
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Pattern-Based Data Mining on Diverse Multimedia and Time Series Data

Permalink
https://escholarship.org/uc/item/0nm5g0vm

Author
Campana, Bilson Jake

Publication Date
2012

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0nm5g0vm
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

RIVERSIDE

Pattern-Based Data Mining on

Diverse Multimedia and Time Series Data

A Dissertation submitted in partial satisfaction

of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Bilson Jake Campana

December 2012

Dissertation Committee:

Dr. Eamonn J. Keogh, Chairperson

Dr. Walid Najjar

Dr. Victor Zordan

Copyright by

Bilson Jake Campana

2012

The Dissertation of Bilson Jake Campana is approved:

 Committee Chairperson

University of California, Riverside

iv

Acknowledgements

I would like to begin by thanking my great friend and advisor, Dr. Eamonn

Keogh. Over the years he has taught me priceless skills for both research and everyday

life. He has forever changed the course of my life and helped me achieve a level of

success that I would have never thought possible. I owe to him my eternal gratitude. I

would also like to thank Dr. Walid Najjar and Dr. Victor Zordan. During my

undergraduate studies their demonstrated knowledge and passion for their work inspired

me to further my education and extend my goals. I would not have pursued this PhD

without their influences.

I also wish to thank the graduate students within our department for all the shared

pains of paper rejections and meals we ate in celebration. My time spent at UC Riverside

with you all will always be a highlight of my life; I will definitely miss these good times

(far between deadlines). Furthermore, I especially would like to thank my long time

friends and family for their patience in supporting me during my degree. Without them I

would have more gray hairs and less sanity.

I would also like to thank those who have funded my research: the National

Science Foundation, Google, and the GAANN program, as well as donors of code and

data.

Finally, I thank my Father and late Mother, Isabelo and Alphonsa Campana, my

sister, Debbie, my loving wife, Lexiang, and my dog, Duke Kahanamoku II. Your

patience, lessons, strength, and unyielding love and encouragement have been and always

will be my driving force. Thank you all.

v

ABSTRACT OF THE DISSERTATION

Pattern-Based Mining of

Diverse Multimedia and Time Series Data

by

Bilson Jake Campana

Doctor of Philosophy, Graduate Program in Computer Science

University of California, Riverside, December 2012

Dr. Eamonn J. Keogh, Chairperson

The ubiquity of patterns in data mining and knowledge discovery data sets is a

binding characteristic across a diverse, and possibly otherwise unrelated, range of images,

audio, video, and time series data. Despite the intra and inter distinctions of the data sets,

there is usually the notion of a pattern within each data. These patterns may manifest as

macro and micro textures in images, n-grams in text, motifs in time series, etc. Though

despite this recurring trait, scientific studies on these data sets are an expansive history of

varied methods, with new algorithms continuously presenting novel techniques and/or

specialized parameters to adjust to their particular data. Because of the growing

algorithmic complexities, efforts with new data then require an in depth review of its

voluminous research background in order to optimize the selection of algorithm's sub-

functions, feature spaces, and parameters.

Rather than providing data-dependent approaches which exist to cater to the

variances in the data, this work leverages on the existence of patterns in many, if not all,

data sets by using the data's pattern as its atomic form of representation. By forming our

vi

algorithms to operate on the data's patterns, all that is necessary for the application of

these pattern-based methods on new, unseen data is an understanding the data's patterns;

a term well understood by human intuition and abundantly expressed in the literature in

many fields.

We first present a framework which provides an extremely accurate, fast, and

parameter-less methods for measuring textural pattern similarity in images. We then

demonstrate that this pattern-based method continues to be high performing across a large

variety of image data sets from very diverse fields. We then show that it performs equally

well in the realm of audio similarity. To further demonstrate the reach of pattern-based

approaches, we present a novel method for the discovery of motif rules in time series; a

pattern discovery problem where previous research efforts have been shown to deliver

meaningless results. We then demonstrate optimizations for time series similarity search,

a core subroutine to time series rule discovery and many other time series data mining

algorithms.

vii

Table of Contents

Chapter 1: Pattern-Based Similarity Methods .. 1

Chapter 2: The CK-Method .. 4

2.1 Related and Background Work .. 8

1) A Brief Review of Texture Measures ... 8

2) Kolmogorov Complexity Inspired Distance Measures .. 9

3) Other Kolmogorov-Based Measures .. 12

2.2 The CK Method and CK-1 Measure ... 12

1) Intuition behind our Method ... 13

2) MPEG-1 Encoding ... 14

3) Video Creation .. 15

4) CK-1 Distance Measure ... 16

2.3 Rival Methods ... 20

1) Filter Banks .. 20

2) Textons ... 20

2.4 Experimental Evaluation ... 21

1) Sanity Check ... 21

2) Classification Experiments ... 24

3) Analysis of Noisy Datasets ... 32

4) Similarity in Audio Space .. 37

5) An Application to Web Mining .. 38

2.5 Runtime Performance ... 39

1) Embedding Metrics .. 42

2.6 Acknowledgements for the CK Method ... 43

2.7 CK Conclussions and Future Work .. 43

1) Future Work .. 44

Chapter 3: Rule discovery in Time Series .. 47

3.1 Background and Related Work ... 48

3.2 The Intuition Behind Rule Discovery ... 49

1) Moving to Real-Valued Data.. .. 52

3.3 The Rule Framework .. 55

DEFINITION 1. A Time Series. ... 55

viii

DEFINITION 2. A Time Series subsequence ... 56

DEFINITION 3. A sliding window. .. 56

DEFINITION 4. A distance threshold and antecedent. .. 57

DEFINITION 5. A consequent. .. 58

DEFINITION 6. The maxlag ... 58

DEFINITION 7. A time series rule ... 58

DEFINITION 8. The consequent search space (CSS) .. 58

3.4 Data Discretization ... 59

3.5 Rule Discovery Algorithm .. 62

1) Intuition behind Rule Scoring with MDL Cost. ... 63

2) Formalizing Rule Scoring with MDL. .. 67

3) Rule Searching .. 70

4) Pruning and Early Abandoning. ... 75

3.6 Experimental Evaluation ... 77

1) Finding Rules in Bird Songs... 78

2) Finding Rules in NASA Telemetry Data. ... 80

3) Finding Rules in Human Speech. ... 81

4) Randomized Rule Data Set. .. 82

5) Runtime Analysis. .. 84

3.7 Conclusions ... 86

Chapter 4: Conclusions and Future Work on Pattern-Based Similarity 87

ix

List of Figures

Figure 1: Examples of nematode diversity as seen under magnification. 5

Figure 2: (left) A mammogram image with a malignant mass encircled. (right) Cancerous

lesions tend to invade the surrounding tissue and exhibit a radiating pattern of linear

spicules, resulting in unusual textures. ... 7

Figure 3: Examples of sampling and padding methods. ... 18

Figure 4: (Top) Measured CK-1 distance from image 1 to rotations of image 2. (Bottom)

Center cropped images of image 1 and, optimally rotated, image 2. 19

Figure 5: The Insect dataset and Heraldic shields datasets clustered with the CK-1

distance measure (average linkage clustering). While the images are shown in color for

clarity, our distance measure had only access to the grayscale version of the images. 23

Figure 6: The Coin and the Egyptian Knives/Fenn Bifaces datasets clustered with the

CK-1 distance measure (average linkage). ... 24

Figure 7: Samples of the datasets considered. A detailed key is omitted here for brevity,

see [40] for further details. .. 27

Figure 8: A visual summary of the relative strength effectiveness of our proposed

distance measure. .. 33

Figure 9: Examples of induced image noise: (left) center occlusion and (right) random

pixel noise. .. 34

Figure 10: Cleaned Moths accuracies with center occlusion noise. 35

Figure 11: CAIRO dataset with center occlusion noise. ... 35

Figure 12: Cleaned Moth accuracies with random pixel noise. .. 37

Figure 13: CAIRO dataset with random pixel noise. .. 38

Figure 14: A web query for munda did produce some images of the moth, Orthosia

munda, we expected (top row), but it also returned images of (from bottom left to right):

the Munda tribes of India, an unrelated insect Cycloneda munda, a military photo taken at

Munda Island, and a map of Munda Island... 40

Figure 15: Time comparison on image size with CK-1, Gabor Filter Banks (GFB), and

Texton approaches. ... 42

Figure 16: FastMap dimensional reduction on cleaned moth dataset. 43

Figure 17: The first four verses of “The Raven”, converted into 100Hz MFCC space. Just

the first coefficient is kept... 55

Figure 18: The motif pair discovered in the first 2,000 data points (20 seconds) of “The

Raven”. The shape corresponds to the utterance “...at my chamber door”. 55

Figure 19: A rule learned from the first 2,000 data points of the data shown in Figure 17.

If the antecedent pattern (left) is matched to a subsequence in a stream that is within

x

Euclidean distance of 7.58 to it, we predict the immediate occurrence of the consequent

pattern (right). ... 56

Figure 20: The rule shown in Figure 19 is first invoked at location 5,735. The resulting

prediction appears accurate. .. 56

Figure 21: left) A rule for a z-axis accelerometer dataset encodes the fact that the initial

acceleration “bump” of going up in an elevator must be eventually be matched by the

elevator stopping at a floor. right) A subset of the data from which this rule was learned

[74]. ... 58

Figure 22: A snippet of the MFCC version of “The Raven,” shown in original 64-bit

representation (bold/blue) and in a 6-bit reduced cardinality (fine/red). The two versions

were slightly shifted in the y-axis for clarity. ... 63

Figure 23: A candidate consequent H (bold) can be considered a reference model and

used to encode other time series (fine/dashed) using their delta vectors (top). 67

Figure 24: Antecedent matches (bold) are found at T��,�� and T���,�� . Their

corresponding consequents must then begin within maxlag time and must end within their

consequent search subsequence. ... 70

Figure 25: Concatenated CSS time series from Figure 24. The overlaid green and blue

subsequences are pairs of candidate consequent motifs. Because the blue consequent does

not begin within both maxlag time frames, it cannot be considered for this rule. 72

Figure 26: Provided an antecedent (orange) and threshold, which allows two antecedent

matches in our training time series, we discover the consequent (green) within the maxlag

from all antecedent matches. ... 72

Figure 27: Distribution of distance to nearest neighbor for one second snippets of the

audio (in MFCC space) of “The Raven.”.. 73

Figure 28: Motif locations extracted from a training time series. Colored/bolded

subsequences are antecedent candidates calculated by averaging motif pairs and are

shown over the original motif locations.. 76

Figure 29: All possible non-overlapping subsequences ordered by their distance to a

candidate antecedent. Subsequences ranked at four and higher will be pruned due to the

small consequent length they impose. .. 76

Figure 30: left) A short snippet of bird song in 1st coefficient MCFF space. right) The

first ranked rule learned from it. ... 81

Figure 31: The rule shown in Figure 30.right was invoked on this section of song by the

same bird as in Figure 30. ... 82

Figure 32: The rule learned in Figure 30 on an independent dataset was fired six times in

this twelve second song. ... 82

Figure 33: left) A short training segment of the NASA data. right) The first ranked rule

learned which characterizes a nominal discharge. .. 83

xi

Figure 34: left) The first verse of “The Raven” converted into MFCC space with the

learned rule shown. right) The learned rule which corresponds to “my chamber” and

“door”. ... 84

Figure 35: The rule learned in Figure 34 is applied to the rest of the data set. The

displayed rule firings correspond to the utterances “my chamber door” in verse three. .. 84

Figure 36: right) A randomly generated rule. left) A small example random walk with

occurrences of the rule. Note that the third antecedent injection does not have a

corresponding consequent. .. 85

xii

List of Tables

TABLE I. Our proposed distance measure.. ... 19

TABLE II. Dataset details. Datasets with varying image size are listed with approximated

sizes. .. 29

TABLE III. Accuracy of the one-nearest-neighbor classifier using the four measures

under consideration. Note that results may be biased towards the texton approach. 35

TABLE IV. A 5 dimensional time series T; note that it is z-normalized.......................... 64

TABLE V. One-nearest-neighbor leave-one-out accuracy results on UCR datasets for

various cardinalities. ... 66

1

1 CHAPTER 1: PATTERN-BASED SIMILARITY METHODS

The field of data mining and knowledge discovery umbrella a large and diverse

set of fields which analyze and operate on a plethora of data. These data exist in the form

of time series, images, audio, text, and several other formats. Within a single format, the

content has even a broader range. Audio may be the sound of song birds singing or a

news broadcast. Time series may be monitoring the ever change stock market or weather

throughout the world. An image may display microscopic organisms or feature vast

landscapes. Yet despite the intra and inter distinctions of the data sets, there is usually the

notion of a pattern within each data. The chirps of a song bird exhibit rhythmic tunes;

weather follows seasonal patterns; Texture or an image can be described at multiple

scales. Although data often exhibits this trait, scientific studies on these data sets are an

expansive history of varied methods, with new algorithms continuously presenting novel

techniques and/or specialized parameters to adjust to their particular data. Because of the

growing algorithmic complexities, efforts with new data then require an in depth review

of its voluminous research background. Because of the variance introduced by the new

data set or application, novel methods or combinations of algorithms must be examined.

All the while, the repeated patterns which define the characteristics of the data are easily

overlooked.

Rather than providing data-dependent approaches which exist to cater to the

variances in the data, our work leverages on the existence of patterns in many, if not all,

data sets by using the data's pattern as its atomic form of representation. By forming our

algorithms to operate on the data's patterns, all that is necessary for the application of

2

these pattern-based knowledge discovery and data mining methods on new, unseen data

is an understanding the data's patterns; a term well understood by human intuition and

abundantly expressed in the literature in many fields. Towards this, we begin by

presenting the CK method in section 2; a pattern-based image similarity framework. This

framework describes a method which encapsulates well known and optimized video

compression methods to measure repeated patterns between images. On top of this

framework we then introduce the CK-1 measure. This measure provides an extremely

accurate, fast, and parameter-less methods for measuring textural pattern similarity in

images. We then demonstrate that this pattern-based similarity continues to be high

performing across a large variety of image data sets from very diverse fields. Not only

does our method regularly beat out strawman approaches, but it often does so by huge

margin. Extending outside image data sets, we then briefly demonstrate that it performs

equally well in for audio similarity; covering two distinct formats of data using a single,

pattern-based method.

Beyond the realm of image and audio data sets, we apply pattern-based similarity

to time series data in Section 3. Past attempts at discovery of relations between time

series subsequences has proven to be faulty as they analyzed raw time series

subsequences. To further demonstrate the reach of pattern-based approaches, we present

a novel method for the discovery in time series which utilizes a motif-based

symbolization. By focusing our rule discovery algorithm on found time series motifs, we

are able to discover meaningful and actionable rules in the data. Unfortunately, this

method is built on top of a costly motif discovery algorithm. We mitigate this scalability

3

problem by introducing a suite of optimizations for subsequence similarity search; a core

subroutine to time series rule discovery and many other time series data mining

algorithms. This suite of optimizations provides speed up between 10x and 100x on a

variety of data sets and allows us to conduct our pattern based optimizations.

4

2 CHAPTER 2: THE CK-METHOD

Texture analysis is used in classification, clustering, segmentation, and anomaly

detection in images culled from domains as diverse as biology, medicine, robotics,

biometrics, forensic science, and the study of historical texts. Texture recognition systems

can have surprising uses; for example in Malaysia, a leading exporter of hardwoods,

texture recognition is used to check against the logging of protected wood species and

against attempts to pass off inferior strength species as stronger wood species for strength

critical construction applications [1].

In the Content-Based Information Retrieval (CBIR) community, there has been

extensive research in algorithms to measure texture similarity; however virtually all

existing methods require the careful setting of many domain-specific parameters. For

example, the commonly used Gabor filter requires the setting of scales, orientations, and

filter mask size parameters [2][3]. As researchers have recently noted, “Gabor filters show

a strong dependence on a certain number of parameters, the values of which may

significantly affect the outcome of the classification procedures” [4].

Of the many problems associated with an abundance of parameters, the most obvious is

simply that with many parameters to fit, it is exceptionally difficult to avoid over fitting

[5]. An additional problem of parameter-laden algorithms is that they make it

exceptionally difficult to reproduce published experimental results and to truly understand

the contribution of a proposed algorithm [6].

5

In this work we propose to extend recent advances in Kolmogorov complexity-based

similarity measures [6] [7][8][9] to texture matching problems. These Kolmogorov based

methods have been shown to be very useful in intrinsically discrete domains such as

DNA, natural languages, protein sequences, and symbolic music sequences such as MIDI

or Parsons code; however, they are not defined for real-valued data, such as textures. We

show that by approximating the Kolmogorov complexity with the Campana-Keogh (CK)

method of using state-of-the-art video compressors, such as MPEG, we can create an

efficient and robust texture similarity measure. To give our ideas a concrete grounding, we

will discuss in detail two motivating examples.

Figure 1: Examples of nematode diversity as seen under magnification.

Nematodes are a diverse phylum of “wormlike” animals, and one of the most diverse

of all animal groups. Nematode species are very difficult to distinguish; over 80,000 have

been described, however the true number may be closer to 500,000. As shown in Figure 1,

nematode bodies are semi-transparent structures which mostly consist of digested foods

and fat cells.

Understanding the biodiversity of nematodes is critical for several applications such as

pest control, human health, and agriculture. For example, millions of people are infected

6

by nematodes worldwide with a quarter of the world’s population infected by a single

genus of nematodes, Ascaris [10].

Because of their diversity and abundance, finding distinct characteristics of a nematode

species for classification is a non-trivial task. Identification by experts requires three to

five days to accomplish [11]. While the shape of the head and tail can be a useful feature

in some cases, it is not enough to distinguish down to even the genus level. However, as

we can see in Figure 1, nematodes are often richly textured, both externally and (given

that they are semi-transparent) internally. As we shall show, our simple texture measure

based on the CK method is extremely effective in classifying nematodes, without the need

for careful parameter tuning or human-guided feature extraction.

Breast cancer results in about 500,000 deaths each year [12]. The survival rate of

breast cancer patients greatly depends on an early diagnosis. In the US, survival rates of

early diagnosed patients are 98%, where the survival rate of a regionally spread cancer is

84%, and those in a late stage where distant organs are effected have a survival rate of

28% [13]. Figure 2 displays an annotated image from the Mammographic Image Analysis

Society mammogram database [14] with a malignant mass inscribed.

7

Figure 2: (left) A mammogram image with a malignant mass encircled. (right) Cancerous

lesions tend to invade the surrounding tissue and exhibit a radiating pattern of linear

spicules, resulting in unusual textures.

Numerous trials and evaluations have shown that mammography is the single most

effective method for early detection of breast cancer and greatly increases chances of

survival and treatment options[15][16][17]. Radiologists analyze mammograms for the

existence of micro-calcifications, masses, asymmetries, and distortions which are hidden

in a noisy texture of breast tissue, glands, and fat. Along with the noisy data, they must

analyze large amounts of mammograms yearly [18], with only about 0.5% containing

cancerous structures [19]. Because of the large amount of negative mammograms,

radiologist may become less acclimated to detecting subtle signs of breast cancer.

Computer aided diagnosis (CAD) provides a second look in the mammogram screen

process. The radiologist is prompted with regions of interest which can increase

classification accuracy and screening efficiency. Because the anomalies exist within

highly homogenous fatty tissue and glands, it is a non-trivial task to detect and locate

them. Texture analysis in this field allows for a detection method that does not depend on

a distinctively shaped growth.

8

As we shall show in the experimental section, measures based on the CK method

allows us to classify and cluster nematodes and other datasets with great accuracy and

speed, without the need (indeed, without the ability) to fine tune many parameters. We

further show the generality of our ideas with a comprehensive set of experiments.

The rest of this paper is organized as follows. Section 2 contains a discussion of related

and background work. In Section 3 we introduce our novel CK method and, the MPEG-1

video compression employing, CK-1 measure. In Section 4 we give details of the most

obvious rival methods before we consider the most extensive set of experiments ever

attempted for texture measures, in Section 5. In section 6, we provide a speed performance

evaluation for the presented methods along with a demonstration for embedding metrics.

Finally, in Section 7 we offer conclusions and a discussion of avenues for future research.

2.1 Related and Background Work

In this section we overview past related work in image and texture analysis,

Kolmogorov complexity, and compression based measures.

1) A Brief Review of Texture Measures

The measurement of texture similarity has a three-decade history and is still the subject

of active research, see [20] and the references therein for an excellent overview. In

essence, most methods reduce to some method to extract features combined with some

measure to compare features.

9

These features can be global scalars such as energy, entropy, autocorrelation, standard

deviation, etc., global vectors such as wavelet coefficients, Fourier coefficients, etc., or

local vectors/sets such as SIFT descriptors, textons, etc.

The distance measures between the features are also highly variable, and include

Euclidean distance, Kullback distance, Dynamic Time (histogram) Warping, and the Earth

Movers Distance [21]. Note that if the feature vectors/feature sets can be of different

lengths, then we are forced to use an “elastic” distance measure that allows non-linear

mappings for comparison of features. Note that such measures invariably have at least

quadratic time complexity [21], often with high constant factors.

Beyond computer science led research efforts, we have noted that many real-world

practitioners in biological domains simply extract many features, feed them into a neural

network, and hope for the best [3][22][23]. Our informal survey suggests that this use of

neural networks is often a last resort effort that comes at the end of frustrated attempts to

deal with the huge combination of features/measures. As we shall later show, the CK-1

measure typically outperforms these efforts with a technique that is much simpler and

orders of magnitude faster.

2) Kolmogorov Complexity Inspired Distance Measures

The CK method is based on recent pragmatic work which exploits the theoretical

concepts of Kolmogorov complexity. Kolmogorov complexity is a measure of

randomness of strings based on their information content. It was proposed by A.N.

Kolmogorov in 1965 to quantify the randomness of strings and other discrete objects in an

objective manner.

10

The Kolmogorov complexity K(x) of a string x is defined as the length of the shortest

program capable of producing x on a universal computer — such as a Turing machine.

Different programming languages will give rise to distinct values of K(x), but one can

prove that the differences are only up to a fixed additive constant. Intuitively, K(x) is the

minimal quantity of information required to generate the string x by a program.

In order to define a distance based on the Kolmogorov complexity, the notion of

conditional complexity is introduced. The conditional Kolmogorov complexity K(x|y) of x

to y is defined as the length of the shortest program that computes x when y is given as an

auxiliary input to the program. In [8], a distance is defined by comparing the conditional

complexities K(x|y) and K(y|x) to K(xy), the latter of which is the length of the shortest

program that outputs y concatenated to x. More precisely, the authors define the distance

dk between two strings x and y as:

2.2.1.

The distance measure is completely parameter-free (it is independent of the computer

language used) and has been shown to be optimal [9] in the sense that it subsumes other

measures. Unfortunately, the Kolmogorov complexity is incomputable for virtually all

strings and thus must be approximated.

It is easy to see that universal compression algorithms give approximations to the

Kolmogorov complexity. In fact, K(x) is the best compression that one could possibly

achieve for the text string x. Given a data compression algorithm, we define C(x) as the

)(

)|()|(
),(

xyK

xyKyxK
yxd k

+
=

11

size of the compressed x and C(x|y) as the compression size achieved by first training the

compressor on y, and then compressing x. For example, if the compressor is based on a

textual substitution method, one could build the dictionary on y, and then use that

dictionary to compress x.

We can approximate the distance dk by the following distance measure:

2.2.2.

The better the compression algorithm, the better the approximation of dc is for dk. In

recent years this idea has been applied to domains as diverse as discovering the

evolutionary histories of chain letters, spam classification, alignment-free comparison of

biological sequences, protein structure classification [24], plagiarism detection [25], music

genre classification, and a host of other problems [9].

Unfortunately, we cannot directly leverage on this body of work for two reasons. The

first is that these ideas are only defined for discrete data, such as DNA strings or natural

language. In these domains, a lossless compressor can really take advantage of repeated

structure, which is exactly what we want to find to measure similarity. However, with the

trivial exceptions such as cartoons/clip art, etc., most interesting images are real-valued.

This difference is telling because lossless compression of discrete data is well defined and

trivial to measure. In contrast, lossless compression of real-value images typically does

reduce the sizes of the files greatly, but not in a way that finds repeated structure that is

indicative of similarity.

(|) (|)
(,)

()
c

C x y C y x
d x y

C xy

+
=

12

The second reason we cannot directly use these ideas is more pragmatic. Calculating

C(x|y) requires a detailed understanding of the compression algorithm C, and actually

“hacking” into it. While such work would not be beyond a reasonable attempt, it is not

within the scope of effort for us in conducting this research. It would limit the adoption of

our ideas, especially among domain experts that are not computer scientists.

To solve these two problems we propose a modification of the dc (and therefore dk)

distance measure which treats a lossy compression algorithm as a complete black box, and

which works for large, real-valued image data. In the Section 3 we expound these ideas.

3) Other Kolmogorov-Based Measures

To the best of our knowledge, this is the first work to consider compression-based

distance measures for texture matching. A recent work considers a compression-based

distance measure for color distributions in images [26], a paper by Li1 and Zhu attempts

image classification based on a kernel LZ78-based string kernel [27], Cilibrasi and Vitanyi

create a compressor for clustering hand written text [28], and a recent work by Cerra and

Datcu use a compression based measure for classifying satellite photographs [7].

However, beyond not explicitly considering texture, one thing all these works have in

common is that they linearize the images into strings, and define distance measures based

on strings. An obvious problem with converting a two-dimensional image into a one-

dimensional string is that all spatial localization is lost. This may make no difference for

color; however the very definition of texture is tied up with spatial patterns.

3 This Ming Li [27] should not be confused with the Ming Li [8][9][30] who is a pioneer

of Kolmogorov inspired distance measures.

13

A recent paper proposes a compression based measure for similarity retrieval of

ornamental letters in historical manuscripts (although compression-based, the authors do

not make the connection to Kolmogorov inspired methods) [29]. The distance measure is

based on the similarity of the run-length-encoding representations of the data. While the

idea is interesting, the measure requires careful alignment of the two objects being

compared and is only defined for binary images. Either restriction would prevent us using

the measure on 90% of the datasets we consider in this work.

2.2 The CK Method and CK-1 Measure

In this section we give the high-level intuition behind the CK method of utilizing video

compression for texture analysis and the CK-1 distance measure which utilizes MPEG-1

video encoding. We then give the concrete algorithmic details and conclude with explicit

implementation aspects.

1) Intuition behind our Method

Recall that our basic goal, motivated by the successful use of compression-based

distance measures in discrete-valued data mining domains [6][8][9], is to somehow exploit

compression for measuring texture similarity in real-valued images. Whatever solution we

come up with, we are very hesitant to deeply “hack” into image compression code. This

reluctance here is not mere sloth on our part, it is simply the case that difficult to

implement ideas are rarely widely adopted. We feel that this is particularly true in this

case, because much of our intended audience is biologists, nematologists, arachnologists,

entomologists, etc. That is to say, people who may be comfortable using computer tools

but are unlikely to have the time or the skills to write complex image compression code.

14

With this is mind we are motivated to use existing tools if possible. This leads us to

consider measuring image similarity by exploiting video compression. Video is simply a

three-dimensional array of images. Two dimensions, horizontal and vertical, serve as

spatial image information directions of the moving pictures and the remaining dimension

represents what is normally the time domain.

Virtually all video data contains significant amounts of spatial and temporal

redundancy. Thus most video representations exploit these redundancies to reduce the

file’s size. Similarities are encoded by merely registering differences within a frame (intra

frame compression), and/or between frames (inter frame compression). Our idea then is to

exploit video compression for measuring the similarity of two images, simply by creating

a synthetic “video” which is comprised of the two images to be compared. If those two

images are indeed similar, the inter frame compression step should be able to exploit that

to produce a smaller file size, which we will interpret as significant similarity.

While there are dozens of video formats in existence, we choose MPEG-1 and refer to

its use with the CK method as the CK-1 measure. We utilize MPEG-1 encoding because

of its widespread availability and the fact that all implementations of it tend to be highly

optimized. In the next section we will review the necessary details of MPEG-1 encoding.

2) MPEG-1 Encoding

Because the MPEG-1 specification allows variable application based implementation

of spatial redundancy reduction and motion vector calculation for temporal redundancy

reduction [31][32], we choose to utilize the MPEG-1 encoder provided by MathWorks in

Matlab for its simplicity and availability. We use a consistent set of encoder parameters

15

based on empirically verified intuitions. These empirical tests have illustrated that

deviation from the following encoder parameters has either drastically reduced

classification accuracy or has only shown negligible improvement for a small subset of the

data sets.

For speed and consistency, a logarithmic search algorithm is utilized for the inter frame

block matching process. Original images for intra-picture reference frames are used to

bypass their encoding step. The resulting full quality reference frame also allows for more

detailed texture matching by creating a precise “dictionary” of textures from the original

image. Since we are only interested in the compression ratios of the images rather than

their visual presentation, large quantization scales for reference (I) and predicted (P)

frames are selected to prefer compressibility over image quality. This down samples the

images and removes subtle differences between textures that may simply be attributed to

noise. Since there are no bidirectional (B) frames in our usage, their quantization factor is

ignored.

The default Matlab search radius of 10 pixels is maintained. The bits used to specify

block matched motion vectors have been limited to two. This modification is to allow for

the possibility of an exhaustive block match search and global references which may be

too distant from the query block (requiring more bits to reference than to store the original

data), but has no affect on our reported results. The utility of global motion compensation

and larger search spaces is further discussed in section 2.71).

16

3) Video Creation

In our function, mpegSize, we use the MPEG-1 encoder to construct a video of two

images. This function requires two images which are converted to grayscale for color

invariance. Each image is then transformed into a Matlab movie frame. Then, an ordered

Matlab movie is constructed with these two frames. This Matlab movie is subsequently

passed to the MPEG-1 encoder. For speedup, we modify the encoder to bypass disk writes

and simply return the resulting size of the MPEG-1 movie. The first image supplied to

mpegSize is assigned as an I frame and the second becomes a P frame. Because the second

image is compressed to references of the first, this function is not symmetric.

4) CK-1 Distance Measure

As hinted at in Section 3.1, in order to measure the distance between two images we

analyze compression ratios. Our measure is accomplished with a simple equation:

2.2.3.

The ratios in the denominator of 2.2.1 are calculated to measure the overhead required

by the encoder, doing so gives us a baseline compression size when using any video

encoder.

TABLE I. OUR PROPOSED DISTANCE MEASURE.

function distance = CK1Distance(x, y)

1 distance = ((mpegSize(x, y) + mpegSize(y, x)) /

 (mpegSize(x, x) + mpegSize(y, y))) - 1;

(|) (|)
(,) 1

(|) (|)
CK

C x y C y x
d x y

C x x C y y

+
= −

+

17

As shown in TABLE I, this is executed on two images x and y by just a single line of

Matlab code. Our CK-1 distance measure exhibits both positive definiteness and

symmetry.

Positive Definiteness

The CK-1 distance measure exhibits non-negativity. Given the consistency of our

mpegSize function, the CK-1 distance of an image to itself will be zero. This property is

important because many clustering algorithms rely on it to prove convergence properties.

Symmetry

As stated, our mpegSize function is not symmetric. To build a distance measure with

symmetry, the bidirectional sum of the distances is taken in the numerator of 2.2.3 and the

sum of the lower bounding sizes from “perfect” compressions are in the denominator.

In addition, preprocessing techniques can be applied to the images to introduce several

additional invariances (rotation, illumination, color, etc.) to our approach. In our reported

experiments, we refrain from utilize such techniques, besides rotation and color

invariance, that attempt to tune and produce higher accuracies for our method.

Rotation Invariance

For rotation invariance we fix one image and rotate the other to find the minimum CK-

1 distance between them. When an image is rotated not at a 90°, 180°, or 270° angle, the

image no longer fits into its original rectangular dimensions and a sampling method must

be used. Figure 3 demonstrates examples of image sampling methods used with rotated

images.

18

Figure 3: Examples of sampling and padding methods.

In our experiments we utilize three processes: no cropping, cropping to original image

dimensions, and center cropping to a minimum bounding rectangle of valid pixels; black

pixel padding or mirroring schemes are also used when rotations incur additional image

pixels. Though different rotation methods provide better accuracies with different datasets,

to avoid over fitting, we only report the accuracy provided by the center cropping method.

For further simplification, we only consider ten rotations of the image in reported results;

though our measure if fast enough to consider many more rotation degrees As noted in the

main text we achieve rotation invariance by holding one image fixed and rotating the

other. Since our measure is so fast we can quickly do this 360 times (once per degree) if

necessary, however as hinted at in Figure 16, a coarser (and therefore faster search) is

possible.

19

Figure 4: (Top) Measured CK-1 distance from image 1 to rotations of image 2.

(Bottom) Center cropped images of image 1 and, optimally rotated, image 2.

Color Invariance

We remove color information and analyze the textures based on their gray scale

intensity values. For datasets where color information is useful, we could combine the

CK-1 measure with color features [33].

Illumination Invariance

Illumination between images may vary between photographs of samples, with different

cameras, locations, and photographers. To remove the inconsistencies due to lighting we

normalize the intensity values of the images. For local illumination invariance due to

shadows from edges and surface texture, we can normalize the intensity values across an

entire image. We can then normalize between two images for inter-image illumination

20

invariance. For simplicity, our results presented in this paper refrain from exploiting any

accuracy improvements provided by these preprocessing techniques.

2.3 Rival Methods

In this section we give concrete details of the most frequently used texture measures, as

these will be the baseline to which we compare our ideas.

1) Filter Banks

The use of filter banks for feature extraction of textures has been motivated by their

ability to be tuned to many diverse applications [3][22][35]. Their utility has allowed for a

wide spread use in computer vision applications with many high-quality results. While

there are many possible filter banks, the Gabor filter is by far the most commonly used.

An overview of Gabor filters can be found in [2][4][36][37]. To generate our filters, a

mother wavelet and generation function as presented in [37] is utilized. Filters of six

orientations and four scales are generated, resulting in a filter bank of size N = 24 filters.

High and low frequency parameters of the filters were set to the specifications found in

[37].

Images are convolved with each filter. The standard deviation and mean of each

response is then aggregated into a single 48 length vector. The distance between image

descriptors can then be found from their Euclidean distance.

2) Textons

In order to fairly compare our method, we take the extra step of extending the

previously described filter bank approach by classifying with a dictionary of

21

representative filter responses, textons. Textons have been shown to be a great

improvement over basic filter bank techniques [38][39]. Following the texton dictionary

creation of [39], we represent each pixel of an image by a response vector of its

corresponding outputs from each of the 24 filters. Response vectors from all images

within a single class are then clustered into 10 groups using kmeans clustering, provided

within Matlab, and the centroids of these clusters from each class are added to the texton

dictionary. An image can then be represented by its histogram of response vectors binned

to the nearest texton in the texton dictionary. The distance between two texton histograms

is then found using the chi-squared distance.

2.4 Experimental Evaluation

We begin by stating our experimental philosophy. To ensure that our experiments are

not just reproducible, but easily reproducible, we have built a website which contains all

data and code, together with the raw spreadsheets for the results [40]. In addition, this

website contains additional experimental details that are omitted here for brevity.

1) Sanity Check

We begin with simple experiments in domains where human intuition can directly

judge the effectiveness of the CK-1 measure. We regard these as subjective

demonstrations, rather than objective experiments (which will follow in Section 2)).

We clustered two sets of images, both of which have previously been used to test the

utility of color and shape distance measures [33]. The two datasets are: Heraldic shields

extracted from historical manuscripts from the 14
th

 to 16
th

 century, and Insects extracted

22

from various amateur entomologists websites (used with permission). In both cases we

selected 12 images which could be objectively grouped into six pairs, Figure 4 shows the

results.

Compared to previous work, the results are unexpectedly good. In past work we had

clustered (supersets) of these datasets based on color (shields) and color/shape (insects),

but ignored the texture because we assumed it would not be very useful [33]. To our

surprise, right “out-of-the-box” the compression-based measure works much better than

our carefully tuned color/shape measure [33].

Figure 5: The Insect dataset and Heraldic shields datasets clustered with the CK-1

distance measure (average linkage clustering). While the images are shown in color for

clarity, our distance measure had only access to the grayscale version of the images.

23

We might well have expected our measure to work very well in the richly textured

domain of historical manuscripts, so we sought out two less obviously amenable datasets

to test.

Figure 6: The Coin and the Egyptian Knives/Fenn Bifaces datasets clustered with the

CK-1 distance measure (average linkage).

Figure 5 displays the clustering of the Coin and Egyptian Knives/Fenn Bifaces datasets.

The coin dataset consists of coins from an image database provided by the Fitzwilliam

Museum, Cambridge, UK [34]. All the coins are issued in the name of Alexander the

Great who came to power in Macedonia in 336 BCE and died as emperor in 323 BCE.

Some of the coins are from much later and were minted in places around the Black Sea, in

24

Egypt, in modern-day Turkey, Iran, etc. All coins follow the same basic standard: on the

obverse side there is the head of Heracles in a lion-skin. The reverse side shows the god

Zeus, seated left on a throne. Both obverse and reverse side of each coin is captured.

Analyses of these coins are difficult due to their wear, unregistered rotational positioning,

non-standardized lighting and photography, and the resulting reflectance and shadowing

on the metal. The CK-1 measure clearly clusters the coins into their originating sides by

utilizing rotation invariance described in Appendix B and by normalizing the image’s

grayscale values around its mean.

The grayscale normalization use for the coins is also applied to the Knives/Bifaces

dataset to account for the varying lighting that creates shadows on the stone’s carved

grooves. At the first bifurcation the CK-1 measure correctly divides the dataset into the

two known groupings, Egyptian vs. American blades. Whether the measure is of utility at

the lower levels of the clustering is the subject of ongoing research.

2) Classification Experiments

In order to demonstrate the generality of our methods we have assembled the largest

and most diverse collection of datasets ever considered in a single paper. For more details

on these datasets we refer the interested reader to TABLE II, the supporting webpage [40],

or the originating papers.

In TABLE II we numerically summarize the datasets. Image quality is a subjective

measure of how “clean” the images are, for example do they have occlusions on the

subject or camera shake.

25

TABLE II. DATASET DETAILS. DATASETS WITH VARYING IMAGE SIZE ARE LISTED WITH

APPROXIMATED SIZES.

Data Set Number of

images

Number of

classes

Image Size (Pixels) Image Quality

Spider

Subset
27 3 256x256 High

Full

Spider Set
955 14 256x256 High

Tire

Tracks
48 3 256x256 High

Nematode

s
50 5 1440x1080 High

CAIRO

Wood (F)
100 2 768x576 High

CAIRO

Wood (S)
100 10 768x576 High

VTT

Wood
200 2 ~61x61 Medium

Original

Moths
774 35 1280x960 Medium

Cropped

Moths
774 35 800x800 Medium

Cleaned

Moths
774 35 ~500x800 High

Brodatz 1,792 112 128x128 High

KTH-

TIPS
810 10 200x200 High

Camoufla

ge
80 9 256x256 High

UIUCTex 1000 25 640x480 High

VisTex 334 19 512x512 High

Base

Impressio

ns

67 19 1201x900 Medium

Ornament

al Letters

(P/L)

168 42 ~150x150 High

Ornament

al Letters

(L)

643 19 ~150x150 High

26

Note that in every case we make these datasets publicly available (with the copyright

remaining with the original creators were appropriate). The smaller datasets can be

downloaded from the support webpage; the entire dataset can be obtained on two free

DVDs by emailing the second author. In Figure 6 we show examples from each dataset.

Figure 7: Samples of the datasets considered. A detailed key is omitted here for brevity,

see [40] for further details.

Arachnology (Spiders): This dataset consists of images of the Australasian ground

spiders of the family Trochanteriidae. This is a diverse family - 121 species in fourteen

genera, with high variance in inter- and intra-specific variation, thus it represents a very

difficult problem for classification. Although some species in this family are relatively

common, almost 80 per cent were represented by less than ten individuals (of either sex);

more than 50 per cent had fewer than five. Thirteen species had twenty or more

individuals. The original images were grey scaled, cropped square, enhanced (for

27

contrast/brightness) and resized by the original authors [3], we did no further pre-

processing.

Moths (Macrolepidoptera): This collection [34] consisting of the images of live moth

individuals, each moth belonging to one of 35 different species found in the British Isles.

It is important to note that unlike most collections, which feature dead moths, carefully

posed and photographed in ideal conditions in a lab, this datasets contains images of living

moths photographed outdoors in a variety of conditions over a year. We consider three

variants of this dataset: the original data, in which the moth occupies about 10% of the

image area; center cropped, where an approximate bounding box was placed around the

image; and a cleaned version, where the background was deleted with a semi-automatic

technique.

Tire Treads: This dataset consists of a collection of tire imprints left on paper. Three

well worn tires had paint applied to their treads and were rolled over paper. The tires are

painted and rolled 16 times, each in varying directions and with different painted sections

of the tire. Discontinuities in the painted tracks resulting from dry or insufficient paint

resemble the interruptions in earth tracks caused by a denser arrangement of materials in

the ground and uneven weight distribution across the tire.

Nematodes: As noted in the introduction, nematodes are a diverse phylum of

“wormlike” animals, with great commercial and medical importance. The department of

nematology at UCR, one of the leading institutions of in nematode research, has recently

tasked us with creating a distance measure to help them sort through the largest archive of

high-quality nematode images in the world [11]. For these experiments we consider a

28

collection of fifty images of five species. Each nematode sample originally exists as a

stack of images displaying over 100 focal planes of the organism. We prune the data by

only selecting the focal plane image with highest variance in each sample stack (i.e., the

most focused image).

Brodatz Textures: This dataset consists of a diverse set of images of man-made and

natural textures (grass, straw, cloth, etc.), digitalized from images from a reference

photographic album for artists and designers. While not a particularly interesting dataset, it

is, by a huge margin, the most studied dataset in texture research. Unfortunately, there are

many digitized variants of it available. Our version was obtained mostly from a publicly

available online image database [41]. This set was missing slate 14, which we added

directly from an original copy of the text [42] held at our campus library. For our

experiments, we treat each image as a separate class and divided each image into sixteen

non-overlapping, uniform images.

Ornamental Letters: This dataset contains a collection of ornamental letters from the

Hand Press period. These letters are stamped from carved wooden blocks, this method of

printing provides a “fingerprint” from each uniquely hand crafted block that can be used to

track the origins of printed materials and also to analyze the history of the block’s usage,

wear, transfer between printing houses, and duplication when extensively damaged.

Details about the dataset and information retrieval problems can be found in [43]. We

present two classification problems using this dataset: letter based classification and print

house origin classification.

29

Base Impression: The base impressions in this dataset are of same origin as the

Ornamental Letters dataset. These images were used to signify a concept in the text or

represent an important person, such as a king or saint. Their lineages can also be tracked

by analyzing their subtle uniqueness. This dataset provides a significant challenge to our

measure compared to the ornamental letters. Where the letters are very texture rich, these

images may contain significant regions of blank space and are dominated by line based

drawings. They may also contain noise in the form of letter bleed from the opposing page

and fading from age. We classify these images based on their depicted scene.

CAIRO Wood: This dataset consists of 100 images of ten species of tropical wood

provided by the Center for Artificial Intelligence and Robotics [44]. Each species is

represented by ten photographs taken at a microscopic level. The images are also evenly

split into two families of wood, Leguminosae and Dipterocarpaceae. The dataset is

classified in two approaches: a two-class problem across family designations and a ten-

class problem across species classifications. A similar set of this data has been worked on

by [45].

Camouflage: This dataset consists of 70 images of nine varieties of modern US

military camouflage. The images were created by photographing military t-shirts and

fabrics at random orientations.

VVT Wood: This dataset consist of 839 samples of wood lumber used originally for

color based inspection and grading for industrial usage [46]. Square tessellations of about

2.5x2.5cm of every image are annotated to be either sound or one of about 40 types of

wood defect (dry knot, small knot, bark pocket, core stripe, etc.). The annotated data is

30

parsed and each tessellated region is cropped and given a class label of either sound or

defective. For classification tests, we use a subset consisting of 100 images from the two

class problem: sound or not sound.

UIUCTEX: The University of Illinois at Urbana-Champaign Texture database [47]

features twenty-five texture classes with forty samples each. The data set is composed of

images of common textures such as glass, bark, and water. They are taken at varying

orientations, illuminations, and subset locations on the sample texture.

VisTex: The MIT Vision Texture data set [48] consists of 167 images from 19 classes.

Unlike many other texture datasets, does not hold rigid rules for orientation or lighting.

Rather, it provides images from real world conditions such as flowers within a field or the

water texture from an inland position.

KTH-TIPS: The KTH-TIPS [49] texture data set exists as an extension of the CURet

data set [50] by adding variances in scale and by photographing from multiple samples in

a single class. The dataset consists of 810 images from ten classes.

31

TABLE III. ACCURACY OF THE ONE-NEAREST-NEIGHBOR CLASSIFIER USING THE FOUR MEASURES UNDER

CONSIDERATION. NOTE THAT RESULTS MAY BE BIASED TOWARDS THE TEXTON APPROACH.

Data Set
CK-1

(%)

Rotation Invariant CK-1

(%)
Gabor Filters

(%)
Texton

(%)

Spider Subset 96.3 - 59.6 89.6

Full Spider Set 93.5 - 39.1 74.1

Tire Tracks 79.2 91.7 87.5 93.8

Nematodes 56.0 - 38.0 52.0

CAIRO Wood (F) 83.0 94.0 95.0 95.0

CAIRO Wood (S) 77.0 90.0 93.0 94.0

VTT Wood 81.5 92.0 88.0 89.5

Original Moths 49.1 - 18.3 42.6

Cropped Moths 63.4 - 27.5 48.8

Cleaned Moths 71.0 - 24.0 58.2

Brodatz 52.1 44.8 37.0 52.0

KTH-TIPS 73.7 63.3 58.3 54.8

Camouflage 87.5 - 85.0 92.5

UIUCTex 51.0 43.6 45.3 55.8

VisTex 32.9 26.3 36.5 47.9

Base Impressions 98.5 - 8.96 19.4

Ornamental Letters

(P/L)
100 - 12.5 48.2

Ornamental Letters

(L)
90.7 - 21.0 45.4

TABLE III presents the best experimental results for these data sets with the CK-1

measure, the rotation invariant CK-1 measure (where appropriate), the Gabor filter bank

method, and the texton method.

32

Figure 8: A visual summary of the relative strength effectiveness of our proposed

distance measure.

Because the sheer number of results makes it difficult to judge the relative performance

of the distance measures, we produced a figure to help visualize the results. For each

dataset, we created a variable X = max(CK-1, RI CK-1), and a variable Y = max(Gabor

Filters, Textons); we used these variables to plot a point for each dataset in Figure 7. Here

we can see at a glance that the CK methods are extremely effective (Recall that

classifications are biased towards the texton measure due to its learning on the entire

dataset).

3) Analysis of Noisy Datasets

An obvious question for any distance measure is how robust is it to noise. While many

of the datasets we have considered are noisy, we can best answer that question by

systematically adding noise and testing its effect on classification accuracies. Noise may

exist in the pixels of images due to low quality or inconsistent equipment, lighting

33

environments, or difficulty in imaging the subject (i.e. live moths). Occlusions may also

corrupt the quality of datasets and reduce the amount of measurable data in the image. To

test for these effects we apply various types of noise and measure the resulting accuracy

on the Cleaned Moths and CAIRO wood (species) datasets. These accuracies are averaged

over ten runs with differing amounts of noisy images and percents of image content

corruption. Figure 8 displays examples of a moth image with added noise.

Figure 9: Examples of induced image noise: (left) center occlusion and (right) random

pixel noise.

Center occlusion

In this test a circle of varying radius is drawn in the center of the selected images. This

circle’s pixels are randomly assigned a grayscale value to prevent the CK-1 measure from

achieving perfect block matches in these noisy regions. The center position of the noisy

circle is selected due to the high possibility of important information found at this location

in many of our datasets. This test allows us to analyze CK-1’s ability to make accurate

matches with decreasing amounts of usable information. Note that the maximum circle

diameter is that of the longest side of the image. Even at 100% size there may still be

original data left in the corners of the image.

34

Figure 10: Cleaned Moths accuracies with center occlusion noise.

.

Figure 11: CAIRO dataset with center occlusion noise.

Figure 9 and Figure 10 present the accuracies of center occlusion tests on the Cleaned

Moth and CAIRO wood (species) dataset. With the moths, the CK-1 measure is most

35

variant to noise applied to an increasing portion of the dataset. Additional occluded images

have a weaker effect with the CAIRO dataset. This is caused by the different nature of the

subjects in each of the test sets. The subject of the moth dataset is an object, an insect,

where the CAIRO set displays a texture of wood. Considering the moth results, there is a

sharp decrease in accuracy as the occlusion’s area begins to increase. This is because the

object featured in the center of the image is quickly obstructed and only the background

and fringe anatomical parts of the subject remain for analysis.

In the CAIRO set, the decrease is more gradual and may sometimes increase due to the

characteristics of the wood texture which may have key features throughout the image. Up

until about 20% occlusion there is little change in average accuracy, with the tests at 100%

dataset corruption scoring equivalent to the dataset without any occlusion. After this

threshold there is a sharp decrease as more blocks are left unmatched and begin to bulk the

final video size. This demonstrates that CK-1 is invariant to small occlusions or noisy

blocks in richly textured images.

As the number of corrupted images increase, more moths are removed from view for

analysis and the cross validation performances continually decrease. With the CAIRO

dataset, this phenomenon is the same until the dataset corruption reaches 100%. With the

entire dataset exhibit the same occlusion noise, the occluded area is equally left out from

all images and the texture in the images again becomes homogenous. All images have an

equivalent amount of overhead due to the blocks in the occluded area and measurements

on the remaining blocks can be weighed equally. With a small amount of occlusion at and

below 20%, the corruption of additional images has little effect on the cross validation

36

accuracies. This is another demonstration of CK-1’s ability to handle small occlusion in

high textured images.

Random pixel noise

To test CK-1’s invariance to pixel noise, a given percentage of the pixels in an image

are reassigned a random grayscale value.

Figure 12: Cleaned Moth accuracies with random pixel noise.

Figure 11 and Figure 12 depict the one nearest neighbor cross validation performance

of the CK-1 measure with the existence of random pixel noise on the Cleaned Moths and

CAIRO (species) data sets.

With the moth dataset at 20% pixel noise and equal amount of images corrupted, the

performance of the CK-1 measure drops almost 20%. Our measure remains roughly

invariant to further pixel noise but drops by a half a percent for every additional percent of

corrupted images. Though the quantization factors of MPEG-1 give the measure some

37

resilience to independent pixel errors in the image, spreading the pixel corruption

throughout the image, rather than localizing the errors into occlusions, can leave fewer

unaffected blocks available for an accurate matching.

Figure 13: CAIRO dataset with random pixel noise.

Because the pixel noise is applied throughout the entire image, both test sets have

similar performances as we vary the amount of dataset and pixel corruption. Just as with

occluded blocks, blocks damaged with enough randomized pixels are less likely to be

matched and therefore only add overhead for storing the entire block to the final video’s

size. At 100% dataset corruption and a small amount of pixel corruption, we observe

slightly worse results as the amount of overhead from unmatched blocks is roughly equal

in each image.

4) Similarity in Audio Space

38

Not only has the CK-1 method generalized extremely well throughout a diverse range

of images, but we have extended this method to the problem of audio similarity [54]. In

this distinct field, from visual images, of heard sound, we translate audio into an image

space by analyzing its spectrogram using CK-1. With this approach we are successfully

able to distinguish the calls of insects from diverse species.

5) An Application to Web Mining

We conclude our experiments with a simple example of a web mining application that

can benefit from a robust texture measure. Our experiment is somewhat contrived, but

demonstrates the robustness of the CK-1 distance to general unseen and unstructured data.

While gathering datasets for the classification experiments in the previous section, we

noted we had a folder of moth images simply labeled munda (we know now the Genus

name is Orthosia). Suppose we wished to retrieve more images of these moths from web,

we can simply issue a Google image search. We did this on October 4
th

, 2009 and found

that of the twenty-one images returned on the first page, none showed the correct moth.

An image of the moth could not be found until the second page and the next image of the

moth did not appear until the third page. As shown in Figure 13, the false positives

include images of Munda Island and an unrelated insect that has the same specific name.

39

Figure 14: A web query for munda did produce some images of the moth, Orthosia

munda, we expected (top row), but it also returned images of (from bottom left to right):

the Munda tribes of India, an unrelated insect Cycloneda munda, a military photo taken at

Munda Island, and a map of Munda Island.

For simplicity, let us consider the first four pages, which consist of 84 images, as the

entire universe of images. Considering only these pages, there is a precision and recall of

zero on the first page. There is an obvious way we could increase the precision of the

query in the first page of results. Since we have some images of the moth we are interested

in we could issue the text query as before, then reorder the query results based on their

distance to a representative of our training data. This training representative is the training

image with the lowest mean CK-1 distance to all other training images. We then score

each query image based on their CK-1 distances to this training representative. This

reordering brought about a recall of 1.0 and a precision of 0.19 on the first page.

40

2.5 Runtime Performance

The speed of our CK based method can be attributed to the simplicity of the underlying

MPEG-1 compression algorithm. Since the reference image is not down sampled, there is

no time required for its spatial redundancy reduction. The most time costly process,

interframe block matching, is a logarithmic search process. Also, each block in the query

image need only be compared to its corresponding neighborhood in the reference image.

This greatly limits the running time needed to block match an entire image to O(nlogn).

Because the search can early abandon depending on the quality of a found match, this

worst case runtime is usually avoided in empirical tests in favor of a fast average case

runtime. Early abandoning also speeds up the calculation of the denominator in (1) by

allowing for the block matching of the identity compression to be completely skipped.

Furthermore, since most uses of MPEG involve large movies in the commercially

important entertainment industry, the MPEG compression algorithms are extraordinarily

well optimized.

In contrast, Gabor filters must convolve N filters for each image. The time performance

of this operation must then also consider the dimension D of the square filters, where D

>> N. The size of D depends on the scale and frequency parameters used in the filter

generation and, in some cases, can be larger than the image itself. Just the Gabor

descriptor extraction is therefore an O(n
2
) operation.

41

Figure 15: Time comparison on image size with CK-1, Gabor Filter Banks (GFB), and

Texton approaches.

Textons add onto the running time of the original Gabor filters approach by requiring

clustering within each class. Its runtime is bounded by O(n
2
) + n x (images per class) x

(number of classes), where each element to be clustered is of N dimensions. Texton

calculation speed performance is therefore heavily dependent on its application. Large

numbers of classes, large images, and large collections of images can greatly increase the

execution time.

42

Figure 16: FastMap dimensional reduction on cleaned moth dataset.

As a concrete example: the distance between two images from the VisTex dataset,

grass and brick, are compared with each of the three methods. The distances of ten scales

of these images are computed and the average execution times over several iterations are

plotted in Figure 14.

As we can see, the time taken for the CK-1 measure is negligible relative to the other

measures.

1) Embedding Metrics

Though CK-1 is not a metric, it is possible to use it with techniques that are designed for

exploiting metric properties. By extending our measure with these processes we can improve the

speed and usability of CK-1. We demonstrate this by applying a fast dimensional reduction

algorithm, FastMap [51], to our classification experiments.

43

FastMap can reduce the complexity of our query calculations while approximately preserving the

dissimilarities of the original space. The process involves selecting two maximally distant pivot

objects for each of the k dimensions of the reduced space. Transformation of new objects into this

new space only requires comparison to these 2k objects. For lookup a fast spatial method may be

used for query lookups in the reduced space. Because we apply this algorithm to the pairwise

distances of images in our datasets, we can dramatically decrease the amount of calculations in

search for a good approximation of the object’s nearest neighbor.

Figure 15 displays the resulting cross validation accuracies in a reduced FastMap

space. With the FastMap accuracies approaching our baseline accuracy, we can trade

performance accuracy for performance speed to fit any application.

2.6 Acknowledgements for the CK Method

This portion of work was funded by NSF 0808770. We would like to thank the many

donors of data, especially of Anna Watson and Michael Mayo (moths), Melissa Yoder and

Paul De Ley (nematodes), Kimberly Russell (spiders), Marzuki Khalid (CAIRO Wood),

Frédéric Morain-Nicolier (historical manuscripts), Reinhold Huber-Mork (numismatics),

and Tara Ramply (knives/arrowheads).

2.7 CK Conclussions and Future Work

In general the results in the previous section speak for themselves. For the most part,

we have avoided comparisons to published results that consider the same datasets since

different experimental conditions make direct comparisons difficult. However in some

cases tentative comparisons can be instructive.

44

In the Spider Subset problem we got an accuracy of 96.3%, the original authors

obtained accuracy in “the range of 90–96%” [3]. Note that this range of accuracy was

obtained at the end of a four-year project devoted to just this problem, and their algorithm

required occasional human intervention, “it was important to review the log files of this

process to pick out any potentially contaminating images and remove them from the

training sets” [3].

Of the variants of the Moth dataset, we obtained a best accuracy of 71.0%. Using two

variants of the Nearest Neighbor algorithm (as we did), the original authors obtained 65.7

and 71.6% respectively [34]. However it is important to note that we used only texture

features, whereas the original work had access to both color and texture features. It is clear

that color is very useful in discriminating at least some of the classes. For example

Ourapteryx sambucaria is yellow, whereas Campaea margaritata gets it common name,

the Light Emerald moth, from its distinctive green hue, and Cabera pusaria is aptly

known as the Common White Wave.

It is important to note that in spite of the generally excellent performance of the CK-1

measure in diverse domains, we are not claiming it is the best measure possible for all

problems. For specialized application areas, better measures, which incorporate domain

specific constraints and features, may do better. However for exploratory data mining, our

CK-1 measure, built on our CK method, offers a powerful yet simple baseline measure.

1) Future Work

In this work we have not focused on the speed or indexability of the CK-1 measure,

other than a tentative experiment to show that Fastmap embedding may be useful. One

45

reason for this is that we wanted to forcefully demonstrate its utility first. In addition, we

feel that optimizing speed may be irrelevant in many domains. Theo Pavlidis, one of the

founders of CBIR recently remarked, “In a medical application it may take well over an

hour to produce an image, so waiting another hour to find matches in a database is not

particularly onerous” [52]. Such remarks apply to many of our domains; the moth dataset

took almost a year to collect and the nematode dataset took four years to collect [11][34].

Nevertheless, as we have shown in Figure 14, the CK-1 measure is orders of

magnitudes faster than some obvious rivals. We have shown a method to further increase

the speed of our measure by allowing indexing with dimensionality reduction by

embedded metrics. Using methods such as FastMap, we can achieve faster queries to fit

various performance requirements, albeit at the cost of some reduction of accuracy.

In our analysis on the effects of noise in the form of occlusion and corrupted pixels, we

have shown that CK-1 is surprisingly robust to noise. With 100% of the CAIRO dataset

exhibiting occlusions, the cross validation accuracies outperform other tests including the

original occlusion-free dataset.

There are several possibilities we plan to pursue. One possibility is to modify the

measure so that it becomes a metric. This would allow us to avail of a wealth of

techniques that exploit the triangular inequality to index data.

Even then there may be data mining applications for which we need to further improve

efficiency. For example, within the next two years we expect to have terabytes of

nematode images [11]. Further improvements in speed may come from exploiting several

46

known ideas in image/video processing. For example multi-resolution analysis for scale

invariance could improve our method’s performances in many domains. More advanced

compression algorithms could be explored to be used with the CK method for possible

performance increases in speed and accuracy. Modifying the block matching search

algorithm to allow for global motion vectors could allow for higher accuracies or faster

search procedures and batch processing of multiple images. Possible options include the

creation of a block matching algorithm specifically for the application of texture analysis,

or to explore the global compensation techniques implemented in newer compression

methods such as MPEG-4 and H.264 [53].

47

3 CHAPTER 3: RULE DISCOVERY IN TIME SERIES

The ability to make accurate predictions about future events is at the heart of much of

science, and so it is not surprising that prediction/forecasting has been a topic of great

interest in the data mining community for the last decade. Most of the work in the

literature has dealt with discrete objects, such as keystrokes (i.e. predictive text), database

queries [67], medical interventions [81], web clicks, etc. [80]. However, prediction may

also have great utility in real-valued time series. For concreteness we briefly consider two

examples:

• Researchers in robotic interaction have long noted the importance of short-term

prediction of human initiated forces to allow a robot to plan its interaction with a

human. For example, a recent paper notes the critical “importance of the prediction of

motion velocity and the anticipation of future perceived forces [to allow the] robot to

anticipate the partner’s intentions and adapt its motion.” [61]

• Doppler radar technology introduced in the last two decades has increased the mean

lead time for tornado warnings from 5.3 to 9.5 minutes, saving countless lives [54].

But progress seems to have stalled recently, with 26% of tornados within the US

occurring with no warning. McGovern et al. argue that further improvements will

come not from new sensors, but from yet-to-be-invented algorithms that “examine

existing data for predictive rules.” [69]

Most of the current work has attempted to predict the future based on the current value

of a stream [68]. However, for many problems the actual values are irrelevant, but the

48

shape of the current pattern may foretell the future. For clarity we call the former

forecasting and the latter, which is the subject of this paper, rule-based prediction

(although the literature is inconsistent on this convention). There is an additional critical

distinction between forecasting and rule-based prediction. Time series forecasting is

typically always-on; it predicts values at every time step. In contrast, rule-based prediction

monitors the incoming data at every time step, but only occasionally makes a prediction

about an imminent occurrence of a pattern.

While forecasting is mature enough to have its own conferences and commercial

software (SAS, IBM Cognos, etc.), the handful of research efforts to consider time series

rule-based prediction have met with limited success. In particular, it is widely accepted

that these efforts allow the discovery of spurious rules [62]. We believe that the reason

why rule discovery in real-valued time series has failed thus far is that most efforts have

more or less blindly applied the ideas of symbolic stream rule discovery to real-valued rule

discovery. In this work, we argue that the classic ideas of support/confidence are not

directly transferable to rule discovery in real-valued time series. Instead, we formulate a

rule representation and search strategy that evaluates candidate rules based on how well

they can compress the data. We also demonstrate the (lack of) effect of using our simple

uniform quantization method. Beyond our novel definitions/representations, we further

show that our ideas are amenable to novel, admissible search algorithms that allow us to

quickly find high quality rules, even in very large datasets.

49

3.1 Background and Related Work

In a sequence of papers culminating in [72], Park and Chu investigate a rule finding

mechanism for time series. However, the algorithm is only evaluated for speed and then

only on random walk data. No evidence was presented that the algorithm could actually

find meaningful rules in time series.

Like Park and Chu, Wu and colleagues also use a piecewise linear representation to

support rule discovery in time series. They tested their algorithm on real (financial) data,

reporting approximately 68% “correctness of trend prediction” [82]. However, the authors

graciously tested their algorithm on data provided by others, and when they ran their

algorithms on random walk data they again achieved approximately 68% correctness of

trend prediction [83]. This strongly suggests their original results did not differ from

random guessing.

The most referenced time series rule-finding method in the literature is [57], which

quantizes the data with K-means clustering of the entire training dataset, and then hands

the (now) symbolic data over to a classic association rule discovery algorithm. The

success of a rule is measured with a score called the J-measure. The method was used in

more than a dozen papers before it was shown that the J-measure gave the same

significance to rules found in completely random data, as to rules found in real data [62].

3.2 The Intuition Behind Rule Discovery

50

It may be instructive to first consider the analogue problem of rule discovery in

symbolic strings. Let us consider the familiar poem, “The Raven”, by Edgar Allan Poe. It

begins:

Once upon a midnight dreary, while I pondered weak and weary...

What are the possible rules we might discover in this text? One possible rule that

occurs to someone familiar with the poem is that the word “door” often follows the word

“chamber,” a rule we can denote as:

chamber → door

We refer to the left side of the rule as the antecedent and the right side as the

consequent. This rule is based on our observation that we see the phrase “chamber door”

ten times in the text. We note that this is not a perfect rule; the word “chamber” appears

once without been followed by “door” (“Back into the chamber turning...”). Furthermore,

it is important to note that the rule does not make the claim that all, or even many,

occurrences of “door” are preceded by “chamber”. In fact, there are four additional

examples of the word “door” in the text.

The differences between rule discovery in text and the task at hand are telling; with

time series data we do not have unambiguous segmentation of the stream, thus we are

facing data that is more like this:

onceuponamidnightdrearywhileIponderedweakandweary....

51

Given such a text, there are (language agnostic) algorithms that can segment the string

into the original words [56], with varying degrees of accuracy. However, segmenting a

real-valued time series into meaningful episodes is much more difficult. Furthermore, the

problem is further complicated by the fact that, in most cases, the time series does not

consist solely of discretely concatenated events. Rather, the events may be interspersed

with meaningless filler symbols. For example, if we examine a motion capture of a sign

language version of this poem there will be locations that do not correspond to discrete

signs, but rather to transitions between signs. This will produce something rather like this:

oncexauponwamidnightmtdrearydwhileuIpponderediweakoandajweary...

Finally, time series are inherently real-valued and as such, tests for equality are

meaningless. This would be equivalent to our text string having some misspellings, like

this:

qncexauponwamidmightmtdreerydwgileuIpponderediweekoandajweauy...

The problem is now significantly more difficult than the original statement. We must

generalize the antecedent to allow flexibility, perhaps by triggering the occurrence of a

pattern that is within a certain threshold t distance under some suitable distance measure:

dist(“chamber”, substring) ≤ t → door

However, we are not done generalizing the rule model. The existence of misspellings in

our data means that we may wish to accept similar consequents such as poor or dooor as

successful predictions. Furthermore, we originally assumed that the consequent

52

immediately followed the antecedent. However there may be some additional symbols

between words. Thus we need to define a parameter, maxlag, which is the maximum

number of characters between the end of the antecedent and the beginning of the

consequent. For example: if maxlag is set to two, then any of the below would be

considered successful predictions:

...chamberdoor..., ...chamberzdoor..., ...chamberxydoor...

but the following:

...chamberxzuvdoor...

is not a successful prediction because the lag between the antecedent and consequent is

too long.

There are two reasons for having a maxlag parameter. The first is to allow for

meaningful, falsifiable predictions. The prediction that “this consequent will eventually

occur” is paradoxically both unfalsifiable and almost certainly true (if we wait long

enough). The second reason is more pragmatic, a bounded value on the maxlag will make

the search over the rule space more tractable. We can now show our final rule format:

dist(chamber, substri,j) ≤ t1 → dist(door, substrm,n) ≤ t2 , m – (i + j – 1) ≤ maxlag.

This can be read as follows: “If we see a substring that is within distance t1 of the word

chamber, then we fire the rule and expect to see a similar substring to word door, within a

learned distance t2 in the next maxlag time steps.” In the next section we generalize these

ideas to real-valued time series.

53

1) Moving to Real-Valued Data.

We are now ready to begin to “port” our ideas to the true real-valued time series that are of

interest. We will start with an example for which we know the ground truth and for which the

reader has already developed some intuition. It is important to note that we are not using external

knowledge to help our algorithm, only to validate and explain it. We took an audio recording of

the first four verses of “The Raven”, and converted it to Mel-Frequency Cepstrum Coefficients

(MFCC) space, keeping just the first coefficient; Figure 17 shows the data.

Figure 17: The first four verses of “The Raven”, converted into 100Hz MFCC space. Just

the first coefficient is kept.

As one might expect, it is difficult to make sense of such data. Using just the first 2,000

data points, which corresponds to the first verse of the poem, we found the pair of non-

overlapping subsequences of length 100 (one second length in the original data) that had

the minimum distance to each other. Such a pair of subsequences is referred to as a time

series motif in the literature [69][70]. Figure 18 shows the motif pair.

Figure 18: The motif pair discovered in the first 2,000 data points (20 seconds) of “The

Raven”. The shape corresponds to the utterance “...at my chamber door”.

20000 4000 6000 8000

0

First occurrence

20 40 60 80 100

at my chamber door
Second occurrence

54

The occurrence of such a highly conserved motif suggests one possible method for

specifying rules. We could simply split the motif pattern in two, let the average of the left

side be the antecedent, and then let the average of right side be the consequent. We then

need to set the maxlag and the threshold t1 parameters. For the momen62t, let us simply

set the former to zero and the later to the mean distance between the antecedent motif

prefixes plus one standard deviation. Figure 19 shows the rule.

Figure 19: A rule learned from the first 2,000 data points of the data shown in Figure 17.

If the antecedent pattern (left) is matched to a subsequence in a stream that is within

Euclidean distance of 7.58 to it, we predict the immediate occurrence of the consequent

pattern (right).

We can immediately test this rule by running it on the remainder of the data shown in

Figure 17. The rule fires exactly three times; in Figure 20 we show the first rule

invocation.

Figure 20: The rule shown in Figure 19 is first invoked at location 5,735. The resulting

prediction appears accurate.

5685 5735 5785 5835 5885

rule fires here predicting this shape’s occurrence

0 20 40 60 0 20 40

t1 = 7.58

maxlag = 0

55

In all three cases, not only is the rule’s prediction visually accurate, as shown in Figure

20, but if we check the location in the original audio we find that in every case it maps to

an utterance of “door.”

In this simple example, hard-coding the maxlag to zero is intuitive; however, we can

easily imagine examples that need the flexibility of a larger maxlag constraint. Consider

Figure 21 which shows some accelerometer data collected from a device worn by a

student at USC as he went about daily activities [73] .

Figure 21: left) A rule for a z-axis accelerometer dataset encodes the fact that the initial

acceleration “bump” of going up in an elevator must be eventually be matched by the

elevator stopping at a floor. right) A subset of the data from which this rule was learned

[73].

This example shows a very easy rule to spot. The semicircular bump created by an

elevator accelerating must eventually be matched by a bump in the opposite direction

when the elevator brakes at a floor (the rule for elevators going down is essentially the

same, but with the consequent and antecedent swapped). The time lag between these two

events depends on the number of floors serviced by the elevator.

t1 = 0.4

maxlag = 4 sec

waiting for elevator

stepping inside elevator stops

walking away

80 120 40 0

elevator moves up

56

3.3 The Rule Framework

We are now in a position to present the formal definitions necessary to rigorously

define our rule framework. We begin with the definition of the data type of interest:

DEFINITION 1. A Time Series is a sequence T=(t1,t2,…,tn) which is an ordered set of n real valued

numbers.

Our rule discovery framework examines short sections of the time series, which are

called subsequences:

DEFINITION 2. A subsequence of length n of a time series T = (t1,t2,…,tm) is a shorter time series

Ti,n = (ti,ti+1,…,ti+n-1) for 1 ≤ i ≤ m – n + 1.

When monitoring a time series we continuously extract the subsequence of the last n

numbers, a sliding window:

DEFINITION 3. A sliding window (W), of length n, is the most recent n values of T.

Recall that we are only interested in the shape of the subsequences, not their amplitude

or offset. We therefore z-normalize all subsequences [58][62]. The time taken to z-

normalize a subsequence is linear in its length; however, we can z-normalize the sliding

windows in amortized constant time by incrementally maintaining statistics [77].

We need to define a distance measure between two subsequences. While there are

dozens of measures in the literature, recent empirical evidence suggests that Euclidean

distance is very difficult to beat [58]. Furthermore, Euclidean distance is parameter-free,

fast to compute, and is amiable to various data mining “tricks” such as indexing and early

abandoning computation [70].

57

We empirically considered other distance measures for rule finding, including Dynamic

Time Warping and Longest Common Subsequence based measures including Swale,

Spade and EPR [58]. However none improved the accuracy of the rules (a finding

consistent with [58]) and all required at least two orders of magnitude more time.

The Euclidean distance D, between two subsequences A and B of the same length n is

given by:

�	
, �� = �� 	
� − �����
���

� .

A time series antecedent is a subsequence used to trigger a rule if it is similar to the

current sliding window:

DEFINITION 4. Assume we are monitoring a time series stream by continuously extracting the

sliding window. Given a positive constant t (the threshold), and an antecedent time series Ra, a

binary flag fired is set to TRUE if D(Ra ,W) < t.

Note that in order for a candidate antecedent to be even considered as a rule precursor,

it must occur at least twice; we obviously cannot generalize from single exemplars. This is

essentially the definition of a time series motif [70]. In Section 71, we will exploit this fact

in order to reduce our search space of antecedents (and later, consequents).

In principle, the threshold, maxlag, and antecedent could be hand chosen by a domain

expert. However, as we will see below, it is possible to automatically find them.

58

Note that the shortest possible antecedent is of a length of three, because we are

assuming we will z-normalize it, and there are only two trivial z-normalized time series of

a length of two. In practice, the antecedent is likely to be significantly longer than this in

order to reduce the possibly of spurious rules.

As an antecedent is a precursor to an event, a predicted subsequence shape which

follows a triggered antecedent within a specified time (the maxlag) is called the

antecedent’s consequent:

DEFINITION 5. A consequent R� is a time series subsequence that is predicted to follow the

detection of an antecedent within a maxlag number of time steps.

The maxlag parameter encodes the fact that for a time series subsequence to be a

meaningful consequent in a rule, it must occur within some acceptable time after the rule’s

antecedent has been detected. Without such a constraint on time, a consequent’s

occurrence may be coincidental.

DEFINITION 6. The maxlag is the maximum number of time steps allowed between a detected

antecedent and its consequent. In particular, if tk is the last value in W the moment the rule is

triggered, then the consequent R�, must be derived from a subsequence of T, Ti,n, such that 0 ≤ i – k –

1 ≤ maxlag.

Given an antecedent, its consequent, the maximum expected maxlag delay between the

two, and the threshold used to trigger a subsequence match, we have all the necessary

components to specify a single time series rule:

DEFINITION 7. A time series rule R is a 4-tuple of {R�, R�, maxlag, t}.

59

To help with our rule search algorithm presented in Section 3.5, we explicitly define

the consequent search space:

DEFINITION 8. The consequent search space (CSS), for a consequent R� of an assumed length n, is

the subsequence following an antecedent where a rule predicts the presence of a subsequence

match for R�. Specifically, T��� = T���,�� !�"��, where k is the final index of the detected
antecedent.

Having formally defined time series rules and all supporting notation, we have just two

more tasks to address before we are ready to test our ideas. We need to formalize a scoring

function to tell us how good a candidate rule is. This is a critical step if we are to find

meaningful rules [62]. Furthermore, since the space of all possible rules is infinite, we

need to find an efficient search strategy. Our proposed scoring function is based on the

MDL cost, which is only defined for discrete data. In the next section, we show that real-

valued time series can be discretized with essentially no loss of information, thus allowing

the application of MDL. Then in Section 3.5, we introduce our time series rule finding

algorithm.

3.4 Data Discretization

Because of our intention to use MDL to measure the relative merits of candidate time

series rules, we must transform our real-valued time series into a discretized space

[65][74]. After careful empirical consideration of the many quantization options, we

quantize the time series’ real values into uniformly distributed bins. For each test data set,

we utilize a sliding window of length n and z-normalize all possible subsequences while

recording the minimum and maximum values. After attaining the global minimum value,

60

min, and global maximum value, max, we then specify bin boundaries that are evenly

distributed between min and max. The resulting bin width is then:

345 − 36789:6;98 <4;8674=6>?

For example, consider the five time point series subsequence shown in TABLE IV.

Note that the five distinct, real values in the original data map on to fewer distinct values

in the low cardinality representation.

TABLE IV. LEFT) A 5 DIMENSIONAL TIME SERIES T; NOTE THAT IT IS Z-NORMALIZED.

RIGHT) 6 BIT AND 64 CARDINALITY REPRESENTATION OF T.

Original Data min = -0.915837463044344

max = 1.059696557703197

Low

Cardinality

Representation

1.059696557703197 63

1.058743239030050 63

-0.289671788196926 20

-0.914384004268160 0

-0.915837463044344 0

As we can see in Figure 22, even if we reduce a 64-bit time series to a mere 6-bit

representation, there is no visual difference. Beyond this visual and intuitive

demonstration, we can show the (lack of) effect of discretization on time series with

classification experiments, since the rule triggering step is essentially a classification

problem. We conducted empirical tests on data from the UCR Time Series Archive [79].

61

For each dataset, we ran leave-one-out one-nearest-neighbor classification tests using

uniform quantization with varying cardinalities. TABLE V provides a snapshot of the

results. It is demonstrated that a real-valued time series can be drastically reduced with our

discretization without significantly affecting the intrinsic information available. There is

little loss incurred from a large reduction of the data’s original real-valued space. In fact,

because cardinality reduction of the original data can reduce the effects of noise and

outliers, we can sometimes see some tiny (but not statistically significant) improvements

in accuracy.

Figure 22: A snippet of the MFCC version of “The Raven,” shown in original 64-bit

representation (bold/blue) and in a 6-bit reduced cardinality (fine/red). The two versions

were slightly shifted in the y-axis for clarity.

These two observations in Figure 22 and TABLE V allow us to use MDL with little

fear that we are throwing away valuable information.

0 20 40 60 80 100

-4

0

4

0

60
raw 64-bit data

reduced cardinality 6-bit data

62

TABLE V. ONE-NEAREST-NEIGHBOR LEAVE-ONE-OUT ACCURACY RESULTS ON UCR

DATASETS FOR VARIOUS CARDINALITIES.

Dataset

64-bit (raw)

Cardinality is 264

16-bit

Cardinality is 65536

6-bit

Cardinality is 64

50words 63.1% 63.1% 63.3%

CBF 85.2% 85.2% 85.2%

Beef 66.7% 66.7% 66.7%

ECG 88.0% 88.0% 88.0%

FaceAll 71.4% 69.6% 69.6%

FaceFour 78.4% 78.4% 76.2%

Fish 78.3% 78.3% 77.7%

Lightning2 75.4% 75.4% 77.1%

Lightning7 57.5% 57.5% 58.9%

OSULeaf 52.1% 52.1% 52.1%

Which value of cardinality should we use? Empirically, if the value is anywhere in the range

of 65,536 to 64, it makes no difference; we therefore use the smaller cardinality of 64 in all

experiments.

3.5 Rule Discovery Algorithm

We are finally in a position to introduce our rule finding algorithm. In essence, it has

two parts -- a scoring function and a search method which repeatedly invokes this scoring

function, searching for high quality rules.

Our MDL scoring function is given three inputs:

• A training time series dataset.

63

• A candidate antecedent.

• An expected maxlag value (optional, defaults to infinite).

The function then returns four things:

• A suggested value for threshold t.

• A consequent.

• A learned maxlag.

• A score which reflects the quality of the resulting rule.

The score is a measure of how much bits are saved if we could compress the data using

the rule, substituting real data with our prediction. As the scoring function is at the heart

of our ideas, we will detail the intuition behind it next and formalize it in Section 2).

1) Intuition behind Rule Scoring with MDL Cost.

The intuition behind our scoring function is that if we make a good prediction, the

consequent shape we predict will be similar to a subsequence that occurs within maxlag

steps. We could quantify this similarity with Euclidean distance (which is essentially the

mean squared prediction error used in forecasting) [68]. However, there is a significant

shortcoming of the Euclidean distance for this task; it does not allow us to compare the

quality of consequents with different lengths.

To make this clearer, let us return to our expository text example. Suppose we have to

evaluate the following candidate rule:

dist(“chamber”, substring) ≤ t → door,

64

Which when fired makes a prediction of length four. When encountering this string:

...bustabovehischamberdoorwithsuchnameasnevermore…

It achieves a hamming distance (a good analogue of Euclidean distance) of 0. Contrast

this result with the following rule: dist(“chamber”, substring) ≤ t → doorwithlikename,

which when fired makes a prediction of length sixteen. When encountering the same

string:

...bustabovehischamberdoorwithsuchnameasnevermore…

It achieves a hamming distance of four. Which of these is better? The former is an

exact but short prediction; the latter is an approximate but longer (and arguably more

informative) prediction. Unfortunately, simply normalizing for length does not work here.

While it is not commonly understood, the Euclidean distance between two subsequences

of length n can actually decrease when we expand to length n+1 because of the

(re)normalization of the data using a larger denominator. So not only is the effect of length

not linear, it is not even monotonic.

The solution to this problem, and the reason for the earlier digression into discretization

of time series, is MDL [1]. In fact, for several decades MDL has been used to solve very

similar problems in intrinsically discrete domains such as text, DNA, MIDI, etc.

[59][66][78]. However, this application to time series rule finding is novel.

The intuition behind our use of MDL is to consider a candidate subsequence as a

hypothesis H about a future event. This hypothesis has some cost: the number of bits it

65

takes to store it. We denote this cost as DL, or the Description Length. Since we are

storing the subsequences as plain text, we have DL(H) = length(H) × log2(cardinality). For

example, in Figure 23 we show a version of the consequent previously shown in Figure 19

(reduced to a cardinality of just eight for the sake of visual clarity). This time series is of

length 36, and has a 3-bit (8 value) cardinality, so its cost is 36 × 3 = 108 bits.

Figure 23: A candidate consequent H (bold) can be considered a reference model and

used to encode other time series (fine/dashed) using their delta vectors (top).

We want to evaluate the quality of a candidate consequent by asking how well the

prediction matched the future. We do this by asking, “Given our consequent, what is the

cost to encode the error of the predicted match m?” We denote this as DL(m H), that is, the

description length of a matching subsequence m, given our hypothesized consequent H.

We can measure this encoding cost by simply subtracting the consequent from the

matching time series and encoding the difference vector efficiently. For the candidate

match m1 shown in Figure 23.left, the delta vector consists only of four unique small

values (-2, -1, 0, 1), and its encoding cost using a Huffman encoding, with a zero-mean

Gaussian distribution, is 85 bits. In contrast, in the candidate match m2 shown in Figure

23.right the delta vector has eight larger unique values and its encoding cost is 128 bits.

0

2

4

6

0 10 20 30 0 10 20 30

-7 -6 5 -1 -1 1 1 0 1 1 -4 -4 -1 0 0 0 0 0 -1 -1 -1 -3 -1 – 1 -1 -1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 -1 -1 0 0 -1 -1 0 -1 -1 0 -2 -1 0 0 -1 0 1 0 -1 0 0 1

H H

m
1 m 2

66

This indicates that it is not as good a match to the hypothesized consequent as m1. Thus

the score of a candidate subsequence, m, with a given match, H, is as follows:

�@	3, A� = �@	3� − �@	3|A�

This equation allows us to measure the relative predictive power of subsequences,

independent of their length.

Note that in order to find rules in a training set, we must have at least two firings. This

means that to evaluate the hypotheses we must see how well it encoded a set, M, of at least

two matches.

 C<D;9	E, A� = −�@	A� + � �@	3, A�
�∈H

where the set M consists of all subsequences to be compressed with the consequent H. For

concreteness, suppose that the two examples in Figure 23 are both discovered when using

a particular antecedent H, thus M = {m1, m2}. The overall score of the candidate

consequent using 0 is then:

C<D;9	E, A� = −�@	A� + [�@	3�� − �@	3�|A�] + [�@	3�� − �@	3�|A�]
This can be read as, “The score for matches, M, using H is the cost of H plus the bits

saved from compressing all matches.” With this model we can now directly measure the

quality of a consequent. Similarly, we can use equation 0 to judge the quality of a rule’s

antecedent by its ability to compress its own matched subsequences. Summing the

67

antecedent and consequent score of a rule yields an overall score for that rule. In the next

section we expound how we can use this primitive to measure the quality of a potential

rule.

2) Formalizing Rule Scoring with MDL.

The code presented in this section is optimized for simplicity of explanation; some

redundancy exists in exchange for clarity. Carefully commented code is freely available at

[85]. We now present both detailed pseudo-code and cross-annotated figures to illustrate

our rule scoring algorithm. The rule scoring algorithm consists of the following steps:

 1) Find non-overlapping subsequences, A, of T within t of K�.

 2) Find motifs which exist after the discovered subsequences.

 3) Select the best scoring motif as a consequent subsequence.

Provided a candidate antecedent, threshold t, and a maxlag, our rule scoring method,

outlined in Algorithm 1, returns the highest quality consequent subsequence as measured

using equation 0. In line 1, the CSS are extracted from the time series for the given

antecedent/threshold. For example, in Figure 24 two subsequences L��,�� and L���,�� are

within t distance of K�.

Figure 24: Antecedent matches (bold) are found at MNO,NN and MPQR,NN. Their

corresponding consequents must then begin within maxlag time and must end within their

consequent search subsequence.

maxlag maxlag

0 100 200 300 400 500 600

CSS 1 CSS 2

68

Our candidate rule predicts that a consequent subsequence should exist after each of the

antecedent matches. The consequents corresponding to each match must begin within the

range [127,127+maxlag-1] and [464,464+maxlag-1], respectively.

Algorithm 1: {bsfScore, consequent, maxlag} =

 ScoreAntecedent(timeSeries, antecedent, t, expMaxlag)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

{cssTS,bounds} = GetCSSTimeSeries(timeSeries, antecedent, t);

maxConsequentLength = min(MAX_CONEQUENT_LENGTH,

 differences(bounds));

bsfScore = -∞;

for i = 3 to maxConsequentLength

 motifs = MKmotifs(cssTS, i, bounds, expMaxlag);

 for j = 1 : length(motifs)

 consequent = CreateCandidate(motifs[j]);

 score = GetCost(consequent);

 lag = -∞;

 for k = 1 to |bounds|

 lowerB = bounds[k-1] + 1;

 upperB = bounds[k];

 [index lag cssScore] =

 MinDistSubseq(cssTS[lowerB to upperB], consequent);

 score += cssScore;

 lag = max(index,lag);

69

16

17

18

19

 if (score > bsfScore)

 bsfScore = score;

 bsfConsequent = consequent;

 maxLag = lag;

We assume that antecedents and consequents cannot overlap; the maximum consequent

length is then upper bounded by either a user-given expected maximum length, the

presence of an antecedent match, or the end of the time series. These bounds define the

consequent search subsequence (CSS) for each antecedent match. Although these bounds

do reduce the size of the search space, we still must conduct pairwise comparisons of all

subsequences between all CSS. This may prove costly if no maxlag is provided for the

consequent and if the antecedent matches are very distant from each other. To mitigate

this, we note that any high-quality consequent, just like an antecedent, must also be an

approximately repeated pattern (a time series motif [70]); thus we search for consequent

motifs in line 5. We can therefore reduce the search space from all subsequences between

CSS to only motifs with at least one occurrence in two CSS. As shown in Figure 25, we

extract each CSS and then conduct a motif search which respects the maxlag and the

original CSS boundaries by ignoring subsequences which cross them (line 5).

70

Figure 25: Concatenated CSS time series from Figure 24. The overlaid green and blue

subsequences are pairs of candidate consequent motifs. Because the blue consequent does

not begin within both maxlag time frames, it cannot be considered for this rule.

In this example, two motif pairs (overlaid by green and blue) exist. Because the

subsequences in the blue motif pair do not begin within the maxlag time frames, it cannot

be considered for the rule’s consequent (and wouldn’t be detected by the specialized motif

search). In order to score the viable motif pairs (such as the green pair in Figure 25), a

candidate consequent is created by averaging the motif pair (line 7).

Next, in each CSS the closest matching subsequence to the candidate is found and its

score contribution is calculated (line 10). We then compute equation 0 to obtain the

candidate consequent’s score. Assuming that the green consequent was the best scoring

motif, Figure 26 shows the final rule’s antecedent and discovered consequent.

Figure 26: Provided an antecedent (orange) and threshold, which allows two antecedent

matches in our training time series, we discover the consequent (green) within the maxlag

from all antecedent matches.

0 100 200 300 400 500 600

maxlag

127 200 300 397

maxlag

CSS 1

464 500 CSS 2 600

71

Now that we have defined a method of scoring a candidate rule triplet

antecedent/threshold/expected maxlag, we are in a position to describe a method for

searching for likely antecedents to score.

3) Rule Searching

It is clear that the search space of possible antecedents is extremely large; how can we

make the search tractable? The most important observation we leverage off is that for any

rule its antecedent must be an approximately repeated subsequence within T (i.e. a time

series motif [70]). We can perform a simple experiment to give an intuition as to how we

may be able to exploit this fact. We took every subsequence of length 100 (one second) of

the MFCC version of “The Raven” and recorded its distance to its nearest neighbor. The

distribution of these distances is shown in Figure 27 with a few annotated examples. Note

that one occurrence of the phrase “...chamber door...” has a very small distance to its

nearest neighbor, which is naturally just another occurrence of the phrase. Similarly,

repeated phrases such as “...the raven....”, “…on the floor…”, etc., also have small

distances to their nearest neighbors.

Figure 27: Distribution of distance to nearest neighbor for one second snippets of the

audio (in MFCC space) of “The Raven.”

0 50 100 150 200 250 300 350 400 450
Distance to nearest neighbor

…caught from some…

… the raven… … though thy crest…
…chamber door…

(pauses)

72

In contrast, phrases featuring hapax legomena
12 such as “caught” or “crest” have a

huge distance to their nearest neighbor. Moreover, consider words which are not hapax

legomenon, such as “soul” (which appears seven times). Because we are considering one-

second clips, the word “soul” is preceded and followed by other words to make a short

phrase, and these phrases are typically unique. If we are attempting to find rules in the text

space, unique words or phrases do not need to be considered since we clearly cannot

generalize from a single example. Moreover, Zipf's law tells us that about half the words

in an English text are hapax legomena [64], and an even larger proportion of phrases must

be unique. This observation is for text; however, many authors have noted this property

holds for all kinds of multimedia data [55] and, as Figure 28 hints, it is true for most time

series.

This observation suggests that we only need to evaluate candidate antecedents that map

to the far left of the distribution. Even if we had to actually build the entire distribution,

this would still be a useful result. However, by exploiting recent results in time series

motif discovery [70], we can find the left most objects in the distribution very efficiently,

in just O(nlog(n)) time.

Using these observations we reduce the space of candidate antecedents by limiting our

search to discovered motifs, just as we did for consequents. The rule finding algorithm

shown in Algorithm 2 searches a time series for the highest scoring rule. The first step in

rule finding of time series is a motif search for possible antecedents of varying lengths

1 A hapax legomena is a word that appears only once in a body of text.

73

(line 4). Again, we use the MK algorithm which is the state-of-the-art motif discovery

algorithm [70]. The test on line 6 removes motifs that cannot be antecedents (e.g. a motif

pair is so close together that there is no room for a consequent between them). On line 8,

we construct a candidate antecedent from the detected motif pair by averaging their

values. Referring back to our example time series, Figure 28 displays a few candidate

antecedents.

While the threshold is a real-valued number with an infinite range of values, we only

need to check a small number of different values. In particular, we need to check the value

that is just large enough to make the rule fire twice, then that is just enough to make the

rule fire three times, etc. The number of checks is limited by the fact that we rapidly run

out of data as the rule fires many times. This process is called at line 8.

Algorithm 2: rule = FindRule(timeSeries, expMaxlag)

1

2

3

4

5

6

7

8

maxAntLength = min(|timeSeries| / 2, MAX_ANTECEDENT_LENGTH);

bestRule.Score = -∞;

for i = 3 to maxAntecedentLength

 motifs = MKmotifs(timeSeries, i);

 for j = 1 to length(motifs)

 if (!IsMotifValid(motifs[j]))

 continue;

 {antecedent, thresholds} =

 CreateCandidate(motifs[j], timeSeries);

74

9

10

11

12

 for k = 2 to length(thresholds)

 {score, consequent, maxLag} =

 ScoreAntecedent(timeSeries, antecedent,

 thresholds(k), expMaxlag);

 if (bestRule.Score < score)

 bestRule =

 NewRule(score, antecedent, thresholds(k),

 consequent, maxLag);

In Figure 29, we show the sorted locations of all non-overlapping matches to our

familiar example antecedent. Notice that using this threshold selection technique, we have

pruned trivial matches and all subsequences that are too short to contain an antecedent.

Figure 28: Motif locations extracted from a training time series. Colored/bolded

subsequences are antecedent candidates calculated by averaging motif pairs and are

shown over the original motif locations.

Figure 29: All possible non-overlapping subsequences ordered by their distance to a

candidate antecedent. Subsequences ranked at four and higher will be pruned due to the

small consequent length they impose.

In our example it can be seen that there are only seven possible thresholds to test with

our given antecedent. We can also see that the subsequences at rank four and higher are

1 7 3 4 2 6 5

0 100 200 300 400 500 600

75

not viable since the consequent length of a particular antecedent/threshold pair is upper

bounded by the smallest available CSS length.

Thus these thresholds can be quickly dismissed without expensive calculations.

Furthermore, if the user has provided a minimum consequent length, we may be able to

prune more thresholds (or the entire antecedent) if the minimum CSS length between the

remaining matches are below the allowed length. Using the rule scoring method discussed

in the previous subsection, we can then score and rank each viable antecedent/threshold

pair.

4) Pruning and Early Abandoning.

Our rule finding framework was defined to both produce meaningful results and to

allow exploitable areas for search space pruning and early abandoning. As described, the

first step of rule finding is to search for antecedent motifs of all possible lengths. For each

discovered antecedent motif we then consider each acceptable threshold. For any

antecedent motif, we can use equation 0 to calculate its contribution, TUVW, to the rule

score. To achieve this, we must consider all possible thresholds for each antecedent. In

Figure 29 we have shown that the threshold space is limited. We can further prune

thresholds by calculating their optimal score contribution and then abandoning when the

upper bounding score drops below a best so far. Using equation 0, the upper bounding

best score, TXYZW, of a consequent candidate of length [, \[, within any one CSS is:

 C]^_` = �@	<!� − = × costbcd�

76

where costbcd is the minimum bits needed to store a differenced value. By defining the

description length of any subsequence as simply:

�@	<!� = = × log�	<4;8674=6>?��

we are unbiased to the shape of the subsequence. Using this definition with equation 0, we

can measure the description cost of a consequent before actually conducting a motif search

for it.

Using equation 0 with equation 0, we can compute an upper bound rule score, C�� , of

a rule with only a given consequent length, antecedent, and a threshold which matches 7

subsequences:

(3.1) C�� = C��` − �@	<!� + C]^_` × 7�

Equation (3.1) calculates the highest possible rule score for an antecedent where a

consequent motif of length l is found that matches perfectly to a subsequence in every

CSS. If this score is less than the best-so-far score, we can forgo all consequent motif

searches of length = as well as their necessary subsequence comparisons. If we cannot

prune this {antecedent, threshold, consequent length} triplet, we must proceed with

searching for motifs of length = which fit the current CSS constraints.

Once the consequent motif search is completed, we then must score each discovered

candidate consequent. Again, equation (3.1) provides an upper bound for any consequent

motif with a given antecedent and threshold. With a small modification we can iteratively

update our upper bounding score as we search for the best CSS matches for a candidate

77

consequent. As we find the best subsequence within each CSS, we will update the upper

bound for the current consequent candidate and check to see if abandoning is possible. For

CSS i of n, there exists a subsequence which has maximum score, :<D;9�, using equation

0. If we have discovered the best scores from k amount of CSS, we then can calculate the

new rule’s upper score bound as:

(3.2) C� = C��` − �@	<!� + ∑ [:<D;9�]���� + C]^_` × 	7 − g��

In this equation, the first half (up to and including the summation) are exact rule score

calculations while the remaining quotient is the upper bounding contribution of the

uncalculated CSS matches. Note that at g = 0, equation (3.2) equals the upper bound

equation (3.1) and when g = 7, equation (3.2) is the rule’s exact score.

We can further prune one level deeper in our search. As we search for the best

subsequence match within a CSS, we must calculate the distances between every time

point of a candidate consequent and candidate subsequence. Because the cost, <�, supplied

from our Huffman encoding for a distance, 8�, is a scalar function on Euclidean distance,

we can conduct early abandoning techniques, similar to the Euclidean distance early

abandoning conducted in [70], and prune distance calculations.

3.6 Experimental Evaluation

To ensure that our experiments are easily reproducible, we have built a website which

contains all the data and commented code, together with raw spreadsheets for the results

78

[85]. In addition this website contains many additional experiments that are omitted here

for brevity.

We provide two sources of evaluation of quality. In some cases, as in “The Raven”

example, we show the rules are meaningful by considering annotation available by

external labels of some kind. In the more general case, we use the Euclidean distance

between our predicted consequent and the F matching locations, a value we denote as

Ferror (this is essentially the root-mean-squared error). Because this number is difficult to

interpret by itself, and motivated by results of previous methods on random data, we do

the following: on the same testing set, using the same consequent, using the same maxlag,

we fire the rule randomly F times and measure the Euclidean distance between our

predicted consequent and the F random locations. We denote this value as Rerror (which is

averaged over 1,000 random runs). Our reported measure of quality then is just

i =, jkllmlnkllml.

Q values close to one suggest our rules are no better than random guessing and values

less than one indicate that we are finding true structure in the data. Each of the following

datasets has been sampled at 100 Hz.

1) Finding Rules in Bird Songs.

Most animals communicate using hardwired, innately determined sounds. Humans and

songbirds, in contrast, are among the few animals that learn their communication skills.

As songbirds, in particular zebra finches (Taeniopygia guttata), are easy to study in the

laboratory, they are often used as model organisms to investigate the neural bases of

79

learning, memory, sensorimotor integration, and even models of cultural transmission

[63][71][76].

For at least a decade, experts have been examining bird songs, usually by manually

inspecting the visually intuitive spectrogram plots, looking for structure and grammar [76].

Could such grammars manifest as time series rules? To test this, we converted zebra finch

songs donated by the authors of [76] into MFCC space (as with “The Raven”, c.f. Figure

17) and searched for rules. We begin by considering an entire call small enough, four

seconds, to be completely reproduced in Figure 30.

Figure 30: left) A short snippet of bird song in 1st coefficient MCFF space. right) The

first ranked rule learned from it.

We then tested this top ranked rule on the full recording of the same finch; the results are

shown in Figure 31.

Figure 31: The rule shown in Figure 30.right was invoked on this section of song by the

same bird.

The rule firing here is visually intuitive, and also appears correct if viewed as a

spectrogram plot. The quality of this rule was i = 0.213; however, that was based on a

600 800 1000 1200 500

200 400 0 maxlag = 5

30

t = 86.48

0 0 30

80

single firing. In Figure 32, we show the firing of the learned rule on a different bird’s call

which fires six times in its complete twelve-second period. Its quality was i = 0.237,

suggesting a very robust predictive rule that generalizes to other data.

Figure 32: The rule learned in Figure 30 on an independent dataset was fired six times in

this twelve second song.

Do rules change over time? Do rules learned from a parent generalize to their

offspring? These questions are currently under investigation.

2) Finding Rules in NASA Telemetry Data.

The NASA valve data set consists of 36 events of interleaved erroneous and nominal

solenoid voltage measurements recorded off of Marrotta series MPV-41 valves as they are

tested in a laboratory [60]. We conducted rule finding on the entire time series. Figure

33.right shows the top ranked rule learned from the training segment in Figure 33.left,

where the first peak is that of a failed solenoid.

Figure 33: left) A short training segment of the NASA data. right) The first ranked rule

learned which characterizes a nominal discharge.

5000 10000 15000

t =11.34

maxlag = 1

0 160 0 300

0 2000 400 600 800 1000 1200

81

This rule appears to describe a normal solenoid discharge event: a rapid decrease in the

current is immediately followed by a slight ramp and gradual, complete discharge.

Because of the variety of malfunction events, in contrast to the homogeneity of normal

solenoid readings in this data set, this rule learned from successful tests achieves a higher

MDL score as well as an exceptional i = 0.053. Note that this rule is also learned from a

single failure instance at the fourth marked peak. This may indicate that the valve

assembly miss-cycled and that the solenoid itself still experienced a nominal discharge.

Apart from this outlier, the entire set of 18 normal solenoid trials was detected with this

rule.

3) Finding Rules in Human Speech.

We note that the rule in our running example on “The Raven” was actually a learned

rule. A similar rule trained on the first verses is shown in Figure 34, and two invocations

of it on independent test data (the remaining 17 verses) are shown in Figure 35.

Figure 34: left) The first verse of “The Raven” converted into MFCC space with the

learned rule shown. right) The learned rule which corresponds to “my chamber” and

“door”.

maxlag = 0

0 60 0 40

t = 22.17

1800 1400 1000 600

82

Figure 35: The rule learned in Figure 34 is applied to the rest of the data set. The

displayed rule firings correspond to the utterances “my chamber door” in verse three.

This rule antecedent corresponds to “... my chamber...” This phrase does appear six

more times in the text and our learned rule fires twice and in the correct places located in

the third verse, achieving i = 0.199. The firing of the rule only twice suggests our simple

threshold value selection was too conservative. In fact, if we manually increase it by a few

percent we do correctly detect all of the other occurrences.

Clearly learning the threshold from just two examples is difficult, tentative experiments

suggest that we could use transfer learning to mitigate this issue [84], an idea we gloss

over due to space limitations.

4) Randomized Rule Data Set.

We believe that the results in the previous section provide forceful and intuitive

evidence of the utility of our ideas. However the number of case studies presented is

necessarily limited by space considerations (additional examples are at [85]). To

summarize our performance on thousands of labeled data sets, we must resort to

generating synthetic time series into which we embed synthetic rules to be discovered.

To create such data sets, we construct a random walk time series of length ="^�, which

is in the range of [75 : 250]. A split point is randomly chosen, and then the left partition is

5400 5600 5800 6000 6200 6400

83

treated as our rule antecedent while the remaining section is the consequent. An example

of a generated rule is shown in Figure 36.right. A maxlag is also randomly chosen from

the range [0 : ="^� x 0.1]. We then create a second random walk time series, of a fixed

length of 10,000, and with an added caveat; at every time point calculation the generated

rule antecedent may be inserted (rather than a length of random walk points). If an

antecedent is injected, there is a likely probability of 95% that the consequent will be

inserted after at most the selected maxlag. Rule antecedents and consequents are appended

to the current random walk with some added Gaussian noise, with amplitude equal to 5%

of the standard deviation of the data.

Figure 36: right) A randomly generated rule. left) A small example random walk with

occurances of the rule. Note that the third antecedent injection does not have a

corresponding consequent.

With our synthetic data we can perform our rule finding method and directly measure

our detection capabilities with the classic measures of precision and recall. We define a

detected region as precisely detected if the tentatively discovered rule and the ground truth

region have at least 90% overlap each. A ground truth region can only be associated to one

suggested region.

Because we can produce arbitrary amounts of such data, we averaged our findings over

1,000 randomly generated rules and with 1,000 injected random walk time series for each

rule. On average, our method has a precision of 0.85 with a recall of 0.86. Note that unlike

maxlag = 15

t = 1.88

0 88 83 0

1000 500 0

84

some of the real-world examples in the previous section, in most cases the synthetic rules

are so subtle as to evade even careful human inspection.

Our recall rate reflects our conservative threshold setting. As previously demonstrated

with “The Raven” data set, slightly increasing the threshold manually allows us to recover

the additional rule regions. This suggests that the setting of the threshold warrants further

research.

5) Runtime Analysis.

As our intent is to introduce a novel framework for meaningful rule discovery in time

series, we have not optimized our initial implementation for speed. We begin our search

over all possible antecedent lengths; this operation is linear with respect to the length of

the test time series and each search costs u	V[vw	V��. For each motif, we then conduct a

second motif search for candidate consequents in the CSS ranges; this is done for each

possible threshold of a candidate antecedent, running at u	V[vw	V� × Vx� where m is the

length of the candidate antecedent. For each candidate consequent we find its closest

subsequence in each CSS, but we extract these distances cached from motif search. This

leads to a worse case runtime of u	Vy [vwz	V��.

As described in Section 3.54), on average our rule search space is greatly reduced by

several things. First, our definition of antecedents and consequents as motifs immensely

prunes the number of subsequences we must test. Extending to a one-time batch lookup of

motifs for both antecedents and consequents could be performed, yielding a worse case

runtime of {	7� + 7� =D|	7��, with some extra overhead for reconsidering subsequences

85

previously excluded as trivial matches. Second, motif lengths of both antecedents and

consequents can be upper bounded. As an antecedent must occur at least twice, its length

can be no more than
�� − 2<, where c is an expected consequent length. Consequents must

also fit within their CSS.

Furthermore, as demonstrated in Figure 29, the threshold possibilities for antecedents

are finite and, because antecedent matches may appear spatially close, can be significantly

pruned. These exploits occur without any user rule preferences. If we further exploit user

constraints, such as “The antecedent and consequent should be about the same length”

(suggested by ornithologists) or “The maxlag should be close to zero” (suggested by

linguists for the poetry example), this knowledge further greatly improves the algorithm’s

runtime. Empirically, our pruned algorithm has demonstrated a considerable reduction

(over 73.2% pruned at just the threshold search level) of the search space. We have

performed additional analysis at [85].

Beyond our optimizations using early abandoning and pruning methods, we can

improve the efficiency of the underlying critical sub-function of motif search. By applying

a suite of abandoning and online calculations techniques to the problem of subsequence

similarity, a core component of motif search, we can achieve speed up between 10x and

100x for our time consuming motif search [75].

 Finally, we note that if a domain expert has spent several years to collect data, as is the

case in both the bird song and NASA examples, they will probably not baulk at waiting a

few minutes or even a few hours for an algorithm that can produce useful, actionable

86

knowledge. Thus we feel that time complexity is not a major bottleneck to the adoption

and development of our ideas.

3.7 Conclusions

We now finished introducing a parameter-lite technique for finding rules in time series.

Our rule representation is expressive enough to allow rules with different length

antecedents/consequents/lags, but at the same time does not require extensive human

intervention or tweaking. We have shown our framework can find intuitive, high-quality

rules in diverse domains and that it can scale to large datasets by using state-of-the-art

motif discovery algorithms to drastically reduced the space of possible antecedents and

consequents. We have made all code/data freely available to the community [85], so that

others can confirm, extend, and ultimately use our ideas. Future work includes further

addressing scalability issues and dealing with the concept drift encountered in streams.

87

4 CHAPTER 4: CONCLUSIONS AND FUTURE WORK ON PATTERN-BASED SIMILARITY

Throughout this work we have utilized the existence of patterns in data sets to enable

for an extremely generalizable similarity measure for both images and audio and created a

novel method for rule discovery in time series which operated on a motif base

symbolization of the data. In our work, we have leveraged varying definitions of patterns.

In images, we matched repeating textural patterns; for audio, we analyzed the repetitions

of the auditory image spectrograms; in time series, we extracted motifs. These

contributions indicate that for future classification problems on novel data, if we can

provide a definition for a pattern in our data set then we can create similarity methods on

the CK method, or discover relations between these patterns as we did for rule discovery

in time series. As such, future works include an expansive analysis on the generality of

CK based measures on further audio data sets and combining the analysis of image and

time series data by measuring similarity in video. Another avenue of future research is the

analysis of rules in heterogeneous data formats, such as the relation between the imagery

and audio from a video, by symbolizing the data by their base patterns (as we did for rule

discovery in time series).

References

[1] M. Khalid, Design of an Intelligent Wood Species Recognition System, Technical

Report of Center for Artificial Intelligence and Robotics (CAIRO), Malaysia, 2008.

[2] R. Porter, N. Canagarajah, Robust Rotation-Invariant Texture Classification:

Wavelet, Gabor Filter and GMRF Based Schemes, IEE Proc. - Vision, Image and

Signal Processing, 144:180-188, 1997.

[3] K. Russell, H. Do, J. Huff, N. Platnick, Introducing SPIDA-web: wavelets, neural

networks and Internet accessibility in an image-based automated identification

88

system, In N. MacLeod (ed), Automated Object Identification in Systematics: Theory,

Approaches, and Applications. Springer Verlag, 2007.

[4] F. Bianconi, A. Fernandez, Evaluation of the effects of Gabor filter parameters on

texture classification. Pattern Recognition 40(12), 3325–3335 (2007).

[5] P.R. Cohen, D. Jensen, Overfitting explained, In Prelim. Papers Sixth Intl. Workshop

on Artificial Intelligence and Statistics, pages 115–122, January 1997.

[6] E. J. Keogh, S. Lonardi, C. A. Ratanamahatana, L. Wei, S. Lee, J. Handley,

Compression-based data mining of sequential data, Data Min. Knowl. Discov. 14(1):

99-129, 2007.

[7] D. Cerra, M. Datcu, A Model Conditioned Data Compression Based Similarity

Measure, DCC, 2008.

[8] M. Li, J. H. Badger, X. Chen, S. Kwong, P. Kearney, H. Zhang, An information-

based sequence distance and its application to whole mitochondrial genome

phylogeny, Bioinformatics 17: 149-154, 2001.

[9] M. Li, X. Chen, X. Li, B. Ma, P. Vitanyi, The similarity metric, Proceedings of the

Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Pages: 863 –

872, 2003.

[10] J. Bethony, S. Brooker, M. Albonico, S. Geiger, A. Loukas, D. Diement, P. J. Hotez,

Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. The

Lancet, 2006.

[11] P. De Ley, Assistant Professor and Assistant Nematologist at UCR, Personal

communication, Feb 2009.

[12] M. Garcia, A. Jemal, E. M. Ward, M. M. Center, Y. Hao, R. L. Siegel, M.J. Thun,

Global Cancer Facts & Figures 2007, Atlanta, GA: American Cancer Society, 2007.

[13] A. Jemal, R. Siegel, E. Ward, et al, Cancer Statistics, CA Cancer J Clin., 56:106-130,

2006.

[14] J. Suckling, The Mammographic Image Analysis Society Digital Mammogram

Database, Exerpta Medica, International Congress Series 1069, pp375-378, 1994.

[15] S.W. Duffy, L. Tabar, H. H. Chen, et al, The impact of organized mammography

service screening on breast carcinoma mortality in seven Swedish counties, Cancer,

95(3):458-469, Aug 1 2002.

89

[16] L. L. Humphrey, M. Helfand, B.K. Chan, S.H. Woolf, Breast cancer screening: a

summary of the evidence for the U.S. Preventive Services Task Force, Ann Intern

Med., 137 (5 Part 1):347-360, Sep 3 2002.

[17] L. Tabar, M. F. Yen, B. Vitak, H. H. Chen, R. A. Smith, S. W. Duffy, Mammography

service screening and mortality in breast cancer patients: 20-year follow-up before

and after introduction of screening, Lancet, 1405-1410, Apr 26 2003.

[18] American Cancer Society, Breast Cancer Facts & Figures 2007-2008, American

Cancer Society, Inc.

[19] M. Giger, Current Issues in CAD Mammography. Digital Mammography, Proc. 3rd

Int. Workshop of Digital Mammography, 1996.

[20] M. Mirmehdi, X. Xie, J. Suri, (eds.), Handbook of Texture Analysis, Imperial College

Press., December 2008.

[21] Y. Rubner, C. Tomasi, L. Guibas, The Earth Mover's Distance as a Metric for Image

Retrieval, International Journal of Computer Vision, v.40 n.2, p.99-121, Nov. 2000.

[22] I. Kavdır, Discrimination of sunflower, weed and soil by artificial neural networks,

Computers and Electronics in Agriculture 44, 153–160, 2004.

[23] P. Li, J. R. Flenley, Pollen texture identification using neural networks, Grana, 38:59-

64, 1999.

[24] N. Krasnogor, D. A. Pelta, Measuring the similarity of protein structures by means of

the universal similarity metric, Bioinformatics, 20, : 1015–1021, 2004.

[25] A. Bratko, G. Cormack, B. Filipic, T. Lynam, B. Zupan, Spam Filtering Using

Statistical Data Compression Models, Journal of Machine Learning Research 7, Dec.

2006.

[26] A. Macedonas , D. Besiris , G. Economou , S. Fotopoulos, Dictionary based color

image retrieval, Journal of Visual Communication and Image Representation, v.19

n.7, p.464-470, October, 2008.

[27] M. Li, Y. Zhu, Image Classification Via LZ78 Based String Kernel: A Comparative

Study, PAKDD, 704-712, 2006.

[28] R. Cilibrasi, P. Vitányi, “Clustering by Compression, IEEE Transactions on

Information Theory 51, 1523-1545, 2005.

[29] M. Delalandre, J. Ogier, J. Llad´os, A fast cbir system of old ornamental letter, In

Workshop on Graphics Recognition (GREC), vol. 5046 of Lecture Note in Computer

Science (LNCS), pages 135–144, 2008.

90

[30] M. Li, P. Vitanyi, An Introduction to Kolmogorov Complexity and Its Applications.

Second Edition, Springer Verlag, 1997.

[31] Coding of moving pictures and associated audio. Committee Draft of Standard ISO

11172: ISO/MPEG 90/176, Dec. 1990.

[32] D. Le Gall, Mpeg: a video compression standard for multimedia

application, Commun. ACM, vol. 34, no. 4, pp. 46-58, April 1991.

[33] X. Wang, L. Ye, E. J. Keogh, C. R. Shelton, Annotating historical archives of images,

JCDL, 341-350, 2008.

[34] M. Kampel. And S. Zambanini. Coin Data Acquisition for Image Recognition,

accepted at 36th Conference on Computer Applications and Quantitative Methods in

Archaeology (CAA’08), Budapest, Hungary.

[35] M. Mayo, A. Watson, Automatic species identification of live moths. In Ellis et. al,

editor, Proc. of the 26th SGAI International Conference on Innovative Techniques

and Applications of Artificial Intelligence, 195-202, 2006.

[36] B. S. Manjunath, W. Y. Ma, Texture Features for Browsing and Retrieval of Image

Data, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, no.

8, pp. 837-842, 1996.

[37] P. Wu, B. S. Manjunath, S. Newsam, H. D. Shin, A texture descriptor for browsing

and similarity retrieval, Signal Processing: Image Communication, Volume 16,

Issues 1-2, Pages 33-43, September 2000.

[38] T. Leung, J. Malik, Representing and Recognizing the Visual Appearance of

Materials using Three-dimensional Textons, Int. J. Comput. Vision 43, 1, 29-44. Jun.

2001.

[39] M. Varma, A. Zisserman, A Statistical Approach to Texture Classification from

Single Images, Int. J. Comput. Vision 62, 1-2, 61-81, Apr. 2005.

[40] B. Campana, Website for this paper http://www.cs.ucr.edu/~bcampana/texture.html.

[41] T. Randen, Brodatz Textures Image Database,

http://www.ux.uis.no/~tranden/brodatz.html.

[42] P. Brodatz, Textures: A Photographic Album for Artists and Designers, New York:

Dover, 1966.

[43] E. Baudrier, S. Busson, S. Corsini, M. Delalandre, J. Landre, F. Morain-Nicolier,

"Retrieval of the Ornaments from the Hand-Press Period: An Overview," Document

91

Analysis and Recognition, International Conference on, pp. 496-500, 2009 10th

International Conference on Document Analysis and Recognition, 2009

[44] Center for Artificial Intelligence and Robotics, http://www.cairo-aisb.com/.

[45] J. Tou, P. Lau, Y. Tay. Computer Vision-based Wood Recognition

System, Proceedings of International Workshop on Advanced Image Technology

(IWAIT 2007), pp. 197-202, 2007.

[46] O. Silven, M. Niskanen, H. Kauppinen, Wood inspection with non-supervised

clustering, COST action E10 Workshop - Wood properties for industrial use, 18-22,

Espoo, Finland, June 2000.

[47] S. Lazebnik, C. Schmid, J. Ponce, A Sparse Texture Representation Using Local

Affine Regions, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.

27, no. 8, pp. 1265-1278, August 2005.

[48] MIT Vision and Modeling Group, http://vismod.media.mit.edu/vismod/.

[49] E. Hayman, B. Caputo, M. Fritz, J. O. Eklundh, On the significance of real-world

conditions for material classification, In: Proc. European Conf. on Computer Vision,

No. 3, Springer-Verlag, pp. 253-266, 2004.

[50] K. J. Dana, B. van Ginneken, S. K. Nayar, J. J. Koenderink, Reflectance and texture

of real-world surfaces, ACM Trans. Graph. 18, 1, 1999.

[51] C. Faloutsos, K. Lin, FastMap: A Fast Algorithm for Indexing, Data-Mining, and

Visualization of Traditional and Multimedia Datasets, SIGMOD ’95.

[52] T. Pavlidis, Limitations of CBIR (Keynote Talk). International Conference on Pattern

Recognition, 8-11, Tampa, Florida, Dec. 2006.

[53] T. Wiegand, G. J. Sullivan, G. Bjontegaard, A. Luthra, Overview of the h.264/avc

video coding standard. Circuits and Systems for Video Technology, IEEE Trans

13(7):560–576, 2003.

[54] Y. Hao, B. Campana, E. Keogh. Monitoring and Mining Insect Sounds in Visual

Space. SDM 2012.

[55] A. Barron, J. Rissanen and B. Yu, The minimum description length principle in

coding and modeling, IEEE Trans. Information Theory, vol. 44, no. 6, pp. 2743-2760,

1998.

[54] J. Brotzge and S. Erickson, Tornadoes without NWS warning, Weather Forecasting,

25, 159-172. 2010.

92

[55] P. Chen, et al.. A language-based approach to indexing heterogeneous multimedia

lifelog, ICMI 2009.

[56] P. Cohen and N. Adams, An algorithm for segmenting categorical time series into

meaningful episodes, ICAIDA 2001, p.198-207.

[57] G. Das, K. Lin, H. Mannila, G. Renganathan, P. Smyth, Rule discovery from time

series, KDD 1998: 16-22.

[58] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E.J Keogh, Querying and

mining of time series data: experimental comparison of representations and distance

measures, PVLDB 1(2): 1542-52, 2008.

[59] S. C. Evans et al, MicroRNA target detection and analysis for genes related to breast

cancer using MDLcompress, EURASIP J. Bioinform. Syst. Biol., 1–16, 2007.

[60] B. Ferrell and S. Santuro, NASA shuttle valve data, http://cs.fit.edu/~pkc/nasa/data/.

2005.

[61] E. Gribovskaya, A. Kheddar, and A. Billard, Motion learning and Adaptive

Impedance for Robot Control during Physical Interaction with Humans. Preprint

version on Gribovskaya’s webpage.

[62] E. Keogh and J. Lin, Clustering of time-series subsequences is meaningless:

implications for previous and future research, Knowl. Inf. Syst. 8(2), 2005, 154-177.

[63] S. Kojima and A. Doupe, Social performance reveals unexpected vocal competency

in young songbirds, Proceedings of the National Academy of Science, Vol 108 pp

1687-1692, 2011.

[64] A. Kornai, Mathematical linguistics, Springer, 2008.

[65] P. D. Grunwald and I.J. Myung. Advances in minimum description length theory and

applications, MIT Press, 2003.

[66] I. Jonyer, L. B. Holder, and D. J. Cook, Attribute-value selection based on minimum

description length, IC-AI, 2004.

[67] G. Li, S. Ji, C. Li, and J. Feng, Efficient type-ahead search on relational data: a

TASTIER approach, SIGMOD 2009: 695-706.

[68] S. Makridakis, S. Wheelwright, and R.J. Hyndman, Forecasting: methods and

applications, New York: John Wiley & Sons, 1998.

93

[69] A. McGovern, D. H. Rosendahl, R. A. Brown, and K. K. Droegemeier, Identifying

predictive multi-dimensional time series motifs: an application to severe weather

prediction, DMKD 2010.

[70] A. Mueen, E. Keogh, Q. Zhu, S. Cash, and B. Westover, Exact discovery of time

series motif, SDM, 2009.

[71] M.L. Phan, C. L. Pytte, and D. S. Vicario, Early auditory experience generates long-

lasting auditory memories that may subserve vocal learning in songbirds, Proc Natl

Acad Sci USA, 103:1088-93, 2006.

[72] S. Park and S. W. Chu. Discovering and matching elastic rules from sequence

databases, Fundam. Inform. 47, 75-90, 2001.

[73] A. Parnandi, et al. Coarse in-building localization with smartphones, Mobiecase

2009.

[74] P. D. E. Pednault, Some experiments in applying inductive inference principles to

surface reconstruction, IJCAI 1989: 1603-1609.

[75] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover, Q. Zhu, J.

Zakaria, E. Keogh (2012). Searching and Mining Trillions of Time Series

Subsequences under Dynamic Time Warping. SIGKDD 2012.

[76] S. Saar and P. P. Mitra. A technique for characterizing the development of rhythms in

bird song, PLoS ONE 3, e1461.

[77] D. Sart, A. Mueen, W. A. Najjar, E.J. Keogh, and V. Niennattrakul. Accelerating

dynamic time warping subsequence search with GPUs and FPGAs, ICDM 2010.

[78] Y. Tanaka et al. Discovery of time-series motif from multi-dimensional data based on

MDL principle, Machine Learning, 58(2), 2005.

[79] UCR time series and classification and clustering.

http://www.cs.ucr.edu/~eamonn/time_series_data/

[80] J. T. Wang, B. A. Shapiro, and D. E. Shasha, Pattern discovery in biomolecular data:

tools, Oxford University Press, 1999.

[81] S. Weiss, N. Indurkhya, and C. Apte, Predictive rule discovery from electronic health

records, ACM IHI, 2010.

[82] H. Wu, B. Salzberg, and D. Zhang, Online event-driven subsequence matching over

financial data streams, SIGMOD 2004: 23-34.

[83] H. Wu, personal email communication, 2005.

94

[84] Z. Zhu, X. Zhu, Y. Guo, and X. Xue, Transfer incremental learning for pattern

classification, CIKM 2010: 1709-1712, 2010.

[85] Project URL: http://www.cs.ucr.edu/~bcampana/rulefinding.php

