Annual Change 50% 179 228 126 160
Cortical GM Annual Change 30% 638 | 2352 624 529
Cortical GM Annual Change 50% 230 | 847 225 191

Table 5 Sample Sizes Calculated Using Reference Groups with Unadjusted Atrophy Rates
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RRMS and CIS | SPMS | All PMS | All Patients
RMS wo Increased EDSS | Spinal Cord Annual Change 279 77 61 137
Brain Annual Change NS NS 160 2406
Brain GM Annual Change 426 NS 257 355
Cortical GM Annual Change 180 NS 251 202
RMS wo Motor Decline | Spinal Cord Annual Change 143 96 74 89
Brain Annual Change 204 5766 116 145
Brain GM Annual Change 201 NS 531 385
Cortical GM Annual Change NS NS 1096 2038
RMSwo Cognitive Decline | Spinal Cord Annual Change 2613 95 73 345
Brain Annual Change 128 416 69 102
Brain GM Annual Change 137 NS 193 154
Cortical GM Annual Change 287 NS 368 317

Table 6 Sample sizes calculated using reference groups with unadjusted atrophy rates

4.4 Discussion

Sample size calculation is a key aspect in the planning of any trial. This study estimated
sample sizes for clinical trials in MS for spinal cord metrics and conventional brain metrics based

on a large cohort of MS patients.

In this study, we chose to use groups of patients who had not progressed in their clinical
symptoms across MS disabilty, sensorimotor, and cognitive domains as references. Traditionally,
studies that perform sample size calculations often choose to either assume a reference group of
healthy controls or use a comparison value of zero atrophy. However, a reference group with zero
percent change may be unrealistic because atrophy also occurs due to aging and other factors. The
choice of a patient rather than a healthy control reference group is also more suitable since a
successfully treated MS patient may not have the atrophy characteristics of a non-diseased subject
in terms of abatement of disability progression. For example, in relapsing patients with and without
EDSS increases over 2 years, we found no significant decrease for brain atrophy though there was

a significant difference in cord area atrophy. In addition, we chose to use atrophy estimates that
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were adjusted for covariates such as age, gender, disease duration, and number of relapses in the
previous two years when calculating required sample sizes. Most of the cited studies make no
allowances for these differences when calculating sample sizes. Adjusting for these factors
provides a more conservative estimate since it ensures that the difference in the “treated” and
“comparator” groups is truly due to disease progression, rather than differences in cohort
demographics. These adjustments are important since we know that atrophy is dependent on both
age and disease duration. Also, since males and females may be differentially represented in
progressive MS cohorts, gender adjustment can also be important. By adjusting for number of
relapses, we better replicate the conditions of a clinical trial which typically recruits patients with
a history of relapses. Furthermore, we chose conservative definitions for our reference groups by
including only those patients showing no increase in EDSS or SDMT scores and at least 2 second

increases in 9HPT scores.

In contrast to many previous studies of spinal cord atrophy, the cohort used in our study
was relatively large and included 196 subjects to better capture the variation of metrics in the
patient population. In addition, the cohort was stratified so that the effect in different patient groups
could be quantified and patient reference groups were used to better simulate the conditions of a

clinical trial.

By obtaining measurements of spinal cord atrophy, brain atrophy, and gray matter atrophy
in the same set of patients, we were able to directly compare and better understand their suitability
for clinical trials. By using three different reference groups, we were also able to see whether
certain metrics are better suited for reflecting different aspects of disability. Previous studies have
shown that cross sectional spinal cord areas are strongly associated with EDSS scores (Schlaeger

et al., 2014, 2015). However, since EDSS scores represent an amalgam of different types of

64



disability, this association is difficult to interpret. To get a better understanding of clinical
disability, we used SDMT scores to assess cognitive decline and the nine-hole peg test assess

sensorimotor decline.

Whole brain atrophy and gray matter atrophy are both outcome measures that are already
commonly used in clinical trials. Several studies have already attempted to quantify the required
sample sizes needed for clinical trials when using whole brain atrophy as an outcome marker. In
RRMS patients, it was shown that 123 patients would be required to show a 30% treatment effect
in a two year study (Anderson et al., 2007) using estimates of brain atrophy from SIENA. This
study calculated sample size using a reference group of healthy controls and calculations were
based on an analysis of change with estimated means and variances from a linear mixed model.
When using the unadjusted values with similar assumptions of zero atrophy and 30% treatment
effect in RMS patients, our study found a similar required sample size of 137 as seen in Table 5.
In SPMS patients, 32 patients were required to show a 50% treatment effect in a two year study
(Altmann et al., 2009) of brain atrophy from SIENA. This study calculated sample size using an
estimated reference of zero atrophy and a comparison of mean rates of change estimated from
longitudinal linear mixed models with several time points. When using the unadjusted values with
the same assumptions for a reference, we calculated a similar required sample size of 26 as seen
in Table 5. However, our study was unable to find any detectable change after we accounted for

covariates.

In addition, many methods have been used to quantify both cortical and deep gray matter
atrophy in the brain due to MS. A recent study (Nakamura et al., 2014) calculated the required
sample size per arm to detect cortical gray matter atrophy in the brain using different methods,

such as FreeSurfer, Jacobian integration, SIENAX, and SPM, using a cohort of 287 relapsing MS
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patients. This study showed that for a 50% treatment effect at 80% power, a sample of 248 was
required when using SIENAX estimates of cortical gray matter volume. This calculation did not
account for normal aging and used data from a multi-center placebo controlled study of add-on
oral steroids. Our study found that under similar assumptions of a 50% treatment effect with a
reference of zero atrophy, a sample size of 230 was required when using cortical brain gray matter
volume measured by SIENAX as seen in Table 5. Another study (Kim et al. 2017), which used
FIRST to measure deep gray matter atrophy in PMS patients, showed that a sample size of 242
patients was required to detect a 50% treatment change. In this study, sample sizes were calculated
using estimated means and residual standard deviation from a random-effect linear regression
model and a reference of zero atrophy was assumed. Our study did not make estimates for
subcortical gray matter so we are unable to compare in this case. In our study, once the atrophy
rates were adjusted for covariates, significant differences between the groups could no longer be

seen.

As spinal cord imaging has improved, several studies have been published to investigate
the potential of using spinal cord atrophy as a measure in clinical trials. A recent study (Cawley et
al., 2018) calculated the effect size of spinal cord atrophy in 26 primary progressive MS patients
compared to 18 controls over a one year period to show that spinal cord atrophy is a feasible
outcome measure in a clinical trial. This study used the parameters from these samples to estimate
that the required sample size to detect a 50% treatment effect at 80% power was 55 for primary
progressive patients. Our study was unable to provide any insights about required sample size for
PPMS patients since our cohort only contain 10 PPMS patients. In another study (Kearney et al.
2014), the required sample size per arm for 6 month and 12 month placebo-controlled treatment

trials was calculated from a study of 15 MS patients (7 RRMS and 8 SPMS patients) and 15
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controls using two different acquisitions and two different methods of measuring total cord area.
This study found that the best results came from measuring spinal cord area with an active surface
model on PSIR images, which is the same method used in our study. The mean changes over six
months were measured for a group of patients and a reference group of controls to estimate the
treatment effect. In this study, for a treatment effect of 50% and power of 80%, the calculated
sample size per arm was 89 for a 12 month trial. When we used similar assumptions of a 50%
treatment effect with a reference of zero atrophy, we calculated a required sample size of 282 in
our larger cohort. The difference in calculated sample size from this study may be due to the
difference in cohort size. However, with a patient reference group and adjustments for covariates,
the calculated required sample sizes for spinal cord atrophy rate was 97 for a reference group of
patients without increased EDSS and 41 for a reference group of patients without motor decline as

seen in Table 5.

Our results show that spinal cord atrophy has the potential to be useful in many clinical
trial scenarios, since changes can be detected in a variety of different patient groups when
compared to many different reference groups. In contrast, neither whole brain atrophy nor cortical
gray matter atrophy were found to be useful metrics in clinical trials using patient reference groups
once differences due to gender, age, or disease duration were corrected. As expected, this study
shows that spinal cord atrophy is most useful when using a reference group of non-progressive
patients without increased EDSS scores. The sample sizes are slightly larger for a reference group
of non-progressive patients without motor decline and larger still for a reference group of non-
progressive patients without cognitive decline. This suggests that spinal cord atrophy is much more

indicative of motor disability than of cognitive disability.
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While it is certainly important that an outcome measure’s treatment effect can be detected,
it 1s also very important that this treatment effect is reflective of an improvement in clinical
disability. To prove useful to a patient, a treatment for MS must affect disability progression and
not just the underlying biological effects of the disease. Several studies have shown connections
between patients with whole brain or brain gray matter atrophy and patients with an increase in
EDSS score. A meta study of 13 clinical trials showed that the treatment effects on whole brain
atrophy were correlated with the treatment effects on EDSS scores (Sormani et al., 2014). Another
study (Jacobsen et al., 2014) showed that patients whose EDSS scores had increased by at least
one point had significantly increased whole brain, cortical, and putamen volume changes over five
years and had significantly increased whole brain volume changes over 10 years. Other studies
have shown connections between patients with whole brain or brain gray matter atrophy and a
decline in either motor or cognitive function. A study of cortical atrophy patterns showed that
cortical atrophy patterns in MS are non-random and clinically relevant and that certain patterns
were more associated either motor or cognitive dysfunction (Steenwijk et al., 2016). EDSS scores,
which are sensitive to motor dysfunction, were correlated with atrophy in the sensorimotor cortex
while cognitive dysfunction metrics were correlated with atrophy in the bilateral posterior
cingulate cortex and bilateral temporal pole. However, the connection between biological atrophy
and the worsening of clinical symptoms still needs to be investigated further. Another study
showed that the measurements of cortical and deep gray matter atrophy vary significantly with the
method of analysis (Popescu et al., 2016) and that this variation affects the clinical interpretation

of these metrics.

There are several limitations to this study design. This study makes the assumption that a

reference group of clinically stable non-progressive patients is a better proxy for a successfully
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treated group that results in no increase in disability in a clinical trial than a reference group of
non-diseased subjects or an assumed comparative atrophy rate of zero. While novel, we believe
this to be a reasonable assumption that likely results in more accurate power calculations. In
addition, the average time between the longitudinal scans is around 2 years, so we lack data for
long-term atrophy of the brain or spinal cord. For example, in cases where we did not detect
significant differences in brain atrophy between the “treated” and “comparator” groups, a longer
follow up would likely result in detectable differences. Alternatively, a larger cohort may have
produced a measurable estimate of the number of subjects required to detect a difference. Many of
the patients in this study are already being treated with existing medications. The treatment profiles
of the groups differ since progressive patients tend to be treated with more potent medications.
While the cohort of 196 patients is relatively large, there are only 10 PPMS patients in the cohort
which prevents us from making any meaningful insights about this patient subgroup. In the future,
we hope to repeat this study with a cohort that has a larger number of PPMS patients and a better
matched treatment profile for each patient group and that has been followed for a period of five to

ten years.

Our results suggest that spinal cord atrophy may be the most versatile metric for use in
clinical trials since a treatment effect on clinical disability as measured by EDSS score can be
detected with a feasible sample size, even after cohort differences in age, gender, and disease
duration have been accounted for. This metric seems to primarily reflect motor disability, while
whole brain and gray matter atrophy rates perform better in indicating differences in cognitive
disability. Given the relatively early developments of spinal cord atrophy measurements, it is also
possible that we will see improvements in the precision of these measurements that will provide

greater statistical power.
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Chapter S - Voxelwise Analysis of the Spinal Cord

5.1 Introduction

Studying how different regions of the spinal cord relate to clinical outcomes in multiple
sclerosis could help to uncover the pathological mechanisms that underlie the disease. While,
studies have investigated regional relationships with multiple sclerosis clinical metrics in the brain
(D1 Perri et al., 2008), few regional studies have been done on the spinal cord, due to previous

constraints in imaging such a small structure.

One previous study (Valsasina et al., 2013) used voxel-based morphometry to look at
metrics based on four quadrants of the spinal cord over six levels and found that atrophy primarily
occurred in the anterior sections of the cord due to age. Another previous study (Maria A Rocca et
al., 2013) performed a voxel-wise analysis on T2 and T1 weighted cervical cord images in MS
patients to show the distribution of atrophy and lesions in different phenotypes. This study found
that significant atrophy was found in BMS, SPMS, and PPMS patients and was more likely to be
seen in the posterior and lateral cord portions. No significant differences were found between left,

right, anterior or posterior cord sections for lesion load.

One study found that tensor based morphometry can be used to demonstrate gray matter
atrophy in the aging spinal cord (Taso et al., 2015). In this study, regions of atrophy in elderly
patients at the C2/C3 level were shown to occur in the anterior horn area. This is similar to the
results found from post-mortem studies that showed that neuronal loss due to aging seems to occur
in the anterior horns of the gray matter in the spinal cord (Cruz-Sanchez, Moral, Tolosa, de

Belleroche, & Rossi, 1998; Terao et al., 1996).
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Figure 28: Results of the TBM analysis between young and elderly volunteers (2 samplet-test, p<0.05
FDR corrected, k>1, SPMS8) overlaid on the whole population (n=65) T2*-w template. The red/yellow
clusters indicate regions of atrophy in the elderly subjects (Taso et al., 2015)

A recent study has used quantitative metrics from diffusion tensor imaging to assess
microstructural tissue properties in spinal cord gray matter in MS patients (Kearney et al., 2014).
This study found abnormalities in the posterior and lateral portions of the spinal cord in MS
patients. Another recent study (Valsasina et al., 2018) concluded that hypointense lesions were
more prevalent in the posterior cord and that this difference was reflected in differences in clinical

phenotype and disability.
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Figure 29: T1-weighted hypointense lesion probability maps in MS patients (Valsasina et al., 2018)

In the study presented here, a voxel-wise analysis was done to investigate three different
attributes: intensity, texture, and shape. Using the quantitative intensity from PSIR images, we can
get a local metric of the water content of the tissue. By using the magnitude of the gradient at each
voxel, we can get a texture metric that represents the local heterogeneity of the tissue. Similarly,
with tensor based morpohometry, the Jacobian determinant gives a metric that represents the local
anatomical shape differences from a control template. The increased quality from the PSIR images

allows us to study the regional differences at a much finer level than previous studies.

5.2 Methods

The cohort used for this study was the same as the cohort referred to in Figure 1. The
subjects in this study included 20 healthy controls, 92 40 relapsing MS (RMS) patients and 37

progressive MS patients (PMS). The age and gender distribution of the control group was similar
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to the group of RMS patients. The median EDSS score of RMS patients is 2 and the median EDSS

score of the PMS patients is 6. The clinical characteristics of the patients are described in Figure 1.

All subjects in the patient cohort received a standardized clinical neurological exam to
determine the EDSS score. In addition, all patients were scanned on a Siemens 3T Skyra scanner
equipped with a 20 channel neck-head coil and a 32 channel spine coil within two weeks of their
clinical examination. For each patient, axial 2D phase sensitive inversion recovery (PSIR) images
were acquired at the intervertebral disc level C2/C3 perpendicular to the cord. The acquisition

parameters are listed in Figure 2.

For each phase sensitive reconstructed image, cord masks were generated on up-sampled
interpolated images through semi-automated segmentation using the software JIM6 (Horsfield et
al., 2010). In addition, gray matter masks were generated on these same images through manual

segmentation by a trained neurologist.

Using the images from the 20 healthy control subjects, a spinal cord template was created
using ANTS. The white matter tract atlas from the Spinal Cord Toolbox was registered to this
template and gray matter ROIs were hand drawn as well as well to create regional ROIs in the

template space.
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Figure 30: Spinal Cord Regions From Spinal Cord Toolbox (De Leener et al., 2017)

For each image, a gradient map was also created that represents how much the image
intensity changes across space. In addition, each image was registered to a template and a Jacobian

determinant map was created that represented each voxel’s volume change in the transformation.

The original PSIR images from all subjects were then non-linearly transformed to the
common template space. The gradient maps and the Jacobian determinant maps underwent the
same transformation. This study focused on the relationship of three different local metrics
(intensity, gradient, and Jacobian determinants) with three different clinical metrics (EDSS score,
9 hole peg test, and 25 foot walk) and the relationship with two demographic metrics (age and

disease duration).

Three different sets of regional analyses were performed using this data:

1. At each voxel, a regression model was created and a corresponding Spearman
coefficient was calculated for the relationships of each of the three local metrics with

each of the clinical metrics and each of the demographic metrics.
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2. For each regional ROI, a regression model was created and a corresponding Spearman
coefficient was calculated for the relationship of the average local metric in the region
with each of the clinical metrics.

3. Ateach voxel, a multivariate ridge regression model was created for the relationship of
each of the three local metrics with each of the clinical metrics, using the demographic
metrics as covariates. At each voxel, a corresponding r squared value was calculated

from the multivariate model.

5.3 Results

5.3.1 Voxel-wise Univariate Models

From the univariate voxel-wise models, we can see that a large clusters appear in the
relationships of intensity with clinical metrics such as EDSS score, 9 hole peg test, and 25 foot
walk between the horns of the gray matter area. In addition, there is a large cluster in the
relationship of intensity with age. There are no large clusters in the maps for the relationships with

Jacobian determinant or gradient.
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Figure 31: R Values from Voxel Wise Univariate Regression Models

5.3.2 Regional Univariate Models

From the regional models, we see that that two different tract areas in the spinal cord appear
significant in the relationship of intensity and clinical metrics. The tracts with the highest
correlations of average intensity with EDSS include the lateral corticospinal tract and the medial
longitudinal fasciculus with the medial reticulospinal tract. In addition, the regional analysis shows
the relationships of Jacobian determinants with EDSS and age. This regional analysis suggests that
atrophy correlated to EDSS score is located more in the lateral corticospinal tracts and that atrophy

due to age is in the posterior region of the spinal cord around the gray matter.
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Figure 32: R Values from Regional Univariate Analysis Models

5.3.3 Multivariate Voxel-wise Models with Age and Gender as Covariates

By using a multivariate model, we can separate out effects due to age or gender. These
models show again that the correlations with intensity are centered around the lateral corticospinal
tract and the medial longitudinal fasciculus and medial reticulospinal tract. The areas where
Jacobian determinants correlate most with EDSS seem to be located in the lateral corticospinal
tracts and the anterior horns of the gray matter. The areas where gradient correlates most with

EDSS seem to be located near the boundaries of the gray matter and the white matter.
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Figure 33: R Squared Values from Multivariate Voxelwise Regression with Age and Disease Duration as
Covariates

5.4 Discussion

From our analysis, we find that there are two main areas of strong correlations between
EDSS and intensity. While the size and resolution limits of spinal cord imaging make it difficult
to accurately locate specific tracts, we can identify general functional areas that seem to be

affected.

The first area appears in the relationships with EDSS score, but not in the relationships

with nine hole peg test and the twenty five foot walk. This area affected includes the lateral
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corticospinal tracts, lateral reticulospinal tracts, and rubrospinal tract. All of these tracts are
extrapyramidal descending motor tracts that are involved in limb control, locomotion, or posture
control. The lateral corticospinal tract controls fine movement of ipsilateral limbs, the lateral
reticulospinal tract inhibits excitatory axial extensor muscles in the trunk and proximal limb

muscles, and the rubrospinal tract primarily controls flexion in the upper extremities.

The second area appears in the relationships with EDSS score, nine hole peg test, and
twenty five foot walk, and encompasses the medial longitudinal fasciculus and the medial
reticulospinal tract. Both of these tracts have a motor function. The primary function of the medical
longitudinal fasciculus is to carry information about the direction that the eyes should move and
the medial reticulospinal tract is a excited anti-gravity extensor muscles in the trunk and proximal

limb muscles.

In the figure below, we can see clearly that the two primary areas affected correspond to
the two primary areas where descending motor tracts are located. Because EDSS score primarily
reflects motor disability, it is not surprising that this is the case.In the future, it may be
advantageous to additionally study the areas that most differ between multiple sclerosis patients

and in healthy patients.
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Doral Columns
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Tract (Motor)
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Figure 34: Motor and Sensory Function in the Spinal Cord (“Incomplete Spinal Cord Injuries - Spine -
Orthobullets,” n.d.)
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