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Multi-objective observational constraint of
tropical Atlantic and Pacific low-cloud
variability narrows uncertainty in cloud
feedback

Mengxi Wu 1, Hui Su 1 & J. David Neelin 2

Tropical marine low cloud feedback is key to the uncertainty in climate
sensitivity, and it depends on the warming pattern of sea surface tempera-
tures (SSTs). Here, we empirically constrain this feedback in two major low
cloud regions, the tropical Pacific and Atlantic, using interannual variability.
Low cloud sensitivities to local SST and to remote SST, represented by lower-
troposphere temperature, are poorly captured in many models of the latest
global climate model ensemble, especially in the less-studied tropical
Atlantic. The Atlantic favors large positive cloud feedback that appears dif-
ficult to reconcile with the Pacific—we apply a Pareto optimization approach
to elucidate trade-offs between the conflicting observational constraints.
Examining ~200,000 possible combinations of model subensembles,
this multi-objective observational constraint narrows the cloud feedback
uncertainty among climate models, nearly eliminates the possibility
of a negative tropical shortwave cloud feedback in CO2-induced
warming, and suggests a 71% increase in the tropical shortwave
cloud feedback.

Tropical marine low clouds cool the Earth by reflecting ~ 100 Wm−2 of
insolation locally1. They have also been a long-standing major con-
tributor to the uncertainty in climate feedbacks and climate
sensitivity2–5. One approach to narrowing the uncertainty in the marine
low cloud feedback is through emergent constraints which associate
the long-term cloud feedback with some observable variables across a
model ensemble6. However, emergent constraints depend on the rela-
tionships of future projection and current climate in a specific model
ensemble7. For instance, some cloud-feedback emergent constraints
developed from the Coupled Model Intercomparison Project Phase 5
(CMIP5) fail in the latest phase, i.e., CMIP68. Here we instead develop a
priori constraints that do not rely on a specific model ensemble.

Recent observational and modeling studies show a clear depen-
dence of tropical marine low cloud feedback on the warming pattern

of sea surface temperatures (SSTs), i.e., the pattern effect9–13. The
underlying physics is associatedwith the weak horizontal temperature
gradient (WTG) effects in the tropical free troposphere14–16. When SST
in the ascent area rises, the tropical free tropospherewarms over large
regions through deep convection and gravity wave propagation17. The
free-tropospheric warming tends to strengthen the capping inversion
of the stratocumulus layer over cold ocean regions, which favors
increases in low cloud fraction (LCF)18–20. By contrast, when the SST
rises locally in themarine low cloud region, LCF decreases becauseof a
weakened inversion and additional moisture21–24. This dependence
leads to a varying feedback parameter during long-term CO2-induced
warming16,25–27.

The SST pattern effect has been explicitly or implicitly considered
in some cloud feedback constraints via cloud controlling factors (CCF)
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measuring lower-tropospheric stability (LTS28,) or the estimated
inversion strength (EIS21,28–31,). However, EIS blends the signal of local
SST and the free-troposphere temperature controlled by ascent areas,
which complicates the attribution of local versus remote cloud
feedbacks.

In this study, we aim to exploit regional information in climate
model simulation of the two major stratocumulus regions — the tro-
pical Pacific and Atlantic — compared to observations. We examine
some well-known CCFs, including SST, EIS, humidity, subsidence, and
free-troposphere temperature from satellite observations, atmo-
spheric reanalysis and CMIP6 historic experiments, and find sub-
stantial differences between the physics in two regions. Instead of
assigning arbitrary weighting to the two regions, we apply a multi-
objective optimization approach based on Pareto optimality to assess
the model performance against the observed sensitivity of shortwave
cloud radiative effect (SWCRE) to selected CCFs. This approach allows
us to objectively down-weight models that do poorly against obser-
vations in both regions while retaining those that perform well in a
Pareto-optimal sense among multiple observational constraints. We
combine this evaluation with a Bayesian approach to derive an a priori
constraint of the long-term tropical shortwave cloud feedback (SWCF)
that does not rely on a specific model ensemble from the models’
quadrupled CO2 warming experiments. Finally, we compare results to
traditional emergent constraints that tend to encounter incompat-
ibility among multiple objectives.

Results
Identification of cloud controlling factors related to local and
remote warming
Satellite observations show that the tropical Southeastern Pacific
(SEPac) and the tropical Southeastern Atlantic (SEAtl) are the two lar-
gest marine stratocumulus regions on Earth (Supplementary Fig. 132).
In both regions, the LCF decreases when the local SST rises while it
increases when the tropical ascent area SST (defined inMethods) rises.
As marine stratocumulus clouds strongly reflect sunlight, SWCRE
changes accordingly with these respective SSTmeasures, i.e., a greater
cooling effect when LCF is greater.

We decompose the observed interannual cloud sensitivities to
local and ascent area SST into different CCFs: local SST, lower-
troposphere temperature at 700mb (T700), subsidence rate at 500mb
(ω500) and relative humidity of the boundary layer (925mb, RH925) and
the lower free troposphere (700mb, RH700). Although we do not
explicitly include EIS as an independent CCF in the multivariate linear
regression analysis, the relevant information can be derived from the
temperature and humidity variables. Despite the differences in the
magnitudes, both stratocumulus regions show similar contributions
from the selected CCFs (Fig. 1). Obviously, the cloud sensitivity to local
SST is predominantly contributed by local SST as a CCF. Regarding the
sensitivity to ascent area SST, the contribution from T700 accounts for
the majority while RH700 plays the second largest yet statistically
insignificant role and partially compensates for the T700 effect. This

)b()a(

(c)

Fig. 1 | Contributions from selected cloud controlling factors (CCFs) to low
cloud sensitivities to local and ascent area sea surface temperature (SST)
variability. Contributions from CCFs to the sensitivities of (a) low cloud fraction
(LCF) or (b) shortwave cloud radiative effect (SWCRE) in the Southeastern Pacific
(SEPac) and Southeastern Atlantic (SEAtl) stratocumulus regions. Error bars
representing one standard error in ordinary-least-square linear regression are only
shown for major CCF components, i.e., SST (red) for local temperature and air

temperature at 700mb (T700, orange) and relative humidity at 700mb
(RH700, blue) for ascent area temperature. Other CCFs include relative humidity
at 925mb (RH925, purple) and subsidence rate at 500mb (ω500, brown).
c Locations of stratocumulus regions (gray contours) and the correlation
map between T700 anomalies of each grid box (T700

local) and average
T700 anomalies of ascent areas (T700

ascent). Source data are provided as a
Source Data file.

Article https://doi.org/10.1038/s41467-024-53985-w

Nature Communications |          (2025) 16:218 2

www.nature.com/naturecommunications


result is consistent with a positive correlation in T700 anomalies
between the two stratocumulus regions and the ascent area mean SST
(Fig. 1c), and a higher T700 tends to favor more low clouds by
strengthening the capping inversion. Therefore, local SST andT700 can
be chosen as a minimal set of CCFs that represent the low cloud
changes due to a patterned SST variation in coldmarine stratocumulus
regions and warm ascent regions.

Negative linear relationship between SWCRE sensitivities to SST
and T700

In the following analysis, we focus on a simple bivariate linear regres-
sion model of SWCRE variations with local SST and T700 anomalies:

4SWCRE SSTlocal, T700

� �
=
∂SWCRE
∂SSTlocal

4SSTlocal +
∂SWCRE
∂T700

4T700 + ξ

ð1Þ

ξ is a random error. For simplicity, we omit the subscript of
SSTlocal in this linear regression hereafter. The SWCRE sensitivities to
SST and T700 are estimated for both observations (best estimates and
one standard error computed from the ordinary-least-square (OLS)
linear regression in horizontal and vertical orange bars) and CMIP6
models (colored dots) in Fig. 2 and Supplementary Table 1. Broadly
speaking, models with a high equilibrium climate sensitivity (ECS >
4.5 K, in stars) often have a higher SWCRE sensitivity towarming, while
low-ECS models (ECS < 3 K, in diamonds) tend to have a lower SWCRE
sensitivity. Becausemulti-model averages often outperform individual
models33,34, we also generate all possible 5-member model sub-
ensembles allowing repetitions (gray dots; n = 201,376) to explore the
variable space of weighted multi-model averages in place of assump-
tions of normal distributions like in ref. 35. Here the subensemble size,
5, is chosen to be sufficiently large (Supplementary Fig. 2) and com-
putationally reasonable for the Pareto optimization approach in the
next section, following36,37.

Subensembles in Fig. 2 are shaded based on their likelihood with
respect to observations (Methods), and this likelihood is later used as
weighting to update the probability distribution of long-term tropical
SWCF constrained by individual stratocumulus regions. The darker a
subensemble dot is, the better it agrees with observations in this
regional-average measure. In both stratocumulus regions, there is a
significant negative linear relationship between dSWCRE/dSST and
dSWCRE/dT700 among the CMIP6models, and we fit it with a solid line
passing through the origin.

EIS38 and the estimated cloud-top entrainment index (ECTEI39,) are
two widely-used CCFs that condense multiple meteorological para-
meters and link the LTS with low cloud amount. Both metrics are
primarily built upon the potential temperature difference between the
surface and the lower free troposphere, and ECTEI further includes the
effect of the specific humidity gradient between the boundary layer
and the free troposphere. They can be both linearized as functions of
local SST, T700 and other secondary parameters (see Methods):

4EIS=
∂EIS

∂SSTlocal
4SSTlocal +

∂EIS
∂T700

4T700 + f otherð Þ ð2Þ

4ECTEI =
∂ECTEI
∂SSTlocal

4SSTlocal +
∂ECTEI
∂T700

4T700 + g otherð Þ ð3Þ

Here f and g are functions of secondary parameters, such as
relative humidity, and are independent of the variations in local SST
and T700. The ratios of the SST coefficient to the T700 coefficient in the
linearized formula are also plotted in Fig. 2 in dashed lines. These lines
are equivalent to linear regression lines if the corresponding CCFs are
linear to SWCRE and the secondary factors can be approximated as
random errors.

In SEPac, the negative linear relationship among CMIP6 models is
strong (r = −0.82), and is consistent with the observational estimates.
The linear fitting line is also close to the ECTEI line. Because EIS does
not account for the specific humidity effect which further destabilizes
the lower troposphere when the surface is warm39,40, the ratio of
dSWCRE/dSST to dSWCRE/dT700 along the EIS line is underestimated
compared with other estimates. Regarding the exact magnitudes of
the SWCRE sensitivities to SST and T700, BCC-CSM2-MR and MPI-
ESM1.2-HR show best performance compared with the observation.
The CESM2 family and E3SM-1.0 are the onlymodels that overestimate
the SWCRE sensitivities, while many more models underestimate the
sensitivities. IITM-ESM and MIROC6 even have signs opposite to the
observation and other models. The best subensembles can lie within
the error bars of the observations for these regional-averagemeasures.

A weaker yet significant (α =0.01) negative relationship exists
among CMIP6 models in SEAtl (r=−0.47). The linear fitting line for the
models is again consistent with observations. However, both the ECTEI
and EIS lines underestimate the ratio of dSWCRE/dSST to dSWCRE/
dT700, whichmeans that the low clouds there aremore sensitive to local
warming relative to ascent area warming than theories due to neglected
processes, e.g., latent heat flux and wind speed (Supplementary
Note 122,41). Hence, SEAtl is likely to be less sensitive to the SST warming
pattern as the low cloud changes are dominated by local surface con-
ditions. This inter-basin difference between SEPac and SEAtl may be
associatedwith the spatial pattern of theWTGapproximation suggested
by the T700 correlation map (Fig. 1c). Almost all models except CESM2
systematically underestimate the magnitudes of the SWCRE sensitivity
to local SST in the Atlantic, leading to limited improvement from sub-
ensembles. By contrast, CESM2 agrees well with the observations.

Multi-objective observational constraint on tropical low cloud
feedback using Pareto optimization
The combined performance of a model or a subensemble in simulating
the cloud sensitivities to SST and T700 can be measured by the distance
between the model and observations in Fig. 2 (or more accurately, the
RMSE defined in Methods). These RMSE measures are summarized in
Fig. 3. The objective is to minimize the model errors in both basins.
However, it is notable that the bestmodels or subensembles in SEPac are
different from the best ones in SEAtl. In order to objectively weigh the
trade-off between the model performance in the two basins, we apply a
Pareto optimization approach developed in refs. 36,37 which is suitable
for two or more independent objectives (Methods). The concept of
Pareto optimality means that the measure of one objective cannot be
further improved without degrading another objective. In Fig. 3b, the
red dots in the lower left corner are those subensembles forming the
Pareto-optimal set, i.e., the set for which no further error reduction can
be achieved simultaneously in both basins. Relative to the originalmulti-
model mean, the Pareto-optimal mean SWCRE sensitivities to local SST
and T700 not only agree better with observations but also have smaller
standard deviations (Fig. 4 and Supplementary Fig. 3). This Pareto
optimization approach is thus capable of reducing the model bias and
narrowing themodel spread. The orange hatching in Fig. 3b extends the
Pareto-optimal set by including uncertainty in observational estimates
(95% confidence interval, illustrated by the fan shapes in Fig. 3a). All 28
models are located outside the hatched area, but low-ECS models (in
diamonds) usually have higher RMSEs than medium- and high-ECS
models (in squares and stars). SAM0-UNICON, CanESM5, MRI-ESM2.0
and CMCC-CM2-SR5 are the models closest to the hatched area, i.e.,
close to being within the observational uncertainty. Overall, the spread
of the points yields a trade-off between models and subensembles that
perform better in one basin and those that perform better in the other.

Based on the concept of Pareto optimality, we assign weights to
every subensemble and every model (Fig. 3c and Methods). This
weight is associated with the probability density function (PDF) com-
puted from the closest point within the Pareto-optimal set which
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considers observational uncertainty. Points near the Pareto-optimal
set have a higher PDF andhenceweight, illustratedwith a cross-section
in the inset. The weighting is also consistent with the observational CI
in Fig. 3b. The weights will be used to update the probability dis-
tribution of long-term tropical SWCF with a Bayesian approach
(Methods).

The tropical SWCF of each subensemble is estimated using the
ratio of tropical SWCRE change to the global mean surface tempera-
ture rise in the first 150 years of the abrupt-4xCO2 experiment. This
simple estimate agrees reasonably well with the tropical SWCF esti-
mated from a radiative kernel (Supplementary Fig. 45). The probability
distribution of the feedback among original models (blue in Fig. 5)
appears relatively uniform across the range of −0.4 ~ 0.8 Wm−2K−1. By

contrast, the subensembles have a Gaussian probability distribution
with a peak at 0.21 Wm−2K−1 (purple).

The probability distribution is updated with observational con-
straints in multiple ways, including two multi-objective Pareto con-
straints and two single-basin constraints. For the first one, hereinafter
referred to as the Pareto-PDF constraint, we use the PDF-basedweights
in Fig. 3c for each subensemble (orange). Additionally, we adjust the
weights by assuming a uniformprior probability distribution in the 2-D
phase space in Fig. 3 so that the similarity among subensembles is
properly accounted for (Methods). For the second one, hereinafter
referred to as the Pareto-set constraint (brown),we simply exclude any
subensemble outside the 95% CI of the Pareto-optimal set. These two
methods provide very similar results: the peak becomes 71% higher at

Fig. 2 | Sensitivities of shortwave cloud radiative effect (SWCRE) to local
sea surface temperature (SST) and air temperature at 700mb (T700).
a Southeastern Pacific (SEPac), and (b) Southeastern Atlantic (SEAtl) stratocumulus
regions are defined in Fig. 1c. Best estimates and one standard error of observational
sensitivities from ordinary-least-square linear regression is shown in horizontal and
vertical orange bars. CMIP6 models are plotted in colored dots (stars for models
with high equilibrium climate sensitivity, a.k.a., ECS, squares for medium-ECS

models, and diamonds for low-ECS models; ECS values given in parenthesis in
legends). Gray dots represent all possible 5-membermodel subensembles generated
from the 28 CMIP6 models, and the darkness of each dot represents the likelihood
with respect to the observations (Methods). Additional lines include the best linear
fit of original models passing through the origin (solid), and the theoretical lines
derived from the estimated cloud-top entrainment index (ECTEI, dashed) and esti-
mated inversion strength (EIS, dotted) as cloud controlling factors.
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0.36 Wm−2K−1, and the variance decreases compared with original
subensembles. Both multi-objective Pareto constraints more than tri-
ple the probability of a large positive tropical SWCF (>0.5 Wm−2K−1)
from 5% to 18%. Although the CESM2 model family tends to occupy a
particular part of Fig. 3 (high Pacific error, medium Atlantic error),
excluding all CESM2-family models has little effect on the Pareto-
optimal set and thus on overall conclusions (Supplementary
Figs. 5 and 6).

The last two observational constraints are single-basin constraints
assuming a uniform prior probability distribution in the 2-D phase space
in Fig. 2 and using the PDFs from the same figure as weights. The SEPac

constraint leads to a smaller yet positive shift in the SWCF distribution
(green). The SEAtl constraint results in the largest positive shift in the
probability distribution. Therefore, the multi-objective constraints
effectively mediate the different results of single-basin constraints, but
the variance is greater than any single-basin constraint. All four obser-
vational constraints nearly eliminate the probability of a negative tro-
pical SWCF, similar to the conclusion from refs. 22,31.

For a brief comparison with traditional emergent constraints
based on a significant linear relationship between the interannual
SWCRE sensitivity and the long-termSWCF, wemake Fig. 6. Significant
positive correlations are found between the interannual sensitivity of

Fig. 3 |Model performance relative toobservations in the Southeastern Pacific
(SEPac) and Southeastern Atlantic (SEAtl) stratocumulus regions. Model-
observation root mean squared errors (RMSE) with respect to the shortwave cloud
radiative effect (SWCRE) sensitivities to local sea surface temperature and air tem-
perature at 700mb (Methods) for 28 CMIP6 models (colored dots; stars for models
with high equilibrium climate sensitivity, a.k.a., ECS, squares for medium-ECS mod-
els, and diamonds for low-ECS models) and 5-member model subensembles (gray
dots). a Schematic illustrating the generation of subensembles and propagation of
confidence interval (CI) from the Pareto-optimal set (red dots). Dark gray dots

represent subensembles based on four randomly chosen models (marked by a curly
brace in the legend) to illustrate subensemble construction. Fan shapes schematically
indicate observational uncertainty of individual points in the Pareto-optimal set. The
orange hatched region indicates subensembles within the observational uncertainty
(95% confidence interval) of the Pareto-optimal set, which is also the envelope of all
fan shapes. In (b), all the 28 CMIP6 models and the 95% CI of the Pareto-optimal set
(orange hatching) are plotted, similar to (a). In (c), all subensembles are colored
based on their multi-objective Pareto probability density function (PDF). The inset
shows a cross-section (solid blue line) of the Pareto PDF.

Article https://doi.org/10.1038/s41467-024-53985-w

Nature Communications |          (2025) 16:218 5

www.nature.com/naturecommunications


SWCRE to local SSTs and T700 in each basin and the long-term tropical
SWCF across the 28 CMIP6 models, which justifies our observational
constraint purely based on these two regions. However, traditional
emergent constraints suggest an even stronger tropical SWCF than the
constraints described in Fig. 5, especially when considering the SEAtl
constraint. This difference is partly due to the fact that subensemble
averages used in the multi-objective constraint cannot extrapolate
outside the variable range, such as the SWCRE sensitivity (Fig. 2).

Implications for equilibrium climate sensitivity
Given a radiative forcing (e.g., doubling atmospheric CO2 concentra-
tion), the equilibrium surface air temperature change is inversely pro-
portional to the net negative feedback of the Earth system (e.g., ref. 42).
With the multi-objective observational constraints (Fig. 5), we derive a
more positive tropical SWCF in CMIP6 abrupt-4xCO2 experiments
compared with the original value. This result implies a possibly less
negative net climate feedback and a higher ECS, if the effective radia-
tive forcing and all other feedbacks are held constant. Furthermore, an
observational constraint favoring more positive tropical SWCF may

potentially increase the multi-model extratropical SWCF simulta-
neously, because of a positive correlation between tropical and extra-
tropical cloud feedbacks among the CMIP6 models43.

In this study, we focus on constraints for the marine stratocu-
mulus feedback which is underestimated and contributes to a source
of negative ECS bias in CMIP6 models. However, we underline that
other processes beyond the scope of this study may cause a positive
ECS bias44–46, such as the cumulus feedback30 or other components of
the Earth system including vegetation47 and cryosphere48.

In addition, the high tropical cloud feedback in our results rely on
the reduction of the Pacific zonal SST gradient simulated by CMIP6
models. However, ref. 31 pointed out that this expected SST gradient

Fig. 4 | Model performance with respect to the observed shortwave cloud
radiative effect (SWCRE) sensitivity to local sea surface temperature (SST) in
the Southeastern Pacific (SEPac) and Southeastern Atlantic (SEAtl) stratocu-
mulus regions.Model-observation root mean squared error (a, c) caused by the

SWCRE sensitivity to local SST (Methods) and its standard deviation (b, d) for the
simple multi-model mean (a, b) and the Pareto-optimal set (c, d) defined in Fig. 3.
For a fair comparison, the standard deviations (SD) in (b) are scaled by the square
root of subensemble size (n = 5) following the central limit theorem.

Fig. 5 | Probability distribution of tropical shortwave cloud feedback (SWCF)
among all CMIP6 models and subensembles. The probability distribution from
original subensembles (purple) is updated usingmulti-objective Pareto constraints
(orange and brown) and single-basin constraints (cyan and red).

Fig. 6 | Traditional emergent constraints of tropical shortwave cloud feedback
(SWCF) using single-basin interannual sensitivity of shortwave cloud radiative
effect (SWCRE) to local sea surface temperature (SST) and air temperature at
700mb (T700). Individual CMIP6 models are plotted in scatter points and linear
regression lines (significant at the level of 0.01) are drawn. The horizontal bars
indicate the best estimates and one standard error from the bivariate linear model
(Eq. 1) using observational data. Blue and orange represent the regression coeffi-
cients for Southeastern Pacific (SEPac) and Southeastern Atlantic (SEAtl) strato-
cumulus regions, respectively. The emergent constraint on tropical SWCF can be
visually derived from the intersection of the regression line and the observational
estimate on the y-axis. For comparison, the probability density function (PDF) of
tropical SWCFupdatedusing themulti-objective Pareto constraint (orange curve in
Fig. 5) is plotted on the right axis.
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reduction did not occur over the past few decades, implying possible
overestimation of the SSTwarming pattern change. If warming ismore
uniform between cold stratocumulus regions and warm ascent areas,
our estimates (Fig. 1) would suggest a much lower or even negative
tropical low cloud feedback.

Discussion
Compared with previous studies which also utilized observations to
constrain the marine low cloud feedback (e.g., refs. 30,31), one sig-
nificant difference in our work is the choice of CCFs (local SST and
T700) that explicitly consider the influence of the surface warming
pattern. Instead of EIS which blends the local warming and free-
troposphericwarming (Supplementary Fig. 7), T700 isweakly related to
local surface temperature changes but mainly determined by remote
ascent area through deep convection and the WTG. This clear
separation between surface and free-tropospheric influence over low
clouds helps identify model deficiencies in a 2-D phase space (Fig. 2),
which is more relevant in the context of an evolving SST warming
pattern during anthropogenic climate change. Nonetheless, when
used as a regressor in a bivariate linear regressionmodel together with
SST (Eq. 1), EIS and T700 generate similar reconstructed time series of
interannual SWCRE anomalies as the response variable (Supplemen-
tary Fig. 8). This is because T700 accounts formost of the EIS variability
when SST is held constant.

Observational constraints of climate feedbacks and ECS can be
done in various ways, from directly extrapolating physical para-
meters from interannual variations to long-term warming (e.g.,
ref. 30) to finding a specific linear relationship across a multi-model
ensemble for an emergent constraint. Noticing the regional differ-
ence in the low cloud dynamics (Fig. 2) and the trade-off between
model errors in SEPac and SEAtl (Fig. 3), we apply the Pareto multi-
objective optimization approach for an objective weighting between
the two marine stratocumulus regions. This approach retains the
spatial information and reduces both the model error and its stan-
dard deviation relative to the original CMIP6 model ensemble
(Fig. 4). Subensembles used in this approach provides additional
advantages, as they are able to performbetter than individualmodels
(closer to the Pareto-optimal set in Fig. 3b) and the similarity
between subensembles can be easily accounted for. These advan-
tages enable more robust estimates of the multi-model SWCF when
the observational constraint is applied. In future studies, this
approach can be easily extended to include other independent
observational constraints, e.g., cumulus feedback which climate
models are known to overestimate30,31.

Previous SST pattern effect studies usually focus on SEPac while
overlook the contributions from SEAtl (e.g., refs. 17,23,25,). Here we
disclose a clear inconsistency among observations, climate models
and theories in SEAtl regarding the low cloud sensitivities to surface
and tropospheric warming (Fig. 2). As theories, both EIS and ECTEI
attempt to account for the influence of the boundary layer and the
lower free troposphere over low clouds based on specific hypoth-
eses, but these hypotheses may not work well everywhere. In parti-
cular, ECTEI agrees well with the observation and models in SEPac
while it underestimates the local SST influence relative to the T700

influence in SEAtl. We expect some modifications in the ECTEI for-
mula when the low cloud processes in the Atlantic are
better understood in the future. Although CMIP6 models are con-
sistent with the observation in SEAtl with respect to the ensemble
linear fit, they systematically underestimate the cloud sensitivities to
local SST.

Methods
Observational dataset
Observational low cloud fraction (LCF) and shortwave cloud radia-
tive effect (SWCRE) are derived from the Clouds and the Earth’s

Radiant Energy System (CERES) SYN1deg-Month Ed4.1 product49,50

during 2001–2014. These top-of-atmosphere (TOA) radiative fluxes
and cloud properties are collected by the sensors CERES and MODIS
onboard two polar-orbiting satellites, Terra and Aqua. Data are
downloaded as monthly time series on a 1°x1° geographic grid.
SWCRE is computed as the difference between all-sky and clear-sky
TOA shortwave fluxes.

Observational cloud controlling factors (CCFs), including sea
surface temperature, air temperature, relative humidity, and vertical
velocity at specific pressure levels, are extracted from the fifth gen-
eration of the European Center for Medium-Range Weather Forecast
(ECMWF) reanalysis (ERA5)51 as monthly time series on a 0.25°x0.25°
geographic grid during the same period. These meteorological fields
are re-interpolated to match the CERES 1°x1° grid.

The climatology is subtracted to get monthly anomalies of all
observational variables.

Global climate models
Monthly outputs from 28 CMIP6 models (listed in Supplementary
Table 2) are analyzed. In addition to sea surface temperature and air
temperature, SWCRE is computed as the difference between all-sky
and clear-sky TOA upwelling shortwave radiation. For the historical
period during 1979–2014 and the CO2-induced long-term warming,
single realizations from AMIP and abrupt4xCO2 experiments are used,
respectively.

For AMIP experiments, only the period overlapping with obser-
vations are analyzed, and the climatology is subtracted to get monthly
anomalies of all variables, similar to the treatment of observational
data. For abrupt4xCO2 experiments, tropical or global SWCF is simply
estimated as the ratio of SWCRE change to global mean sea surface
temperature change from the first 30 years (Year 1–30) to the last 30
years (Year 121–150). This simple estimate of global SWCF agrees rea-
sonably well (Supplementary Fig. 4) with more accurate results that
apply a radiative kernel to the anomalies in abrupt4xCO2 experiments
relative to their corresponding preindustrial control (piControl)
simulations5. ECS values of all the models are given in ref. 46 as
“ECS150.”We usually use different symbols when plottingmodels with
different ECS levels (stars for ECS > 4.5 K, squares for 3 K < ECS < 4.5K,
and diamonds for ECS < 3K).

Tropical marine stratocumulus region and ascent region
For the analyses of both observations and model outputs, the tropical
(30°N − 30°S) marine stratocumulus regions are defined as locations
where the stratocumulus fraction is over 50% in the CloudSat-CALIPSO
CASCCAD dataset32. We focus on the two largest contiguous strato-
cumulus regions identified using this criterion, namely the South-
eastern Pacific (SEPac), and the Southeastern Atlantic (SEAtl). Both
regions are located off the western coast of continents (Fig. 1c).

We define the tropical ascent region by a negative climatological
ω250, i.e., a climatological ascent at 250mb.

Contribution from CCFs to the low cloud sensitivity to local and
ascent area SSTs
The contribution is computed from the observed interannual varia-
bility of low cloud and CCFs. First, regional mean monthly LCF and
SWCRE anomalies are regressed on local mean and remote ascent area
mean SST anomalies.

4C =
dC

dSSTlocal
4SSTlocal +

dC

dSST?
ascent

4SST?
ascent + ε ð4Þ

Here C is the cloud variable, either LCF or SWCRE. In order to
eliminate the correlation between local and ascent area SST on the
interannual scale, the ascent area SST in Eq. 4 is replaced by the
orthogonal component of ascent area SST anomalies (4SST?

ascent) after
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regressing against 4SSTlocal (i.e., 4SSTascent �4SST?
ascent / 4SSTlocal).

This treatment effectively assumes that the collinear component
between 4SSTlocal and 4SSTascent is all due to the local effect, so the
remote SST effect may be underestimated.

The amount of marine low clouds can be well predicted by a
set of CCFs (e.g., ref. 21). In this study, we chose five CCFs: local
SST, lower-troposphere temperature at 700mb, subsidence rate
at 500mb (ω500) and relative humidity of the boundary
layer (925mb) and the lower free troposphere (700mb), respec-
tively. Hence, the low cloud anomalies can be written in a linear
equation, assuming the linear coefficients are insensitive to the cli-
mate state.

4C =
X
CCF

∂C
∂CCF

4CCF+ ξ ð5Þ

By computing the derivative of Eq. 5 with respect to SSTlocal or
SST?

ascent, the cloud sensitivity to SSTlocal or SST?
ascent is linearly

decomposed into contributions from different CCFs.

dC
dSSTlocal

=
X
CCF

∂C
∂CCF

dCCF
dSSTlocal

ð6Þ

dC

dSST?
ascent

=
X
CCF

∂C
∂CCF

dCCF

dSST?
ascent

ð7Þ

Each term on the right-hand side represents the net contribution
of a specific CCF to the cloud sensitivity to local or ascent area SST
anomalies, and is plotted in Fig. 1. Because LCF and SWCRE anomalies
vary in opposite signs, the decomposition results are also expected to
be in opposite signs. When using the ordinary least square method to
solve the regressions, it can be shown that there are no residual terms
in these two decomposition equations.

Sensitivities of SWCRE, EIS and ECTEI to SST and T700

In the main text, we have shown a bivariate linear regression model
that treats the SWCRE variation as a function of SST and T700

anomalies. For a low cloud index like EIS and ECTEI, it can also be
written as a function of these two variables, assuming other factors
play aminor role. Then we can linearize the formula of the index, I (EIS
or ECTEI):

4I SSTlocal, T700

� �
=

∂I
∂SSTlocal

4SST+
∂I

∂T700
4T700 + ξ ð8Þ

The two linear coefficients can be approximated using the
definitions of EIS and ECTEI together with a few typical meteor-
ological parameters (relative humidity r and saturation
specific humidity q* near the surface and at 700mb) in SEPac and
SEAtl.

∂EIS
∂SSTlocal

= � 0:94 ð9Þ

dEIS
dT700

= 1:11 ð10Þ

∂ECTEI
∂SSTlocal

= � 0:94� 40rsq
*
s ð11Þ

dECTEI
dT700

= 1:11 + 40r700q
*
700 ð12Þ

If the low cloud index, I, is proportional to SWCRE, we will get:

∂I
∂SSTlocal

∂I
∂T700

=

∂SWCRE
∂SSTlocal

∂SWCRE
∂T700

ð13Þ

Therefore, if a straight line defined by the linear coefficients of I
passes through the model points defined by the linear coefficients of
SWCRE in Fig. 2, it would indicate a good linear relationship between
the low cloud index, I, and SWCRE variations. This type of agreement
between the theory and CMIP6 models is seen for ECTEI in
SEPac (Fig. 2a).

The uncertainty in observational linear coefficients is estimated
using bootstrapping. Samples (n = 1000) are generated by randomly
sampling (with replacement) months from the observational monthly
anomaly time series, and the linear regression is repeated for each
bootstrap sample. A bivariate joint normal distribution of the SST and
T700 coefficients is constructed in this way, and then the probability
density of all models and model subensembles in Fig. 2 can be com-
puted from this joint normal distribution. This probability density is
used as weighting to update the tropical shortwave cloud feedback in
the next sections.

Measurement of the model-observation difference in SWCRE
sensitivities
We define the model error in SWCRE sensitivities by a combined root-
mean-square error:

RMSE

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

mn

X
space

kmodel
SST � kobs

SST

� �2 X
time

ΔSSTlocal
2 + kmodel

T700
� kobs

T700

� �2 X
time

ΔTmodel
700

2
" #vuut

ð14Þ

kSST =
∂SWCRE
∂SSTlocal

ð15Þ

kT700
=
∂SWCRE
∂T700

ð16Þ

Here each data point from the space-time matrix is treated as
independent sample points and then averaged, and m and n
represent the number of data points along the space and time
dimensions, respectively. The formula of the RMSE shows that it is
the root mean square of the standard deviations of SST and T700

scaled by the model-observation differences in the SWCRE sensi-
tivities across all spatial points within a stratocumulus region, which
are plotted in Fig. 4 as a spatial map. One way to conceptualize this
error measure is the Euclidean distance between the model and the
observation in Fig. 2 weighted by the respective amplitudes of
interannual variations in SST and T700, although the spatial infor-
mation is omitted in Fig. 2 which uses the regional mean anomalies
instead.

We further consider the uncertainty of the RMSE measures
resulting from the uncertainty in observational sensitivities due to the
linear regression. Bootstrap samples (n = 1000) are generated by ran-
domly shuffling the time steps of themonthly anomaly time series, and
the RMSE computation is repeated for each bootstrap sample. The
probability distribution of the RMSE estimates from these bootstrap
samples is approximatedwith a joint normal distribution, and then the
95% confidence interval (CI) of the RMSE value for each subensemble
can be computed.
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Constructing the Pareto-optimal set from subensembles
The RMSE defined in the last sectionmeasures themodel performance
in simulating the dependence of SWCRE on local SST and T700 in a
single stratocumulus region. In Fig. 3, we clearly see a trade-off
between a better simulated SEPac and a better simulated SEAtl. Hence,
we apply a Pareto optimization approach following refs. 36,37 to
handle this multi-objective optimization problem.

We make full use of the ~200,000 5-member subensembles
generated from the 28 CMIP6 models. We repeat the RMSE compu-
tation to evaluate the performance of each subensemble in Fig. 3.
There is a higher density of data points near the center of the data
cloud and a lower density towards the boundary (Supplemen-
tary Fig. 9).

The concept of Pareto optimization means that the error in one
dimension cannot be further reduced without lowering the perfor-
mance in another dimension. Therefore, the Pareto-optimal set, con-
sisting of red points near the lower left corner in Fig. 3 represent the
best we can do by linearly combining differentmodels. As explained in
the previous section, the observational uncertainty of each point
within the Pareto-optimal set can be approximated by a joint normal
distribution. Therefore, the 95% CI of each point is represented by an
ellipse, and the selectedwedges drawn in Fig. 3a help illustrate the part
of these confidence ellipses that contains other subensembles. The
union of all thesewedges along the Pareto-optimal set forms the entire
95% CI of the Pareto-optimal set.

Weighting of every subensemble
Subensembles in Fig. 3 are weighted based on their best proximity to
any points within the Pareto-optimal set in a probabilistic sense. Spe-
cifically, we define the weight in twoways. The first solution is a simple
two-value weighting based on whether the subensemble falls within
the 95% CI of the Pareto-optimal set. This solution is associated with
the “Pareto-set constraint” in Fig. 5, and is given by the following
equation.

wi =
0, subensemble ioutside the 95%CI

1, subensemble i inside the95%CI

�
ð17Þ

In the second solution, we again use the estimated bivariate joint
normal distribution of individual Pareto-optimal subensembles
described in previous sections. For every other subensemble, its
weight is chosen as the maximum probability density among all the
normal distributions derived from the Pareto-optimal set. In other
words, we first compute the probability density of any subensemble i
with respect to one Pareto-optimal subensemble j. Then the weight of
the subensemble i is the maximum probability density among all
Pareto-optimal subensembles.

wi = max
j

PDFðijjÞ ð18Þ

These two solutions provide similar results in Figs. 3 and 5.

Bayesian updates of SWCF using observational constraints
The probability distribution of long-term SWCF among all sub-
ensembles is updated using different observational constraints (Fig. 5).
Similar to ref. 35, the posterior probability distribution of the SWCF is
approximated with a weighted mean across all subensembles:

PDF λjObsð Þ /
X
i

wiλi

However, our approach combines Bayesian methods and Pareto
optimization, which objectively handles the trade-off between multi-
ple observational constraints and down-weights models that perform
poorly in every aspect. Theweight of each subensemble represents the

degree to which it agrees with observations and the Pareto-optimal
subensembles, as described in the section “Weighting of every
subensemble”.

We also account for the similarities among subensembles by
choosing reasonable prior probability distribution. For the single-basin
constraints using SEPac and SEAtl observations, we assume a uniform
prior probability distribution in the 2-D phase space in Fig. 2. Then, the
contribution of each subensemble to the weighted mean is divided by
the local density of data points, computed using small search neigh-
borhoods. Here, we use a search radius of 5% of the range of the data
points as measured by the longest line segment that fits within the
cloud of points. This step prevents over-counting of subensembles
with similar SWCRE sensitivities to both SST and T700. For the multi-
objective Pareto constraints, we assume a uniform prior probability
distribution in the 2-D phase space in Fig. 3. Similarly, the contribution
of each subensemble to the weighted mean is divided by the local
density of data points.

Data availability
Observational cloud and radiation data are available from the Clouds
and Earth’s Radiant Energy System (CERES) SYN1deg-Month Ed4.1
product49,50 and the website (https://ceres-tool.larc.nasa.gov/ord-
tool/jsp/SYN1degEd41Selection.jsp). Sea surface temperature, air
temperature, relative humidity, and vertical velocity at specific
pressure levels, are available from ERA5 reanalysis51 and the website
(https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5).
Stratocumulus fraction is available from the CloudSat-CALIPSO
CASCCAD dataset32 and the website (https://data.giss.nasa.gov/
clouds/casccad/). CMIP6 model outputs for the historical period
during 1979–2014 and the CO2-induced long-term warming are
available from Program for Climate Model Diagnosis and Inter-
comparison (PCMDI/LLNL) portal (https://pcmdi.llnl.gov/CMIP6/).
ECS values of all the models are given in ref. 46 as “ECS150.”. Source
Data for Fig. 1a, b are provided with this paper. All necessary data to
reproduce the rest of the figures are provided in Code Ocean: https://
doi.org/10.24433/CO.4283391.v152. Source data are provided with
this paper.

Code availability
The code for this paper is available in Code Ocean: https://doi.org/10.
24433/CO.4283391.v152.
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