
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Annotated Programming for Energy-Efficiency in Mobile Applications

Permalink
https://escholarship.org/uc/item/3t56h5hb

Author
Nikzad, Nima

Publication Date
2015

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3t56h5hb
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Annotated Programming for Energy-Efficiency in Mobile Applications

A dissertation submitted in partial satisfaction of the
requirements for the degree of Doctor of Philosophy

in

Computer Science

by

Nima Nikzad

Committee in charge:

Professor William G. Griswold, Chair
Professor Octav Chipara
Professor Ryan Kastner
Professor Sorin Lerner
Professor Kevin Patrick
Professor Ramesh Rao

2015

Copyright

Nima Nikzad, 2015

All rights reserved.

The Dissertation of Nima Nikzad is approved and is acceptable in quality

and form for publication on microfilm and electronically:

Chair

University of California, San Diego

2015

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vi

List of Tables . x

Acknowledgements . xi

Vita . xii

Abstract of the Dissertation . xiii

Chapter 1 Introduction . 1
1.1 Case Study: Composing a Power-Management Policy in a CRM Appli-

cation . 4
1.2 Related Work . 7
1.3 Annotated Programming for Energy-Efficiency . 12

Chapter 2 Annotated Programming for Energy-Efficiency 18
2.1 APE Design Overview . 18

2.1.1 The APE Policy Model . 19
2.1.2 The APE Annotation Language . 25

2.2 The APE Runtime Service . 30
2.3 Evaluation . 34

2.3.1 Case Study: CitiSense . 35
2.3.2 System Evaluation . 40

2.4 Conclusion . 44
2.5 Acknowledgments . 45

Chapter 3 Satisfying Delay Constraints . 46
3.1 Annotation Semantics . 46

3.1.1 Wait . 46
3.1.2 DelayableUpto . 46
3.1.3 Example . 48

3.2 Static Analysis and Run-time Monitoring . 50
3.2.1 Algorithms for Static Analysis and Monitoring 50
3.2.2 Run-time Optimizations . 53

3.3 Policy Generation Engine . 54
3.4 Evaluation . 58

3.4.1 Accuracy of Policy Generation Engine . 58

iv

3.4.2 Interaction of User Experience with Power Management 61
3.4.3 Runtime Overhead . 64

3.5 Conclusion . 65
3.6 Acknowledgements . 66

Chapter 4 Ensuring Timely Delivery of Delay-Sensitive Objects 67
4.1 Annotation Semantics . 69
4.2 System Design and Implementation . 74

4.2.1 Budget Tracking . 76
4.2.2 Policy Evaluation . 83

4.3 Case Study . 84
4.3.1 NPR News . 84
4.3.2 CitiSense . 88

4.4 Experiments . 91
4.4.1 Power-Timeliness Trade-off . 92
4.4.2 Budget Tracking Overhead . 103

4.5 Conclusion . 106
4.6 Acknowledgements . 107

Chapter 5 Conclusion . 108

Bibliography . 111

v

LIST OF FIGURES

Figure 1.1. Power consumption (mW) trace of a smartphone device running
six CRM applications that each periodically download a resource
using the cellular radio without any form of coordination. 2

Figure 1.2. Power consumption (mW) trace of a smartphone device running
six CRM applications when each application attempts to piggyback
transmissions by watching for the cellular radio to be woken by
another application. 3

Figure 1.3. Example of a naive implementation of sensor reading uploading in
CitiSense. A thread thread wakes every twenty minutes to attempt
uploading any stored sensor readings before returning to sleep. . . . 4

Figure 1.4. An improved implementation of uploading in CitiSense that is both
battery-life and cellular radio state aware. 5

Figure 1.5. Using APE to implement the same power-management policy found
in Figure 1.4. 13

Figure 1.6. Using Tempus to specify a policy that delays the processing of
images except when the image is going to be used to update the
user interface. 17

Figure 2.1. Defer uploads, for up to 30 minutes, until the Wi-Fi radio has
connected to a network. 21

Figure 2.2. Defer sensor sampling until movement is first detected by the ac-
celerometer and driving is confirmed using the GPS. 22

Figure 2.3. Defer sensor sampling until the user is driving. Driving is detected
by first verifying movement using accelerometer for 30 seconds
and then confirmed using GPS. 25

Figure 2.4. The boolean expression tree representation of a particular Wait
request. All leaf nodes in the tree represent primitives in the expres-
sion, while all non-leaf nodes represent operators. 33

Figure 2.5. Example of a naive implementation of sensor reading uploading in
CitiSense. A thread thread wakes every twenty minutes to attempt
uploading any stored sensor readings before returning to sleep. . . . 35

vi

Figure 2.6. An improved implementation of uploading in CitiSense that is both
battery-life and cellular radio state aware. 37

Figure 2.7. The equivalent timed automaton for the policy implemented in
Figure 2.6. 38

Figure 2.8. Time to register expressions of various lengths using
registerPolicy. As the size of the expression grows,
the size of the message passed over IPC begins to impact latency. 42

Figure 2.9. Increase in system power-consumption due to the introduction
of additional applications that periodically make use of network
resources. 43

Figure 2.10. Power consumption (mW) traces from a smartphone device run-
ning a variety of naive (top) and APE enhanced (bottom) CRM
applications. 44

Figure 3.1. A thread attempts to download data to displayed within the ap-
plication. The @DelayableUpTo annotation ensures that the
downloading and displaying of the data is not delayed by APE by
more than one minute. 49

Figure 3.2. Algorithm for instrumenting application code with delay allowances. 52

Figure 3.3. Instrumentation for assigning, clearing, and using delay allowances. 53

Figure 3.4. An example of output from the Policy Generation Engine: a costly
network operation has been identified and a general and effective
power-management policy is presented and explained. 56

Figure 3.5. A trace of power consumption on a smartphone device while using
the NPR News application to listen to an audio story. 63

Figure 3.6. Power consumption in various versions of the NPR News and
AndStatus applications. 64

Figure 4.1. Screenshots from the CitiSense environmental air pollution moni-
toring application: the most recent Air Quality Index score (left)
and detailed pollutant report (right). 68

Figure 4.2. The execution of three concurrent @Wait annotations on threads
τ1, τ2, and τ3 that include the same object o in their scope. 72

vii

Figure 4.3. The @DelayBudget annotation (line 7) ensures that the upload
of HealthReport objects related to critical health events are not
subject to any Tempus-introduced delays (line 25) when uploaded
(line 33). 75

Figure 4.4. @DelayBudget annotations are translated into runtime calls to
the Tempus service that that assign a budget to a particular object
and begin tracking it. The first parameter is an automatically-
generated label. 77

Figure 4.5. Translation of the @Wait annotation. See text for explanation. . . . 77

Figure 4.6. Formalization of the single-threaded behavior related to object
budget tracking in the Tempus runtime. 78

Figure 4.7. Algorithm for static program analysis that returns the set of object
labels to be considered at each @Wait annotation in the program. 83

Figure 4.8. Screenshots from the NPR News application: looking at the list of
stories (left) and reading a story (right). 85

Figure 4.9. The download of images is deferred until the radio or WiFi are on
to save energy. 86

Figure 4.10. Budgets for the @Wait annotation in Figure 4.10 are refined to
ensure that the first 8 stores are not delayed and the budget of the
remaining stores is computed dynamically based on their position
in the news story list. 88

Figure 4.11. The application has two power management policies: (1) data
acquisition is deferred until the user changes his location and
(2) sensor readings are classified as either NormalReading or
UrgentReading. 90

Figure 4.12. Impact of various policies on the NPR News application when
piggybacking opportunities are available once every three minutes. 96

Figure 4.13. Impact of various policies on the NPR News application when
piggybacking opportunities are available once every one minute. . 98

Figure 4.14. The state of budgets assigned to various images during a run of the
NPR News application with the Light Prefetch policy. 99

viii

Figure 4.15. Average power consumption in the Citisense application when
processing traces from stationary and mobile users. 102

Figure 4.16. Overhead associated with the tracking of budgets for various num-
bers of objects. Note the logarithmic scale. 104

Figure 4.17. Garbage collection overhead when Tempus is tracking objects that
are either all referenced elsewhere in the program or are all garbage
collected. 106

ix

LIST OF TABLES

Table 3.1. Searching for opportunities to reduce network-use related energy-
consumption . 60

x

ACKNOWLEDGEMENTS

I would like to thank Professors William Griswold and Octav Chipara. Working

with these two men has been the highlight of my career. There was something about the

different perspectives and backgrounds we each brought to the table that kept working

together fresh and, frankly, a great deal of fun. I know that without the support of these

gentlemen, I would never have reached this milestone.

I would also like to thank my friends and family for their love and support.

Without all of you, I would have gone absolutely and completely mad years ago. Thanks

to your support, I am instead only moderately insane.

Chapter 2, in part, is a reprint of the material as it appears in Proceedings of the

36th International Conference on Software Engineering. Nikzad, Nima; Chipara, Octav;

Griswold, William G. 2014. The dissertation author was the primary investigator and

author of this material.

Chapter 3, in part is currently being prepared for submission for publication of

the material. Nikzad, Nima; Chipara, Octav; Griswold, William G. The dissertation

author was the primary investigator and author of this material.

Chapter 4, in part is currently being prepared for submission for publication of

the material. Nikzad, Nima; Chipara, Octav; Griswold, William G. The dissertation

author was the primary investigator and author of this material.

xi

VITA

2009 Bachelor of Science, University of California, Los Angeles

2009–2014 Research Assistant, University of California, San Diego

2011–2012 Teaching Assistant, Department of Computer Science and Engineering
University of California, San Diego

2012 Master of Science, University of California, San Diego

2015 Doctor of Philosophy, University of California, San Diego

PUBLICATIONS

“Model-driven Adaptive Wireless Sensing for Environmental Healthcare Feedback Sys-
tems.” International Conference on Communications. IEEE, 2012.

“CitiSense: Improving Geospatial Environmental Assessment of Air Quality Using
a Wireless Personal Exposure Monitoring System.” Proceedings of the Conference on
Wireless Health. ACM, 2012.

“APE: An Annotation Language and Middleware for Energy-Efficient Mobile Appli-
cation Development.” Proceedings of the 36th International Conference on Software
Engineering. ACM, 2014.

“Ensuring Timely Object Delivery in Energy-Efficient Mobile Applications.” Under
Review. Proceedings of the 13th ACM Conference on Embedded Networked Sensor
Systems. ACM, 2015.

FIELDS OF STUDY

Major Field: Computer Science

Studies in Software Engineering
Professor William G. Griswold

Studies in Embedded Systems
Professor Octav Chipara

xii

ABSTRACT OF THE DISSERTATION

Annotated Programming for Energy-Efficiency in Mobile Applications

by

Nima Nikzad

Doctor of Philosophy in Computer Science

University of California, San Diego, 2015

Professor William G. Griswold, Chair

Energy-efficiency is a key concern in continuously-running mobile applications,

such as those for health and context monitoring. Unfortunately, developers must imple-

ment complex and customized power-management policies for each application. Not

only does this require a developer to have a strong understanding of hardware and how

various operations impact resource usage, but it involves the use of complex primitives

and writing error-prone multithreaded code to monitor hardware state.

To address this problem, this dissertation presents Annotated Programming for

Energy-efficiency (APE), an annotation language and middleware service that eases

xiii

the development of energy-efficient Android applications. APE annotations are used to

demarcate a power-hungry code segment whose execution is deferred until the device

enters a state that minimizes the cost of that operation. The execution of power-hungry

operations is coordinated across applications by the APE middleware. The APE Policy

Generation Engine can automatically identify operations in an application that utilize

power-hungry resources, generate an APE-based power-management policy, and provide

feedback to the developer regarding available options for policy customization. Various

language constructs and static program analyses allow a developer to specify constraints

for delay-sensitive operations and data in the application, while runtime support ensures

that specified constraints are satisfied.

Several case studies of applying APE to real mobile sensing applications demon-

strate the expressive power of the APE approach and show that annotations can cleanly

specify a power management policy and reduce the complexity of its implementation. An

empirical evaluation of the middleware shows that APE introduces negligible overhead

and equals hand-tuned code in energy savings.

xiv

Chapter 1

Introduction

The rapidly advancing capabilities of modern smartphones have enabled the

development of a new generation of continuously-running mobile (CRM) applications,

such as those for personal health and user-context monitoring. Such applications may

periodically wake to collect and process sensor data, check with a remote server for

updates, or provide reports to a user. For example, services like Dropbox [8] and

BitTorrent Sync [6] keep important documents synchronized across multiple devices.

Personal health and context-monitoring applications, such as Fitbit [9], CitiSense [31],

AudioSense [24], CenceMe [28], SurroundSense [19], BeWell+ [27], and Ohmage [14],

often collect sensor data that is periodically uploaded to a remote server.

Even though these applications operate at low duty cycles, cumulatively they have

a large impact on the battery life of a device due to their periodic use of power-hungry

system resources. The cellular radio is an example of such a resource. When not in use,

the radio remains in a low-power, idle state where power consumption is on the order of 5

mW. Initiating a transmission wakes the radio, which in turn requests a dedicated channel

from the cellular network to allow communication. While in this connected state, the

radio can consume on the order of 1 to 2 W of power. The radio remains in this connected

state for approximately five to ten seconds after the last transmission has been completed,

in hopes of catching other upcoming transmissions and avoiding the network overhead of

1

2

Figure 1.1. Power consumption (mW) trace of a smartphone device running six CRM
applications that each periodically download a resource using the cellular radio without
any form of coordination.

establishing a connection. If no other transmissions occur, the radio then transitions to an

intermediate power-state (consuming on the order of 500 mW of power) for another ten

to fifteen seconds before finally transitioning back to the low-power, idle state. Due to

this behavior of the cellular radio, a single, small transmission can drastically increase the

power-consumption on a smartphone device for fifteen to twenty seconds, even though

the actual transmission of data was completed in a fraction of a second.

In reality, a user is likely to be running several such CRM applications at a time:

an e-mail client, news feed reader, social networking applications, and so on. In the

worst-case scenario, each application will begin to download or upload data just as the

radio has finished transitioning back to the idle state after handling another applications

transmission request. Even though very little data may be actually transmitted during each

operation, the timing of the requests can have a drastic impact on power-consumption,

and therefore battery life, on a device. Figure 1.1 visualizes the power-consumption on a

smartphone in such a situation: a number of applications, each utilizing the cellular radio,

are causing the component to frequently wake up and consume large amounts of power.

Ideally, the transmission requests of multiple applications would be coordinated

such that they occur at, or near, the same time, as this would minimize the number

3

Figure 1.2. Power consumption (mW) trace of a smartphone device running six CRM
applications when each application attempts to piggyback transmissions by watching for
the cellular radio to be woken by another application.

of times the radio has to be woken and maximizes the time that the radio spends in a

low-power, idle state. Figure 1.2 presents a trace of power-consumption for modified

versions of the six CRM applications previously presented, where each application waits

up to two minutes for another application to wake the radio before proceeding with

transmissions. While batching transmissions in such a way increases the amount of data

being transmitted at once, and therefore increases the amount of time needed to complete

the transmissions, the long tail of power consumption associated with waking the radio is

amortized across multiple applications. In fact, mobile application development ‘best

practice’ guides from both Google [2] and AT&T [7] highly recommend the use of

batching and piggybacking as a means of significantly reducing the power consumption

of applications with periodic workloads.

Unfortunately, the development and introduction of power-management policies

that monitor and react to changes in hardware state, especially in large and mature

applications, can be extremely challenging for a developer. To demonstrate this challenge,

a brief case study of introducing such optimizations into the CitiSense application is

provided below.

4

Thread uploadThread = new Thread(new Runnable() {
while(true) {
try {
Thread.sleep(120000);
} catch(InterruptedException e) {}
attemptUpload();

}
});
uploadThread.start();

Figure 1.3. Example of a naive implementation of sensor reading uploading in CitiSense.
A thread thread wakes every twenty minutes to attempt uploading any stored sensor
readings before returning to sleep.

1.1 Case Study: Composing a Power-Management
Policy in a CRM Application

The author has developed a variety of CRM applications, notably CitiSense, which

monitors, records, and shares a user’s exposure to air pollution using their smartphone

and a Bluetooth enabled sensor device [31]. Building an application that performed all

the required tasks without depleting the smartphone’s battery proved challenging, as the

application depended heavily on the use of GPS for localization, Bluetooth for sensor

readings, and cellular communication to upload measurements to a server for further

processing. Much of the challenge in improving CitiSense arose from adding, evaluating,

and iteratively revising the application’s already-complex code base to implement energy-

management policies. In this section, the author shares his experience in implementing

a policy for uploading sensor data from the CitiSense mobile application to a remote

server.

The initial implementation of the CitiSense mobile application cached air quality

measurements on the user’s device and attempted to upload all stored readings once every

twenty minutes. If the loss of connectivity caused a transmission to fail, then the data

would be preserved until the next upload window. Although timed batching saves energy,

5

Thread uploadThread = new Thread(new Runnable() {
while(true) {
Intent batt = context.registerReceiver(null,

new IntentFilter(Intent.ACTION BATTERY CHANGED));
int lvl = batt.getIntExtra(BatteryManager.EXTRA LEVEL,-1);
int scl = batt.getIntExtra(BatteryManager.EXTRA SCALE,-1);
float batteryPct = lvl / (float) scl;
try {
if(batteryPct > 70){ Thread.sleep(120000); }
else{ Thread.sleep(360000); }

} catch(InterruptedException e) {}
attemptUpload();

}
});
uploadThread.start();

TelephonyManager teleManager = (TelephonyManager)
context.getSystemService(Context.TELEPHONY SERVICE);

TransListener transListener = new TransListener();
teleManager.listen(transListener,
PhoneStateListener.LISTEN DATA ACTIVITY);

private class TransListener extends PhoneStateListener {
public void onDataActivity(int act) {
if(act == TelephonyManager.DATA ACTIVITY IN

|| act == TelephonyManager.DATA ACTIVITY OUT
|| act == TelephonyManager.DATA ACTIVITY INOUT) {

uploadThread.interrupt();
}

}
}

Figure 1.4. An improved implementation of uploading in CitiSense that is both battery-
life and cellular radio state aware.

the approach still has several drawbacks. Uploads attempted while a user’s phone had

a weak cellular network signal often failed, but still incurred high energy consumption

during the failed attempt. Additionally, even if connectivity was available nineteen out of

every twenty minutes, the lack of connectivity at the twentieth minute mark meant the

upload would be delayed until the next attempt. For some users with unreliable cellular

coverage, it often took hours before their data was uploaded successfully to the server.

To improve the energy-efficiency and reliability of CitiSense uploads, the appli-

cation was modified to attempt a transmission whenever the phone’s cellular radio was

6

detected to already be transmitting or receiving data (See Figure 1.4). The concept is

that if the phone detects that another application on the phone has successfully sent or

received data over the cellular radio, then CitiSense would also likely succeed. Addition-

ally, with the radio already being active, CitiSense would no longer be forcing the radio

out of a low-power idle state: the application is taking advantage of other workloads

waking the radio, reducing its impact on device battery life. In the event that no other

application wakes the radio in a timely manner, CitiSense attempts to upload any stored

readings after a timeout. However, unlike the static twenty-minute timer used in the first

implementation, this one varies timeout length based on the remaining battery life of the

device. If remaining battery life is greater than 70% the application waits up to twenty

minutes for the radio to become active; otherwise, CitiSense will wait up to one hour.

Unfortunately, what was once a simple, nine-line implementation now requires

querying the Android system for the status of the battery, registering the application for

callbacks regarding changes in cellular data activity in the system, and implementing

a custom PhoneStateListener to handle callbacks and to interrupt the sleeping

upload thread if data activity is detected. Further extending the implementation to be

dependent on the state or availability of other resources, such as a Wi-Fi connection,

would require implementing additional listeners to handle callbacks and additional con-

currency management. Given the large number of complex changes required, prototyping

and experimenting with a variety of potential policies becomes time consuming and

burdensome. Even a well-thought-out policy can perform poorly in practice and require

tweaks or major changes.

Challenges. Beyond the expected algorithmic and systems challenges of designing a

power management policy, there are also significant software engineering challenges:

7

• The code for power management tends to be complex. Not just because the

application must actively manage which resources are required or not, but also

because it must manage nuanced tradeoffs between the availability of resources

and desired battery life. Users are often willing to accept delays in processing

or approximations in measurement to increase battery life. Additionally, power

management code is often event-driven and multithreaded.

• Power management optimizations should be postponed until the application’s

requirements are set. Mobile developers often depend on tight, “agile” development

cycles in order to elicit feedback from early adopters on basic application behavior.

Developing (and cyclically revising) complex power management code early-on

would slow this cycle.

Thus, while many power-management techniques have been developed, there is no high-

level way to access these as language primitives to specify or implement an application-

specific policy for a new application.

1.2 Related Work

A great deal of research exists on how to build more energy-efficient software.

In recent years, this area has been subject to increased interest as smartphones and

other battery-powered computing devices have grown more prevalent. Research in

energy-efficient software typically falls into one of two categories.

Low-level optimizations are typically implemented at the kernel or device-driver

level and manage the power state of hardware components. Such optimizations must be

implemented at a low-level in the system as they operate at sub-millisecond frequencies

and are, therefore, typically the responsibility of device and operating system vendors.

Examples of such techniques include dynamic voltage and frequency scaling (see [39] for

8

a review), tickless kernel implementations [37], low-power listening [33] and scheduled

transmissions for radios [20, 41], and batching of I/O operations for devices such as flash

memory storage [40].

System-level optimizations, on the other hand, are implemented at the

application- or middleware-level. These optimizations interact with hardware com-

ponents at longer time-scales than low-level optimizations and include techniques such

as workload shaping, sensor fusion, and filtering. A workload shaping policy, such

as delaying large network operations until a Wi-Fi connection is available, is found in

applications such as Google Play Market, Facebook, and Dropbox. While low-level

optimizations typically impact how a particular sub-component operates, system-level

optimizations attempt to save power by adjusting when and on what sub-components

operate. For example, while a low-level optimization may control how the Wi-Fi radio

in a device determines when it may transmit packets, a system-level optimization may

control the amount of data being transmitted by an application and at what frequency.

Such optimizations are typically the responsibility of application developers and are built

into individual applications, as these policies are highly dependent on the requirements

of the applications that they impact.

While effective, such optimizations can be challenging to understand and im-

plement for application developers with little understanding of hardware and low-level

system primitives. To address this challenge, several projects have attempted to provide

developers with more accessible, high-level means of expressing power-management

policies.

Energy Types is a type system based approach that aides the development of

energy-efficient applications by allowing a developer to specify discrete phases and

modes of application behavior, which are in turn used to manage CPU voltage scaling and

application fidelity at runtime [21]. A developer uses phases to describe the workload

9

characteristics of various operations in their application, such as whether they are CPU- or

I/O-bound. This phase information is then used by a compiler to generate instructions that

manage CPU voltage scaling at various points in the application. For example, the CPU

may be scaled down to a low-power, low-frequency state whenever the application enters

a I/O-bound phase of execution. Modes, on the other hand, are used to specify different

implementations of or input parameters to a particular operation, such that each mode

has different energy-consumption characteristics and quality-of-service implications. For

example, a developer may provide multiple implementations of image processing and

specify that the runtime choice of implementation should be dependent on the remaining

battery-life of a device.

One of the claimed benefits of the Energy Types approach is that it encourages

more energy-efficient development by requiring developers to think about how their

application breaks down into various phases of execution and to structure their application

in a way that reflects this. However, this benefit is also one of the approaches greatest

weaknesses: reasoning about phases, and structuring an application to reflect these phases,

can be extremely burdensome for large applications and attempting to apply Energy Types

to an existing application would likely require significant refactoring. Additionally, CPU

frequency scaling affects not only the application built using Energy Types, but also

affects all other workloads on the system. While Energy Types would allow a developer

to specify different network-use policies as modes that are selected based on the available

battery life on a device, it does not ease the implementation of device state monitoring

or of controlling the timing of network accesses. It would not be appropriate for the

Citisense application to scale down CPU frequency while uploading sensor data in the

background as this may negatively impact the performance of any application the user is

currently interacting with in the foreground. Such system-wide impacting decisions are

10

poor suited for CRM applications, which typically run in the background while the user

may be utilizing other applications.

EnerJ employs a type system that allows developers to specify which pieces of

data in their application may be subject to approximate storage and processing to save

energy [36]. Broadly speaking, approximate computing involves the use of imprecise,

but efficient, algorithms and hardware resources to come up with solutions that are

‘good enough’ for a particular problem. For example, an approximate storage unit may

occasionally flip a bit and alter a stored value, but require less power than a precise

storage unit. Approximate algorithms may return a sub-optimal result when compared

to a precise solution for a problem, but they do so with fewer iterations and energy-

consumption. Within particular problem domains, such as image processing, such errors

are acceptable and worth the trade-off between accuracy and power.

EnerJ guarantees the isolation of precise and approximate components and re-

quires the developer to explicitly specify when it is acceptable to use approximate data

to affect a precise piece of data or state. In other words, EnerJ allows a developer to

specify which data in their application must be precise, which data may be approximated,

and the rules that dictate how the two types of data interact. While EnerJ is designed to

take advantage of unreliable and energy-efficient storage and processing elements, which

are not currently available on consumer devices, it also allows a developer to specify

approximate versions of algorithms that can be called when operating on approximate

pieces of data.

The primary benefit of EnerJ is that its type system statically enforces that a

developer does not inadvertently use approximate data to impact the state of precise data.

It provides a simple and clean way of specifying which operations may be subject to any

hypothetically available efficient-but-error-prone hardware components. While EnerJ

ensures that approximate data makes use of approximate versions of algorithms when

11

possible, it requires these approximate methods to be implemented by the developer.

EnerJ is also limited in that it is best suited for applications where both approximate

results are acceptable and where precise computation is a source of significant power-

consumption. In many applications, precise results are a requirement and the trade-

off between precision and energy-efficiency is not appropriate. While many CRM

applications may be able to take advantage of approximate computation in certain cases,

this approach does not address the impact of using other power-hungry components,

such as the cellular radio or display. EnerJ is ill-suited for handling the earlier Citisense

example: sensor data should be precise and approximate computing does not address the

impact of network communication. In applications where either precision is a requirement

or many non-CPU components are utilized, the appropriate trade-off is not of precision

versus energy, but rather timeliness versus energy.

Procrastinator is a tool that automatically delays the prefetching of network

resources in Windows Phone applications so as to reduce costly network data usage

[35]. Reducing network usage can also reduce power consumption. The Procrastinator

Instrumenter identifies prefetching patterns in an application, modifies the relevant

network calls at the byte-code level to instead be routed through the Procrastinator

Runtime, and delays the fetching of content that is displayed within a UI element.

A runtime component makes a decision as to when to fetch requested resources by

considering the available network interfaces, any data plan constraints, and whether the

data is needed to populate an in-view UI element.

Procrastinator has the advantage of being fully-automated: developers do not have

to annotate their UI elements with quality-of-service requirements, or to even understand

the potential benefits of delaying prefetch requests, to build a more energy-efficient

application. Procrastinator focuses only on networking operations, and only those related

to the user interface. However, this automated approach lacks flexibility, as there is no

12

mechanism for specifying different constraints for different requests in an application.

The focus on managing the prefetching of UI elements also limits the applicability of

the approach to CRM applications, which typically include components that run in

the background. For example, Procrastinator would not be applicable to the Citisense

application as network accesses are not dependent on usage patterns or the position of

UI elements, but rather are periodic and occur in the background. While this approach

provides a quick and simple way of introducing savings to an application, its lack of

developer-facing controls limit its applicability.

1.3 Annotated Programming for Energy-Efficiency

While the aforementioned systems have provided new mechanisms for introduc-

ing energy-saving optimizations into applications, they do not completely address the

challenges faced by developers of CRM applications. Specifically, these systems suffer

from a lack of generality and either require prohibitively burdensome refactoring (as

is the case with EnerJ and Energy Types) or provide a one-size-fits-all approach that

lacks sufficient control over policy behavior (as is the case with Procrastinator). An ideal

solution would provide fine-grained control over power-management policy behavior,

while minimizing the amount of refactoring and major structural changes required to

enable those policies. The purpose of this dissertation is to demonstrate that:

A high-level annotation language can be used to effectively and safely describe

and implement the diverse set of energy-management policies typically found in mobile

applications. These annotation-based policies can be efficiently evaluated at runtime to

reduce the power-consumption of an application while improving the maintainability of

a code base through an improved separation of concerns.

Annotated Programming for Energy-efficiency (APE) is a small declarative anno-

tation language with a lightweight middleware runtime for Android. APE enables the

13

Thread uploadThread = new Thread(new Runnable() {
while(true) {
@If("Battery.Level > 70%")

@Wait(UpTo=1200, For="Network.Active")
@Else() @Wait(UpTo=3600, For="Network.Active")
attemptUpload();

}
});
uploadThread.start();

Figure 1.5. Using APE to implement the same power-management policy found in
Figure 1.4.

developer to demarcate power-hungry code segments (e.g., method calls) using annota-

tions. The execution of these code segments is deferred until the device enters a state that

minimizes the cost of that operation. A typical policy delays execution of a segment that

uses a power-hungry resource (e.g., networking) until another application or thread turns

the resource on, thus allowing the segment to “piggyback” on the resource’s use with little

additional power consumption. Policies have a declarative flavor, allowing the developer

to precisely trade-off delay or adapt sensing algorithms to reduce power. The policies

abstract away the details of event and multi-threaded programming required for resource

monitoring. APE is not a replacement for existing power-saving techniques, but rather

facilitates the design and implementation of such techniques in real-world applications.

Figure 1.5 presents the APE-based implementation of the same power-management

policy found earlier in Figure 1.41

While both Energy Types and EnerJ are useful for building efficient CPU-intensive

applications, they have limited applicability to applications that make heavy use of other

power-hungry resources. These approaches also require the application to be structured

into discrete phases of execution, which may necessitate refactoring when applied to

1Annotation syntax has evolved over the course of this project but, for the sake of clarity, has been
made consistent across all chapters of this dissertation. The original syntax can be found in the first paper
on APE [30].

14

an existing, mature project. In contrast, APE-based policies may be dropped into an

existing application without refactoring and are well-suited for managing access to access

to hardware components other than CPU, such as the cellular radio and display. While

APE requires the developer to be kept in-the-loop, unlike Procrastinator, it provides fine-

grained control over the behavior of the application at runtime and allows the specification

of delay-constraints for individual paths of execution or objects. Each of these systems,

however, would play a role in the design of APE. For example, the use of annotations

in EnerJ to specify constraints for different pieces of data would influence the design of

APE constructs used for tracking object-level budgets, which will be discussed in further

detail later in this dissertation. Additionally, the automated nature of Procrastinator

would motivate the design of the Policy Generation Engine, also presented later in this

dissertation.

While annotation-based approaches have previously been utilized in code gen-

eration [4, 10, 15], verification [26], and driving performance optimizations [23, 34],

APE targets the implementation of system-level power-management policies. The design

of APE was inspired by OpenMP [22], an API and library that facilitates the devel-

opment of parallel C, C++, and Fortran applications. As an alternative to low-level

thread management, OpenMP allows a developer to specify—using preprocessor direc-

tives placed directly in the code—how tasks should be split up and executed by a pool

of threads. Much like how OpenMP allows a developer to reason about parallelism

in their application at a high level, the goal of APE is to allow developers to reason

about power-management in their application without being bogged down with low-level

implementation details.

The APE annotation language and runtime are introduced in Chapter 2. The APE

language constructs and the design of the middleware runtime are presented in Sections

2.1.2 and 2.2, respectively. An abstract model of the APE approach, based on timed

15

automata, is presented in Section 2.1.1. With this model, a wide variety of existing power

management techniques can be described, demonstrating both the scope and simplicity

of the approach. This model guided the design of both the APE annotation language and

the middleware runtime. Section 2.3 provides a first evaluation of the APE approach.

The expressiveness of the language was evaluated through a series of policy examples

and a case study of introducing power management into the CitiSense CRM application,

both with and without the use of APE. For the middleware runtime, it is shown that an

APE-annotated implementation of CitiSense saves as much power as the hand-tuned

implementation, while requiring fewer changes to the original source code and having

negligible runtime performance overhead.

Path-based Reasoning in APE. Although APE dramatically simplifies power-

management code while achieving significant power savings, a challenge to its effective

use is that the developer must deftly place the delay annotations in order to preserve the

expected user experience. As a simple example, a developer may not realize that their

application has an execution path from an UI operation to a delay-annotated operation

elsewhere in the program, which may cause the UI thread to be blocked at runtime.

Mentally reasoning about such execution paths in a large, object-oriented, multi-threaded

application is taxing, at best. A secondary challenge is that, although APE bakes the

resource monitoring infrastructure directly in its run-time, the developer still must make

high-level power-management decisions that require deep expertise just to introduce

an effective APE annotation, such as which system operations use or activate which

hardware components, and what conditions to delay on and for how long.

Chapter 3 presents extensions to APE that address these challenges. Specifi-

cally, Section 3.1 presents a new annotation for demarcating delay-sensitive and delay-

intolerant operations in an application. A static program analysis and runtime, presented

16

in Section 3.2, perform the complex tasks of inserting appropriate delays and regulat-

ing the delays at runtime to ensure delay-sensitive code is not adversely impacted by

any APE-based power-management policy. To address the challenge of composing a

power-saving policy in the first place, Section 3.3 presents the Policy Generation Engine,

an analysis and tool that automatically identifies operations in a CRM application that

(a) make use of power-hungry resources, (b) generates APE-based power-management

policies for them, and (c) provides feedback to the developer regarding available options

for customization of the policies.

Object-level Delay Budget Tracking. As power-management policies impact the run-

time behavior of an application, they may have unintended consequences on user ex-

perience. In fact, reasoning about the trade off between power-consumption and the

timeliness of operations is one of the primary challenges of building an effective power-

management policy. For example, delaying the download of stories in a news reader

application may improve device battery-life, but it may also lead to a frustrated user if

downloads are delayed too long. Additionally, different pieces of data in an application

may have very different requirements. In a health monitoring application, for exam-

ple, it may be acceptable to delay the processing of accelerometer data, but it is never

acceptable to delay the processing of sensor data from a user-worn heart monitor. An

object generated during the execution of a program may be expected to be “consumed”

in a timely fashion, while the data it contains is still considered fresh and useful. In

other words, it is important to be able to (1) vary the behavior of a power-management

policy at runtime so that it respects the timeliness requirements of the objects it impacts

and (2) provide a guarantee that certain, critical pieces of data are never subject to any

power-management related delays.

17

void displayCameraImage(Bitmap capturedImage) {
@DelayBudget(0, capturedImage)
...
processImage(capturedImage);
drawImageToUI(capturedImage);

}

void processImage(Bitmap rawImage) {
...
@Wait(UpTo=3600, For="Battery.Charging AND Display.Off")
rawImage.compress(PNG, 75, outputStream);
...

}

Figure 1.6. Using Tempus to specify a policy that delays the processing of images except
when the image is going to be used to update the user interface.

Chapter 4 presents Tempus, a new annotation language and runtime that builds

upon the techniques developed in APE and that supports the development of object aware

power-management policies. New annotation constructs, presented in Section 4.1, allow

a developer to specify a delay budget for an object, bounding any delays introduced by

Tempus between the creation of the object and the sites of where the object is referenced

throughout the program. While this object-level approach is presented as an alternative

to the path-oriented approach to composing constrained power-management policies

in APE, Tempus supports all of the features and constructs found in the earlier system.

The implementation of the Tempus system, including how delay budget constraints are

tracked at runtime and the static program analysis used to limit the number of budgets

considered at each power-management policy, are presented in Section 4.2. Figure 1.6

provides an example of using Tempus to specify a power-management policy that delays

the processing of images except when the image being processed would be displayed in

the UI.

Finally, the dissertation is concluded in Chapter 5 with a summary of contributions

and discussion of potential future work in the area.

Chapter 2

Annotated Programming for Energy-
Efficiency

2.1 APE Design Overview

APE is designed to provide developers a simple yet expressive mechanism for

specifying power management policies for CRM applications. Three basic principles

underline the design of APE:

• APE separates the power management policies (expressed as Java annotations)

from the code that implements the functional requirements of an application. This

enables developers to focus on correctly implementing the functionality of an

application prior to performing any power optimizations.

• APE does not propose new power management policies, but rather it allows de-

velopers to compose simple power management policies into more complex ones

using an extensible set of Java Annotations. APE annotations are both simple and

sufficiently flexible to capture a wide range of power management policies.

• APE insulates the developer from the complexities of monitoring hardware state

and provides a middleware service that coordinates the execution of power manage-

18

19

ment policies across multiple applications for increased power savings (compared

to when power management is not coordinated across applications).

APE includes an annotation preprocessor and a run-time environment. The

preprocessor validates the syntax of annotations and translates them into Java code. The

generated code makes calls to the run-time environment that coordinates the execution of

power management policies across multiple APE-enabled applications.

The remainder of the section is organized as follows. First, we will introduce the

formal model that is used by APE. Then, we present the set of Java Annotations that APE

provides to the developer.

2.1.1 The APE Policy Model

APE builds on the following key insight: power management policies defer

the execution of expensive operations until the device enters a state that minimizes the

cost of that operation. For example, CRM applications reduce the cost of networking

operations by deferring their data uploads until another application turns on the radio. If

no connection is established within a user-defined period of time, the application turns

on the radio and proceeds with the data uploads. Similarly, an application that maps

road conditions (e.g., detect potholes) would collect data only when it detects the user to

be driving. An energy-efficient mechanism for detecting driving may be to first use the

inexpensive accelerometer to detect movement and then filter out possible false positives

by using the power-hungry GPS sensor.

To our surprise, this insight holds across diverse power-management policies

that involve different hardware resources and optimization objectives, as illustrated by

the examples in this section. Nevertheless, the examples also illustrate the difficulties

associated with developing a general model for expressing power-management policies.

(1) The model must capture both static properties of hardware resources that may be

20

queried at run-time (e.g., radio on/off) as well as user-defined states that must be inferred

using complex algorithms (e.g., driving). Henceforth, we refer to changes in hardware

states or in inference results as application events. (2) The model must also incorporate a

notion of time. The first example illustrates the use of timeouts to trigger a default action.

More interestingly, the second example defines a policy where the application should

monitor for potholes [29] as a sequences of application events (evolving over time): first

the accelerometer must detect movement that is then confirmed by GPS.

APE adopts a restricted form of timed automata to specify power management

policies. The automaton encodes the precondition when an operation O should be

executed as as to minimize energy consumption. At a high level, a power management

policy is encoded by the states and transitions of the timed automaton. The timed

automaton starts in the start state and performs transitions in response to application

events and the passage of time. Eventually, a timed automaton reaches an accepting state

that triggers the execution of O.

Formally, APE’s restricted timed automata is a tuple:

TA = (Σ,S,s0,SF ,C,E) (2.1)

where,

• Σ is a finite set of events,

• S is a finite set of states, state s0 ∈ S is the start state, SF ⊆ S is a set of accepting

states,

• C is a finite set of clocks, and

• E is a transition function.

21

The transition e ∈ E is a tuple (c,σ) where c is a clock constraint and σ is a boolean

expression consisting of application events. The automaton transitions from state si to

s j (si
c:σ−−→ s j) when both c and σ hold. In contrast to standard timed automata [17], in

our model, transitions from the current state are taken as soon as the required clock

constraints and inputs are satisfied. Additionally, we also restrict the expressiveness

of clock constraints. Clock constraints can only refer to a single global clock cG or to

a single local clock cL that is reset each time a transition is taken to a new state. The

local clock can be used to impose constraints on transitions outgoing from a state, while

the global clock can be used to impose a time constraint on the total delay before an

operation O is allowed to execute. The above restrictions ensure that the automaton can

be executed efficiently on resource constraint devices such as mobile phones.

To clarify our APE’s formal model, let us return to the examples introduced in

the beginning of the section.

Example 1: Defer uploads, for up to 30 minutes, until the Wi-Fi radio has

connected to a network. Figure 2.1 shows the automaton associated with this policy. It

includes only two states: a start state and an accepting state. Transitions from the start

state to the accepting state occur in two cases: (1) when the radio is connected and the

global clock is less than 30 minutes or (2) the global clock exceeds 30 minutes. Note the

expressive power of the automaton to compactly capture conditions that depend both on

applications events and time constraints.

start

true : WiFi.Connected

cG ≥ 30min : true

Figure 2.1. Defer uploads, for up to 30 minutes, until the Wi-Fi radio has connected to a
network.

22

Example 2: Defer sensor sampling until the user is driving. Driving is detected

by first verifying movement using the accelerometer and then waiting for up to 30 seconds

for driving to be confirmed using GPS. Figure 2.2 shows the automaton associated with

this policy. The automaton includes three states, transitioning from the start state to state

Acc when movement is detected based on readings from the accelerometer, which is

captured by predicate Accel.Move. The automaton transitions to the accepting state

from Acc when driving is confirmed based on readings from the GPS, which is captured

by the predicate GPS.Drive.

start Acc

true : Accel.Move

cAcc ≥ 30sec : true

tru
e : G

PS
.D
ri
ve

Figure 2.2. Defer sensor sampling until movement is first detected by the accelerometer
and driving is confirmed using the GPS.

The described formal model allows us to capture a wide range of power manage-

ment policies. However, a disadvantage of using timed automatons as a specification

language is that they are hard to define using simple literals that may be included in Java

annotations. While experimenting with expressing power management policies in APE,

we observed that most of policies have a regular structure that can be captured using

23

a simpler model. The execution of an operation O is deferred until a finite sequence

(σ1, t1),(σ2, t2)...(σn, tn) of states holds:

P = ({(σ1, t1),(σ2, t2)...(σn, tn)}, tMaxDelay) (2.2)

Sequences of conditions (when n > 1) are resolved in order, optionally rolling back and

rechecking the previous condition (σi−1, ti−1) if the current condition being checked,

(σi, ti), is not satisfied before ti time has passed. Additionally, a policy may provide

an upper bound, tMaxDelay, on the delay introduced by the policy. Constructing a timed

automaton from the simple model is a straight-forward process that we omit due to space

limitations.

Using this concise notation, the previous two policies can be expressed as:

P1 = ({(WiFi.Connected,∞)},30 min)

P2 = ({(Accel.Move,∞),(GPS.Drive,30 sec)},∞)

Most policies found in literature and real-world applications can also be expressed using

APE’s simplified model. For example, a policy implemented by applications such as

Evernote, Google Play Market, and YouTube, is to delay syncing data and downloading

updates until a Wi-Fi connection is available and the device is charging:

({(WiFi.Connected AND Battery.Charging,∞)},∞).

While advertisements in mobile applications are typically fetched over the network

whenever one is required, an advertisement framework could instead display ads from a

24

locally stored corpus that is updated periodically [25]. The policy that manages when

updates to the corpus are fetched could be described as:

({(Ads.NeedUpdate,∞),(Net.Active AND WiFi.Connected,∞)},∞).

Batching write requests to flash memory is yet another example of a power-saving

technique for mobile applications. An email client may store newly received emails in

memory, writing them out to flash in batches periodically or when the number of emails

in memory exceeds some threshold [40]. Such a policy could be described as:

({(Batch.Threshold,∞)},60 min).

While these examples show that the simplified timed automata model of Equa-

tion 2.2 is able to express a diverse set of real-world policies, this model is not as

expressive as the full model of Equation 2.1. For example, consider an extension of the

driving detection policy in example 2 (See Figure 2.3). In the extended policy, driving is

still detected by first monitoring for movement using the accelerometer and then verifying

that the user is driving by using the GPS. However, the policy additionally requires that

driving be observed continuously for 30 seconds before allowing execution to continue.

During this 30 second period, if the accelerometer fails to detect motion or the GPS

to detect driving, the policy immediately returns to the initial state of checking the ac-

celerometer for motion. This policy cannot be expressed in the simplified model because

the transition from the state Acc to the start state occurs on an event (¬Accel.Move

OR ¬GPS.Drive) rather than on a timeout, as required by the simplified model.

APE annotations, further discussed in the next section, build on the simplified

model as it has a simple textual representation and captures most of the policies we have

25

start Acc

true : Accel.Move

true :¬Accel.Move OR ¬GPS.Drive

c Acc
≥

30
sec

: G
PS
.D
ri
ve

Figure 2.3. Defer sensor sampling until the user is driving. Driving is detected by first
verifying movement using accelerometer for 30 seconds and then confirmed using GPS.

encountered. APE may be further extended in the future to provide a more complex

syntax for expressing power-management policies using general timed automata.

2.1.2 The APE Annotation Language

APE realizes the above model in a small and simple language implemented using

Java annotations. A preprocessor translates the annotations at compile time into Java

code that makes calls to the APE middleware runtime (Section 2.2).

@Wait. The Wait annotation is the direct realization of the model syntax and

semantics specified above in Equation 2.2. As such, it prefaces a code segment, and

specifies the sequence of application events that must be satisfied before execution

proceeds to the prefaced code. For example, the policy from example 1 can be expressed

as:

while(true) {
@Wait(UpTo=1800, For="(WiFi.Connected, inf)")
uploadSensorData();

}

26

WiFi.Connected is an APE-recognized application event that APE monitors on

behalf of the application; inf says that the local clock constraint is true, i.e., cs <

in f inity; and MaxDelay=1800 asserts global clock constraint as cG ≥ 1800 seconds.

The parentheses can be dropped when there is no local clock constraint:

while(true) {
@Wait(UpTo=1800, For="WiFi.Connected")
uploadSensorData();

}

Similarly, the policy from example 2 can be expressed as:

void startDrivingLogging() {
@Wait(UpTo=inf, For="({accMove()},inf),({gpsDrive()},30)")
beginSensorSampling();

}

where accMove() and gpsDrive() are local functions that encompass logic specific

to the application.

With Wait, it is also possible to designate Java code that must be executed before

the thread begins waiting or after waiting has ended:

while(true) {
@Wait(UpTo=1800, For="WiFi.Connected",
PreWait="log(’Started waiting for Wi-Fi...’)",
PostWait="log(’Finished waiting for Wi-Fi!’)")

uploadSensorData();
}

The optional PreWait and PostWait parameters are useful when an application has to

prepare for, or recover from, blocking the annotated thread.

@If, @ElseIf, and @Else. Example 1 can be further extended to condition-

ally wait up to 30 minutes for a Wi-Fi connection if the battery level is greater than 70%,

or otherwise to wait up to two hours:

while(true) {
@If("Battery.Level > 70%")

27

@Wait(UpTo=1800, For="WiFi.Connected")
@Else()

@Wait(UpTo=7200, For="WiFi.Connected")
uploadSensorData();

}

The If , ElseIf , and Else annotations allow developers to specify multiple energy-

management policies for the same segment of code, selecting one at run-time based

on application and device state at time of execution. Unlike Wait expressions, which

block until they evaluate true, any expressions provided to an If or ElseIf annotation are

evaluated immediately by the APE runtime, and the selected branch is taken to invoke

the appropriate policy.

State Expressions and Transitions: The Wait, If, and ElseIf annotations each

take as a parameter a boolean expression, consisting of application events, that represents

a potential state of the application and device. Each term used in an expression must be

either a recognized primitive in the APE language or a valid Java boolean expression. An

APE term refers to a property of a hardware resource. For example, WiFi.Connected

refers to the status of Wi-Fi connectivity. A Java expression included in an annotation

is surrounded by curly braces. Terms are joined using AND and OR operators. As an

example:

{requestsPending() > 0} AND (WiFi.Connected OR Cell.3G)

describes the state where the client application has requests pending and it is either

connected to a Wi-Fi or 3G network. The requestsPending() method must be in

scope at the location of the annotation.

Each of the expressions provided to an Wait annotation is a predicate controlling

the transition to the next state in a timed automaton. Consistent with Android’s event-

driven model, APE treats these predicates as events: When in a given state, APE monitors

28

the events necessary to trigger a transition to the next state. As events arrive, their

containing predicate (expression) is reevaluated, and if true, it triggers a transition to

the next state. Arriving in a new state causes APE to unregister for the last expression’s

events, and to register for the events required to trigger the next transition. Likewise,

event triggers are set up for a state’s local clock; the global clock is its own event trigger,

set up when the automaton enters the start state.

The APE compiler must handle two special cases when compiling an APE anno-

tation, both related to the dichotomy between events and method calls. (1) When an APE

expression includes a local method call, the method is periodically polled until its contain-

ing expression evaluates to true, or until the evaluation becomes irrelevant due to another

event trigger. For example, in the case of the expression {requestsPending()

> 0}, the method requestsPending() is periodically polled until its containing

boolean expression evaluates to true. (2) When APE initially registers for an event, it also

makes a direct query to the resource of interest to determine if the resource is already

in the desired state. For the expression WiFi.Connected, for example, APE both

registers for events regarding changes in Wi-Fi status, and queries Wi-Fi to determine if it

is already connected. If so, APE immediately evaluates the expression to true. Otherwise,

APE waits for a callback from the system regarding a change in Wi-Fi status and rechecks

for the Connected condition.

The APE preprocessor performs syntactic checking and error reporting, with APE

terms being checked against an extensible library of terms. The device state primitives

supported by APE are specific to each device, but there is a standardized core that

encompass the display, cellular, Wi-Fi, and power subsystems of a device and their

various features and states.1 Additional details regarding the efficient implementation of

1APE builds upon Android’s Java hardware API specification, which standardizes the names and
low-level states of many components.

29

timed automata semantics and the evaluation of state expressions are discussed in the

next section.

DefineTerm. The DefineTerm annotation allows a developer to define a new

term that can be used in APE annotations throughout the application. Defining new terms

not only provides for reuse, but also allows non-experts to utilize policies constructed by

others. For example, a new term MyTerm may be defined by:

@DefineTerm("MyTerm", "Battery.Charging AND
(WiFi.Connected OR Cell.4G)")

and used to construct APE annotations, such as

@Wait(UpTo=3600, For="{requestsPending()} AND MyTerm")

Any APE recognized primitive or valid Java boolean expression may used in the definition

of a new term. Terms do not encode any notion of timing, and are thus not complete

policies in themselves, but rather building blocks for higher-level policies.

DefinePolicy. In addition to defining new terms, developers may define

reusable, high-level policies with the use of the DefinePolicy annotation. The difference

between a term, defined using DefineTerm, and a policy is that a policy may encode

timing constraints and transitions. Unlike terms, which can be joined together with other

terms to form state expressions, a defined policy represents a complete state expression.

Transitions may be used to chain policies together. For example, a new policy MyPolicy

may be defined by:

@DefinePolicy("MyPolicy", "(Display.Off,inf),(MyTerm,10)")

and used to contruct APE annotations, such as

@Wait(UpTo=3600, For="MyPolicy,({dataReady()},30)")

30

The timing parameters in a defined policy act as defaults and may be optionally replaced

when referencing a policy:

@Wait(UpTo=3600, For="MyPolicy(inf,60),({dataReady()},30)")

For many power-management policies, such as those without transitions, simply defining

a new term is sufficient.

Annotations are translated at compile-time into runtime requests to the APE

middleware service, discussed in Section 2.2, which is responsible for monitoring device

state and resolving policies on behalf of APE-enabled applications. Java annotations are

simply a form of metadata added to source code, and thus have no impact on application

behavior without the relevant processor interpreting them during the build process. This

feature of annotations means that a developer can experiment with a power-management

policy and then quickly disable it during testing by simply removing the APE annotation

processor from the build process.

2.2 The APE Runtime Service

The APE runtime is responsible for executing APE annotations from multiple

APE-enhanced applications. In this section we focus on the key design decisions behind

the service and discuss optimizations made to reduce the overhead of executing APE

annotations.

The runtime consists of a client library and a middleware service. A single

instance of the middleware services, implemented as an Android Service component,

runs on a device. The middleware service is responsible for (1) monitoring for changes

in hardware state and (2) (re)evaluating APE expressions in response to these changes.

APE applications communicate with the middleware through remote procedure calls

(RPCs). The details of RPC, including binding to the service, parameter encoding, and

31

error handling, are encapsulated in the client library. Having a single middleware service

instance has the advantage of amortizing the overhead associated with policy evaluation

over multiple applications. More importantly, this approach allows the middleware to co-

ordinate the activities of multiple clients for added energy savings (shown experimentally

in Section 2.3.2).

APE annotations are translated into Java code by the APE preprocessor prior

to compilation. Each policy is converted into an equivalent integer array representa-

tion so as to avoid string processing at runtime. The generated code relies on three

functions provided by the client library: registerPolicy, ifExpression, and

waitForExpression. The registerPolicy function is executed during the

initialization of the application and registers each APE policy with the middleware

through RPC calls. The middleware service returns a policy handler that can be used

by ifExpression and waitForExpression to refer to a particular policy at run-

time. RPCs to the middleware are synchronous, blocking the execution of the calling

application thread until they return. Consistent with the model described in Section 2.1.1,

each policy is represented as a timed automaton that is executed by the middleware. An

RPC completes when the automaton reaches an accepting state. This triggers the return

of the RPC and, subsequently, the execution of the deferred application code.

The generated code is split into initialization segments (registerPolicy

calls) and policy segments (ifExpression and waitForExpression calls) in

order to reduce runtime overhead. As the overhead associated with RPC is dependent

on the size of the request, the potentially large representations of policies are only

transmitted once to the middleware using registerPolicy calls during initialization.

Runtime policy segments utilize policy handlers so as to avoid uploading policies to the

middleware multiple times. As policy handlers are implemented as integers, they add

32

only four bytes to the size of a RPC request, thus minimizing runtime overhead. The

overhead associated with RPC is further discussed in Section 2.3.2.

For the middleware to execute the timed automatons efficiently, it must track

changes in hardware state and update the APE expressions in response in an efficient

manner. The monitoring of low-level device state primitives is implemented as compo-

nents called device state monitors. Aside from requiring concurrent programming, device

state monitors are challenging to write because they must glean information through

somewhat ad hoc mechanisms. For example, the connectivity of the cellular radio is deter-

mined by periodically polling the ConnectivityManager. However, to determine

whether data is transmitted/received, the device monitor must register callbacks with the

TelephonyManager. Additional connectivity information may also be extracted from

sysfs – the Linux’s standard mechanism for exporting kernel-level information. Our

device monitors provide clean APIs that hide the idiosyncrasies of monitoring hardware

resources.

In response to a registerPolicy call, the middleware generates an equivalent

boolean expression tree for each expression. The tree is constructed such that leaves

represent terms in the expression and non-leaves are AND or OR operators. A node

maintains a reference to its parent and any children. In addition, a node also maintains

a boolean representing the evaluation of its subtree expression. At a high level, the

expression trees are evaluated from leaves to the root. The leaves involve low-level states

monitored using the device state monitors. These values are propagated up the tree and

combined based on the boolean operator (AND or OR). This approach reduces the cost of

evaluating expressions as changes in low-level state often do not require the entire tree to

be reevaluated.

Figure 2.4 provides an example of a simple boolean expression tree in APE.

The arrows indicate the flow of information during the evaluation of the boolean ex-

33

Figure 2.4. The boolean expression tree representation of a particular Wait request. All
leaf nodes in the tree represent primitives in the expression, while all non-leaf nodes
represent operators.

pression represented by the tree. The tree is evaluated in one of two ways. In the case

of ifExpression, the APE service calls a method of the same name on the head

node of the tree. When ifExpression is called on a non-leaf node, the node calls

ifExpression on each of its children and applies its operator to the returned values.

When ifExpression is called on a leaf node, the device monitor associated with the

node returns the current state of the hardware device. The value returned by the method

call on the head node is in turn returned back to the client application, where the result is

used to select which policy, if any, should be applied.

34

In the case of waitForExpression, the APE service again calls a method of

the same name on the head node of the tree. Rather than evaluating all nodes immediately,

waitForExpression notifies all leaf nodes to begin monitoring changes in device

state and starts any necessary timers. Leaf nodes register for callbacks from the relevant

device monitor about changes regarding the node’s term. If necessary, threads are created

in the client application to periodically evaluate any local Java code used as part of an

annotation and to communicate the result to the APE service. Whenever a node receives

information that would change the evaluation of its term or operator, it notifies its parent

node of the change. This lazy evaluation of the expression tree from the bottom up

ensures that each term and operator in a state expression is only reevaluated when new

information that may affect its result is present. To avoid unnecessary message passing

and computational overhead, device state monitors only actively monitor the hardware

components necessary to resolve all pending requests from leaf nodes. When the head of

the expression tree evaluates to be true, or if the tree’s timer expires, all leaf nodes are

notified to stop monitoring changes by unregistering from their corresponding device state

monitor. In the case that a policy consists of multiple expressions, the trees are evaluated

in the order that they appear, moving forward to the next tree once the current tree

evaluates true, or returning to a previous tree if the current expression times out. Given

the synchronous nature of the remote procedure calls, calls to waitForExpression

will block the calling thread of execution in the client application until the call returns,

thus ensuring the costly operation that follows is not executed until the desired conditions

have been satisfied.

2.3 Evaluation

In this section we evaluate APE from two perspectives. First, we present a

case study of introducing power management into the CitiSense CRM application, both

35

Thread uploadThread = new Thread(new Runnable() {
while(true) {
try {
Thread.sleep(120000);
} catch(InterruptedException e) {}
attemptUpload();

}
});
uploadThread.start();

Figure 2.5. Example of a naive implementation of sensor reading uploading in CitiSense.
A thread thread wakes every twenty minutes to attempt uploading any stored sensor
readings before returning to sleep.

with and without the use of APE. We then examine the performance of the middleware

runtime and show that APE effectively reduces power-consumption by coordinating the

workloads of multiple applications, while requiring fewer changes to the original source

code and having negligible runtime performance overhead.

2.3.1 Case Study: CitiSense

The authors have developed a variety of CRM applications, notably CitiSense,

which monitors, records, and shares a user’s exposure to air pollution using their smart-

phone and a Bluetooth enabled sensor device [31]. Building an application that performed

all the required tasks without depleting the smartphone’s battery proved challenging, as

the application depended heavily on the use of GPS for localization, Bluetooth for sensor

readings, and cellular communication to upload measurements to a server for further

processing. Much of the challenge in improving CitiSense arose from adding, evaluat-

ing, and iteratively revising the application’s already-complex code base to implement

energy-management policies. In this section, we share our experience in implementing

a policy for uploading sensor data from the CitiSense mobile application to a remote

server, providing both hand-coded and APE implementations.

36

The initial implementation of the CitiSense mobile application cached air quality

measurements on the user’s device and attempted to upload all stored readings once every

twenty minutes. If the loss of connectivity caused a transmission to fail, then the data

would be preserved until the next upload window. Although timed batching saves energy,

the approach still has several drawbacks. Uploads attempted while a user’s phone had

a weak cellular network signal often failed, but still incurred high energy consumption

during the failed attempt. Additionally, even if connectivity was available nineteen out of

every twenty minutes, the lack of connectivity at the twentieth minute mark meant the

upload would be delayed until the next attempt. For some users with unreliable cellular

coverage, it often took hours before their data was uploaded successfully to the server.

To improve the energy-efficiency and reliability of CitiSense uploads, the appli-

cation was modified to attempt a transmission whenever the phone’s cellular radio was

detected to already be transmitting or receiving data (See Figure 2.6). The equivalent

timed automaton for this policy is presented in Figure 2.7. The concept is that if the

phone detects that another application on the phone has successfully sent or received data

over the cellular radio, then CitiSense would also likely succeed. Additionally, with radio

already being active, CitiSense would no longer be forcing the radio out of a low-power

idle state: the application is taking advantage of other workloads waking the radio,

reducing its impact on device battery life. In the event that no other application wakes the

radio in a timely manner, CitiSense attempts to upload any stored readings after a timeout.

However, unlike the static twenty-minute timer used in the first implementation, this one

varies timeout length based on the remaining battery life of the device. If remaining

battery life is greater than 70% the application waits up to twenty minutes for the radio

to become active; otherwise, CitiSense will wait up to one hour.

Unfortunately, what was once a simple, nine-line implementation now requires

querying the Android system for the status of the battery, registering the application for

37

Thread uploadThread = new Thread(new Runnable() {
while(true) {
Intent batt = context.registerReceiver(null,

new IntentFilter(Intent.ACTION BATTERY CHANGED));
int lvl = batt.getIntExtra(BatteryManager.EXTRA LEVEL,-1);
int scl = batt.getIntExtra(BatteryManager.EXTRA SCALE,-1);
float batteryPct = lvl / (float) scl;
try {
if(batteryPct > 70){ Thread.sleep(120000); }
else{ Thread.sleep(360000); }

} catch(InterruptedException e) {}
attemptUpload();

}
});
uploadThread.start();

TelephonyManager teleManager = (TelephonyManager)
context.getSystemService(Context.TELEPHONY SERVICE);

TransListener transListener = new TransListener();
teleManager.listen(transListener,
PhoneStateListener.LISTEN DATA ACTIVITY);

private class TransListener extends PhoneStateListener {
public void onDataActivity(int act) {
if(act == TelephonyManager.DATA ACTIVITY IN

|| act == TelephonyManager.DATA ACTIVITY OUT
|| act == TelephonyManager.DATA ACTIVITY INOUT) {

uploadThread.interrupt();
}

}
}

Figure 2.6. An improved implementation of uploading in CitiSense that is both battery-
life and cellular radio state aware.

callbacks regarding changes in cellular data activity in the system, and implementing

a custom PhoneStateListener to handle callbacks and to interrupt the sleeping

upload thread if data activity is detected. Further extending the implementation to be de-

pendent on the state or availability of other resources, such as a Wi-Fi connection, would

require implementing additional listeners to handle callbacks and additional concurrency

management. Given the large number and complexity of changes required, prototyping

and experimenting with a variety of potential policies becomes time consuming and

38

start

tru
e : B

at
te
ry
.L
ev
el

>
70
%

true : Battery.Level
≤
70%

true : Network.Active

cG >
20min : true

cG
>

60
min

: tr
ue

tru
e : N

et
wo
rk
.A
ct
iv
e

Figure 2.7. The equivalent timed automaton for the policy implemented in Figure 2.6.

burdensome. Even a well-thought-out policy can perform poorly in practice and require

tweaks or major changes.

When we reimplemented this policy in APE, the code collapses back to nine lines,

with the 19 lines of policy code being reduced to three lines of APE annotations:

Thread uploadThread = new Thread(new Runnable() {
while(true) {
@If("Battery.Level > 70%")

@Wait(UpTo=1200, For="Network.Active")
@Else() @Wait(UpTo=3600, For="Network.Active")
attemptUpload();

}
});
uploadThread.start();

The developer-implemented PhoneStateListener, event handling, and thread con-

currency management are now handled by the APE middleware. In this compact, declar-

39

ative format, it is now possible to read the policy at a glance, and to attempt variants of

the policy quickly.

The APE policy managing uploads can be rapidly extended to also consider the

quality of the cellular connection and the availability of Wi-Fi:

Thread uploadThread = new Thread(new Runnable() {
while(true) {
@If("Battery.Level > 70%")
@Wait(UpTo=1200, For="WiFi.Connected OR
Network.Active AND (Cell.3G OR Cell.4G)")

@ElseIf("Battery.Level > 30%")
@Wait(UpTo=2400, For="WiFi.Connected OR
Network.Active AND (Cell.3G OR Cell.4G)")

@Else()
@Wait(UpTo=3600, For="WiFi.Connected OR
Network.Active AND (Cell.3G OR Cell.4G)")

attemptUpload();
}

});
uploadThread.start();

Instead of waiting for simply any cellular network activity, CitiSense now uploads sensor

readings only while connected to a Wi-Fi network or if cellular activity was observed

while connected to either a 3G or 4G cellular network. The maximum time to wait for

such a state was set to be 20 minutes if remaining battery life was greater than 70%, 40

minutes if between 70% and 30%, and 60 minutes if less than 30%.

With the use of APE, the new energy-management policy can be expressed in a

total of six annotations. In contrast, an experienced Android developer implementing the

same policy by hand required 46 lines, including five lines for suspending and waking

threads, three lines to register the application for callbacks regarding changes in device

state from the Android system, and 26 lines and one new class for handling the callbacks.

The thread responsible for uploading sensor readings is put to sleep until it is interrupted

by a different thread which handles callbacks from the Android system and determines

when all required resources are available. Not only is this implementation much longer

than the APE based implementation, it is significantly more difficult to understand and

40

maintain. This shows that APE not only represents power management policies concisely,

but also significantly reduces the implementation complexity by removing the need to

write error-prone concurrent code.

2.3.2 System Evaluation

In this section we evaluate APE by examining the overhead associated with com-

municating requests to the middleware service. Additionally, we present power savings

achieved by using APE to implement a simple resource-aware energy-management policy

in an application that makes regular use of network communication. All experiments

were run on a Pantech Burst smartphone running Android version 2.3.5. The power

consumption of the device was measured using a Power Monitor from Monsoon Solutions

[12]. The battery of the Pantech Burst was modified to allow a direct bypass between the

smartphone and the power monitor, allowing power to be drawn from the monitor rather

than the battery itself. Traces of this power consumption were collected on a laptop con-

nected to the power monitor over USB. Measurements involving network communication

were run on the AT&T cellular network in the San Diego metropolitan area. Though

the Pantech Burst supports LTE, all experiments were run while operating on AT&T’s

HSPA+ network as LTE coverage was not available at the site of our experiments.

APE Overhead

To evaluate the overhead associated with using APE, we examine the time required

to complete a simple request to the middleware service. Additionally, we examine the

impact of expression length on the latency of registerPolicy requests. A simple

Android application was built that performed no operations other than to execute the

code being benchmarked. The time required to execute code segments was measured by

41

taking the difference between calls to System.nanoTime() placed just before and

after the code segment.

To evaluate the latency overhead associated with using APE, we measured the

time required to check the current status of data activity on the device using the standard

Android API and using APE. Checking the current status of data activity using the

standard Android API was done using the following code:

TelephonyManager telMan =
(TelephonyManager) getSystemService(Context.TELEPHONY_SERVICE);

int dataAct = telMan.getDataActivity();

The average time required to execute this code was measured to be approximately 0.79 ms.

Checking the current status using APE was implemented using the following annotation:

@If("Network.Active")

The average time required to check for data activity using APE was measured to be

approximately 2.5 ms, meaning approximately 1.71 ms were spent sending the request

to the APE service over IPC, evaluating a single-term expression tree, and returning a

message to the client application over IPC. Given that a developer would use APE to

shape delay-tolerant workloads, we believe that an overhead of 1.71 ms is negligible,

especially when compared to the time that will be spent waiting for ideal conditions.

To evaluate the impact of expression length on the time required to register a

policy, calls to registerPolicy using expressions of various lengths were measured

using our test application. As observed in Figure 2.8, the time to register policies remains

fairly constant at lower expression lengths. It is only when expressions begin to become

longer than 127 terms that the overhead associated with passing large messages over

IPC begins to take its toll. Messages are passed between processes using a buffer in the

Android kernel. If messages become sufficiently large, they require additional buffer

space to be allocated in the kernel, thus introducing additional latency in resolving

42

0	

5	

10	

15	

20	

25	

1	
 3	
 7	
 15	
 31	
 63	
 127	
 191	
 255	
 383	
 511	

Ti
m
e	

to
	
 R
es
ol
ve
	
 (m

s)
	

State	
 Expression	
 Length	

Figure 2.8. Time to register expressions of various lengths using registerPolicy.
As the size of the expression grows, the size of the message passed over IPC begins to
impact latency.

requests. However, expressions of such length are unlikely to arise in practice as realistic

energy-management policies depend on significantly fewer application events. In the

experience of the authors, most APE expressions tend to be between one and nine terms.

As these requests are completed only once, at the start of an application, their overhead

is considered acceptable, even at long expression lengths.

Power Savings

To demonstrate the potential impact of CRM applications on the battery life of a

device, power measurements were collected from a smartphone running an instance of the

CitiSense application, which fetched data from a remote server once every two minutes.

As a baseline, we measured the power consumption of the phone, while powering its

display at maximum brightness and running a single instance of CitiSense, to be 865.33

mW. Up to five additional instances of CitiSense were then introduced to the system.

The power consumed by these applications when their use of network resources does

43

Figure 2.9. Increase in system power-consumption due to the introduction of additional
applications that periodically make use of network resources. APE enhanced applications
effectively recognize opportunities to transmit data efficiently, only marginally increasing
power consumption.

not overlap, presented in Figure 2.9, reached as high as 1416.39 mW, a 63.7% increase.

This is a worst-case scenario, as there is no coordination with existing workloads on the

device to ensure efficient usage of resources.

To demonstrate the potential savings of using APE to implement even a simple

energy-management policy, the applications were each modified using a single Wait

annotation to wait up to 120 seconds for the cellular radio to be woken before attempting

transmission. As observed in Figure 2.9, the introduction of this annotation significantly

reduced the power consumption of additional CRM workloads; adding five additional

APE enhanced instances of the CitiSense application increased power consumption by

only 13.49 mW, or 1.6%. As can be seen in Figure 2.10, APE is able to effectively

coordinate the workload of the CRM applications to minimize the number of times the

cellular radio is woken and put into a high-power state. If no background application had

44

Figure 2.10. Power consumption (mW) traces from a smartphone device running a
variety of naive (top) and APE enhanced (bottom) CRM applications.

been running on the device and transmitting data, then the first APE enhanced application

to timeout would wake the radio to transmit its request. The other APE applications would

then have detected this event and transmitted at the same time for nearly no additional

energy cost. This experiment shows that APE provides effective means of coordinating

power management across applications to achieve significant energy savings.

2.4 Conclusion

Annotated Programming for Energy-efficiency (APE) is a novel approach for

specifying and implementing system-level power management policies. APE is based on

two key insights: (1) Power management policies defer the execution of power hungry

code segments until a device enters a state that minimizes the cost of that operation. (2)

The desired states when an operation should be executed can be effectively described

using an abstract model based on timed automata. We materialized these insights in a

45

small, declarative, and extensible annotation language and runtime service. Annotations

are used to demarcate expensive code segments and allow the developer to precisely

control delay and select algorithms to save power.

We showed our approach to be both general and expressive, in that it can replicate

many previously published policies and that its use reduced the complexity of power

management in CitiSense. The APE middleware’s use of techniques like code generation,

policy handlers, lazy evaluation, and encoding policies as integer arrays kept overhead

below 1.7 ms for most requests to the service. In our benchmarks, APE provided power

savings of 63.7% over an application that did not coordinate access to resources.

Tools for assisting developers in reasoning about appropriate places to apply

APE annotations are currently under development. We are also exploring the use of a

type system for designating delay-(in)tolerant data in an application. A user study of

experienced developers will be conducted to examine how well developers new to APE

adapt to using annotations to express power-management policies.

2.5 Acknowledgments

This work was supported by the National Science Foundation (grant nos. CNS-

0932403, CNS-1144664, and CNS-1144757) and by the Roy J. Carver Charitable Trust

(grant no. 14-4355).

This chapter, in part, is a reprint of the material as it appears in Proceedings of the

36th International Conference on Software Engineering. Nikzad, Nima; Chipara, Octav;

Griswold, William G. 2014. The dissertation author was the primary investigator and

author of this material.

Chapter 3

Satisfying Delay Constraints

3.1 Annotation Semantics

Power annotations either defer operations or constrain how long an operation

may be deferred.

3.1.1 Wait

Consider an execution of an operation O that is annotated with @Wait(E,DO)

on a thread τ . Thread τ is blocked until the device enters a state in which expression E

holds or the maximum allowable delay DO is reached. We call the time that a thread τ is

blocked while operation O is deferred as the operation’s delay (∆(O,τ)). The @Wait

annotation imposes the constraint that

∆(O,τ)≤ DO (3.1)

holds on all threads τ that execute O.

3.1.2 DelayableUpto

The developer may specify quality-of-service properties by constraining an op-

eration’s delay. We consider two useful alternative semantics for this annotation, first

46

47

considering just delay within the operation in question (the METHOD case), and then

considering all the delays occurring in the operation’s thread up to and including the

operation (the THREAD ENTRY case).

METHOD alternative Consider an operation O annotated with

@DelayableUpTo(RO, METHOD). The annotation constrains the aggregated

delay of O and all other methods invoked during O’s execution to be less than RO.

Formally, we require that for any thread τ:

∑
o∈children(O)∪{O}

∆(o,τ)≤ RO (3.2)

where, children(O) is the set of methods invoked by O.

THREAD ENTRY alternative The semantics for the METHOD alternative are attractive

because they are modular – the timing constraints apply only to the annotated operation.

However, in our experiments with annotating real applications, we found that we often

wanted to constrain delays on the operation O from the inception of the thread that

contains it. That is, in the case where all of the computations in the thread leading up to

the execution of O are seen as setting up O, it makes sense to bound their delays as well.

Formally, we require that for any thread τ:

∑
o∈predecessors(O)∪{O}

∆(o,τ)≤ RO (3.3)

where, predecessors(O) is the set of operations invoked in the thread prior to invoking

O.

Because the THREAD ENTRY alternative is ”safer” in that it bounds the delays

over at least as many operations as the METHOD alternative, we treat it as the default

48

in our syntax, should the second parameter be omitted. Additionallly, we define the

annotation @Undelayble() as equivalent to @DelayableUpTo(0).

3.1.3 Example

Consider the example of a simple application that downloads stock data and

related images from a server, formats the data, and then displays the results on the

UI. Energy consumption can be reduced by batching downloads. In Figure 3.1, the

developer annotates the openConnection invocation with an @Wait (see line 24).

The annotation allows the downloading of images and stock quotes to be delayed until

the device is connected to a Wi-Fi network or if cellular activity was observed while

connected to either a 3G or 4G cellular network. If no other application turns on the

network within 20 minutes, the application turns on the network interface and proceeds

with the download. Additional energy savings may be obtained, by also deferring the

display of the analysis results for up to five minutes when the screen is off (see line 15).

The developer may customize the user experience by introducing

@DelayableUpTo annotations. For example, perhaps stock quotes should be

displayed as soon as possible. The developer may annotate the method invocation

processData (see line 7) with a @DelayableUpTo(1 min, METHOD) to

display the analysis results for this timely data more quickly (see line 6, in comment).

Note that the annotation is specific to an execution path, applying to the processData

call on line 7, but not the one on line 9: the call of processData in line 9 may delay

the display of processed results for the full 5 minutes as specified by @Wait.

The developer, however, may still be unsatisfied with how fast images are pro-

cessed. To further reduce this time, she may change the scope of the annotation by

changing the annotation to @DelayableUpTo(1 min) (see line 5). The annotation

requires that the aggregated delay of all operations from the start of the thread until the

49

1 class ProcessDataFromServer implements Runnable {
2 public void run() {
3 Data data = NetworkUtils.downloadData();
4 if (data.isStockTicker()) {
5 @DelayableUpTo(1min)
6 // @DelayableUpTo(1min, METHOD)
7 processData(data);
8 } else {
9 processData(data);

10 }
11 }
12

13 void processData(Data data) {
14 ...
15 @Wait(UpTo=5min, For="Display.ON")
16 updateDisplay(data);
17 ...
18 }
19 }
20

21 class NetworkUtils {
22 public static Data downloadData() {
23 URL url = new URL(SERVER_ADDR);
24 @Wait(UpTo=20min, For="WiFi.Connected OR Network.Active
25 and (Cell.4G OR Cell.3G)", MaxDelay= 20min)
26 HttpURLConnection conn =
27 (HttpURLConnection) url.openConnection();
28 ...
29 return data;
30 }
31 }

Figure 3.1. A thread attempts to download data to displayed within the application. The
@DelayableUpTo annotation ensures that the downloading and displaying of the data
is not delayed by APE by more than one minute.

completion of the processData call on line 7 be less than a minute. Accordingly, both

the openConnection and updateDisplay function may be deferred by a total of

a minute; the time each function is delayed depends on the state of the device. As before,

the execution path through the other call of processData is not constrained, and the

@Wait may delay processing up the the full five minutes.

50

3.2 Static Analysis and Run-time Monitoring

An APE annotated application must guarantee that delayed operations satisfy any

and all timing constraints specified by a developer. To do so, a combination of static

analysis and run-time instrumentation and monitoring is used to ensure that constraints

are satisfied during execution. Static analysis translates @DelayableUpTo annotations

into delay allowances that are assigned along relevant call-paths in the program. These

allowances bound the delay experienced by a thread of execution: threads spend their

allowance when waiting at a @Wait annotation site and may not spend more than their

smallest assigned allowance. When a thread has zero remaining delay allowance, it

simply skips any @Wait annotations. Threads without any form of @DelayableUpTo

constraint have infinite delay allowance, meaning that the time spent waiting at a @Wait

annotation is bounded only by the MaxDelay parameter of the policy. Allowances are

updated by the APE runtime after each @Wait annotation to reflect the time actually

spent waiting at the annotation site.

3.2.1 Algorithms for Static Analysis and Monitoring

The static program analysis employed by APE is built upon the Soot Java Opti-

mization Framework [38]. The first step in our analysis is to generate the control flow

graph (CFG) of the target application. Static program analysis using the Soot framework

requires that an entry point to the application be specified, and by default this entry point

is the main method. However, unlike other Java-based programs, Android applications

do not include a main method. Instead, an application specifies a variety of potential

entry points that may be called by the Android framework, such as the onCreate

and onStop methods that are called when an application is first started or stopped,

respectively. To allow Soot to properly analyze the application, a dummy main method

51

must be constructed. By default, this main method includes calls to the common Android

application lifecycle methods (onCreate, onResume, etc.). The developer may oc-

casionally have to manually add other entry points in their application to this dummy

main method. Further automation of this process using techniques such as those used in

FlowDroid [18] is an area of future work.

The analysis considers each @DelayableUpTo operation in the CFG and gener-

ates allowances as follows. Consider the annotation @DelayableUpTo(RO, scope)

on an operation O. The locations where the delay allowances are inserted depends on the

scope of the annotation. As previously mentioned, each @DelayableUpTo annotation

without the optional scope parameter is assumed to have a scope of THREAD ENTRY. If

the scope of the annotation is THREAD ENTRY, then delay allowances must be assigned

at each entry point with a path to O and cleared immediately after O is completed and re-

turns. This requires computing the set of entry points in the CFG that reach O, which is a

reachability problem solved using the Soot generated CFG. If the scope of the annotation

is METHOD, delay allowances are assigned immediately before O and cleared immedately

following O. If the scope of the annotation is THREAD EXIT, delay allowances are

assigned immediately before O and is not cleared until the thread of execution reaches its

completion, again determined by utilizing the Soot generated CFG. Delay allowances are

assigned and cleared via calls to the APE service at runtime, which is discussed in further

detail later in this section. The pseudocode of the static analysis is included in Figure 3.2.

Concurrency and thread synchronization must also be considered during analysis,

as a path may be potentially blocked by another path of execution by use of thread

synchronization constructs like wait and notify. If a thread τ is blocked and waiting

for notification from another, delayed thread, then τ must also be considered delayed. To

properly handle such cases, a points-to analysis is used to identify shared locks across

paths. Edges are added to the generated control flow graph from all notify calls to

52

1: let G be the control flow graph of the application
2: let X be set of operations annotated with @DelayableUpTo
3: for each operation O ∈ X :
4: let a be the annotation @DelayableUpTo(scope, RO)
5: if (scope == METHOD):
6: add allowance RO before O; clear allowance after O
7: if (scope == THREAD ENTRY):
8: let E be the set of entry points in G that reach O
9: for each e ∈ E: add allowance RO at e

10: clear allowance after O
11: if (scope == THREAD EXIT):
12: add allowance RO before O
13: let F be the set of exit points in G that may be reached from O
14: for each f ∈ F : clear allowance RO at f

Figure 3.2. Algorithm for instrumenting application code with delay allowances.

matching wait calls on shared objects so that any potential delays leading up to the

notify call are considered also on the path of the wait call.

The pseudocode for the instrumentation code is included in Figure 3.3. The core of

our instrumentation code is the shared map (∆) that includes all the constraints constraints

that are currently active. A constraint RO of operation O on thread τ becomes active

when τ executes add-allowance(τ,O,RO) method. The constraint becomes inactive

after τ executes remove-allowance(τ,O). At any point during the execution of τ , the

maximum amount of time that a @Wait annotation may delay it without violating the

delay constraints is:

Rt = min
O

∆[τ,O]

Accordingly, a @Wait(E, DO) annotation may wait for expression E to hold for at

most min(Rτ ,DO) Let T ≤ min(Rτ ,DO) be the time that τ is blocked. The allowance

budget of τ is updated to reflect the introduced delay by subtracting T the budget of all

active constraints.

53

1: add-allowance(τ , O, RO):
2: ∆[τ,O] = RO

3: remove-allowance(τ , O):
4: remove (τ,O) from ∆:

5: wait-until-entry(τ , E, DO):
6: let Rτ = minO ∆[τ,O]
7: wait up to min(Rτ ,DO) for E to be satisfied
8: let T be the time spent waiting
9: for each (τ,O) ∈ ∆: ∆[τ,O] = ∆[τ,O]−T

Figure 3.3. Instrumentation for assigning, clearing, and using delay allowances.

3.2.2 Run-time Optimizations

The APE runtime service is primarily responsible for the monitoring of changes

in hardware state and the execution of power-management policies on behalf of client

applications. To ensure that constraints for delay-sensitive operations are respected at

runtime, the APE service has been extended to track running threads and to make use of

the code generated during static program analysis. Depending on the thread of execution

and path taken through the application, power-management policy requests to the APE

runtime fall into one of three categories:

1. UI Thread Request: Request was made from the main UI thread of the applica-

tion,

2. Constrained Request: Request was made from a non-UI thread that has a delay

constraint, and

3. Normal Request: Request was made from a non-UI thread with no constraints.

The ‘normal request’ is handled as presented earlier: the thread of operation makes

a synchronous request to the APE runtime to execute a particular power-management

policy. The two other cases, however, require further discussion.

54

The main UI thread of an application is responsible for handling updates to the

user interface of an application. As any long-running operation on this thread would

delay updates to the interface and give the appearance of a broken application, such

operations should never be run on the main thread. In fact, the official Android de-

veloper guide explicitly and clearly warns developers: ”Do not block the UI thread”

[3]. As APE-based power-management policies are based around the idea of delay-

ing execution of tasks until an energy-efficient opportunity presents itself, it is clear

that the main thread should never be delayed by APE. So as to avoid any unwanted

stalls in the UI, whenever a thread reaches a Wait annotation, it is checked using

Thread.currentThread().getId() to see if the executing thread’s ID matches

that of the main thread. If the calling thread is in fact the main thread, the synchronous

request to the APE service is skipped over and execution of the application continues

normally. Once a thread has been delayed a total amount of time equal to its allowance,

it may no longer be delayed and simply skips all other APE-driven delays as if it was the

main UI thread.

3.3 Policy Generation Engine

The Policy Generation Engine, or PGE, is designed to lower the barrier to de-

veloping power-management policies with APE by examining the source code of an

Android application, identifying instructions that are known to be sources of high-power

consumption, and recommending relevant APE power-management policies to apply to

the program.

The tool first scans the target application source code looking for any calls to the

interfaces provided by Android to power-hungry resources. The PGE does not actively

measure the power-consumption of a running application to determine instructions to

target. Instead, it makes use of knowledge gathered from official documentation and

55

various best-practice guides to target instruction that are known to wake power-hungry

hardware components. The current implementation of the PGE identifies instructions

that may wake the smartphone display or cellular radio, as these resources are well suited

for delay-based power-management policies and are commonly used in a variety of

CRM applications. This list of relevant instructions, and the the hardware resource they

utilize, can be found in a file called rules.pge that accompanies the tool. This file

also includes a list of APE-based power-management policies to recommend for each

such instruction and is easily extensible to support adding information about third-party

libraries that provide new interfaces for interacting with hardware components.

When the PGE is run, it parses the information found in rules.pge and builds

a list of all locations in the target application that include a call to an instruction found in

the rule set. The tool then presents the developer with information about the identified

operations and provides a proposed power-management policy to apply. Specifically,

whenever a costly operation is identified, the developer is presented with:

• a snippet of code that provides context to the instruction,

• the APE policy that is being recommended for insertion,

• a plain language description of the recommended policy,

• a list of other APE recognized terms that are relevant to operation being modified,

and

• the option to modify, insert, or discard the recommended policy.

The description of the policy is intended to assist developers new to APE with under-

standing how to read and compose their own annotations, while the list of relevant terms

is intended to assist the developer with adjusting the generated policy as they see fit.

56

Figure 3.4. An example of output from the Policy Generation Engine: a costly network
operation has been identified and a general and effective power-management policy is
presented and explained.

Figure 3.4 provides an example of the results provided by the PGE. During

analysis of the source code, it was determined that the openConnection() method

of a URL object was being called. As this operation will make use of a network to

open an HTTP connection to a desired address, a networking related power-management

policy is recommended to the developer. At this point, the developer can insert the

recommended policy, discard it, or modify it before inserting it. Clicking on any of

the listed terms below the recommendation will automatically insert it into the policies

boolean expression.

57

The authors believe that it is critical that the developer of an application be kept

in the loop during policy generation and that no changes be made to the application

source code without explicit approval of the developer. Quality-of-service requirements

may vary greatly across different applications and domains, and these requirements

may not always be inferred by examining source code. For example, the server side

component of a particular sensing application may expect updates from clients at least

once every twenty minutes. Delaying such an update in hopes of piggybacking on another

transmission may improve energy-efficiency in a mobile application, but it could also

cause unintended consequences on the server side.

In certain cases, it is possible that delaying the use of one resource may extend

the length of time another resource is powered on. For example, if an application was to

force the display to stay awake by acquiring a WakeLock and only released that lock

after a particular network operation was completed, any delays to that transmission would

cause the display to be active for longer than if the network operation was undelayed.

However, in the experience of the developers, such interactions are rare in practice, as the

logic for managing the state of various hardware components is not typically interwoven

in such a manner, nor is it commonly the responsibility of a single thread. Previous

work has studied issues related to unreleased locks in mobile applications and provided

techniques for identifying them [32]. Extending the PGE to handle such cases is an area

of future work.

The current implementation of the PGE does not perform a precise points-to

analysis and may therefore miss identifying expensive instructions in the face of com-

plicated aliasing. However, in the experience of the authors, this shortcoming has not

impacted the tools ability to successfully identify instructions when tested on real-world

applications. It is the intention of the developers to eventually pair the PGE with a precise

points-to analysis to catch any uncommon issues related to aliasing.

58

3.4 Evaluation

The core claim of our approach is that it is possible to separate the specification

of timing constraints and power management policies while still achieving the goals of

both. Additionally, we claim that separating the two makes it is possible to automatically

identify the sites where power management policies can be inserted. Finally, we claim

there is minimal runtime overhead incurred. We evaluate these claims by presenting case

studies of our tool’s use in real applications drawn from the open-source and research

communities.

3.4.1 Accuracy of Policy Generation Engine

To evaluate the accuracy of the PGE, we compared it against the Grep command-

line utility, a tool often used by developers to search large numbers of plain-text files.

Since Grep can only perform searches, we do not evaluate it against the PGE’s ability to

guide the formulation of the actual @Wait annotation.

For the purposes of the comparison, the authors took on the role of developer for

six different Android-based applications and libraries:

- AndStatus: a social networking client [5],

- AudioSense: a CRM application for hearing aid performance evaluation [24],

- K-9: an e-mail client [11],

- NPR News: an application for reading and listening to news stories [13],

- ohmage: a participatory sensing platform [14], and

- WeatherLib: a library for weather applications [16].

59

Prior to beginning the study, a definitive list of APIs – classes and method

names – relevant to power management was derived via careful study of official Android

API documentation. Then, for each application, we first ran the PGE to insert @Wait

annotations. We then repeated the process using Grep, recursively invoking it from an

application’s root directory, looking for whole-word mentions of any of the 18 classes

that contain methods that initiate network communication, such as ‘HttpClient’, ‘URL’,

and ‘Socket’. Finally, we exhaustively inspected each application to determine the ground

truth. Only Java files were considered, since the PGE and APE are implemented for Java.

For the analysis, we calculated the precision and recall of the PGE and Grep at

both the file level and the method level, for each application. We considered an insertion

recommendation correct at the file level if it at least identified the correct file for insertion

of a @Wait annotation. Likewise, for the method level, if a recommendation identified

the right method for insertion. To make the comparison with Grep fair, we did not

require line-level precision, as most developers could quickly identify the correct line of

code to annotate once in the right method. However, if PGE identified the right method,

it identified the right line as well. The results are presented in Table 3.1.

Grep found all of the relevant files (i.e., 100% recall) for all of the applications.

Recall was also good at the method level, achieving 67% recall or higher on all six

applications. Grep returned no false positives (i.e., 100% precision) on the Audiology

project, at both the file and method level, in part because it encapsulates all networking

related code within a single method. Otherwise, method precision was low for Grep,

often returning many results in files that contained no network operations at all. In many

of these files, objects of networking-related classes are instantiated, but not used. For

example, the AvatarData class in the AndStatus application contains a URL object

that encodes the path to an avatar image. However, this URL is not used from within this

class, but rather is accessed by another class that performs the actual communication. In

60

Ta
bl

e
3.

1.
Se

ar
ch

in
g

fo
ro

pp
or

tu
ni

tie
s

to
re

du
ce

ne
tw

or
k-

us
e

re
la

te
d

en
er

gy
-c

on
su

m
pt

io
n

A
pp

Tr
ut

h
G

re
p

PG
E

Name

Total
Files

Relevant
Files

Relevant
Methods

Grep
Results

Num.of
Files

File
Precision

File
Recall

Num.of
Methods

Method
Precision

Method
Recall

Num.of
Files

File
Precision

File
Recall

Num.of
Methods

Method
Precision

Method
Recall

A
nd

St
at

us
20

9
4

8
58

17
24

%
10

0%
14

50
%

88
%

4
10

0%
10

0%
8

10
0%

10
0%

A
ud

io
lo

gy
15

1
1

1
3

1
10

0%
10

0%
1

10
0%

10
0%

1
10

0%
10

0%
1

10
0%

10
0%

K
-9

26
3

6
6

65
12

50
%

10
0%

7
71

%
83

%
6

10
0%

10
0%

6
10

0%
10

0%
N

PR
N

ew
s

75
4

6
53

11
36

%
10

0%
15

40
%

10
0%

4
10

0%
10

0%
6

10
0%

10
0%

oh
m

ag
e

34
5

3
6

80
14

27
%

10
0%

9
44

%
67

%
2

10
0%

67
%

5
10

0%
83

%

W
ea

th
er

L
ib

70
2

10
32

7
29

%
10

0%
6

50
%

30
%

1
(2

)
10

0%
50

%
(1

00
%

)
2

(1
0)

10
0%

20
.0

%
(1

00
%

)

61

other cases, files contained large comment blocks that discussed how an instance of the

class is used in communication elsewhere in the application. Using a tool like the Eclipse

IDE’s search could avoid such false positives. For the cases in which method recall was

below 100%, Grep still provided a file-level match. In other words, using Grep will

eventually get the developer to the relevant operations for power management, but only

after wading through many irrelevant results and additional searching.

In contrast, the PGE was found to be fully precise at the file and method level.

However, the PGE did miss some results in the ohmage and WeatherLib projects, reducing

recall. As discussed in the previous section, the PGE looks for particular method calls on

objects of relevant types. In the missed case from the ohmage application, the network-

utilizing method call was made directly on the return value of a getter method defined

elsewhere in the application. The PGE does not currently infer the return types of method

calls and therefore misses this opportunity, though this feature will now be added. The

WeatherLib project, on the other hand, makes use of a precompiled external library for

most of its networking-related functionality. As information about this library was not

initially included in the PGE’s rules.pge file, it failed to identify it as a source of

network utilization. However, when the PGE’s rules file was updated to include this

library, recall improved to 100%. As an alternative analyzing API’s at the source level,

the PGE could analyze code at the byte-code level, thus detecting networking calls from

compiled libraries without additional information from the developer.

3.4.2 Interaction of User Experience with Power Management

To evaluate the effectiveness of the policies recommended by the PGE com-

bined with the use of timing constraints, we took a closer look at the NPR News and

AndStatus applications. We ran the applications in three conditions: unannotated,

annotated only with PGE annotations, and annotated with both PGE annotations and

62

timing annotations. The policies were coded to have the effect of delaying all network

operations in the two applications by up to five minutes while waiting for either a Wi-Fi

connection to become available or for the cellular radio be woken by another process on

the device.

All experiments were run on a Pantech Burst smartphone running Android version

4.0. To simulate the presense of other applications running on the device, a service was

implemented that would request a network resource once every two minutes. Device

power-consumption was measured using a Power Monitor from Monsoon Solutions [12].

The battery of the Burst smartphone was modified to achieve a direct bypass between the

smartphone and the power monitor, allowing power to be drawn from the monitor rather

than the battery itself. All networking was done over the T-Mobile cellular network in

the San Diego metropolitan area.

In the PGE-only condition, the generated APE policies successfully captured

each networking request made in the application and delayed the operations. In both

applications, periodic, battery-draining ‘refresh’ attempts that polled a remote server for

new content were successfully delayed. However, this had undesirable consequences on

the user experience in both applications. In the case of NPR News, the initial loading

and display of news stories was delayed, as was the downloading and playback of user

selected audio stories were delayed. In the case of AndStatus, manually-requested refresh

attempts by the user were also being delayed. However, these operations eventually

completed, preserving the semantics of eventual progress on all threads. Delays like

these would likely leave the user staring at a frozen display.

In the PGE-and-timing-annotations condition, both applications were revisited

and @Undelayable annotations were placed at relevant sites in each application. In the

NPR News application, an annotation was added within the AsyncTask responsible

for downloading content on the user’s playlist and within the run method of a thread

63

Figure 3.5. A trace of power consumption on a smartphone device while using the NPR
News application to listen to an audio story.

responsible for fetching news stories at start up. In the AndStatus application, an

@Undelayable constraint was added to the AsyncTask in the application’s service

component responsible for executing all requested tasks. When executed, these timing-

annotated versions of the applications no longer exhibited the undesirable behavior, while

the periodic refreshes that ran in the background continued to be delayed to reduce

power-consumption.

We now examine the relative power savings. To simulate real-world usage

patterns, each application was used three times during the course of a day (morning,

midday, evening) for ten minute periods. The average system power-consumption

while running each of the three different versions of the NPR News and AndStatus

applications are presented in Figure 3.6. In the case of NPR News, the application

was configured to update news stories automatically once every five minutes. The

AndStatus application was configured to check for new updates on Twitter once

every three minutes. As expected, the applications without any form of APE-driven

power-management policy observed the highest power consumption, as operations were

executed without concern for the state of the device. Adding in each of the recommended

APE policies improved efficiency significantly, reducing power-consumption by 18.1%

64

Figure 3.6. Power consumption in various versions of the NPR News and AndStatus
applications.

in NPR News and by 22.2% in AndStatus. However, as noted above, these versions

of the applications included an undesirable user experience. When updated to avoid

delaying user-requested updates and initial downloading of content, savings in NPR

News dropped to 9.5% while AndStatus saved 16.6%.

Nearly any application that includes a user-facing component is likely to require

some form of @Undelayable or @DelayableUpTo constraint, although the interac-

tion between quality of service and power management could vary widely. In the case of

the NPR News application, its @Wait annotations were reached by a total of 21 paths

in the program, and 2 paths were constrained by timing annotations.

3.4.3 Runtime Overhead

In our previous APE work we found that each invocation of a @Wait entailed

1.71ms of overhead. Most of that cost is due to interprocess communication. Here

65

we report on the additional overhead induced by propagating delay allowances along

execution paths. This involves two basic steps: (1) identifying the current thread of

execution and (2) inserting and reading allowance values from a hash map based data

structure. These steps are typically performed only two to three times during the execution

of a path: when an allowance is assigned at the start of the path, when a constrained

operation has been completed, and if a @Wait annotation is encountered on that path.

The average overhead of these checks were measured to be approximately 2

µs, and 7 µs in the unlikely case of high contention for the synchronized hash map.

These overheads are small compared to APE’s other overheads because no interprocess

communication is involved.

In the general case, the total overhead of allowance tracking along a path of

execution is equal to 2µs×C+ 1710µs×L, where C is equal to the number of constraints

on that path and L is the number of APE policies on that path. Assuming that a path

has one constraint and one policy, the addition of allowance monitoring at runtime leads

to an expected increase of only 6 µs, or 0.36%. A path with no constraints will access

this map only once when a policy is reached, for a total increase in overhead of 0.12%

compared to the original APE.

3.5 Conclusion

In this chapter we presented a new paradigm for introducing power-saving delays

into an application. We presented the @DelayableUpTo and @Undelayable anno-

tations, which allow a developer to demarcate delay-sensitive and -intolerant operations

in their application. This information is then used by the APE compiler and runtime to

generate and insert effective power-management policies within the target application

while ensuring that all delay related constraints are satisfied at runtime. We demonstrated

the efficacy of our approach by presenting a study of introducing power-management

66

policies to six CRM applications. Measurements have shown that the generated policies

were effective at reducing the power-consumption of a smartphone device, while a small

number of constraint annotations can ensure proper application behavior while still pro-

viding savings. The addition of delay allowance checking at runtime was shown to have

a minimal overhead of only 2µs, a negligible impact on runtime performance.

3.6 Acknowledgements

This work was supported by the National Science Foundation (grant nos. CNS-

0932403, CNS-1144664, and CNS-1144757) and by the Roy J. Carver Charitable Trust

(grant no. 14-4355).

This chapter, in part is currently being prepared for submission for publication

of the material. Nikzad, Nima; Chipara, Octav; Griswold, William G. The dissertation

author was the primary investigator and author of this material.

Chapter 4

Ensuring Timely Delivery of Delay-
Sensitive Objects

Mobile applications may save significant power by changing the timing of delay-

tolerant operations. However, operations differ in their degree of tolerance to delays, so

the developer must carefully balance energy savings against user experience. Writing

policies that trade-off timeliness and energy savings is difficult since such policies

typically crosscut components and involve multiple threads. More importantly, it is

difficult to reason about the impact of delaying threads in a multi-thread application. Our

goal is to develop a programming model that simplifies the writing of such policies and

reasoning about their impact on user experience. In the following, we will highlight

some of the challenges of writing such policies by hand and derive requirements for

the programming model. The examples in this section are based on CitiSense [31], an

environmental air pollution monitoring application that utilizes a body-worn sensing

device to accurately measure a user’s exposure to a variety of pollutants. Screenshots of

the application are included in Figure 4.1.

Saving Power: A common pattern in mobile applications is to perform long-

running operations in the background. For example, in CitiSense, a thread is dedicated to

uploading batched sensor readings to a remote server so that they may be used to generate

67

68

Figure 4.1. Screenshots from the CitiSense environmental air pollution monitoring
application: the most recent Air Quality Index score (left) and detailed pollutant report
(right).

pollution models for the region and notify users of pollution hot spots. Since this operation

is delay-tolerant, the upload of data may be deferred until another application turns on the

network interface. Implementing this policy requires mixing event-based programming

that tracks hardware states and multi-threaded code that blocks (and later resumes) the

network thread until the device enters the desired state. Our previous system, APE,

address the mechanism of implementing such power management policies. However,

APE does not address the problem of managing the impact of power management on

user experience, which is the focus of this chapter.

Ensuring Timeliness: A naive approach to this problem is to add a timeout to a

power policy to limit its impact on timeliness. Unfortunately, a one-size-fits-all approach

69

is insufficient when a component operates over different types of data. For example,

in CitiSense, not all sensor readings are of equal importance. While most pollution

measurements may conform to the expected and healthy levels, a user may occasionally

discover a location with unusually high and harmful pollution levels. Uploading these

high readings in a timely fashion is particularly important, as the server would like

to warn other nearby users of the discovered pollution hot spot as soon as possible.

Therefore, the developer must be able to write power policies that provide differentiated

timing behavior based on the type of data the system processes.

A good programming model must ensure that even as the complexity of the

application increases it remains easy to reason about its properties. To this end, we are

interested in a model that allows the user to isolate the operation of policies and supports

predictable composition semantics when an application includes multiple policies. For

example, let us return to the example of sensor readings. The same sensor readings

must be both displayed on the user interface and uploaded to the server. When the user

is viewing the sensor readings in the application (see Figure 4.1), it is essential that

the path to the user interface is not delayed. The programmer should be able to isolate

the behavior of power annotations even as they may share data. Similarly, applications

include multiple power management policies must have a predictable behavior. For

example, a high pollution value is processed through multiple stages, each potentially

including power management policies: the samples are collected, saved to flash, and

uploaded to the server. The developer must be able to bound the end-to-end impact of

power management policies on data processing across threads.

4.1 Annotation Semantics

A developer may use our annotations to compose power management policies that

manage the trade-off between energy and timeliness. Tempus saves power by deferring

70

the execution of power hungry operations until the device enters a power state that

minimizes the cost of that operation. Tempus ensures timeliness by guaranteeing that

the processing of any object is not delayed more than a user-specified budget. The static

analysis and run-time environment ensure that these properties hold even when multiple

policies are executed concurrently. In this section, we formalize the semantics of Tempus

annotations. Static analysis is used to minimize the annotation effort of developers.

However, as static analysis is inherently conservative, annotations are designed to allow

explicit and fine-grained control over the behavior of Tempus. The details of how the

annotations are used in code generation, static program analysis, and runtime analysis

are presented in following section.

@DelayBudget/@ClearBudget Tempus’s core abstraction is that of a delay

budget that is associated with an object. Consider a reference r to an object o in the

application code. The annotation @DelayBudget(Bo,r) assigns a budget of Bo to r. If

a budget was already assigned to o, its value is updated to equal Bo. The tracking of an

object’s budget may be stopped using annotation @ClearBudget(r).

Java is a garbage-collected language that provides no control over when stale

objects are freed. As a consequence, Tempus may conservatively decide to stop waiting

for a power-efficient state due to the budget of a stale object.1 Some objects have a

two-phase lifetime, an initial time-critical phase, and a later non-time-critical phase (or

perhaps vice versa). The @ClearBudget annotation provides the programmer explicit

control over removing such an object from consideration in determining delays. In our

experience, @ClearBudget annotations are seldom necessary as static analysis usually

determines the liveness of objects accurately.

1We note that even in this case Tempus does not violate the timeliness guarantees albeit the power
savings are reduced.

71

@Namespace/@ClearNamespaceNamespaces allow programmers to group

multiple objects under a single namespace. Accordingly, an object o referenced by

reference r may be added to namespace l using annotation @Namespace(r, l). We allow

an object to belong to multiple namespaces. The object may be removed from namespace

using annotation @ClearNamespace(r, l).

Namespaces play a crucial role in Tempus. Because the static analysis is conserva-

tive, a programmer might want to override the analysis and provide its own determination

of what objects are live. Also, namespaces may also be used to isolate the behavior of

policies by defining them over non-overlapping namespaces.

@Wait Tempus defers the execution of an operation until the device enters a

power-saving state without violating the timing constraints. Consider the execution

of an operation P annotated with @Wait(UpTo=DP, For=E) on a thread τ . The

expression E defines the power-saving state in which P has a low energy-cost. Tempus

borrows from APE the mechanism used for specifying the power state E. In its simplest

form, E is a boolean expression composed of one or multiple built-in terms. A term

refers to the state of a variety of hardware components such as the cellular radio, display,

and battery. For example, the expression

Network.Active OR WiFi.Connected

specifies that the device should wait until either the network becomes active or WiFi is

connected. More complicated expressions may be defined over time-based sequences of

states as described in [30].

Thread τ is blocked until the device enters a state in which expression E holds or

the annotation’s timeout DP is reached. We call the time the thread τ is blocked while

operation P is deferred as the operation’s delay (∆(P,τ)). The behavior of the @Wait

72

time

!1

!2

!3

wall-clock delay

Figure 4.2. The execution of three concurrent @Wait annotations on threads τ1, τ2, and
τ3 that include the same object o in their scope. The filled boxes indicate when a thread
is running. The operation delay observed by o is the system delay i.e., the duration of
time while at least one thread is running.

annotation depends on the budgets of the objects that are in scope. By default, the scope

of a @Wait is determined by the static analysis. Since @Wait blocks τ , the processing

of instructions following @Wait is delayed. Accordingly, we defined the default scope

to include any object o that has a budget and may be reference on any path starting at

the annotation. We allow the programmer to override the scope of @Wait by adding an

additional Scope argument. The Scope argument may include both object references

and namespaces separated by the “—” operator. The scope is the union of the reference

objects and the objects pertaining to the specified namespaces.

The static analysis and run-time environment ensure that the processing delay

(∆(P,τ)) of any @Wait does not exceed the minimum budget of the objects in scope and

the annotation timeout DP.

∆(P,τ)< min(DP, min
o∈scope

Bo) (4.1)

73

where, Bo is the budget of object o.

After the execution of a @Wait, the budget of all objects in scope is updated. In

the case when a single @Wait annotation is executed at a time, the budget of an object

is decremented by its operation delay ∆(P,τ). However, the case when an object o is in

the scope of multiple @Wait annotations that are executed concurrently requires more

careful handling. In this case, the operations that involve o are delayed according to

the system delay that measures the time at least one of the threads is executing. As an

example, consider Figure 4.2 in which three annotations that involve o are executed on

three threads τ1, τ2, and τ3. In this case, the time that operations on o are delayed is the

time while at least one of the three threads is executed. This time is labeled as the system

delay in the figure. These semantics are consistent with the intuition that time flows in

parallel on independent threads.

A key design decision was to opt against the use of real-time deadlines in favor

of delay budgets. Relative deadlines are an effective abstraction for specifying the time

when a task should complete in real-time systems. However, focusing on deadlines would

misplace the focus on trying to predict how long operations take such that deadlines

are satisfied. Instead, we would like the developer to focus on specifying the additional

delay that the processing of objects may tolerate to save power. This design philosophy is

reflected in the decision to use budgets that are consumed only when a thread is blocked

by a @Wait annotation.

Example: Consider an application that processes sensor data to detect health

related events, presents results to a user, and periodically uploads reports to a remote

server (see Figure 4.3). The generateReport method is responsible for generating

upload-ready HealthReport objects. The uploadHealthReport method, which

handles the upload of HealthReport objects, contains a @Wait annotation that delays

transmissions up to twenty minutes while waiting for a Wi-Fi connection to be established

74

or for another application to wake the cellular radio. However, the developer would

like to ensure that the upload of (or any other use of) HealthReport objects related

to critical health events are never subject to delay by Tempus. To do so, a reference

to the critical HealthReport is annotated with @DelayBudget(0) at line 7. As

the uploadHealthReport method contains a possible reference to the health report

at line 33, the @Wait will check to see if a delay budget was assigned to report. If

report has a delay budget of zero (because it was a critical event), then the @Wait has

no effect and transmission continues without delay.

4.2 System Design and Implementation

An Android application containing Tempus annotations is processed by a source-

to-source translator, built on the Java processor package. Each Tempus annotation is

translated into a Java call to the Tempus runtime service, which performs device-state

monitoring, power-management policy evaluation, and object-budget tracking on behalf

of client applications.

With respect to ensuring timely execution of delay-sensitive operations, the

runtime ensures that the maximum delay introduced by a @Wait is bounded by the

smallest budget of all objects that are potentially referenced after the @Wait annotation.

However, it is not possible, at runtime, to determine what objects will be potentially

referenced in the future. Thus, a static program analysis is performed by the translator to

conservatively determine these objects. It walks through the call graph of the application

and identifies potential references to budgeted objects. Each @Wait annotation is then

compiled to include an argument, the “scope”, about which object budgets to consider.

The runtime tracking and the static analysis required to achieve the semantics of

Tempus are non-trivial. For one, the delay budgets of all objects that are “downstream” in

the control flow from a @Wait need to be monitored and updated. Two, the determination

75

1 HealthReport generateReport(Data data) {
2 ...
3 if(healthStatus == CRITICAL_STATUS) {
4 // Notify user of critical condition
5 ...
6 // Generate time-sensitive report for upload
7 @DelayBudget(0)
8 HealthReport criticalReport =
9 new HealthReport(System.currentTimeMillis(), data);
10 ...
11 return criticalReport;
12 } else {
13 // Non-critical event
14 ...
15 HealthReport processedReport =
16 new HealthReport(System.currentTimeMillis(), data);
17 ...
18 return processedReport;
19 }
20 ...
21 }
22

23 void uploadHealthReport(HealthReport report) {
24 URL url = new URL(SERVER_ADDR);
25 @Wait(UpTo="20min", For="WiFi.Connected
26 OR Network.Active and (Cell.4G OR Cell.3G)")
27 HttpURLConnection conn =
28 (HttpURLConnection) url.openConnection();
29 try {
30 conn.setDoOutput(true);
31 ObjectOutputStream out =
32 new ObjectOutputStream(conn.getOutputStream());
33 out.writeObject(report);
34 ...
35 }

Figure 4.3. The @DelayBudget annotation (line 7) ensures that the upload of
HealthReport objects related to critical health events are not subject to any Tempus-
introduced delays (line 25) when uploaded (line 33).

of these downstream objects should be as precise as possible while still being safe. That

is, if it is impossible for an object to be accessed downstream from a particular @Wait,

then its budget should not be monitored or updated when that @Wait is invoked. Third,

object budgets need to be tracked correctly when multiple @Waits occur at the same

time, due to multithreading. Finally, object tracking needs to be sufficiently efficient

so that the application neither is noticeably slowed or its energy wasted. In addition, a

76

challenge addressed by our previous work is how an energy policy specified in a @Wait

is efficiently evaluated and executed. We briefly touch on this subject after first addressing

the issues of budget tracking.

4.2.1 Budget Tracking

We first describe the translation of Tempus annotations to Java code, along with

the semantics of the operations. We then describe the static analysis required to make the

budget tracking as precise as possible.

Annotation Translation. A

@DelayBudget annotation is replaced with a call to the Tempus service that

registers the relevant object and its budget with Tempus: @DelayBudget(X) on a

reference R is replaced with

Tempus.RegisterBudget(ID, R, X)

where ID is a unique label assigned to each annotation site. An example of this trans-

lation is shown in Figure 4.4: the object referred to by criticalHealthReport is

registered with the Tempus runtime under the label 0 with a budget of 600 seconds.

A formalization of RegisterBudget’s behavior is provided at the top of

Figure 4.6. Tempus maintains two mappings for budget tracking, one from a label to its

objects (λ), and another from an object to its budget (β). The label is used by the runtime

as a retrieval key for all the objects ever returned from a @DelayBudget annotation

site that are still accessible by the application. RegisterBudget is essentially an

initializer for these maps. It associates an object with the annotation site’s label and

assigns the object a budget. To handle the case where an object is assigned a budget more

than once, the assigned budget is the minimum of the old and new budgets.

77

@DelayBudget(600)
HealthReport criticalHealthReport = ...;

HealthReport criticalHealthReport = ...;
Tempus.RegisterBudget(0, criticalHealthReport, 600);

Figure 4.4. @DelayBudget annotations are translated into runtime calls to the Tempus
service that that assign a budget to a particular object and begin tracking it. The first
parameter is an automatically-generated label.

While @DelayBudget initializes objects for budget tracking, @Wait consumes

and updates budget-tracking information (in addition to providing the all-important

conditional delay capability). Figure 4.5 shows how the example from Figure 4.3 would

be translated. In the figure, the number 5 is an index that refers to a pre-compiled version

of the expression "WiFi.Connected..."; the 7200 is 20 minutes in seconds; and

the static integer array is a list of labels provided to the call, typically the labels of object

references that the static analysis found to be downstream from the @Wait. In this

example, the list includes just the label 0. The labels provided to a @Wait are used to

lookup the objects associated with the labels, determine the minimum budget among

those objects, and then set a maximum wait time based on the minimum of 7200 and the

minimum object budget. When the @Wait stops waiting, it will decrement the budgets

of the objects by the actual wait time.

Tempus.Wait(5,72000,int[]{0});

Figure 4.5. Translation of the @Wait annotation. See text for explanation.

The budget-tracking behavior of @Wait is formalized in the second and third

operations listed in Figure 4.6. These are invoked inside the Tempus.Wait call. At

the beginning of that call, GetSmallestBudget takes a set of labels and returns

78

the smallest budget of all the objects referred to by the labels. It helps determine

the maximum allowable delay. At the end of the call, after the delay has completed,

ConsumeBudget takes a set of labels and decrements the budgets of all the objects

referred to by all the labels.

1 RegisterBudget(l, r, b):
2 λ [l] = λ [l]∪{r}
3 β [r] = min(β [r],b)
4

5 GetSmallestBudget(L):
6 return bi j | bi j ≤ bkl , bi j = β [r j], bkl = β [rl],
7 r j ∈ λ [li], rl ∈ λ [lk], li, lk ∈ L
8

9 ConsumeBudget(L, t):
10 β [r j] = β [r j]− t | r j ∈ λ [li], li ∈ L
11

12 AssignNamespace(l, r):
13 λ [l] = λ [l]∪{r}
14

15 InitNamespace(l):
16 λ [l] = φ

17

18 InitBudget(r):
19 β [r] = ∞

Figure 4.6. Formalization of the single-threaded behavior related to object budget
tracking in the Tempus runtime.

An annotation @Namespace(l) on a reference r is replaced with a runtime call

to the Tempus service just after r that assigns the specified label l to the object pointed to

by r: Tempus.AssignNamespace(r, l). Its formalization is shown three from

the bottom in Figure 4.6. At this level, it can be seen that AssignNamespace is

basically RegisterAnnotation without assigning a budget.

Two related annotations are ClearNamespace(l) and ClearBudget(r).

ClearNamespace(l) is formalized as reinitializing the label to the empty set. The

ClearBudget(r) annotation is formalized as resetting the budget of the object to

79

infinity. See Figure 4.6, operations InitNamespace and InitBudget. We discuss

latter’s actual implementation shortly.

Runtime Implementation Details. To ensure that tracking does not interfere

with the garbage collection of objects that are no longer referenced in the application,

the objects in both mappings are maintained with what Java calls weak references. This

means that when a tracked object is garbage collected, its entry is dropped from the

mapping. Specifically, the budget mapping β is implemented with a WeakHashMap,

which has weak references to keys, and λ is implemented with a SparseArray of lists

of WeakReference.

A related issue is that infrequent garbage collection may result in objects staying

in our mappings after the objects are no longer reachable by the application. These objects

will still be included in budget tracking, perhaps causing GetSmallestBudget to

calculate an artificially low value. For applications that this is an issue, there is an extra

optional parameter to the @Wait annotation, AggressiveGC=True, that forces the

@Wait to call the garbage collector, thus mitigating this issue at the cost of an additional

GC. We discuss the impact of this option in Section 4.4.2.

For the ClearBudget(r) annotation, formalized in Figure 4.6 as

InitBudget setting the object’s budget to infinity, what really happens is that the

object r is deleted as a key from the β mapping. Note that this leaves r in any names-

paces that it might reside. In practice, when such a “dangling” reference is discovered

by Tempus (i.e., a labelled object is not in the budget table), it is removed from the

mapping. Such cleanups also occur for garbage-collected objects, which leave empty

WeakReferences behind.

The formalization provided in Figure 4.6 and discussed above describes the

single-threaded sequential semantics of Tempus, and the actual implementations are

80

generally analogous to what is in the figure, even in the concurrent case.2 The exceptions

are GetSmallestBudget and ConsumeBudget, whose implementations are more

complicated than suggested in order to get the desired semantics under concurrency. The

critical case is handling when two or more @Wait invocations overlap, as can occur

when more than one thread is waiting for a resource to wake. To discuss this, a little

terminology helps. An object that is deemed impacted by a @Wait, whether by the

static analysis or directly by the programmer passing in a user-defined namespace to the

@Wait, is referred to as waiting for the @Wait. Now consider the case of two or more

@Wait invocations overlapping in time, and sharing one or more waiting objects. Once

the first @Wait starts, the budgets of all its waiting objects are continually dropping.

When the next @Wait begins, it will need to use the budget of objects waiting on the first

@Wait (to compute GetSmallestBudget), but their budgets have not been updated

yet, since budgets are updated at the end of a @Wait by ConsumeBudget.

Thus, to handle the overlapping case correctly, the initialization stage of the first

@Wait timestamps all of its waiting objects with the @Wait’s start time (as reported by

System.nanoTime()). Also, for each object, the identity of the @Wait is inserted

into a set of in-progress @Wait invocations. Now, when another @Wait begins (before

the first @Wait completes, i.e., its in-progress set is non-empty), the budget of any object

waiting on the first @Wait current budget is calculated from its stored budget minus

the time elapsed since the recorded timestamp. This ensures that the right budget is

provided for use in GetSmallestBudget. This @Wait’s identity is also inserted into

the object’s set of in-progress @Waits, but the timestamps are not set because in-progress

@Wait set was not empty. When a @Wait completes (say, the first one), it removes

itself from its waiting objects’ @Wait sets. If an object’s @Wait set becomes empty,

2In the following, the discussion focuses on the maintenance of object time budgets. It is assumed that
concurrent access to objects is correctly managed (e.g., via locks).

81

it updates the budget of the object using the timestamp stored by the initial @Wait

(and clears the timestamp. Otherwise, it leaves the budget to updated by the remaining

@Wait(s). The result is that the net budget time charged to an object is the system clock’s

elapsed time, and is not double-charged when two @Waits are active at the same time.

This is the system-delay property described in Section 4.1.

Another exception to the sequential semantics occurs when a thread sets an

object’s budget to zero while another thread is at a @Wait with that object waiting for it.

In this case, the @Wait is immediately terminated to satisfy its intended delay semantics.

This is detected by the RegisterBudget method (which is used to set the budget), which

checks if the object’s timestamp is set. If so, it signals all the @Waits in the object’s

in-progress list.

Static Analysis. It would be safe for Tempus to treat every object as though it

were potentially referenced downstream from every @Wait. That is, it would be safe to

pass every label to every @Wait. However, this simple approach would be detrimental.

CRM applications often have many threads of execution and some objects may never be

referred to on certain paths of execution. It would be overly conservative and undesirable

to consider and consume the budgets of every object with a delay budget assigned when

a @Wait annotation is reached. As soon as any object’s budget reached zero, no @Wait

would be able to wait again until the object becomes unreachable and is reclaimed by

the garbage collector. Perhaps worse, every object has to have its budgets tracked and

updated at every @Wait, potentially hurting performance. Thus, it is beneficial for the

Tempus translator to use a static analysis of the application’s source code to identify a

minimal, safe approximation of the objects that can be referenced downstream from each

individual @Wait.

82

The static program analysis employed by Tempus is built on the Soot Java

Optimization Framework [38].3 Specifically, the framework is used to generate a call

graph for the target application and to perform context-sensitive flow-insensitive points-

to analysis. A points-to analysis conservatively determines the set of possible objects

referenced by each Java expression. For any two given expressions, it can be determined

if they possibly reference the same object by intersecting their points-to sets. The analysis

handles multithreading correctly, so that objects shared between threads are appropriately

accounted for in points-to sets.

A particular object is said to be potentially impacted, or simply impacted, by

a @Wait if a reference to that object appears on a path of execution leaving from that

@Wait. In aggregate, an object is said to be impacted by Tempus as a whole if it is

impacted by at least one @Wait. To ensure that delay-sensitive data is being processed

in a timely fashion, it is necessary that the delays introduced by the use of a @Wait be

bounded by the smallest budget across all impacted objects, but ideally not by objects

that aren’t impacted by the @Wait.

Algorithmically, this means that the static analysis needs to find the set of labels

that cover all @DelayBudget-annotated objects that are potentially referenced after

each @Wait annotation in the program. It is essentially a live variable analysis. Pseu-

docode for this analysis is provided in Figure 4.7. For each @Wait, the call graph of the

application is searched to enumerate all paths that begin at the annotation. A points-to

analysis is used to generate a points-to set for each reference that appears on each such

3Proper use of Soot requires that the developer specify the entry point into their application from
which to begin analysis, such as the main method. Android applications often do not have a single entry
point, but rather include many entry points that may be called by the Android framework. To allow Soot
to properly analyze the application, a dummy main method is first constructed that includes calls to
the common Android application lifecycle methods (onCreate, onResume, etc.). The developer may
occasionally have to manually add other entry points in their application to this dummy main method.
Further automation of this process using techniques such as those used in FlowDroid [18] is an area of
future work.

83

1 let G be the control flow graph of the application
2 let R be the set of references annotated with @DelayBudget
3 let W be the set of references annotated with @Wait
4 let V be the set of all references to objects in the program
5 let A = {}
6

7 for wi ∈W:
8 let Ai = {}
9 use G to find Pi, the set of all paths starting at wi
10 for p j ∈ Pi:
11 let V j be the set of all references made along p j
12 for vk ∈V j:
13 let pk be the points-to set for vk
14 for rl ∈ R:
15 let ll be the label assigned to rl
16 let pl be the points-to set for rl
17 if pl ∩ pk 6= /0:
18 add ll to Ai
19 add (wi,Ai) to A
20

21 return A

Figure 4.7. Algorithm for static program analysis that returns the set of object labels to
be considered at each @Wait annotation in the program.

path. If any such reference has a non-empty intersection with the points-to set of any

of the @DelayBudget-annotated references in the program, then the two references

may potentially refer to the same object at runtime. In such a case, the unique label of

the @DelayBudget-annotated reference is added to a set of labels determined to be

relevant to the @Wait. The @Wait annotation is then translated so that it includes the

set of relevant labels as an argument, as previous shown in Figure 4.5.

4.2.2 Policy Evaluation

When a @Wait annotation is reached, and after its maximum wait time has been

calculated, Tempus begins monitoring the subset of components required to evaluate the

annotation’s boolean expression, using the methods employed with our previous APE

system [30]. Device state monitoring is accomplished using a variety of APIs exposed by

the Android framework. Depending on the resource being monitored, state information

84

is either periodically polled or delivered via call backs from the Android framework. The

monitoring is invoked via a synchronous request made to the Tempus runtime. This call

does not return until it either times out or the requested expression is evaluated to be true,

thus inserting a delay at the site of the @Wait annotation.

4.3 Case Study

In this section we present a case study of introducing a power-management

into the NPR News mobile application [13] and CitiSense [31]. We will demonstrate

the flexibility of Tempus by constructing increasingly complex power management

policies. The chosen examples illustrate how a developer can provide differentiated

timeliness in power management using statically and dynamically assigned budgets. The

CitiSense example illustrates the composition properties of Tempus that allow developers

to reason about the timelines of applications that may include concurrently running power

management policies.

4.3.1 NPR News

When started, the NPR News application downloads an XML document contain-

ing a list of story titles and URLs to corresponding thumbnail images, audio stories, and

textual stories. A scrolling list of titles and matching thumbnails is then presented to the

user (see Figure 4.8). Selecting any story in the list will then download the full contents

of the story and any additional images. As a means of reducing network utilization and

power-consumption, the application has been modified such that all image downloads

are delayed until either a Wi-Fi connection is available or the cellular radio is woken by

another request. However, to preserve the user experience, we would like to ensure that

for the first few stories that a user would see, the thumbnail images would be downloaded

and presented immediately.

85

Figure 4.8. Screenshots from the NPR News application: looking at the list of stories
(left) and reading a story (right).

All requests to download images, regardless of where they originate in the applica-

tion, eventually reach the readBitmapFromNetwork method, which is responsible

for the actual fetching of the image from the server (see Figure 4.9). This method

contains a @Wait annotation that manages the trade-off between the energy saved and

timeliness of fetching images. The @Wait annotation uses its default scoping and, the

static analysis determines that objects url and conn are within its scope. The URLs to

thumbnails for the first eight stories are assigned a @DelayBudget of zero, as those

are the first stories presented to a user (line 6). A typical user takes approximately five

86

1 public View getView(int position, View view, ViewGroup parent) {
2 ...
3 String imageUrl = entry.getValue().getSrc();
4 if (imageUrl != null) {
5 if (position < 8}) {
6 @DelayBudget(0, imageUrl)
7 } eIse if (position < 16) {
8 @DelayBudget("5min", imageUrl)
9 }
10 Drawable cachedImage = imageLoader.loadImage(imageUrl,
11 new ImageLoadListener(position, (ListView) parent));
12 }
13 }
14

15 private static Bitmap readBitmapFromNetwork(String urlString) {
16 @Wait(UpTo="10min", For="Network.Active or WiFi.Connected")
17 URL url = new URL(urlString);
18 URLConnection conn = url.openConnection();
19 conn.connect();
20 @ClearBudget(url)
21 ...
22 }

Figure 4.9. The download of images is deferred until the radio or WiFi are on to save
energy. Additionally, we ensure that download of the first 8 images is not delayed, the
download of the next 8 stories may be deferred by up to 5 minutes, and the download of
all other stores may be deferred by up to 10 minutes.

87

minutes to read or skim through these initial stories, so the next eight stories are assigned

a DelayBudget of five minutes (line 8). All other images will be fetched ten minutes

later, the maximum delay of the @Wait. A @ClearBudget is used to remove url

the scope of @Wait annotation in line 16. The annotation is necessary to demarcate the

time-critical part of the url life-cycle that occurs between lines 16 – 20. We note that

the url object is never garbage collected since it includes a reference to urlString,

which is referenced as part of the XML list of news stories that is always live. Without

@ClearBudget, once an object’s budget becomes zero the @Wait annotation would

never defer the execution of network operations to save power.

The example illustrates how Tempus may be used to provide differentiated time-

liness based on the budgets of url objects. Moreover, it shows the scope of @Wait

annotations may be determined automatically using static analysis. The example also

illustrates the need for providing fine-grained control over identifying the time-critical

part of an object’s life cycle.

The policy above assigns static budgets based on assumptions about the rate at

which a user reads through content. An alternative approach would be to dynamically

adjust the @DelayBudget of image URLs based on the current position of the user in

the list of stories (see Figure 4.10). As soon as a View UI element is determined to be

in the viewable area of the screen, the method isInView is called with a reference to

the relevant object as an argument. This method assigns a DelayBudget of zero to

the relevant URL String, forcing the download to begin immediately. The assignment

of DelayBudgets in the getView method has also been modified. While the initial

eight stories are downloaded immediately, all stories after that are assigned an initial

budget relative to their position in the list, so that one new image is fetched once every

minute that the user is interacting with the application. These changes introduce two

benefits: (1) the download of news story thumbnails are more evenly spread out and

88

1 Map<View, String> viewToUrlMap = new HashMap<View, String>();
2

3 public void isInView(View view) {
4 String imageUrl = viewToUrlMap.get(view);
5 if(imageUrl != null) {
6 @DelayBudget(0, imageUrl)
7 }
8 }
9

10 public View getView(int position, View view, ViewGroup parent) {
11 String imageUrl = entry.getValue().getSrc();
12 if (imageUrl != null) {
13 if(position < 8) {
14 @DelayBudget(0, imageUrl)
15 } else {
16 @DelayBudget("1min" * pos, imageUrl)
17 }
18 Drawable cachedImage = imageLoader.loadImage(imageUrl,
19 new ImageLoadListener(position, (ListView) parent));
20 ...
21 }

Figure 4.10. Budgets for the @Wait annotation in Figure 4.10 are refined to ensure that
the first 8 stores are not delayed and the budget of the remaining stores is computed
dynamically based on their position in the news story list.

dependent on the number of stories presented and (2) the image for a story that is in view

of the user is immediately fetched. This example demonstrates the capability of Tempus

to manage dynamically assigned budgets.

4.3.2 CitiSense

CitiSense is an environmental air pollution monitoring application that utilizes

a body-worn sensing device to accurately measure a user’s exposure to a variety of

pollutants (see Figure 4.1). The general structure of the CitiSense code is shown in

Figure 4.11. Sensor readings are streamed to the user’s phone over Bluetooth connection

between the phone and sensor device. The sensor data is read in ReadSensors, written

to disk in Storage, and uploaded to the remote in Uploader. Consistent with best

programming practices for Android, each class operates on an independent thread to

89

minimize the impact of long operations on the user interface. DisplayReadings

renders the sensor readings in real-time.

CitiSense must effectively manage the trade-off between energy and timeliness.

The application includes two power management policies that operate in isolation. The

first policy focuses on optimizing the energy consumed by networking. Specifically,

energy savings may be achieved by deferring the upload of sensor data until another

application turns on the radio. This power management behavior is specified by the

@Wait annotation introduced in line 8. However, not all sensor readings are of equal

importance in CitiSense: it is more valuable to upload unusually high pollution levels.

Providing differentiated timeliness is achieved by defining the NormalReading and

UrgentReading namespace (lines 47 and 50). Delay budgets of 10 and 0 minutes are

assigned with the objects belonging to the NormalReading and UrgentReading

namespaces, respectively (lines 48 and 51). We ensure that the delay introduced by

@Wait considers the readings in the NormalReading and UrgentReading names-

paces by specifying its scope to be:

NormalReading | UrgentReading

The implementation of the policy spans three threads that read, store, and upload the

sensors that exchange data using shared queues. Pipeline processing as the one in

this example are common in Android applications. Tempus can effective manage the

energy-timeliness trade-offs across multi-thread processing pipelines.

The second policy takes advantage of the fact that pollution values do not change

fast at the same location (see lines 42-43). Leveraging this insight, the energy consumed

for collecting sensor data may be reduced by delaying the acquisition of new readings

until the user moves from the current location. Obviously, we must ensure a minimal

90

1 class Uploader implements Runnable {
2 protected final BlockingQueue<Message> toUpload;
3 public void run() {
4 while(true) {
5 final Message m = toUpload.take();
6 @Wait(UpTo="10min", For="Network.Active",
7 Scope="UrgentReading|NormalReading")
8 UploadHelper.upload(m);
9 }

10 }
11 public void addMessage(Message m) {
12 toUpload.put(m);
13 }
14 }
15

16 class ReadSensors implements Runnable {
17 protected final Handler handler;
18 protected final Uploader uploader;
19 public void run() {
20 while (true) {
21 @Wait(UpTo="10min", For="Location.Change",
22 Scope="DisplayReading")
23 final SensorReading reading = Sensor.read();
24 if (reading.getValue() > EXPOSURE_THRESHOLD) {
25 @Namespace("UrgentReading", reading)
26 @DelayBudget("0Min", reading)
27 } else {
28 @Namespace("NormalReading", reading)
29 @DelayBudget("10min", reading)
30 }
31 uploader.addMessage(reading);
32 handler.sendMessage(reading);
33 }
34 }
35 }
36

37 class DisplayReadings extends Activity {
38 @Namespace("DisplayReading", displayActive)
39 protected Object displayActive = new Object();
40 protected final Handler handler = new Handler(...) {
41 public void handleMessage(Message m) {
42 ... update UI ...
43 }
44 }
45 public void onResume() {
46 @DelayBudget("0Min", displayActive)
47 ...
48 }
49 public void onPause() {
50 @ClearBudget(displayActive)
51 ...
52 }
53 }

Figure 4.11. The application has two power management policies: (1) data acquisition
is deferred until the user changes his location and (2) sensor readings are classified as
either NormalReading or UrgentReading.

91

sampling rate that, in this example, is set to a reading every 10 minutes. CitiSense

provides users the ability to view the pollution readings in real-time. In this case, data

should be collected at the highest possible frequency to provide the user a comprehensive

view of the pollution within her surroundings. This is achieved by controlling the delay

budget associated with the DisplayReading namespace. When the user interface

is brought in view (line 68) the budget of the displayActive object is set to zero.

Similarly, when the user interface is no longer in view (line 74), the budget of the

displayActive object is cleared. As a result, the displayActive object is no

longer in the scope of the @Wait in line 42.

This example demonstrates the positive compositional properties of Tempus. The

two power management policies operate in isolation. The developer can verify that this

is the case by determining if there is any overlap between the scopes involve in the

two policies. Moreover, the first policy includes multiple threads. Even in this case,

the developer can reason about the aggregate behavior of the threads because of the

timing semantics of Tempus. This is owed to two key design decisions on how timing is

handled (1) the only operation that consumes time is a @wait operation (as opposed to

the alternative of using real-time) and (2) the concurrent execution of @Wait annotations

has predictable compositional semantics due to the system delay concept.

4.4 Experiments

In this section we evaluate Tempus and demonstrate it’s efficacy in managing the

trade-off between power consumption and timeliness in real mobile applications. Multiple

versions of the NPR News and Citisense applications were developed, each including a

different Tempus-driven power-management policy. Each application was then run on a

Pantech Burst smartphone device with Android 4.0.4 and studied to determine average

power consumption and the impact of the policy on the timing of certain operations.

92

Power consumption was measured using a Power Monitor from Monsoon Solutions [12]

by modifying the device’s battery to allow a direct bypass such that power was drawn

from the monitoring device rather than the battery. All cellular communication was

performed on the T-Mobile network in the San Diego metropolitan area.

As the behavior and power-consumption of these applications is highly dependent

on input, it is important to evaluate them in a consistent manner. To do so, the NPR

and Citisense applications were modified to record all user interactions and collected

sensor readings. Each author was then tasked with using each application during a one

week period. In the case of NPR, the application logged how a user scrolled through

the list of stories in the application and which stories were selected to be read. In the

Citisense application, traces were collected of each mobility state (stationary or mobile)

as well as the values of any air quality measurements. These applications were then

modified to allow ‘playing back’ such traces and to drive the operation of the applications

automatically during experiments.

We also provide an evaluation of the overhead associated with the usage of

Tempus. Specifically, we measure the time required to track and use budgets at runtime

and the overhead associated with periodically forcing garbage collection to ensure a

precise set of budgets when evaluating policies.

4.4.1 Power-Timeliness Trade-off

This subsection characterizes the power consumption of our case study applica-

tions under a variety of different budget constraints and usage patterns. Power consump-

tion is dependent on both the usage patterns of an application as well as the quality-of-

service requirements of the application. Tempus is not a power-management policy in

itself, but rather a tool for composing and introducing power-management policies in an

effective and safe manner. As such, these experiments are not intended to be a thorough

93

study of all possible power-management policies or usage patterns for mobile applica-

tions. Rather, these experiments demonstrate the correctness of Tempus’s implementation

while visualizing the potential impact of assigned budgets on power-consumption.

NPR News

The NPR News application provides the user with a list of recent news stories that

can be selected and read. On start up, the application downloads an XML file that includes

the names of stories, some content, and references to images that are used as thumbnails

in the story list. The original implementation of the NPR News application downloads

images in an ondemand fashion, in that it downloads images only when the user is

actively trying to view them. A benefit of this policy is that it minimizes the amount of

data downloaded by the application. However, this policy has an observable and negative

impact on the user-experience: since images are not downloaded until after they are in

view of the user, many UI elements may be empty when first viewed and eventually

have an image ‘pop-in’ once the download is complete. An alternative to this approach

would be to prefetch some or all of the images, so that they are immediately available for

viewing by the user and thus reducing the frequency of, or totally avoiding, the jarring

pop-in effect found in the ondemand version of the application. Given opportunities to

piggy-back network transmissions with requests from other applications on the device, it

may be possible to apply prefetching in a way that reduces the average time that a user

spends waiting for images to populate UI elements while having negligible impact on

power consumption when compared to a purely ondemand approach.

To demonstrate the versatility of Tempus for managing timeliness and efficiency in

such an application, four different versions of the NPR News application were developed

and evaluated, each using Tempus to manage the timing of image download requests.

The implemented policies are as follows:

94

• Ondemand: images are only downloaded when needed to populate an in-view UI

element;

• Light Prefetch: a batch of three images is prefetched for every two minutes that a

user using the application, while in-view images are downloaded immediately;

• Medium Prefetch: a batch of six images is prefetched for every two minutes that

a user using the application, while in-view images are downloaded immediately;

and

• Full Prefetch: all images are downloaded immediately at the start of the applica-

tion.

The reasoning behind the Light and Medium prefetching policies is that a user is more

likely to view stories and images further down in the story list the longer that they are

interacting with the application. These policies provide a middle ground between the

Ondemand policy, which minimizes data usage, and the Full policy, which minimizes

user observed delay. In practice, the ideal number of images to download in each batch

and the frequency of prefetch attempts is highly dependent on application usage patterns.

The policies and parameters selected here are intended to demonstrate a range of possible

policies and their impact on the trade-off between power consumption and timeliness.

To implement these policies, the implementation of the NPR News application

was updated using Tempus in three ways:

1. A @Wait annotation was introduced to the method responsible for downloading

images so that requests are delayed until the cellular radio is first powered up by

another application or request;

2. A @DelayBudget annotation was used to ensure that in-view images are down-

loaded immediately, if they have not been previously downloaded, by assigning

95

a budget of zero to the String object containing the path to the remote image

resource, which is used by the aforementioned method to download the image; and

3. An additional @DelayBudget annotation was used to limit how long any image

prefetch request is delayed by assigning a budget of 100 seconds to the String

objects containing the paths to the remote image resources being prefetched.

In addition to these three annotations, a Handler object (provided by the Android

framework) was was used to schedule prefetch requests in the Light and Heavy policies.

At compile time, the static program analysis was able to infer that the String

object referred to in the @Wait annotated download method may have been assigned a

budget when it was scheduled to be prefetched, came into view of the user, or both. This

implied that the @Wait annotation must be considerate of the budgets of any objects that

were annotated with @DelayBudget as a result of either of those two events.

As previously mentioned, usage traces of the original application were compiled

for each of the authors. These traces were combined to create a trace representing 70

minutes of usage of the application, including starting the application, reading through

the story list, selecting stories to be read, and closing the application. The application

was then modified to allow playback of this trace file to automatically drive the operation

of the application during experiments. The total amount of data used and time required

for an image to appear in the UI for each ‘use’ of the application in the trace file was

logged to a file at the end of each experiment. Each experiment was run five times for

each policy, resulting in a total of 350 minutes of measurements for each policy.

Figure 4.12 presents the average system power consumption, user observed delay

to view an image, and data usage for each policy when piggyback opportunities are

presented once every three minutes. The Ondemand policy consumed the least amount

of power and used the least amount of data during each run of the application, but it

96

Ondemand Light Medium Full
670

680

690

700

710

720

730

Po
w

er
 C

on
su

m
pt

io
n

(m
W

)

Ondemand Light Medium Full
0

100

200

300

400

500

Im
ag

e
D

el
ay

 (m
s)

Ondemand Light Medium Full
600

700

800

900

1000

1100

1200

D
at

a
U

sa
ge

 (K
B

)

Figure 4.12. Impact of various policies on the NPR News application when piggybacking
opportunities are available once every three minutes.

97

suffered the worst delay: in average, a user had to wait 416 ms for an image to appear in

the application. In contrast, the Full Prefetch policy consumed the most power and used

74% more data than the Ondemand policy, but completely eliminated the observed pop-in

of images by downloading all images at application start. The Light policy arguably

provided the best results: data usage increased by only 7%, but the observed delay was

only 145 ms, a reduction of 65%. The Medium policy further reduced the observed delay,

down to 87 ms, but at the expense of additional data and power consumption. While each

of the prefetch based policies significantly reduced the user observed delay, they came at

the cost of additional data and power consumption.

Figure 4.13 presents results for each of the four policies when piggyback oppor-

tunities are instead presented once every minute. The increased frequency at which the

radio is woken by other workloads impacts the performance of the policies in primarily

two ways. First, the average time required to download and display an image is reduced

in the Ondemand, Light, and Medium policies, as the radio will already be in a connected

state and requires less time to begin transmission when compared to using a previously

idle radio. Secondly, the power-consumption of the Light and Medium policies is more

in line with that of the Ondemand policy, as the application is no longer waking a pre-

viously idle radio to prefetch images. In this set of experiments, the Medium policy is

arguably the best policy, as it reduces image delay by 91% while negligible impact on

power-consumption. In fact, even though it uses more data, the Medium policy consumes

less power than the Light policy, as its larger cache of prefetched images reduces the

likelihood of a ‘cache miss’ and can help avoid the radio having to be suddenly powered

to download an image for a UI element.

Figure 4.14 presents the state of the budgets associated with nine images during a

run of the NPR News application with the Light Prefetch policy. The URLs to the first

three images to be prefetched are initially assigned a budget of 100 and placed into the

98

Ondemand Light Medium Full
730
740
750
760
770
780
790
800

Po
w

er
 C

on
su

m
pt

io
n

(m
W

)

Ondemand Light Medium Full
0

50

100

150

200

250

300

Im
ag

e
D

el
ay

 (m
s)

Ondemand Light Medium Full
700

800

900

1000

1100

1200

D
at

a
U

sa
ge

 (K
B

)

Figure 4.13. Impact of various policies on the NPR News application when piggybacking
opportunities are available once every one minute.

99

1
2

3
4

5
6

7
8

0 50 100 150 200 250
Time (s)

9
St

or
y

Im
ag

e
N

um
be

r

Radio Transmission
Image Viewed

Figure 4.14. The state of budgets assigned to various images during a run of the NPR
News application with the Light Prefetch policy.

100

queue of pending image download requests. A worker thread then reads the first request

out of the queue, makes a call to the @Wait annotated download method, and is blocked

until either the cellular radio is powered on or until the budget of any of the requests

reaches zero. Some time later, a network request does in fact arrive, wakes the radio,

and allows the blocked worker thread to continue with downloading the first image. The

thread then proceeds to pull the next request out of the queue, and as Tempus sees that the

radio is still powered from handling the previous request, allows the thread to continue

immediately. Unlike the image requests that precede it, the blocking of the seventh image

request is interrupted when the UI element containing that image is viewed by the user

and assigned a new budget of zero, triggering its download. The eight and ninth images,

though not in view, are downloaded as well, as the radio was powered to fetch the seventh

image just moments before.

Citisense

The Citisense application collects air pollution measurements from a user-carried,

Bluetooth-enabled sensing device and periodically uploads the location-tagged readings

to a remote server for further analysis and to generate pollution warnings for other nearby

users. While a user is determined to be moving (using a combination of accelerometer

data and wireless network based localization), the application makes use of the GPS to

generate precise location information. Otherwise, the application relies on less precise,

but more efficient, wireless network based location information. Originally, the applica-

tion would generate a new sensor reading once every six seconds and upload batches of

readings once every ten minutes. This behavior implies that sensor readings would, on

average, reach the server approximately five minutes after they are generated. Tempus

was used to improve upon this basic application behavior in three ways:

101

1. The primary objective of our changes is to to reduce the average delay encountered

in the upload of high measurements, as they are important for accurate pollution

modeling and the timely warning of other nearby users. To do so, @DelayBudget

was used to assign a budget of zero to any measurements that fall above the

threshold for ‘Good’ air quality, defined by the EPA as an Air Quality Index above

50 [1];

2. Rather than simply waiting for exactly ten minutes between upload attempts,

the upload logic was updated to @Wait up to ten minutes for an opportunity to

piggyback on the waking of the radio by another application running on the device;

and

3. As readings from the same location typically show very little variance, the appli-

cation was updated to @Wait up to one minute for the user’s location to change

before sampling the sensor, reducing the cost of Bluetooth communication during

stationary periods.

These three changes were implemented using only three Tempus annotations and a few

trivial changes to the code, such as removing the call to Thread.sleep() in the

sensor reading upload thread, which became redundant after introducing the @Wait

annotation. This new version of the Citisense application was then evaluated, using

traces of real sensor data from users, to determine the average power consumption and

time between upload attempts when the user is stationary and when mobile. Unlike the

previously presented NPR News experiments which included frequent opportunities to

piggyback transmissions, the set of CitiSense experiments were run without any other

workloads generating piggybacking opportunities. This represents a ‘worst case scenario’,

where each upload by Citisense is responsible for waking the radio and the average time

between batched uploads is maximized.

102

Stationary Mobile
0

100
200
300
400
500
600
700
800

Po
w

er
 C

on
su

m
pt

io
n

(m
W

)

Figure 4.15. Average power consumption in the Citisense application when processing
traces from stationary and mobile users.

As can be seen in Figure 4.15, the power consumption of the application while

the user is mobile far exceeds that of stationary operation. The requirement that mobile

data be tagged with precise GPS data contributed approximately 318 mW of power

consumption in our experiments. In contrast, the use of network based localization

techniques added only 14 mW of power consumption over the baseline, as such techniques

make use of information about access points and cell towers that are passively collected

by the device during normal operation. The reduced sampling rate of the Bluetooth

sensor while stationary contributed approximately 8 mW of savings. The remaining

difference in power consumption is due to the policy used to upload sensor readings and

the observation that stationary readings typically come from clean, indoor environments

while mobile readings typically come from outdoor environments, especially on or near

roadways as users commuted between their home and office. Nearly all sensor readings

that are collected while a user is stationary fall into the category of ‘Good’ quality air

and can be batched to be uploaded once every ten minutes. However, mobile users often

encountered stretches of poor air quality while traveling, receiving many readings that

103

fall above the threshold for ‘Good’ air. Each of these high readings would initiate an

upload. As these poor readings often followed one another, meant that uploads would

often include a single sensor reading and were spaced only seconds apart. During such

stretches of constant uploading, the power consumption of the application averaged 914

mW. This implies that, due to the requirement that the server be notified immediately of

any high readings, power consumption in the Citisense application is highly dependent

on the quality of air that a user is exposed to.

While the savings from Bluetooth duty cycling do not come near making up for

the high cost of frequent network transmission, the primary objective of our changes

was to reduce the time required for important readings to reach the server. Where the

previous version of Citisense would upload readings, regardless of their content, on

average five minutes after they were sampled, the new version ensures that high readings

are immediately flushed. In our experiments, high readings were transmitted and stored

on the server approximately five seconds after they were sampled. Since the majority

of our users’ time was spent in clean air environments, the average time to upload

for ‘Good’ readings remained approximately five minutes. However, if presented with

opportunities to piggyback transmissions, the average time to upload such readings would

drops significantly.

4.4.2 Budget Tracking Overhead

As previously mentioned, Tempus builds upon and provides a new interface for

accessing the information provided by the standard device hardware monitoring interfaces

provided by the Android framework. As static program analysis is utilized at compile

time to reason about which object references are impacted by @Wait annotations, the

only significant overhead introduced by Tempus at runtime is that of tracking budgeted

objects.

104

Figure 4.16. Overhead associated with the tracking of budgets for various numbers of
objects. Note the logarithmic scale.

Figure 4.16 presents the overhead associated with “using” the budgets of all

objects that have been assigned a particular namespace. As expected, this overhead

is highly dependent on the number of objects associated with the targeted namespace.

When tracking the budget of a single object, overhead was measured to be approximately

0.02 ms. Even when tracking and adjusting the budgets of 1,000 items, overhead was

measured to be only 1.43 ms. When tracking 10,000 and 100,000 objects, the overhead

begins to become more noticeable: 17.12 ms and 218.05 ms, respectively. However, we

expect that the most applications will track far fewer than 1,000 budgets at a time. In

the study of the Citisense application, only one object was tracked at a time: the high

measurement responsible for flushing all batched readings. In the NPR News application,

budgets were tracked for each of the approximately twenty news stories presented to the

user at a time.

Garbage Collection. The @ClearBudget annotation was earlier presented as

a mechanism for notifying Tempus to stop tracking the budget of a particular object as

105

soon as the developer knows that timely references to the object are no longer required

for correct application behavior. However, the use of this annotation is not required to

ensure correct application behavior at runtime: budgets can only provide tighter, and

thus more conservative, bounds on when operations must be executed. While an obsolete

budget will not cause any other budget deadline to be missed, it may however limit how

long operations may be delayed by and thus limit potential power-savings from energy

management policies.

As previously mentioned, garbage collected objects and their budgets are auto-

matically removed from tracking at runtime. This update helps maintain a more precise

set of tracked budgets, even when it is too difficult for a developer to reason about when

an object is “done” and can be forgotten. The garbage collector is periodically invoked

by the Android runtime framework, but the frequency of this collection is dependent on

a variety of factors, including the application’s memory footprint. As such, budgeted

objects that are no longer referenced may have to wait long periods of time before they are

finally garbage collected. This motivated the inclusion of the optional AggressiveGC

argument to the @Wait annotation, as it forces garbage collection before checking

budgets that may impact a Tempus introduced delay.

The authors experimented with making AggressiveGC the default behavior of

the Tempus runtime, as it helped maintain as small and accurate a set of tracked budgets

as possible. However, the overhead associated with garbage collection, and its potential

impact on user experience, led to the decision to dropping this as this default behavior.

Figure 4.17 presents the results of experiments that were conducted to measure the impact

of garbage collection on the execution time of a long-running, CPU-bound operations.

While the exact numbers will be highly dependent on the particular device being tested,

as well as it’s version and implementation of Android, it was determined that frequent

requests for garbage collection were prohibitively expensive. If a developer would

106

Figure 4.17. Garbage collection overhead when Tempus is tracking objects that are
either all referenced elsewhere in the program or are all garbage collected.

like to improve the precision of budget tracking at runtime, they may either introduce

@ClearBudget annotations to their program or, if performance is not as critical as

efficiency, by making use of AggressiveGC.

4.5 Conclusion

This chapter presented Tempus – a novel power management aimed at applications

that must manage the trade-off between energy savings and timeliness. Tempus saves

power by deferring the execution of power hungry operations until the device enters a

state that minimizes the cost of that operation. The impact of power management on the

timeliness of operations is managed by associating delay budgets with objects. The static

analysis and run-time environment ensure that the processing of any object is not delayed

by more than the user-specified budget.

We showed that our approach is both expressive and flexible by annotating

introducing power management into two realistic applications. Tempus is able to provide

107

differentiated delays for different operations in mobile applications. Additionally, owning

to its simple compositional semantics, the developer can reason about the properties

of applications that include multiple power annotations that operate concurrently. Our

experiments indicate that Tempus introduces a relatively small overhead to tracking

budgets on objects. In practical applications the number of objects is relatively small.

Detailed experiments from the studied applications show that Tempus may save energy

while meeting timeliness constraints.

4.6 Acknowledgements

This chapter, in part is currently being prepared for submission for publication

of the material. Nikzad, Nima; Chipara, Octav; Griswold, William G. The dissertation

author was the primary investigator and author of this material.

Chapter 5

Conclusion

Even though continuously-running mobile applications typically operate at low

duty cycles, cumulatively they have a large impact on the battery life of a device due

to their periodic use of power-hungry system resources, such as the cellular radio for

networking or the GPS for localization. While mobile operating systems like Android

provide control over these power-hungry resources, developing an energy-efficient CRM

application is challenging. Beyond the expected algorithmic and systems challenges of

designing a power management policy, there are also significant software engineering

challenges: (1) the code for power management tends to be complex, and (2) power

management optimizations should be postponed until the application’s requirements are

set.

To address these challenges, this dissertation presented Annotated Program-

ming for Energy-efficiency (APE), a novel approach for specifying and implementing

system-level power management policies. APE is based on two key insights: (1) Power

management policies defer the execution of power hungry code segments until a device

enters a state that minimizes the cost of that operation. (2) The desired states when

an operation should be executed can be effectively described using an abstract model

based on timed automata. We materialized these insights in a small, declarative, and

extensible annotation language and runtime service. Annotations are used to demarcate

108

109

expensive code segments and allow the developer to precisely control delay and select

algorithms to save power. Language constructs and accompanying static program anal-

yses were presented that allowed a developer to specify constraints for delay-sensitive

and -intolerant methods and objects. The APE compiler and runtime generate and insert

effective power-management policies within the target application while ensuring that all

delay related constraints are satisfied at runtime.

APE’s approach was shown to be both general and expressive, in that it can

replicate many previously published policies and that its use reduced the complexity of

power management in CitiSense. The APE middleware’s use of techniques like code

generation, policy handlers, lazy evaluation, and encoding policies as integer arrays kept

overhead below 1.7 ms for most requests to the service. In our benchmarks, APE provided

power savings of 63.7% over an application that did not coordinate access to resources.

The efficacy of APE’s approach was further demonstrated in a study of introducing

power-management policies to six CRM applications. Measurements have shown that the

policies generated by the Policy Generation Engine were effective at reducing the power-

consumption of a smartphone device, while a small number of constraint annotations can

ensure proper application behavior while still providing savings. The addition of delay

allowance checking at runtime was shown to have a minimal overhead of only 2µs, a

negligible impact on runtime performance.

Although APE can simplify the mechanics of writing power management code,

APE does not help a developer reason about the impact of power annotations on timeliness.

Mentally reasoning about the many possible execution paths in a large, object-oriented,

multi-threaded application is taxing, at best. An additional limitation of a path-centric

approach to reasoning about power management is that it is difficult to write power

management policies that crosscut many modules of an application. To address this

challenge, this dissertation presented Tempus — a new paradigm for writing power-

110

management policies that allows developers to reason about their impact in terms of

objects being delayed rather than execution paths. Specifically, an object that contains

delay sensitive data can be annotated with a delay budget, which bounds the total delay

that the object experiences due to power-management-related delays. Power-management

policies are constructed using annotations that specify a desired hardware state, delaying

execution of costly operations while “spending” the delay budgets of impacted objects.

Once an object’s delay budget has been exhausted, power-management policies that

would impact the object are ignored so that the object may be used in a timely fashion.

Static program analysis and runtime support ensures that, along all paths to instructions

that reference an object with a delay budget, the total delay introduced by a Tempus

power-management policy does not exceed the object’s remaining budget.

In this dissertation, we have demonstrated that a high-level annotation language

can be used to effectively describe and implement the diverse set of energy-management

policies typically found in mobile applications. Additionally, these annotation-based

policies can be efficiently evaluated at runtime to reduce the power-consumption of an

application while improving the maintainability of a code base through an improved

separation of concerns.

Bibliography

[1] Air Quality Index (AQI) Basics. http://airnow.gov/index.cfm?action=aqibasics.aqi.

[2] Android Developers: Best Practices. http://developer.android.com/guide/practices/
index.html.

[3] Android Developers: Processes and threads. http://developer.android.com/guide/
components/processes-and-threads.html.

[4] AndroidAnnotations. http://androidannotations.org/.

[5] Andstatus project. http://andstatus.org/.

[6] Bittorrentsync. http://www.bittorrent.com/sync.

[7] Build Efficient Apps: AT&T Developer Program. http://developer.att.com/
developer/forward.jsp?passedItemId=7200042.

[8] Dropbox. https://www.dropbox.com/.

[9] Fitbit. http://www.fitbit.com/android.

[10] Google Guice. https://code.google.com/p/google-guice/.

[11] K-9 mail. http://k9mail.org/.

[12] Monsoon Solutions - Power Monitor. http://msoon.com/LabEquipment/
PowerMonitor/.

[13] Npr news android application. http://www.npr.org/services/mobile/android.php.

[14] ohmage. http://ohmage.org/.

[15] Roboguice: Google Guice on Android. https://github.com/roboguice/roboguice.

[16] Weatherlib. http://survivingwithandroid.github.io/WeatherLib/.

[17] Rajeev Alur and David L Dill. A theory of timed automata. Theoretical computer
science, 126(2):183–235, 1994.

111

http://airnow.gov/index.cfm?action=aqibasics.aqi
http://developer.android.com/guide/practices/index.html
http://developer.android.com/guide/practices/index.html
http://developer.android.com/guide/components/processes-and-threads.html
http://developer.android.com/guide/components/processes-and-threads.html
http://androidannotations.org/
http://andstatus.org/
http://www.bittorrent.com/sync
http://developer.att.com/developer/forward.jsp?passedItemId=7200042
http://developer.att.com/developer/forward.jsp?passedItemId=7200042
https://www.dropbox.com/
http://www.fitbit.com/android
https://code.google.com/p/google-guice/
http://k9mail.org/
http://msoon.com/LabEquipment/PowerMonitor/
http://msoon.com/LabEquipment/PowerMonitor/
http://www.npr.org/services/mobile/android.php
http://ohmage.org/
https://github.com/roboguice/roboguice
http://survivingwithandroid.github.io/WeatherLib/

112

[18] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid:
Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for an-
droid apps. In Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, page 29. ACM, 2014.

[19] Martin Azizyan, Ionut Constandache, and Romit Roy Choudhury. Surroundsense:
mobile phone localization via ambience fingerprinting. In Proceedings of the 15th
Annual International Conference on Mobile Computing and Networking, pages
261–272. ACM, 2009.

[20] Octav Chipara, Chenyang Lu, John Stankovic, and G Roman. Dynamic conflict-free
transmission scheduling for sensor network queries. IEEE Transactions on Mobile
Computing, 10(5):734–748, 2011.

[21] Michael Cohen, Haitao Steve Zhu, Emgin Ezgi Senem, and Yu David Liu. Energy
types. In ACM SIGPLAN Notices, volume 47, pages 831–850. ACM, 2012.

[22] Leonardo Dagum and Ramesh Menon. Openmp: an industry standard api for shared-
memory programming. IEEE Computational Science & Engineering, 5(1):46–55,
1998.

[23] Samuel Z Guyer and Calvin Lin. An annotation language for optimizing software
libraries. ACM SIGPLAN Notices, 35(1):39–52, 2000.

[24] Syed Shabih Hasan, Farley Lai, Octav Chipara, and Yu-Hsiang Wu. Audiosense:
Enabling real-time evaluation of hearing aid technology in-situ. In 26th Interna-
tional Symposium on Computer-Based Medical Systems (CBMS), pages 167–172.
IEEE, 2013.

[25] Azeem J Khan, Kasthuri Jayarajah, Dongsu Han, Archan Misra, Rajesh Balan, and
Srinivasan Seshan. Cameo: A middleware for mobile advertisement delivery. In
Proceeding of the 11th International Conference on Mobile Systems, Applications,
and Services, pages 125–138. ACM, 2013.

[26] Sarfraz Khurshid, Darko Marinov, and Daniel Jackson. An analyzable annotation
language. In ACM SIGPLAN Notices, volume 37, pages 231–245. ACM, 2002.

[27] Mu Lin, Nicholas D Lane, Mashfiqui Mohammod, Xiaochao Yang, Hong Lu,
Giuseppe Cardone, Shahid Ali, Afsaneh Doryab, Ethan Berke, Andrew T Campbell,
et al. Bewell+: multi-dimensional wellbeing monitoring with community-guided
user feedback and energy optimization. In Proceedings of the conference on Wireless
Health, page 10. ACM, 2012.

[28] Emiliano Miluzzo, Nicholas D Lane, Kristóf Fodor, Ronald Peterson, Hong Lu,
Mirco Musolesi, Shane B Eisenman, Xiao Zheng, and Andrew T Campbell. Sensing

113

meets mobile social networks: the design, implementation and evaluation of the
cenceme application. In Proceedings of the 6th ACM conference on Embedded
Network Sensor Systems, pages 337–350. ACM, 2008.

[29] Prashanth Mohan, Venkata N Padmanabhan, and Ramachandran Ramjee. Nericell:
rich monitoring of road and traffic conditions using mobile smartphones. In Pro-
ceedings of the 6th ACM Conference on Embedded Network Sensor Systems, pages
323–336. ACM, 2008.

[30] Nima Nikzad, Octav Chipara, and William G Griswold. Ape: an annotation
language and middleware for energy-efficient mobile application development. In
Proceedings of the 36th International Conference on Software Engineering, pages
515–526. ACM, 2014.

[31] Nima Nikzad, Nakul Verma, Celal Ziftci, Elizabeth Bales, Nichole Quick, Piero
Zappi, Kevin Patrick, Sanjoy Dasgupta, Ingolf Krueger, Tajana Šimunić Rosing, and
William G. Griswold. Citisense: Improving geospatial environmental assessment of
air quality using a wireless personal exposure monitoring system. In Proceedings
of the Conference on Wireless Health, WH ’12, pages 11:1–11:8, New York, NY,
USA, 2012. ACM.

[32] Abhinav Pathak, Abhilash Jindal, Y Charlie Hu, and Samuel P Midkiff. What is
keeping my phone awake?: characterizing and detecting no-sleep energy bugs in
smartphone apps. In Proceedings of the 10th International Conference on Mobile
Systems, Applications, and Services, pages 267–280. ACM, 2012.

[33] Joseph Polastre, Jason Hill, and David Culler. Versatile low power media access for
wireless sensor networks. In Proceedings of the 2nd International Conference on
Embedded Networked Sensor Systems, pages 95–107. ACM, 2004.

[34] Dan Quinlan, Markus Schordan, Richard Vuduc, and Qing Yi. Annotating user-
defined abstractions for optimization. In 20th International Parallel and Distributed
Processing Symposium, 2006, pages 8–pp. IEEE, 2006.

[35] Lenin Ravindranath, Sharad Agarwal, Jitendra Padhye, and Chris Riederer. Pro-
crastinator: Pacing mobile apps’ usage of the network. In Proceedings of the 12th
Annual International Conference on Mobile Systems, Applications, and Services,
MobiSys ’14, pages 232–244, New York, NY, USA, 2014. ACM.

[36] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis
Ceze, and Dan Grossman. Enerj: Approximate data types for safe and general
low-power computation. In ACM SIGPLAN Notices, volume 46, pages 164–174.
ACM, 2011.

114

[37] Vaidyanathan Srinivasan, Gautham R Shenoy, Srivatsa Vaddagiri, Dipankar Sarma,
and Venkatesh Pallipadi. Energy-aware task and interrupt management in linux. In
Ottawa Linux Symposium, 2008.

[38] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. Soot-a java bytecode optimization framework. In Proceedings of
the 1999 conference of the Centre for Advanced Studies on Collaborative research,
page 13. IBM Press, 1999.

[39] Vasanth Venkatachalam and Michael Franz. Power reduction techniques for micro-
processor systems. ACM Computing Surveys (CSUR), 37(3):195–237, 2005.

[40] Fengyuan Xu, Yunxin Liu, Thomas Moscibroda, Ranveer Chandra, Long Jin,
Yongguang Zhang, and Qun Li. Optimizing background email sync on smartphones.
In Proceeding of the 11th International Conference on Mobile Systems, Applications,
and Services, MobiSys ’13, pages 55–68, New York, NY, USA, 2013. ACM.

[41] Wei Ye, Fabio Silva, and John Heidemann. Ultra-low duty cycle mac with scheduled
channel polling. In Proceedings of the 4th International Conference on Embedded
Networked Sensor Systems, pages 321–334. ACM, 2006.

	Signature Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Case Study: Composing a Power-Management Policy in a CRM Application
	Related Work
	Annotated Programming for Energy-Efficiency

	Annotated Programming for Energy-Efficiency
	APE Design Overview
	The APE Policy Model
	The APE Annotation Language

	The APE Runtime Service
	Evaluation
	Case Study: CitiSense
	System Evaluation

	Conclusion
	Acknowledgments

	Satisfying Delay Constraints
	Annotation Semantics
	Wait
	DelayableUpto
	Example

	Static Analysis and Run-time Monitoring
	Algorithms for Static Analysis and Monitoring
	Run-time Optimizations

	Policy Generation Engine
	Evaluation
	Accuracy of Policy Generation Engine
	Interaction of User Experience with Power Management
	Runtime Overhead

	Conclusion
	Acknowledgements

	Ensuring Timely Delivery of Delay-Sensitive Objects
	Annotation Semantics
	System Design and Implementation
	Budget Tracking
	Policy Evaluation

	Case Study
	NPR News
	CitiSense

	Experiments
	Power-Timeliness Trade-off
	Budget Tracking Overhead

	Conclusion
	Acknowledgements

	Conclusion
	Bibliography

