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The ubiquity of patterns in data mining and knowledge discovery data sets is a 

binding characteristic across a diverse, and possibly otherwise unrelated, range of images, 

audio, video, and time series data. Despite the intra and inter distinctions of the data sets, 

there is usually the notion of a pattern within each data. These patterns may manifest as 

macro and micro textures in images, n-grams in text, motifs in time series, etc. Though 

despite this recurring trait, scientific studies on these data sets are an expansive history of 

varied methods, with new algorithms continuously presenting novel techniques and/or 

specialized parameters to adjust to their particular data. Because of the growing 

algorithmic complexities, efforts with new data then require an in depth review of its 

voluminous research background in order to optimize the selection of algorithm's sub-

functions, feature spaces, and parameters.  

Rather than providing data-dependent approaches which exist to cater to the 

variances in the data, this work leverages on the existence of patterns in many, if not all, 

data sets by using the data's pattern as its atomic form of representation. By forming our 
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algorithms to operate on the data's patterns, all that is necessary for the application of 

these pattern-based methods on new, unseen data is an understanding the data's patterns; 

a term well understood by human intuition and abundantly expressed in the literature in 

many fields. 

We first present a framework which provides an extremely accurate, fast, and 

parameter-less methods for measuring textural pattern similarity in images. We then 

demonstrate that this pattern-based method continues to be high performing across a large 

variety of image data sets from very diverse fields. We then show that it performs equally 

well in the realm of audio similarity. To further demonstrate the reach of pattern-based 

approaches, we present a novel method for the discovery of motif rules in time series; a 

pattern discovery problem where previous research efforts have been shown to deliver 

meaningless results. We then demonstrate optimizations for time series similarity search, 

a core subroutine to time series rule discovery and many other time series data mining 

algorithms. 
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1 CHAPTER 1: PATTERN-BASED SIMILARITY METHODS 

The field of data mining and knowledge discovery umbrella a large and diverse 

set of fields which analyze and operate on a plethora of data. These data exist in the form 

of time series, images, audio, text, and several other formats. Within a single format, the 

content has even a broader range. Audio may be the sound of song birds singing or a 

news broadcast. Time series may be monitoring the ever change stock market or weather 

throughout the world. An image may display microscopic organisms or feature vast 

landscapes. Yet despite the intra and inter distinctions of the data sets, there is usually the 

notion of a pattern within each data. The chirps of a song bird exhibit rhythmic tunes; 

weather follows seasonal patterns; Texture or an image can be described at multiple 

scales. Although data often exhibits this trait, scientific studies on these data sets are an 

expansive history of varied methods, with new algorithms continuously presenting novel 

techniques and/or specialized parameters to adjust to their particular data. Because of the 

growing algorithmic complexities, efforts with new data then require an in depth review 

of its voluminous research background. Because of the variance introduced by the new 

data set or application, novel methods or combinations of algorithms must be examined. 

All the while, the repeated patterns which define the characteristics of the data are easily 

overlooked.  

Rather than providing data-dependent approaches which exist to cater to the 

variances in the data, our work leverages on the existence of patterns in many, if not all, 

data sets by using the data's pattern as its atomic form of representation. By forming our 

algorithms to operate on the data's patterns, all that is necessary for the application of 
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these pattern-based knowledge discovery and data mining methods on new, unseen data 

is an understanding the data's patterns; a term well understood by human intuition and 

abundantly expressed in the literature in many fields. Towards this, we begin by 

presenting the CK method in section 2; a pattern-based image similarity framework. This 

framework describes a method which encapsulates well known and optimized video 

compression methods to measure repeated patterns between images. On top of this 

framework we then introduce the CK-1 measure. This measure provides an extremely 

accurate, fast, and parameter-less methods for measuring textural pattern similarity in 

images. We then demonstrate that this pattern-based similarity continues to be high 

performing across a large variety of image data sets from very diverse fields. Not only 

does our method regularly beat out strawman approaches, but it often does so by huge 

margin. Extending outside image data sets, we then briefly demonstrate that it performs 

equally well in for audio similarity; covering two distinct formats of data using a single, 

pattern-based method.  

Beyond the realm of image and audio data sets, we apply pattern-based similarity 

to time series data in Section 3. Past attempts at discovery of relations between time 

series subsequences has proven to be faulty as they analyzed raw time series 

subsequences. To further demonstrate the reach of pattern-based approaches, we present 

a novel method for the discovery in time series which utilizes a motif-based 

symbolization. By focusing our rule discovery algorithm on found time series motifs, we 

are able to discover meaningful and actionable rules in the data. Unfortunately, this 

method is built on top of a costly motif discovery algorithm. We mitigate this scalability 
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problem by introducing a suite of optimizations for subsequence similarity search; a core 

subroutine to time series rule discovery and many other time series data mining 

algorithms. This suite of optimizations provides speed up between 10x and 100x on a 

variety of data sets and allows us to conduct our pattern based optimizations. 
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2  CHAPTER 2: THE CK-METHOD  

Texture analysis is used in classification, clustering, segmentation, and anomaly 

detection in images culled from domains as diverse as biology, medicine, robotics, 

biometrics, forensic science, and the study of historical texts. Texture recognition systems 

can have surprising uses; for example in Malaysia, a leading exporter of hardwoods, 

texture recognition is used to check against the logging of protected wood species and 

against attempts to pass off inferior strength species as stronger wood species for strength 

critical construction applications [1]. 

In the Content-Based Information Retrieval (CBIR) community, there has been 

extensive research in algorithms to measure texture similarity; however virtually all 

existing methods require the careful setting of many domain-specific parameters. For 

example, the commonly used Gabor filter requires the setting of scales, orientations, and 

filter mask size parameters [2][3]. As researchers have recently noted, “Gabor filters show 

a strong dependence on a certain number of parameters, the values of which may 

significantly affect the outcome of the classification procedures” [4]. 

Of the many problems associated with an abundance of parameters, the most obvious is 

simply that with many parameters to fit, it is exceptionally difficult to avoid over fitting 

[5]. An additional problem of parameter-laden algorithms is that they make it 

exceptionally difficult to reproduce published experimental results and to truly understand 

the contribution of a proposed algorithm [6]. 
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In this work we propose to extend recent advances in Kolmogorov complexity-based 

similarity measures [6] [7][8][9] to texture matching problems.  These Kolmogorov based 

methods have been shown to be very useful in intrinsically discrete domains such as 

DNA, natural languages, protein sequences, and symbolic music sequences such as MIDI 

or Parsons code; however, they are not defined for real-valued data, such as textures. We 

show that by approximating the Kolmogorov complexity with the Campana-Keogh (CK) 

method of using state-of-the-art video compressors, such as MPEG, we can create an 

efficient and robust texture similarity measure. To give our ideas a concrete grounding, we 

will discuss in detail two motivating examples. 

 

Figure 1: Examples of nematode diversity as seen under magnification. 

Nematodes are a diverse phylum of “wormlike” animals, and one of the most diverse 

of all animal groups. Nematode species are very difficult to distinguish; over 80,000 have 

been described, however the true number may be closer to 500,000. As shown in Figure 1, 

nematode bodies are semi-transparent structures which mostly consist of digested foods 

and fat cells.  

Understanding the biodiversity of nematodes is critical for several applications such as 

pest control, human health, and agriculture. For example, millions of people are infected 
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by nematodes worldwide with a quarter of the world’s population infected by a single 

genus of nematodes, Ascaris [10].  

Because of their diversity and abundance, finding distinct characteristics of a nematode 

species for classification is a non-trivial task. Identification by experts requires three to 

five days to accomplish [11]. While the shape of the head and tail can be a useful feature 

in some cases, it is not enough to distinguish down to even the genus level. However, as 

we can see in Figure 1, nematodes are often richly textured, both externally and (given 

that they are semi-transparent) internally. As we shall show, our simple texture measure 

based on the CK method is extremely effective in classifying nematodes, without the need 

for careful parameter tuning or human-guided feature extraction.  

Breast cancer results in about 500,000 deaths each year [12]. The survival rate of 

breast cancer patients greatly depends on an early diagnosis. In the US, survival rates of 

early diagnosed patients are 98%, where the survival rate of a regionally spread cancer is 

84%, and those in a late stage where distant organs are effected have a survival rate of 

28% [13]. Figure 2 displays an annotated image from the Mammographic Image Analysis 

Society mammogram database [14] with a malignant mass inscribed. 
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Figure 2: (left) A mammogram image with a malignant mass encircled. (right) Cancerous 

lesions tend to invade the surrounding tissue and exhibit a radiating pattern of linear 

spicules, resulting in unusual textures. 

Numerous trials and evaluations have shown that mammography is the single most 

effective method for early detection of breast cancer and greatly increases chances of 

survival and treatment options[15][16][17]. Radiologists analyze mammograms for the 

existence of micro-calcifications, masses, asymmetries, and distortions which are hidden 

in a noisy texture of breast tissue, glands, and fat. Along with the noisy data, they must 

analyze large amounts of mammograms yearly [18], with only about 0.5% containing 

cancerous structures [19].  Because of the large amount of negative mammograms, 

radiologist may become less acclimated to detecting subtle signs of breast cancer. 

Computer aided diagnosis (CAD) provides a second look in the mammogram screen 

process. The radiologist is prompted with regions of interest which can increase 

classification accuracy and screening efficiency. Because the anomalies exist within 

highly homogenous fatty tissue and glands, it is a non-trivial task to detect and locate 

them. Texture analysis in this field allows for a detection method that does not depend on 

a distinctively shaped growth. 
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As we shall show in the experimental section, measures based on the CK method 

allows us to classify and cluster nematodes and other datasets with great accuracy and 

speed, without the need (indeed, without the ability) to fine tune many parameters. We 

further show the generality of our ideas with a comprehensive set of experiments.  

The rest of this paper is organized as follows. Section 2 contains a discussion of related 

and background work. In Section 3 we introduce our novel CK method and, the MPEG-1 

video compression employing, CK-1 measure. In Section 4 we give details of the most 

obvious rival methods before we consider the most extensive set of experiments ever 

attempted for texture measures, in Section 5. In section 6, we provide a speed performance 

evaluation for the presented methods along with a demonstration for embedding metrics. 

Finally, in Section 7 we offer conclusions and a discussion of avenues for future research.  

2.1 Related  and Background Work 

In this section we overview past related work in image and texture analysis, 

Kolmogorov complexity, and compression based measures. 

1) A Brief Review of Texture Measures 

The measurement of texture similarity has a three-decade history and is still the subject 

of active research, see [20] and the references therein for an excellent overview. In 

essence, most methods reduce to some method to extract features combined with some 

measure to compare features. 



9 

 

These features can be global scalars such as energy, entropy, autocorrelation, standard 

deviation, etc., global vectors such as wavelet coefficients, Fourier coefficients, etc., or 

local vectors/sets such as SIFT descriptors, textons, etc. 

The distance measures between the features are also highly variable, and include 

Euclidean distance, Kullback distance, Dynamic Time (histogram) Warping, and the Earth 

Movers Distance [21]. Note that if the feature vectors/feature sets can be of different 

lengths, then we are forced to use an “elastic” distance measure that allows non-linear 

mappings for comparison of features. Note that such measures invariably have at least 

quadratic time complexity [21], often with high constant factors. 

Beyond computer science led research efforts, we have noted that many real-world 

practitioners in biological domains simply extract many features, feed them into a neural 

network, and hope for the best [3][22][23]. Our informal survey suggests that this use of 

neural networks is often a last resort effort that comes at the end of frustrated attempts to 

deal with the huge combination of features/measures. As we shall later show, the CK-1 

measure typically outperforms these efforts with a technique that is much simpler and 

orders of magnitude faster.  

2) Kolmogorov Complexity Inspired Distance Measures 

The CK method is based on recent pragmatic work which exploits the theoretical 

concepts of Kolmogorov complexity. Kolmogorov complexity is a measure of 

randomness of strings based on their information content. It was proposed by A.N. 

Kolmogorov in 1965 to quantify the randomness of strings and other discrete objects in an 

objective manner. 
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The Kolmogorov complexity K(x) of a string x is defined as the length of the shortest 

program capable of producing x on a universal computer — such as a Turing machine. 

Different programming languages will give rise to distinct values of K(x), but one can 

prove that the differences are only up to a fixed additive constant. Intuitively, K(x) is the 

minimal quantity of information required to generate the string x by a program. 

In order to define a distance based on the Kolmogorov complexity, the notion of 

conditional complexity is introduced. The conditional Kolmogorov complexity K(x|y) of x 

to y is defined as the length of the shortest program that computes x when y is given as an 

auxiliary input to the program. In [8], a distance is defined by comparing the conditional 

complexities K(x|y) and K(y|x) to  K(xy), the latter of which is the length of the shortest 

program that outputs y concatenated to x. More precisely, the authors define the distance 

dk between two strings x and y as: 

2.2.1.  

The distance measure is completely parameter-free (it is independent of the computer 

language used) and has been shown to be optimal [9] in the sense that it subsumes other 

measures. Unfortunately, the Kolmogorov complexity is incomputable for virtually all 

strings and thus must be approximated.  

It is easy to see that universal compression algorithms give approximations to the 

Kolmogorov complexity. In fact, K(x) is the best compression that one could possibly 

achieve for the text string x. Given a data compression algorithm, we define C(x) as the 

)(

)|()|(
),(

xyK

xyKyxK
yxd k

+
=
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size of the compressed x and C(x|y) as the compression size achieved by first training the 

compressor on y, and then compressing x. For example, if the compressor is based on a 

textual substitution method, one could build the dictionary on y, and then use that 

dictionary to compress x. 

We can approximate the distance dk by the following distance measure: 

2.2.2.  

The better the compression algorithm, the better the approximation of dc is for dk. In 

recent years this idea has been applied to domains as diverse as discovering the 

evolutionary histories of chain letters, spam classification, alignment-free comparison of 

biological sequences, protein structure classification [24], plagiarism detection [25], music 

genre classification,   and a host of other problems [9].  

Unfortunately, we cannot directly leverage on this body of work for two reasons. The 

first is that these ideas are only defined for discrete data, such as DNA strings or natural 

language. In these domains, a lossless compressor can really take advantage of repeated 

structure, which is exactly what we want to find to measure similarity. However, with the 

trivial exceptions such as cartoons/clip art, etc., most interesting images are real-valued. 

This difference is telling because lossless compression of discrete data is well defined and 

trivial to measure. In contrast, lossless compression of real-value images typically does 

reduce the sizes of the files greatly, but not in a way that finds repeated structure that is 

indicative of similarity. 

( | ) ( | )
( , )

( )
c

C x y C y x
d x y

C xy

+
=
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The second reason we cannot directly use these ideas is more pragmatic.  Calculating 

C(x|y) requires a detailed understanding of the compression algorithm C, and actually 

“hacking” into it. While such work would not be beyond a reasonable attempt, it is not 

within the scope of effort for us in conducting this research. It would limit the adoption of 

our ideas, especially among domain experts that are not computer scientists.  

To solve these two problems we propose a modification of the dc (and therefore dk) 

distance measure which treats a lossy compression algorithm as a complete black box, and 

which works for large, real-valued image data. In the Section 3 we expound these ideas. 

3) Other Kolmogorov-Based Measures 

To the best of our knowledge, this is the first work to consider compression-based 

distance measures for texture matching. A recent work considers a compression-based 

distance measure for color distributions in images [26], a paper by Li1 and Zhu attempts 

image classification based on a kernel LZ78-based string kernel [27], Cilibrasi and Vitanyi 

create a  compressor for clustering hand written text [28], and a recent work by Cerra and 

Datcu use a compression based measure for classifying satellite photographs [7].  

However, beyond not explicitly considering texture, one thing all these works have in 

common is that they linearize the images into strings, and define distance measures based 

on strings. An obvious problem with converting a two-dimensional image into a one-

dimensional string is that all spatial localization is lost. This may make no difference for 

color; however the very definition of texture is tied up with spatial patterns. 

                                                 

 
3 This Ming Li [27] should not be confused with the Ming Li [8][9][30] who is a pioneer 

of Kolmogorov inspired distance measures. 
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A recent paper proposes a compression based measure for similarity retrieval of 

ornamental letters in historical manuscripts (although compression-based, the authors do 

not make the connection to Kolmogorov inspired methods) [29]. The distance measure is 

based on the similarity of the run-length-encoding representations of the data. While the 

idea is interesting, the measure requires careful alignment of the two objects being 

compared and is only defined for binary images. Either restriction would prevent us using 

the measure on 90% of the datasets we consider in this work. 

2.2 The CK Method and CK-1 Measure 

In this section we give the high-level intuition behind the CK method of utilizing video 

compression for texture analysis and the CK-1 distance measure which utilizes MPEG-1 

video encoding. We then give the concrete algorithmic details and conclude with explicit 

implementation aspects. 

1) Intuition behind our Method 

Recall that our basic goal, motivated by the successful use of compression-based 

distance measures in discrete-valued data mining domains [6][8][9], is to somehow exploit 

compression for measuring texture similarity in real-valued images. Whatever solution we 

come up with, we are very hesitant to deeply “hack” into image compression code. This 

reluctance here is not mere sloth on our part, it is simply the case that difficult to 

implement ideas are rarely widely adopted. We feel that this is particularly true in this 

case, because much of our intended audience is biologists, nematologists, arachnologists, 

entomologists, etc. That is to say, people who may be comfortable using computer tools 

but are unlikely to have the time or the skills to write complex image compression code.    
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With this is mind we are motivated to use existing tools if possible. This leads us to 

consider measuring image similarity by exploiting video compression. Video is simply a 

three-dimensional array of images. Two dimensions, horizontal and vertical, serve as 

spatial image information directions of the moving pictures and the remaining dimension 

represents what is normally the time domain. 

Virtually all video data contains significant amounts of spatial and temporal 

redundancy. Thus most video representations exploit these redundancies to reduce the 

file’s size. Similarities are encoded by merely registering differences within a frame (intra 

frame compression), and/or between frames (inter frame compression). Our idea then is to 

exploit video compression for measuring the similarity of two images, simply by creating 

a synthetic “video” which is comprised of the two images to be compared. If those two 

images are indeed similar, the inter frame compression step should be able to exploit that 

to produce a smaller file size, which we will interpret as significant similarity. 

While there are dozens of video formats in existence, we choose MPEG-1 and refer to 

its use with the CK method as the CK-1 measure. We utilize MPEG-1 encoding because 

of its widespread availability and the fact that all implementations of it tend to be highly 

optimized. In the next section we will review the necessary details of MPEG-1 encoding. 

2) MPEG-1 Encoding 

Because the MPEG-1 specification allows variable application based implementation 

of spatial redundancy reduction and motion vector calculation for temporal redundancy 

reduction [31][32], we choose to utilize the MPEG-1 encoder provided by MathWorks in 

Matlab for its simplicity and availability. We use a consistent set of encoder parameters 
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based on empirically verified intuitions. These empirical tests have illustrated that 

deviation from the following encoder parameters has either drastically reduced 

classification accuracy or has only shown negligible improvement for a small subset of the 

data sets. 

For speed and consistency, a logarithmic search algorithm is utilized for the inter frame 

block matching process. Original images for intra-picture reference frames are used to 

bypass their encoding step. The resulting full quality reference frame also allows for more 

detailed texture matching by creating a precise “dictionary” of textures from the original 

image. Since we are only interested in the compression ratios of the images rather than 

their visual presentation, large quantization scales for reference (I) and predicted (P) 

frames are selected to prefer compressibility over image quality. This down samples the 

images and removes subtle differences between textures that may simply be attributed to 

noise. Since there are no bidirectional (B) frames in our usage, their quantization factor is 

ignored. 

The default Matlab search radius of 10 pixels is maintained. The bits used to specify 

block matched motion vectors have been limited to two. This modification is to allow for 

the possibility of an exhaustive block match search and global references which may be 

too distant from the query block (requiring more bits to reference than to store the original 

data), but has no affect on our reported results. The utility of global motion compensation 

and larger search spaces is further discussed in section 2.71). 
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3) Video Creation 

In our function, mpegSize, we use the MPEG-1 encoder to construct a video of two 

images. This function requires two images which are converted to grayscale for color 

invariance. Each image is then transformed into a Matlab movie frame. Then, an ordered 

Matlab movie is constructed with these two frames. This Matlab movie is subsequently 

passed to the MPEG-1 encoder. For speedup, we modify the encoder to bypass disk writes 

and simply return the resulting size of the MPEG-1 movie. The first image supplied to 

mpegSize is assigned as an I frame and the second becomes a P frame. Because the second 

image is compressed to references of the first, this function is not symmetric. 

4) CK-1 Distance Measure 

As hinted at in Section 3.1, in order to measure the distance between two images we 

analyze compression ratios. Our measure is accomplished with a simple equation: 

2.2.3.  

The ratios in the denominator of 2.2.1 are calculated to measure the overhead required 

by the encoder, doing so gives us a baseline compression size when using any video 

encoder. 

TABLE I. OUR PROPOSED DISTANCE MEASURE. 

function distance = CK1Distance(x, y) 

1 distance = ( ( mpegSize(x, y) + mpegSize(y, x) ) / 

 (mpegSize(x, x) + mpegSize(y, y) ) ) - 1; 

( | ) ( | )
( , ) 1

( | ) ( | )
CK

C x y C y x
d x y

C x x C y y

+
= −

+
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As shown in TABLE I, this is executed on two images x and y by just a single line of 

Matlab code. Our CK-1 distance measure exhibits both positive definiteness and 

symmetry. 

Positive Definiteness 

The CK-1 distance measure exhibits non-negativity. Given the consistency of our 

mpegSize function, the CK-1 distance of an image to itself will be zero. This property is 

important because many clustering algorithms rely on it to prove convergence properties.    

Symmetry 

As stated, our mpegSize function is not symmetric. To build a distance measure with 

symmetry, the bidirectional sum of the distances is taken in the numerator of 2.2.3 and the 

sum of the lower bounding sizes from “perfect” compressions are in the denominator. 

In addition, preprocessing techniques can be applied to the images to introduce several 

additional invariances (rotation, illumination, color, etc.) to our approach. In our reported 

experiments, we refrain from utilize such techniques, besides rotation and color 

invariance, that attempt to tune and produce higher accuracies for our method. 

Rotation Invariance 

For rotation invariance we fix one image and rotate the other to find the minimum CK-

1 distance between them. When an image is rotated not at a 90°, 180°, or 270° angle, the 

image no longer fits into its original rectangular dimensions and a sampling method must 

be used. Figure 3 demonstrates examples of image sampling methods used with rotated 

images. 
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Figure 3: Examples of sampling and padding methods. 

In our experiments we utilize three processes: no cropping, cropping to original image 

dimensions, and center cropping to a minimum bounding rectangle of valid pixels; black 

pixel padding or mirroring schemes are also used when rotations incur additional image 

pixels. Though different rotation methods provide better accuracies with different datasets, 

to avoid over fitting, we only report the accuracy provided by the center cropping method. 

For further simplification, we only consider ten rotations of the image in reported results; 

though our measure if fast enough to consider many more rotation degrees As noted in the 

main text we achieve rotation invariance by holding one image fixed and rotating the 

other. Since our measure is so fast we can quickly do this 360 times (once per degree) if 

necessary, however as hinted at in Figure 16, a coarser (and therefore faster search) is 

possible.  
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Figure 4: (Top) Measured CK-1 distance from image 1 to rotations of image 2. 

(Bottom) Center cropped images of image 1 and, optimally rotated, image 2. 

Color Invariance 

We remove color information and analyze the textures based on their gray scale 

intensity values. For datasets where color information is useful, we could combine the 

CK-1 measure with color features [33].  

Illumination Invariance 

Illumination between images may vary between photographs of samples, with different 

cameras, locations, and photographers. To remove the inconsistencies due to lighting we 

normalize the intensity values of the images. For local illumination invariance due to 

shadows from edges and surface texture, we can normalize the intensity values across an 

entire image. We can then normalize between two images for inter-image illumination 
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invariance. For simplicity, our results presented in this paper refrain from exploiting any 

accuracy improvements provided by these preprocessing techniques. 

2.3 Rival Methods 

In this section we give concrete details of the most frequently used texture measures, as 

these will be the baseline to which we compare our ideas. 

1) Filter Banks 

The use of filter banks for feature extraction of textures has been motivated by their 

ability to be tuned to many diverse applications [3][22][35]. Their utility has allowed for a 

wide spread use in computer vision applications with many high-quality results. While 

there are many possible filter banks, the Gabor filter is by far the most commonly used. 

An overview of Gabor filters can be found in [2][4][36][37]. To generate our filters, a 

mother wavelet and generation function as presented in [37] is utilized. Filters of six 

orientations and four scales are generated, resulting in a filter bank of size N = 24 filters. 

High and low frequency parameters of the filters were set to the specifications found in 

[37]. 

Images are convolved with each filter. The standard deviation and mean of each 

response is then aggregated into a single 48 length vector. The distance between image 

descriptors can then be found from their Euclidean distance. 

2) Textons 

In order to fairly compare our method, we take the extra step of extending the 

previously described filter bank approach by classifying with a dictionary of 
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representative filter responses, textons. Textons have been shown to be a great 

improvement over basic filter bank techniques [38][39]. Following the texton dictionary 

creation of [39], we represent each pixel of an image by a response vector of its 

corresponding outputs from each of the 24 filters. Response vectors from all images 

within a single class are then clustered into 10 groups using kmeans clustering, provided 

within Matlab, and the centroids of these clusters from each class are added to the texton 

dictionary. An image can then be represented by its histogram of response vectors binned 

to the nearest texton in the texton dictionary. The distance between two texton histograms 

is then found using the chi-squared distance.  

2.4 Experimental Evaluation  

We begin by stating our experimental philosophy. To ensure that our experiments are 

not just reproducible, but easily reproducible, we have built a website which contains all 

data and code, together with the raw spreadsheets for the results [40]. In addition, this 

website contains additional experimental details that are omitted here for brevity. 

1) Sanity Check 

We begin with simple experiments in domains where human intuition can directly 

judge the effectiveness of the CK-1 measure. We regard these as subjective 

demonstrations, rather than objective experiments (which will follow in Section 2)). 

We clustered two sets of images, both of which have previously been used to test the 

utility of color and shape distance measures [33].  The two datasets are: Heraldic shields 

extracted from historical manuscripts from the 14
th

 to 16
th

 century, and Insects extracted 
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from various amateur entomologists websites (used with permission). In both cases we 

selected 12 images which could be objectively grouped into six pairs, Figure 4 shows the 

results. 

Compared to previous work, the results are unexpectedly good. In past work we had 

clustered (supersets) of these datasets based on color (shields) and color/shape (insects), 

but ignored the texture because we assumed it would not be very useful [33]. To our 

surprise, right “out-of-the-box” the compression-based measure works much better than 

our carefully tuned color/shape measure [33]. 

 

Figure 5: The Insect dataset and Heraldic shields datasets clustered with the CK-1 

distance measure (average linkage clustering). While the images are shown in color for 

clarity, our distance measure had only access to the grayscale version of the images. 
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We might well have expected our measure to work very well in the richly textured 

domain of historical manuscripts, so we sought out two less obviously amenable datasets 

to test. 

 

Figure 6: The Coin and the Egyptian Knives/Fenn Bifaces datasets clustered with the 

CK-1 distance measure (average linkage). 

Figure 5 displays the clustering of the Coin and Egyptian Knives/Fenn Bifaces datasets. 

The coin dataset consists of coins from an image database provided by the Fitzwilliam 

Museum, Cambridge, UK [34]. All the coins are issued in the name of Alexander the 

Great who came to power in Macedonia in 336 BCE and died as emperor in 323 BCE. 

Some of the coins are from much later and were minted in places around the Black Sea, in 
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Egypt, in modern-day Turkey, Iran, etc. All coins follow the same basic standard: on the 

obverse side there is the head of Heracles in a lion-skin. The reverse side shows the god 

Zeus, seated left on a throne. Both obverse and reverse side of each coin is captured. 

Analyses of these coins are difficult due to their wear, unregistered rotational positioning, 

non-standardized lighting and photography, and the resulting reflectance and shadowing 

on the metal. The CK-1 measure clearly clusters the coins into their originating sides by 

utilizing rotation invariance described in Appendix B and by normalizing the image’s 

grayscale values around its mean. 

The grayscale normalization use for the coins is also applied to the Knives/Bifaces 

dataset to account for the varying lighting that creates shadows on the stone’s carved 

grooves. At the first bifurcation the CK-1 measure correctly divides the dataset into the 

two known groupings, Egyptian vs. American blades. Whether the measure is of utility at 

the lower levels of the clustering is the subject of ongoing research.  

2) Classification Experiments 

In order to demonstrate the generality of our methods we have assembled the largest 

and most diverse collection of datasets ever considered in a single paper. For more details 

on these datasets we refer the interested reader to TABLE II, the supporting webpage [40], 

or the originating papers. 

In TABLE II we numerically summarize the datasets. Image quality is a subjective  

measure of how “clean” the images are, for example do they have occlusions on the 

subject or camera shake. 
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TABLE II. DATASET DETAILS. DATASETS WITH VARYING IMAGE SIZE ARE LISTED WITH 

APPROXIMATED SIZES.  

Data Set Number of 

images 

Number of 

classes 

Image Size (Pixels) Image Quality 

Spider 

Subset 
27 3 256x256 High 

Full 

Spider Set 
955 14 256x256 High 

Tire 

Tracks 
48 3 256x256 High 

Nematode

s 
50 5 1440x1080 High 

CAIRO 

Wood (F) 
100 2 768x576 High 

CAIRO 

Wood (S) 
100 10 768x576 High 

VTT 

Wood 
200 2 ~61x61 Medium 

Original 

Moths 
774 35 1280x960 Medium 

Cropped 

Moths 
774 35 800x800 Medium 

Cleaned 

Moths 
774 35 ~500x800 High 

Brodatz 1,792 112 128x128 High 

KTH-

TIPS 
810 10 200x200 High 

Camoufla

ge 
80 9 256x256 High 

UIUCTex 1000 25 640x480 High 

VisTex 334 19 512x512 High 

Base 

Impressio

ns  

67 19 1201x900 Medium 

Ornament

al Letters 

(P/L) 

168 42 ~150x150 High 

Ornament

al Letters 

(L) 

643 19 ~150x150 High 
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Note that in every case we make these datasets publicly available (with the copyright 

remaining with the original creators were appropriate). The smaller datasets can be 

downloaded from the support webpage; the entire dataset can be obtained on two free 

DVDs by emailing the second author. In Figure 6 we show examples from each dataset.  

 

Figure 7: Samples of the datasets considered. A detailed key is omitted here for brevity, 

see [40] for further details. 

Arachnology (Spiders): This dataset consists of images of the Australasian ground 

spiders of the family Trochanteriidae.  This is a diverse family - 121 species in fourteen 

genera, with high variance in inter- and intra-specific variation, thus it represents a very 

difficult problem for classification. Although some species in this family are relatively 

common, almost 80 per cent were represented by less than ten individuals (of either sex); 

more than 50 per cent had fewer than five. Thirteen species had twenty or more 

individuals. The original images were grey scaled, cropped square, enhanced (for 
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contrast/brightness) and resized by the original authors [3], we did no further pre-

processing. 

Moths (Macrolepidoptera): This collection [34] consisting of the images of live moth 

individuals, each moth belonging to one of 35 different species found in the British Isles. 

It is important to note that unlike most collections, which feature dead moths, carefully 

posed and photographed in ideal conditions in a lab, this datasets contains images of living 

moths photographed outdoors in a variety of conditions over a year. We consider three 

variants of this dataset: the original data, in which the moth occupies about 10% of the 

image area; center cropped, where an approximate bounding box was placed around the 

image; and a cleaned version, where the background was deleted with a semi-automatic 

technique.  

Tire Treads: This dataset consists of a collection of tire imprints left on paper. Three 

well worn tires had paint applied to their treads and were rolled over paper. The tires are 

painted and rolled 16 times, each in varying directions and with different painted sections 

of the tire. Discontinuities in the painted tracks resulting from dry or insufficient paint 

resemble the interruptions in earth tracks caused by a denser arrangement of materials in 

the ground and uneven weight distribution across the tire. 

Nematodes: As noted in the introduction, nematodes are a diverse phylum of 

“wormlike” animals, with great commercial and medical importance. The department of 

nematology at UCR, one of the leading institutions of in nematode research, has recently 

tasked us with creating a distance measure to help them sort through the largest archive of 

high-quality nematode images in the world [11]. For these experiments we consider a 
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collection of fifty images of five species. Each nematode sample originally exists as a 

stack of images displaying over 100 focal planes of the organism. We prune the data by 

only selecting the focal plane image with highest variance in each sample stack (i.e., the 

most focused image). 

Brodatz Textures: This dataset consists of a diverse set of images of man-made and 

natural textures (grass, straw, cloth, etc.), digitalized from images from a reference 

photographic album for artists and designers. While not a particularly interesting dataset, it 

is, by a huge margin, the most studied dataset in texture research. Unfortunately, there are 

many digitized variants of it available. Our version was obtained mostly from a publicly 

available online image database [41]. This set was missing slate 14, which we added 

directly from an original copy of the text [42] held at our campus library. For our 

experiments, we treat each image as a separate class and divided each image into sixteen 

non-overlapping, uniform images. 

Ornamental Letters: This dataset contains a collection of ornamental letters from the 

Hand Press period. These letters are stamped from carved wooden blocks, this method of 

printing provides a “fingerprint” from each uniquely hand crafted block that can be used to 

track the origins of printed materials and also to analyze the history of the block’s usage, 

wear, transfer between printing houses, and duplication when extensively damaged. 

Details about the dataset and information retrieval problems can be found in [43]. We 

present two classification problems using this dataset: letter based classification and print 

house origin classification. 
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Base Impression: The base impressions in this dataset are of same origin as the 

Ornamental Letters dataset. These images were used to signify a concept in the text or 

represent an important person, such as a king or saint. Their lineages can also be tracked 

by analyzing their subtle uniqueness. This dataset provides a significant challenge to our 

measure compared to the ornamental letters. Where the letters are very texture rich, these 

images may contain significant regions of blank space and are dominated by line based 

drawings. They may also contain noise in the form of letter bleed from the opposing page 

and fading from age. We classify these images based on their depicted scene. 

CAIRO Wood: This dataset consists of 100 images of ten species of tropical wood 

provided by the Center for Artificial Intelligence and Robotics [44]. Each species is 

represented by ten photographs taken at a microscopic level. The images are also evenly 

split into two families of wood, Leguminosae and Dipterocarpaceae. The dataset is 

classified in two approaches: a two-class problem across family designations and a ten-

class problem across species classifications. A similar set of this data has been worked on 

by [45]. 

Camouflage: This dataset consists of 70 images of nine varieties of modern US 

military camouflage. The images were created by photographing military t-shirts and 

fabrics at random orientations. 

VVT Wood: This dataset consist of 839 samples of wood lumber used originally for 

color based inspection and grading for industrial usage [46]. Square tessellations of about 

2.5x2.5cm of every image are annotated to be either sound or one of about 40 types of 

wood defect (dry knot, small knot, bark pocket, core stripe, etc.). The annotated data is 
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parsed and each tessellated region is cropped and given a class label of either sound or 

defective. For classification tests, we use a subset consisting of 100 images from the two 

class problem: sound or not sound. 

UIUCTEX: The University of Illinois at Urbana-Champaign Texture database [47]  

features twenty-five texture classes with forty samples each. The data set is composed of 

images of common textures such as glass, bark, and water. They are taken at varying 

orientations, illuminations, and subset locations on the sample texture. 

VisTex: The MIT Vision Texture data set [48] consists of 167 images from 19 classes. 

Unlike many other texture datasets, does not hold rigid rules for orientation or lighting. 

Rather, it provides images from real world conditions such as flowers within a field or the 

water texture from an inland position. 

KTH-TIPS: The KTH-TIPS [49] texture data set exists as an extension of the CURet 

data set [50] by adding variances in scale and by photographing from multiple samples in 

a single class. The dataset consists of 810 images from ten classes. 
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TABLE III. ACCURACY OF THE ONE-NEAREST-NEIGHBOR CLASSIFIER USING THE FOUR MEASURES UNDER 

CONSIDERATION. NOTE THAT RESULTS MAY BE BIASED TOWARDS THE TEXTON APPROACH.  

Data Set 
CK-1 

(%) 

Rotation Invariant CK-1 

(%) 
Gabor Filters 

(%) 
Texton 

(%) 

Spider Subset 96.3 - 59.6 89.6 

Full Spider Set 93.5 - 39.1 74.1 

Tire Tracks 79.2 91.7 87.5 93.8 

Nematodes 56.0 - 38.0 52.0 

CAIRO Wood (F) 83.0 94.0 95.0 95.0 

CAIRO Wood (S) 77.0 90.0 93.0 94.0 

VTT Wood 81.5 92.0 88.0 89.5 

Original Moths 49.1 - 18.3 42.6 

Cropped Moths 63.4 - 27.5 48.8 

Cleaned Moths 71.0 - 24.0 58.2 

Brodatz 52.1 44.8 37.0 52.0 

KTH-TIPS 73.7 63.3 58.3 54.8 

Camouflage 87.5 - 85.0 92.5 

UIUCTex 51.0 43.6 45.3 55.8 

VisTex 32.9 26.3 36.5 47.9 

Base Impressions 98.5 - 8.96 19.4 

Ornamental Letters 

(P/L) 
100 - 12.5 48.2 

Ornamental Letters 

(L) 
90.7 - 21.0 45.4 

TABLE III presents the best experimental results for these data sets with the CK-1 

measure, the rotation invariant CK-1 measure (where appropriate), the Gabor filter bank 

method, and the texton method. 
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Figure 8: A visual summary of the relative strength effectiveness of our proposed 

distance measure. 

Because the sheer number of results makes it difficult to judge the relative performance 

of the distance measures, we produced a figure to help visualize the results. For each 

dataset, we created a variable X = max(CK-1, RI CK-1), and a variable Y = max(Gabor 

Filters, Textons); we used these variables to plot a point for each dataset in Figure 7. Here 

we can see at a glance that the CK methods are extremely effective (Recall that 

classifications are biased towards the texton measure due to its learning on the entire 

dataset). 

3) Analysis of Noisy Datasets 

An obvious question for any distance measure is how robust is it to noise. While many 

of the datasets we have considered are noisy, we can best answer that question by 

systematically adding noise and testing its effect on classification accuracies. Noise may 

exist in the pixels of images due to low quality or inconsistent equipment, lighting 
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environments, or difficulty in imaging the subject (i.e. live moths). Occlusions may also 

corrupt the quality of datasets and reduce the amount of measurable data in the image. To 

test for these effects we apply various types of noise and measure the resulting accuracy 

on the Cleaned Moths and CAIRO wood (species) datasets. These accuracies are averaged 

over ten runs with differing amounts of noisy images and percents of image content 

corruption. Figure 8 displays examples of a moth image with added noise. 

 

Figure 9: Examples of induced image noise: (left) center occlusion and (right) random 

pixel noise. 

Center occlusion 

In this test a circle of varying radius is drawn in the center of the selected images. This 

circle’s pixels are randomly assigned a grayscale value to prevent the CK-1 measure from 

achieving perfect block matches in these noisy regions. The center position of the noisy 

circle is selected due to the high possibility of important information found at this location 

in many of our datasets. This test allows us to analyze CK-1’s ability to make accurate 

matches with decreasing amounts of usable information. Note that the maximum circle 

diameter is that of the longest side of the image. Even at 100% size there may still be 

original data left in the corners of the image. 
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Figure 10: Cleaned Moths accuracies with center occlusion noise. 

.  

Figure 11: CAIRO dataset with center occlusion noise. 

Figure 9 and Figure 10 present the accuracies of center occlusion tests on the Cleaned 

Moth and CAIRO wood (species) dataset. With the moths, the CK-1 measure is most 
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variant to noise applied to an increasing portion of the dataset. Additional occluded images 

have a weaker effect with the CAIRO dataset. This is caused by the different nature of the 

subjects in each of the test sets. The subject of the moth dataset is an object, an insect, 

where the CAIRO set displays a texture of wood. Considering the moth results, there is a 

sharp decrease in accuracy as the occlusion’s area begins to increase. This is because the 

object featured in the center of the image is quickly obstructed and only the background 

and fringe anatomical parts of the subject remain for analysis. 

In the CAIRO set, the decrease is more gradual and may sometimes increase due to the 

characteristics of the wood texture which may have key features throughout the image. Up 

until about 20% occlusion there is little change in average accuracy, with the tests at 100% 

dataset corruption scoring equivalent to the dataset without any occlusion. After this 

threshold there is a sharp decrease as more blocks are left unmatched and begin to bulk the 

final video size. This demonstrates that CK-1 is invariant to small occlusions or noisy 

blocks in richly textured images. 

As the number of corrupted images increase, more moths are removed from view for 

analysis and the cross validation performances continually decrease. With the CAIRO 

dataset, this phenomenon is the same until the dataset corruption reaches 100%. With the 

entire dataset exhibit the same occlusion noise, the occluded area is equally left out from 

all images and the texture in the images again becomes homogenous. All images have an 

equivalent amount of overhead due to the blocks in the occluded area and measurements 

on the remaining blocks can be weighed equally. With a small amount of occlusion at and 

below 20%, the corruption of additional images has little effect on the cross validation 
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accuracies. This is another demonstration of CK-1’s ability to handle small occlusion in 

high textured images. 

Random pixel noise 

 

To test CK-1’s invariance to pixel noise, a given percentage of the pixels in an image 

are reassigned a random grayscale value.  

 

Figure 12: Cleaned Moth accuracies with random pixel noise. 

Figure 11 and Figure 12 depict the one nearest neighbor cross validation performance 

of the CK-1 measure with the existence of random pixel noise on the Cleaned Moths and 

CAIRO (species) data sets. 

With the moth dataset at 20% pixel noise and equal amount of images corrupted, the 

performance of the CK-1 measure drops almost 20%. Our measure remains roughly 

invariant to further pixel noise but drops by a half a percent for every additional percent of 

corrupted images.  Though the quantization factors of MPEG-1 give the measure some 
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resilience to independent pixel errors in the image, spreading the pixel corruption 

throughout the image, rather than localizing the errors into occlusions, can leave fewer 

unaffected blocks available for an accurate matching. 

 

Figure 13: CAIRO dataset with random pixel noise. 

Because the pixel noise is applied throughout the entire image, both test sets have 

similar performances as we vary the amount of dataset and pixel corruption. Just as with 

occluded blocks, blocks damaged with enough randomized pixels are less likely to be 

matched and therefore only add overhead for storing the entire block to the final video’s 

size. At 100% dataset corruption and a small amount of pixel corruption, we observe 

slightly worse results as the amount of overhead from unmatched blocks is roughly equal 

in each image. 

4) Similarity in Audio Space 
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Not only has the CK-1 method generalized extremely well throughout a diverse range 

of images, but we have extended this method to the problem of audio similarity [54]. In 

this distinct field, from visual images, of heard sound, we translate audio into an image 

space by analyzing its spectrogram using CK-1. With this approach we are successfully 

able to distinguish the calls of insects from diverse species. 

5) An Application to Web Mining 

We conclude our experiments with a simple example of a web mining application that 

can benefit from a robust texture measure. Our experiment is somewhat contrived, but 

demonstrates the robustness of the CK-1 distance to general unseen and unstructured data. 

While gathering datasets for the classification experiments in the previous section, we 

noted we had a folder of moth images simply labeled munda (we know now the Genus 

name is Orthosia).  Suppose we wished to retrieve more images of these moths from web, 

we can simply issue a Google image search. We did this on October 4
th

, 2009 and found 

that of the twenty-one images returned on the first page, none showed the correct moth. 

An image of the moth could not be found until the second page and the next image of the 

moth did not appear until the third page.  As shown in Figure 13, the false positives 

include images of Munda Island and an unrelated insect that has the same specific name. 
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Figure 14: A web query for munda did produce some images of the moth, Orthosia 

munda, we expected (top row), but it also returned images  of (from bottom left to right): 

the Munda tribes of India, an unrelated insect Cycloneda munda, a military photo taken at 

Munda Island, and a map of Munda Island. 

For simplicity, let us consider the first four pages, which consist of 84 images, as the 

entire universe of images. Considering only these pages, there is a precision and recall of 

zero on the first page. There is an obvious way we could increase the precision of the 

query in the first page of results. Since we have some images of the moth we are interested 

in we could issue the text query as before, then reorder the query results based on their 

distance to a representative of our training data. This training representative is the training 

image with the lowest mean CK-1 distance to all other training images. We then score 

each query image based on their CK-1 distances to this training representative. This 

reordering brought about a recall of 1.0 and a precision of 0.19 on the first page. 
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2.5 Runtime Performance 

The speed of our CK based method can be attributed to the simplicity of the underlying 

MPEG-1 compression algorithm. Since the reference image is not down sampled, there is 

no time required for its spatial redundancy reduction. The most time costly process, 

interframe block matching, is a logarithmic search process. Also, each block in the query 

image need only be compared to its corresponding neighborhood in the reference image. 

This greatly limits the running time needed to block match an entire image to O(nlogn). 

Because the search can early abandon depending on the quality of a found match, this 

worst case runtime is usually avoided in empirical tests in favor of a fast average case 

runtime. Early abandoning also speeds up the calculation of the denominator in (1) by 

allowing for the block matching of the identity compression to be completely skipped. 

Furthermore, since most uses of MPEG involve large movies in the commercially 

important entertainment industry, the MPEG compression algorithms are extraordinarily 

well optimized.  

In contrast, Gabor filters must convolve N filters for each image. The time performance 

of this operation must then also consider the dimension D of the square filters, where D 

>> N. The size of D depends on the scale and frequency parameters used in the filter 

generation and, in some cases, can be larger than the image itself. Just the Gabor 

descriptor extraction is therefore an O(n
2
) operation. 
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Figure 15: Time comparison on image size with CK-1, Gabor Filter Banks (GFB), and 

Texton approaches. 

Textons add onto the running time of the original Gabor filters approach by requiring 

clustering within each class. Its runtime is bounded by O(n
2
) + n x (images per class) x 

(number of classes), where each element to be clustered is of N dimensions. Texton 

calculation speed performance is therefore heavily dependent on its application. Large 

numbers of classes, large images, and large collections of images can greatly increase the 

execution time. 
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Figure 16: FastMap dimensional reduction on cleaned moth dataset. 

As a concrete example: the distance between two images from the VisTex dataset, 

grass and brick, are compared with each of the three methods. The distances of ten scales 

of these images are computed and the average execution times over several iterations are 

plotted in Figure 14. 

As we can see, the time taken for the CK-1 measure is negligible relative to the other 

measures.  

1) Embedding Metrics 

Though CK-1 is not a metric, it is possible to use it with techniques that are designed for 

exploiting metric properties. By extending our measure with these processes we can improve the 

speed and usability of CK-1. We demonstrate this by applying a fast dimensional reduction 

algorithm, FastMap [51], to our classification experiments. 
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FastMap can reduce the complexity of our query calculations while approximately preserving the 

dissimilarities of the original space. The process involves selecting two maximally distant pivot 

objects for each of the k dimensions of the reduced space. Transformation of new objects into this 

new space only requires comparison to these 2k objects. For lookup a fast spatial method may be 

used for query lookups in the reduced space. Because we apply this algorithm to the pairwise 

distances of images in our datasets, we can dramatically decrease the amount of calculations in 

search for a good approximation of the object’s nearest neighbor. 

Figure 15 displays the resulting cross validation accuracies in a reduced FastMap 

space. With the FastMap accuracies approaching our baseline accuracy, we can trade 

performance accuracy for performance speed to fit any application.  

2.6 Acknowledgements for the CK Method 

This portion of work was funded by NSF 0808770. We would like to thank the many 

donors of data, especially of Anna Watson and Michael Mayo (moths), Melissa Yoder and 

Paul De Ley (nematodes), Kimberly Russell (spiders), Marzuki Khalid (CAIRO Wood), 
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2.7 CK Conclussions and Future Work 

In general the results in the previous section speak for themselves. For the most part, 

we have avoided comparisons to published results that consider the same datasets since 

different experimental conditions make direct comparisons difficult. However in some 

cases tentative comparisons can be instructive. 
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In the Spider Subset problem we got an accuracy of 96.3%, the original authors 

obtained accuracy in “the range of 90–96%” [3]. Note that this range of accuracy was 

obtained at the end of a four-year project devoted to just this problem, and their algorithm 

required occasional human intervention, “it was important to review the log files of this 

process to pick out any potentially contaminating images and remove them from the 

training sets” [3]. 

Of the variants of the Moth dataset, we obtained a best accuracy of 71.0%. Using two 

variants of the Nearest Neighbor algorithm (as we did), the original authors obtained 65.7 

and 71.6% respectively [34]. However it is important to note that we used only texture 

features, whereas the original work had access to both color and texture features. It is clear 

that color is very useful in discriminating at least some of the classes. For example 

Ourapteryx sambucaria is yellow, whereas Campaea margaritata gets it common name, 

the Light Emerald moth, from its distinctive green hue, and Cabera pusaria is aptly 

known as the Common White Wave. 

It is important to note that in spite of the generally excellent performance of the CK-1 

measure in diverse domains, we are not claiming it is the best measure possible for all 

problems. For specialized application areas, better measures, which incorporate domain 

specific constraints and features, may do better. However for exploratory data mining, our 

CK-1 measure, built on our CK method, offers a powerful yet simple baseline measure.  

1)  Future Work 

In this work we have not focused on the speed or indexability of the CK-1 measure, 

other than a tentative experiment to show that Fastmap embedding may be useful. One 
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reason for this is that we wanted to forcefully demonstrate its utility first. In addition, we 

feel that optimizing speed may be irrelevant in many domains. Theo Pavlidis, one of the 

founders of CBIR recently remarked, “In a medical application it may take well over an 

hour to produce an image, so waiting another hour to find matches in a database is not 

particularly onerous” [52]. Such remarks apply to many of our domains; the moth dataset 

took almost a year to collect and the nematode dataset took four years to collect [11][34]. 

Nevertheless, as we have shown in Figure 14, the CK-1 measure is orders of 

magnitudes faster than some obvious rivals. We have shown a method to further increase 

the speed of our measure by allowing indexing with dimensionality reduction by 

embedded metrics. Using methods such as FastMap, we can achieve faster queries to fit 

various performance requirements, albeit at the cost of some reduction of accuracy. 

In our analysis on the effects of noise in the form of occlusion and corrupted pixels, we 

have shown that CK-1 is surprisingly robust to noise. With 100% of the CAIRO dataset 

exhibiting occlusions, the cross validation accuracies outperform other tests including the 

original occlusion-free dataset. 

There are several possibilities we plan to pursue. One possibility is to modify the 

measure so that it becomes a metric. This would allow us to avail of a wealth of 

techniques that exploit the triangular inequality to index data.  

Even then there may be data mining applications for which we need to further improve 

efficiency. For example, within the next two years we expect to have terabytes of 

nematode images [11]. Further improvements in speed may come from exploiting several 
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known ideas in image/video processing. For example multi-resolution analysis for scale 

invariance could improve our method’s performances in many domains. More advanced 

compression algorithms could be explored to be used with the CK method for possible 

performance increases in speed and accuracy. Modifying the block matching search 

algorithm to allow for global motion vectors could allow for higher accuracies or faster 

search procedures and batch processing of multiple images. Possible options include the 

creation of a block matching algorithm specifically for the application of texture analysis, 

or to explore the global compensation techniques implemented in newer compression 

methods such as MPEG-4 and H.264 [53].  
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3  CHAPTER 3: RULE DISCOVERY IN TIME SERIES 

The ability to make accurate predictions about future events is at the heart of much of 

science, and so it is not surprising that prediction/forecasting has been a topic of great 

interest in the data mining community for the last decade. Most of the work in the 

literature has dealt with discrete objects, such as keystrokes (i.e. predictive text), database 

queries [67], medical interventions [81], web clicks, etc. [80]. However, prediction may 

also have great utility in real-valued time series. For concreteness we briefly consider two 

examples: 

• Researchers in robotic interaction have long noted the importance of short-term 

prediction of human initiated forces to allow a robot to plan its interaction with a 

human. For example, a recent paper notes the critical “importance of the prediction of 

motion velocity and the anticipation of future perceived forces [to allow the] robot to 

anticipate the partner’s intentions and adapt its motion.” [61] 

• Doppler radar technology introduced in the last two decades has increased the mean 

lead time for tornado warnings from 5.3 to 9.5 minutes, saving countless lives [54]. 

But progress seems to have stalled recently, with 26% of tornados within the US 

occurring with no warning. McGovern et al. argue that further improvements will 

come not from new sensors, but from yet-to-be-invented algorithms that “examine 

existing data for predictive rules.” [69] 

Most of the current work has attempted to predict the future based on the current value 

of a stream [68]. However, for many problems the actual values are irrelevant, but the 
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shape of the current pattern may foretell the future. For clarity we call the former 

forecasting and the latter, which is the subject of this paper, rule-based prediction 

(although the literature is inconsistent on this convention). There is an additional critical 

distinction between forecasting and rule-based prediction. Time series forecasting is 

typically always-on; it predicts values at every time step. In contrast, rule-based prediction 

monitors the incoming data at every time step, but only occasionally makes a prediction 

about an imminent occurrence of a pattern. 

While forecasting is mature enough to have its own conferences and commercial 

software (SAS, IBM Cognos, etc.), the handful of research efforts to consider time series 

rule-based prediction have met with limited success. In particular, it is widely accepted 

that these efforts allow the discovery of spurious rules [62]. We believe that the reason 

why rule discovery in real-valued time series has failed thus far is that most efforts have 

more or less blindly applied the ideas of symbolic stream rule discovery to real-valued rule 

discovery. In this work, we argue that the classic ideas of support/confidence are not 

directly transferable to rule discovery in real-valued time series. Instead, we formulate a 

rule representation and search strategy that evaluates candidate rules based on how well 

they can compress the data. We also demonstrate the (lack of) effect of using our simple 

uniform quantization method. Beyond our novel definitions/representations, we further 

show that our ideas are amenable to novel, admissible search algorithms that allow us to 

quickly find high quality rules, even in very large datasets. 
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3.1 Background and Related Work 

In a sequence of papers culminating in [72], Park and Chu investigate a rule finding 

mechanism for time series. However, the algorithm is only evaluated for speed and then 

only on random walk data. No evidence was presented that the algorithm could actually 

find meaningful rules in time series.  

Like Park and Chu, Wu and colleagues also use a piecewise linear representation to 

support rule discovery in time series. They tested their algorithm on real (financial) data, 

reporting approximately 68% “correctness of trend prediction” [82]. However, the authors 

graciously tested their algorithm on data provided by others, and when they ran their 

algorithms on random walk data they again achieved approximately 68% correctness of 

trend prediction [83]. This strongly suggests their original results did not differ from 

random guessing.  

The most referenced time series rule-finding method in the literature is [57], which 

quantizes the data with K-means clustering of the entire training dataset, and then hands 

the (now) symbolic data over to a classic association rule discovery algorithm. The 

success of a rule is measured with a score called the J-measure. The method was used in 

more than a dozen papers before it was shown that the J-measure gave the same 

significance to rules found in completely random data, as to rules found in real data [62].  

3.2 The Intuition Behind Rule Discovery 
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It may be instructive to first consider the analogue problem of rule discovery in 

symbolic strings. Let us consider the familiar poem, “The Raven”, by Edgar Allan Poe. It 

begins: 

Once upon a midnight dreary, while I pondered weak and weary... 

What are the possible rules we might discover in this text? One possible rule that 

occurs to someone familiar with the poem is that the word “door” often follows the word 

“chamber,” a rule we can denote as: 

chamber → door 

We refer to the left side of the rule as the antecedent and the right side as the 

consequent. This rule is based on our observation that we see the phrase “chamber door” 

ten times in the text. We note that this is not a perfect rule; the word “chamber” appears 

once without been followed by “door” (“Back into the chamber turning...”). Furthermore, 

it is important to note that the rule does not make the claim that all, or even many, 

occurrences of “door” are preceded by “chamber”. In fact, there are four additional 

examples of the word “door” in the text. 

The differences between rule discovery in text and the task at hand are telling; with 

time series data we do not have unambiguous segmentation of the stream, thus we are 

facing data that is more like this: 

onceuponamidnightdrearywhileIponderedweakandweary.... 
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Given such a text, there are (language agnostic) algorithms that can segment the string 

into the original words [56], with varying degrees of accuracy. However, segmenting a 

real-valued time series into meaningful episodes is much more difficult. Furthermore, the 

problem is further complicated by the fact that, in most cases, the time series does not 

consist solely of discretely concatenated events. Rather, the events may be interspersed 

with meaningless filler symbols. For example, if we examine a motion capture of a sign 

language version of this poem there will be locations that do not correspond to discrete 

signs, but rather to transitions between signs. This will produce something rather like this: 

oncexauponwamidnightmtdrearydwhileuIpponderediweakoandajweary... 

Finally, time series are inherently real-valued and as such, tests for equality are 

meaningless. This would be equivalent to our text string having some misspellings, like 

this: 

qncexauponwamidmightmtdreerydwgileuIpponderediweekoandajweauy... 

The problem is now significantly more difficult than the original statement. We must 

generalize the antecedent to allow flexibility, perhaps by triggering the occurrence of a 

pattern that is within a certain threshold t distance under some suitable distance measure: 

dist(“chamber”, substring) ≤ t → door 

However, we are not done generalizing the rule model. The existence of misspellings in 

our data means that we may wish to accept similar consequents such as poor or dooor as 

successful predictions. Furthermore, we originally assumed that the consequent 
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immediately followed the antecedent. However there may be some additional symbols 

between words. Thus we need to define a parameter, maxlag, which is the maximum 

number of characters between the end of the antecedent and the beginning of the 

consequent. For example: if maxlag is set to two, then any of the below would be 

considered successful predictions:  

...chamberdoor..., ...chamberzdoor..., ...chamberxydoor... 

but the following: 

...chamberxzuvdoor... 

is not a successful prediction because the lag between the antecedent  and consequent is 

too long.  

There are two reasons for having a maxlag parameter. The first is to allow for 

meaningful, falsifiable predictions. The prediction that “this consequent will eventually 

occur” is paradoxically both unfalsifiable and almost certainly true (if we wait long 

enough). The second reason is more pragmatic, a bounded value on the maxlag will make 

the search over the rule space more tractable. We can now show our final rule format: 

dist(chamber, substri,j) ≤  t1 → dist(door, substrm,n) ≤  t2 , m – (i +  j – 1) ≤ maxlag. 

This can be read as follows: “If we see a substring that is within distance t1 of the word 

chamber, then we fire the rule and expect to see a similar substring to word door, within a 

learned distance t2 in the next maxlag time steps.” In the next section we generalize these 

ideas to real-valued time series. 



53 

 

1)     Moving to Real-Valued Data. 

We are now ready to begin to “port” our ideas to the true real-valued time series that are of 

interest. We will start with an example for which we know the ground truth and for which the 

reader has already developed some intuition. It is important to note that we are not using external 

knowledge to help our algorithm, only to validate and explain it. We took an audio recording of 

the first four verses of “The Raven”, and converted it to Mel-Frequency Cepstrum Coefficients 

(MFCC) space, keeping just the first coefficient; Figure 17 shows the data. 

 
Figure 17: The first four verses of “The Raven”, converted into 100Hz MFCC space. Just 

the first coefficient is kept. 

As one might expect, it is difficult to make sense of such data. Using just the first 2,000 

data points, which corresponds to the first verse of the poem, we found the pair of non-

overlapping subsequences of length 100 (one second length in the original data) that had 

the minimum distance to each other. Such a pair of subsequences is referred to as a time 

series motif in the literature [69][70]. Figure 18 shows the motif pair. 

 

Figure 18: The motif pair discovered in the first 2,000 data points (20 seconds) of “The 

Raven”. The shape corresponds to the utterance “...at my chamber door”. 
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The occurrence of such a highly conserved motif suggests one possible method for 

specifying rules. We could simply split the motif pattern in two, let the average of the left 

side be the antecedent, and then let the average of right side be the consequent. We then 

need to set the maxlag and the threshold t1 parameters.  For the momen62t, let us simply 

set the former to zero and the later to the mean distance between the antecedent motif 

prefixes plus one standard deviation. Figure 19 shows the rule. 

 

Figure 19: A rule learned from the first 2,000 data points of the data shown in Figure 17. 

If the antecedent pattern (left) is matched to a subsequence in a stream that is within 

Euclidean distance of 7.58 to it, we predict the immediate occurrence of the consequent 

pattern (right). 

We can immediately test this rule by running it on the remainder of the data shown in 

Figure 17. The rule fires exactly three times; in Figure 20 we show the first rule 

invocation. 

 

Figure 20: The rule shown in Figure 19 is first invoked at location 5,735. The resulting 

prediction appears accurate. 
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In all three cases, not only is the rule’s prediction visually accurate, as shown in Figure 

20, but if we check the location in the original audio we find that in every case it maps to 

an utterance of “door.” 

In this simple example, hard-coding the maxlag to zero is intuitive; however, we can 

easily imagine examples that need the flexibility of a larger maxlag constraint. Consider 

Figure 21 which shows some accelerometer data collected from a device worn by a 

student at USC as he went about daily activities [73] . 

 

Figure 21:  left) A rule for a z-axis accelerometer dataset encodes the fact that the initial 

acceleration “bump” of going up in an elevator must be eventually be matched by the 

elevator stopping at a floor. right) A subset of the data from which this rule was learned 

[73]. 

This example shows a very easy rule to spot. The semicircular bump created by an 

elevator accelerating must eventually be matched by a bump in the opposite direction 

when the elevator brakes at a floor (the rule for elevators going down is essentially the 

same, but with the consequent and antecedent swapped). The time lag between these two 

events depends on the number of floors serviced by the elevator. 

 

 

t1 = 0.4 
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3.3 The Rule Framework 

We are now in a position to present the formal definitions necessary to rigorously 

define our rule framework. We begin with the definition of the data type of interest: 

DEFINITION 1. A Time Series is a sequence T=(t1,t2,…,tn) which is an ordered set of n real valued 

numbers.  

Our rule discovery framework examines short sections of the time series, which are 

called subsequences:  

DEFINITION 2. A subsequence of length n of a time series T = (t1,t2,…,tm) is a shorter time series 

Ti,n = (ti,ti+1,…,ti+n-1) for 1 ≤ i ≤ m – n + 1. 

When monitoring a time series we continuously extract the subsequence of the last n 

numbers, a sliding window:   

DEFINITION 3. A sliding window (W), of length n, is the most recent n values of T.  

Recall that we are only interested in the shape of the subsequences, not their amplitude 

or offset. We therefore z-normalize all subsequences [58][62]. The time taken to z-

normalize a subsequence is linear in its length; however, we can z-normalize the sliding 

windows in amortized constant time by incrementally maintaining statistics [77].  

We need to define a distance measure between two subsequences. While there are 

dozens of measures in the literature, recent empirical evidence suggests that Euclidean 

distance is very difficult to beat [58]. Furthermore, Euclidean distance is parameter-free, 

fast to compute, and is amiable to various data mining “tricks” such as indexing and early 

abandoning computation [70].  
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We empirically considered other distance measures for rule finding, including Dynamic 

Time Warping and Longest Common Subsequence based measures including Swale, 

Spade and EPR [58]. However none improved the accuracy of the rules (a finding 

consistent with [58]) and all required at least two orders of magnitude more time. 

The Euclidean distance D, between two subsequences A and B of the same length n is 

given by:  

�	
, �� =  �� 	
� − �����
���

� . 

A time series antecedent is a subsequence used to trigger a rule if it is similar to the 

current sliding window:  

DEFINITION 4. Assume we are monitoring a time series stream by continuously extracting the 

sliding window. Given a positive constant t (the threshold), and an antecedent time series Ra, a 

binary flag fired is set to TRUE if D(Ra ,W) < t. 

Note that in order for a candidate antecedent to be even considered as a rule precursor, 

it must occur at least twice; we obviously cannot generalize from single exemplars. This is 

essentially the definition of a time series motif [70]. In Section 71, we will exploit this fact 

in order to reduce our search space of antecedents (and later, consequents). 

In principle, the threshold, maxlag, and antecedent could be hand chosen by a domain 

expert. However, as we will see below, it is possible to automatically find them. 
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Note that the shortest possible antecedent is of a length of three, because we are 

assuming we will z-normalize it, and there are only two trivial z-normalized time series of 

a length of two. In practice, the antecedent is likely to be significantly longer than this in 

order to reduce the possibly of spurious rules. 

As an antecedent is a precursor to an event, a predicted subsequence shape which 

follows a triggered antecedent within a specified time (the maxlag) is called the 

antecedent’s consequent: 

DEFINITION 5. A consequent R�  is a time series subsequence that is predicted to follow the 

detection of an antecedent within a maxlag number of time steps. 

The maxlag parameter encodes the fact that for a time series subsequence to be a 

meaningful consequent in a rule, it must occur within some acceptable time after the rule’s 

antecedent has been detected. Without such a constraint on time, a consequent’s 

occurrence may be coincidental. 

DEFINITION 6. The maxlag is the maximum number of time steps allowed between a detected 

antecedent and its consequent. In particular, if tk is the last value in W the moment the rule is 

triggered, then the consequent R�, must be derived from a subsequence of T, Ti,n, such that 0 ≤ i – k – 

1  ≤ maxlag. 

Given an antecedent, its consequent, the maximum expected maxlag delay between the 

two, and the threshold used to trigger a subsequence match, we have all the necessary 

components to specify a single time series rule:  

DEFINITION 7. A time series rule R is a 4-tuple of {R�, R�, maxlag, t}. 
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To help with our rule search algorithm presented in Section 3.5, we explicitly define 

the consequent search space: 

DEFINITION 8. The consequent search space (CSS), for a consequent R� of an assumed length n, is 

the subsequence following an antecedent where a rule predicts the presence of a subsequence 

match for R�. Specifically,  T��� = T���,�� !�"��, where k is the final index of the detected 
antecedent. 

Having formally defined time series rules and all supporting notation, we have just two 

more tasks to address before we are ready to test our ideas. We need to formalize a scoring 

function to tell us how good a candidate rule is. This is a critical step if we are to find 

meaningful rules [62]. Furthermore, since the space of all possible rules is infinite, we 

need to find an efficient search strategy. Our proposed scoring function is based on the 

MDL cost, which is only defined for discrete data. In the next section, we show that real-

valued time series can be discretized with essentially no loss of information, thus allowing 

the application of MDL. Then in Section 3.5, we introduce our time series rule finding 

algorithm. 

3.4 Data Discretization 

Because of our intention to use MDL to measure the relative merits of candidate time 

series rules, we must transform our real-valued time series into a discretized space 

[65][74]. After careful empirical consideration of the many quantization options, we 

quantize the time series’ real values into uniformly distributed bins. For each test data set, 

we utilize a sliding window of length n and z-normalize all possible subsequences while 

recording the minimum and maximum values. After attaining the global minimum value, 
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min, and global maximum value, max, we then specify bin boundaries that are evenly 

distributed between min and max. The resulting bin width is then: 

345 − 36789:6;98 <4;8674=6>? 

For example, consider the five time point series subsequence shown in TABLE IV. 

Note that the five distinct, real values in the original data map on to fewer distinct values 

in the low cardinality representation.    

TABLE IV. LEFT) A 5 DIMENSIONAL TIME SERIES T; NOTE THAT IT IS Z-NORMALIZED. 

RIGHT) 6 BIT AND 64 CARDINALITY REPRESENTATION OF T. 

Original Data min = -0.915837463044344 

max = 1.059696557703197 

Low 

Cardinality 

Representation 

1.059696557703197  63 

1.058743239030050  63 

-0.289671788196926  20 

-0.914384004268160  0 

-0.915837463044344  0 

 

As we can see in Figure 22, even if we reduce a 64-bit time series to a mere 6-bit 

representation, there is no visual difference. Beyond this visual and intuitive 

demonstration, we can show the (lack of) effect of discretization on time series with 

classification experiments, since the rule triggering step is essentially a classification 

problem. We conducted empirical tests on data from the UCR Time Series Archive [79]. 
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For each dataset, we ran leave-one-out one-nearest-neighbor classification tests using 

uniform quantization with varying cardinalities. TABLE V provides a snapshot of the 

results. It is demonstrated that a real-valued time series can be drastically reduced with our 

discretization without significantly affecting the intrinsic information available. There is 

little loss incurred from a large reduction of the data’s original real-valued space. In fact, 

because cardinality reduction of the original data can reduce the effects of noise and 

outliers, we can sometimes see some tiny (but not statistically significant) improvements 

in accuracy. 

 

Figure 22: A snippet of the MFCC version of “The Raven,” shown in original 64-bit 

representation (bold/blue) and in a 6-bit reduced cardinality (fine/red). The two versions 

were slightly shifted in the y-axis for clarity. 

These two observations in Figure 22 and TABLE V allow us to use MDL with little 

fear that we are throwing away valuable information. 
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TABLE V. ONE-NEAREST-NEIGHBOR LEAVE-ONE-OUT ACCURACY RESULTS ON UCR 

DATASETS FOR VARIOUS CARDINALITIES. 

 

Dataset 

64-bit (raw) 

Cardinality is 264 

16-bit 

Cardinality is 65536 

6-bit 

Cardinality is 64 

50words 63.1% 63.1% 63.3% 

CBF 85.2% 85.2% 85.2% 

Beef 66.7% 66.7% 66.7% 

ECG 88.0% 88.0% 88.0% 

FaceAll 71.4% 69.6% 69.6% 

FaceFour 78.4% 78.4% 76.2% 

Fish 78.3% 78.3% 77.7% 

Lightning2 75.4% 75.4% 77.1% 

Lightning7 57.5% 57.5% 58.9% 

OSULeaf 52.1% 52.1% 52.1% 

Which value of cardinality should we use? Empirically, if the value is anywhere in the range 

of 65,536 to 64, it makes no difference; we therefore use the smaller cardinality of 64 in all 

experiments.  

3.5 Rule Discovery Algorithm 

We are finally in a position to introduce our rule finding algorithm. In essence, it has 

two parts -- a scoring function and a search method which repeatedly invokes this scoring 

function, searching for high quality rules.  

Our MDL scoring function is given three inputs:  

• A training time series dataset.  
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• A candidate antecedent. 

• An expected maxlag value (optional, defaults to infinite).  

The function then returns four things:  

• A suggested value for threshold t.  

• A consequent. 

• A learned maxlag. 

• A score which reflects the quality of the resulting rule. 

The score is a measure of how much bits are saved if we could compress the data using 

the rule, substituting real data with our prediction.  As the scoring function is at the heart 

of our ideas, we will detail the intuition behind it next and formalize it in Section 2). 

1) Intuition behind Rule Scoring with MDL Cost. 

The intuition behind our scoring function is that if we make a good prediction, the 

consequent shape we predict will be similar to a subsequence that occurs within maxlag 

steps. We could quantify this similarity with Euclidean distance (which is essentially the 

mean squared prediction error used in forecasting) [68]. However, there is a significant 

shortcoming of the Euclidean distance for this task; it does not allow us to compare the 

quality of consequents with different lengths.  

To make this clearer, let us return to our expository text example. Suppose we have to 

evaluate the following candidate rule:  

dist(“chamber”, substring) ≤ t → door, 
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Which when fired makes a prediction of length four. When encountering this string: 

...bustabovehischamberdoorwithsuchnameasnevermore… 

It achieves a hamming distance (a good analogue of Euclidean distance) of 0. Contrast 

this result with the following rule: dist(“chamber”, substring) ≤ t → doorwithlikename, 

which when fired makes a prediction of length sixteen. When encountering the same 

string: 

...bustabovehischamberdoorwithsuchnameasnevermore… 

It achieves a hamming distance of four. Which of these is better? The former is an 

exact but short prediction; the latter is an approximate but longer (and arguably more 

informative) prediction. Unfortunately, simply normalizing for length does not work here. 

While it is not commonly understood, the Euclidean distance between two subsequences 

of  length n can actually decrease when we expand to length n+1 because of the 

(re)normalization of the data using a larger denominator. So not only is the effect of length 

not linear, it is not even monotonic.    

The solution to this problem, and the reason for the earlier digression into discretization 

of time series, is MDL [1]. In fact, for several decades MDL has been used to solve very 

similar problems in intrinsically discrete domains such as text, DNA, MIDI, etc. 

[59][66][78]. However, this application to time series rule finding is novel. 

The intuition behind our use of MDL is to consider a candidate subsequence as a 

hypothesis H about a future event. This hypothesis has some cost: the number of bits it 
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takes to store it. We denote this cost as DL, or the Description Length. Since we are 

storing the subsequences as plain text, we have DL(H) = length(H) × log2(cardinality). For 

example, in Figure 23 we show a version of the consequent previously shown in Figure 19 

(reduced to a cardinality of just eight for the sake of visual clarity). This time series is of 

length 36, and has a 3-bit (8 value) cardinality, so its cost is 36 × 3 = 108 bits.  

 

Figure 23: A candidate consequent H (bold) can be considered a reference model and 

used to encode other time series (fine/dashed) using their delta vectors (top). 

We want to evaluate the quality of a candidate consequent by asking how well the 

prediction matched the future. We do this by asking, “Given our consequent, what is the 

cost to encode the error of the predicted match m?” We denote this as DL(m H), that is, the 

description length of a matching subsequence m, given our hypothesized consequent H. 

We can measure this encoding cost by simply subtracting the consequent from the 

matching time series and encoding the difference vector efficiently. For the candidate 

match m1 shown in Figure 23.left, the delta vector consists only of four unique small 

values (-2, -1, 0, 1), and its encoding cost using a Huffman encoding, with a zero-mean 

Gaussian distribution, is 85 bits. In contrast, in the candidate match m2 shown in Figure 

23.right the delta vector has eight larger unique values and its encoding cost is 128 bits. 
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This indicates that it is not as good a match to the hypothesized consequent as m1. Thus 

the score of a candidate subsequence, m, with a given match, H, is as follows: 

 
�@	3, A� = �@	3� − �@	3|A� 

This equation allows us to measure the relative predictive power of subsequences, 

independent of their length.  

Note that in order to find rules in a training set, we must have at least two firings. This 

means that to evaluate the hypotheses we must see how well it encoded a set, M, of at least 

two matches.  

 C<D;9	E, A� = −�@	A� + � �@	3, A�
�∈H

 

where the set M consists of all subsequences to be compressed with the consequent H. For 

concreteness, suppose that the two examples in Figure 23 are both discovered when using 

a particular antecedent H, thus M = {m1, m2}. The overall score of the candidate 

consequent using 0 is then: 

C<D;9	E, A� = −�@	A� + [�@	3�� − �@	3�|A�] + [�@	3�� − �@	3�|A�] 
This can be read as, “The score for matches, M, using H is the cost of H plus the bits 

saved from compressing all matches.” With this model we can now directly measure the 

quality of a consequent. Similarly, we can use equation 0 to judge the quality of a rule’s 

antecedent by its ability to compress its own matched subsequences. Summing the 
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antecedent and consequent score of a rule yields an overall score for that rule. In the next 

section we expound how we can use this primitive to measure the quality of a potential 

rule. 

2) Formalizing Rule Scoring with MDL. 

The code presented in this section is optimized for simplicity of explanation; some 

redundancy exists in exchange for clarity. Carefully commented code is freely available at 

[85]. We now present both detailed pseudo-code and cross-annotated figures to illustrate 

our rule scoring algorithm. The rule scoring algorithm consists of the following steps: 

 1) Find non-overlapping subsequences, A, of T within t of K�. 

 2) Find motifs which exist after the discovered subsequences. 

 3) Select the best scoring motif as a consequent subsequence. 

Provided a candidate antecedent, threshold t, and a maxlag, our rule scoring method, 

outlined in Algorithm 1, returns the highest quality consequent subsequence as measured 

using equation 0. In line 1, the CSS are extracted from the time series for the given 

antecedent/threshold. For example, in Figure 24 two subsequences L��,�� and L���,�� are 

within t distance of K�. 

 

Figure 24: Antecedent matches (bold) are found at MNO,NN and MPQR,NN. Their 

corresponding consequents must then begin within maxlag time and must end within their 

consequent search subsequence. 

maxlag maxlag 

0 100 200 300 400 500 600 

CSS  1 CSS 2 
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Our candidate rule predicts that a consequent subsequence should exist after each of the 

antecedent matches. The consequents corresponding to each match must begin within the 

range [127,127+maxlag-1] and [464,464+maxlag-1], respectively.  

Algorithm 1: {bsfScore, consequent, maxlag} =  

  ScoreAntecedent(timeSeries, antecedent, t, expMaxlag) 

1 

2 

 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

 

14 

15 

{cssTS,bounds} = GetCSSTimeSeries(timeSeries, antecedent, t); 

maxConsequentLength = min(MAX_CONEQUENT_LENGTH, 

                          differences(bounds)); 

bsfScore = -∞; 

for i = 3 to maxConsequentLength 

  motifs = MKmotifs(cssTS, i, bounds, expMaxlag); 

  for j = 1 : length(motifs) 

    consequent = CreateCandidate(motifs[j]); 

    score = GetCost(consequent); 

    lag = -∞; 

    for k = 1 to |bounds| 

      lowerB = bounds[k-1] + 1; 

      upperB = bounds[k]; 

      [index lag cssScore] = 

        MinDistSubseq(cssTS[lowerB to upperB], consequent); 

      score += cssScore; 

      lag = max(index,lag); 
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16 

17 

18 

19 

    if (score > bsfScore) 

      bsfScore = score; 

      bsfConsequent = consequent; 

      maxLag = lag; 

We assume that antecedents and consequents cannot overlap; the maximum consequent 

length is then upper bounded by either a user-given expected maximum length, the 

presence of an antecedent match, or the end of the time series. These bounds define the 

consequent search subsequence (CSS) for each antecedent match. Although these bounds 

do reduce the size of the search space, we still must conduct pairwise comparisons of all 

subsequences between all CSS. This may prove costly if no maxlag is provided for the 

consequent and if the antecedent matches are very distant from each other. To mitigate 

this, we note that any high-quality consequent, just like an antecedent, must also be an 

approximately repeated pattern (a time series motif [70]); thus we search for consequent 

motifs in line 5. We can therefore reduce the search space from all subsequences between 

CSS to only motifs with at least one occurrence in two CSS. As shown in Figure 25, we 

extract each CSS and then conduct a motif search which respects the maxlag and the 

original CSS boundaries by ignoring subsequences which cross them (line 5).  
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Figure 25: Concatenated CSS time series from Figure 24. The overlaid green and blue 

subsequences are pairs of candidate consequent motifs. Because the blue consequent does 

not begin within both maxlag time frames, it cannot be considered for this rule. 

In this example, two motif pairs (overlaid by green and blue) exist. Because the 

subsequences in the blue motif pair do not begin within the maxlag time frames, it cannot 

be considered for the rule’s consequent (and wouldn’t be detected by the specialized motif 

search). In order to score the viable motif pairs (such as the green pair in Figure 25), a 

candidate consequent is created by averaging the motif pair (line 7). 

Next, in each CSS the closest matching subsequence to the candidate is found and its 

score contribution is calculated (line 10). We then compute equation 0 to obtain the 

candidate consequent’s score. Assuming that the green consequent was the best scoring 

motif, Figure 26 shows the final rule’s antecedent and discovered consequent. 

 

Figure 26: Provided an antecedent (orange) and threshold, which allows two antecedent 

matches in our training time series, we discover the consequent (green) within the maxlag 

from all antecedent matches. 
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Now that we have defined a method of scoring a candidate rule triplet 

antecedent/threshold/expected maxlag, we are in a position to describe a method for 

searching for likely antecedents to score. 

3) Rule Searching 

It is clear that the search space of possible antecedents is extremely large; how can we 

make the search tractable? The most important observation we leverage off is that for any 

rule its antecedent must be an approximately repeated subsequence within T (i.e. a time 

series motif [70]). We can perform a simple experiment to give an intuition as to how we 

may be able to exploit this fact. We took every subsequence of length 100 (one second) of 

the MFCC version of “The Raven” and recorded its distance to its nearest neighbor. The 

distribution of these distances is shown in Figure 27 with a few annotated examples. Note 

that one occurrence of the phrase “...chamber door...” has a very small distance to its 

nearest neighbor, which is naturally just another occurrence of the phrase. Similarly, 

repeated phrases such as “...the raven....”, “…on the floor…”, etc., also have small 

distances to their nearest neighbors. 

 

Figure 27: Distribution of distance to nearest neighbor for one second snippets of the 

audio (in MFCC space) of “The Raven.” 

0 50 100 150 200 250 300 350 400 450 
Distance to nearest neighbor  

…caught from some… 

… the raven…  … though thy crest…  
…chamber door…  

(pauses) 
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In contrast, phrases featuring hapax legomena
12 such as “caught” or “crest” have a 

huge distance to their nearest neighbor. Moreover, consider words which are not hapax 

legomenon, such as “soul” (which appears seven times). Because we are considering one-

second clips, the word “soul” is preceded and followed by other words to make a short 

phrase, and these phrases are typically unique. If we are attempting to find rules in the text 

space, unique words or phrases do not need to be considered since we clearly cannot 

generalize from a single example.  Moreover, Zipf's law tells us that about half the words 

in an English text are hapax legomena [64], and an even larger proportion of phrases must 

be unique. This observation is for text; however, many authors have noted this property 

holds for all kinds of multimedia data [55] and, as Figure 28  hints, it is true for most time 

series.  

This observation suggests that we only need to evaluate candidate antecedents that map 

to the far left of the distribution. Even if we had to actually build the entire distribution, 

this would still be a useful result. However, by exploiting recent results in time series 

motif discovery [70], we can find the left most objects in the distribution very efficiently, 

in just O(nlog(n)) time.  

Using these observations we reduce the space of candidate antecedents by limiting our 

search to discovered motifs, just as we did for consequents. The rule finding algorithm 

shown in Algorithm 2 searches a time series for the highest scoring rule. The first step in 

rule finding of time series is a motif search for possible antecedents of varying lengths 

                                                 

 
1  A hapax legomena is a word that appears only once in a body of text. 
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(line 4). Again, we use the MK algorithm which is the state-of-the-art motif discovery 

algorithm [70]. The test on line 6 removes motifs that cannot be antecedents (e.g. a motif 

pair is so close together that there is no room for a consequent between them). On line 8, 

we construct a candidate antecedent from the detected motif pair by averaging their 

values. Referring back to our example time series, Figure 28 displays a few candidate 

antecedents. 

While the threshold is a real-valued number with an infinite range of values, we only 

need to check a small number of different values. In particular, we need to check the value 

that is just large enough to make the rule fire twice, then that is just enough to make the 

rule fire three times, etc. The number of checks is limited by the fact that we rapidly run 

out of data as the rule fires many times. This process is called at line 8. 

Algorithm 2: rule = FindRule(timeSeries, expMaxlag) 

1 

2 

3 

4 

5 

6 

7 

8 

 

maxAntLength = min(|timeSeries| / 2, MAX_ANTECEDENT_LENGTH); 

bestRule.Score = -∞; 

for i = 3 to maxAntecedentLength 

  motifs = MKmotifs(timeSeries, i); 

  for j = 1 to length(motifs) 

    if (!IsMotifValid(motifs[j])) 

      continue; 

    {antecedent, thresholds} = 

      CreateCandidate(motifs[j], timeSeries); 
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9 

 

10 

 

11 

12 

    for k = 2 to length(thresholds) 

      {score, consequent, maxLag} = 

        ScoreAntecedent(timeSeries, antecedent, 

                        thresholds(k), expMaxlag); 

      if (bestRule.Score < score) 

        bestRule = 

          NewRule(score, antecedent, thresholds(k), 

                  consequent, maxLag); 

In Figure 29, we show the sorted locations of all non-overlapping matches to our 

familiar example antecedent. Notice that using this threshold selection technique, we have 

pruned trivial matches and all subsequences that are too short to contain an antecedent. 

 
Figure 28: Motif locations extracted from a training time series. Colored/bolded 

subsequences are antecedent candidates calculated by averaging motif pairs and are 

shown over the original motif locations. 

 

 
Figure 29: All possible non-overlapping subsequences ordered by their distance to a 

candidate antecedent. Subsequences ranked at four and higher will be pruned due to the 

small consequent length they impose. 

In our example it can be seen that there are only seven possible thresholds to test with 

our given antecedent. We can also see that the subsequences at rank four and higher are 

1 7 3 4 2 6 5 
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not viable since the consequent length of a particular antecedent/threshold pair is upper 

bounded by the smallest available CSS length.  

Thus these thresholds can be quickly dismissed without expensive calculations. 

Furthermore, if the user has provided a minimum consequent length, we may be able to 

prune more thresholds (or the entire antecedent) if the minimum CSS length between the 

remaining matches are below the allowed length. Using the rule scoring method discussed 

in the previous subsection, we can then score and rank each viable antecedent/threshold 

pair. 

4)     Pruning and Early Abandoning. 

Our rule finding framework was defined to both produce meaningful results and to 

allow exploitable areas for search space pruning and early abandoning. As described, the 

first step of rule finding is to search for antecedent motifs of all possible lengths. For each 

discovered antecedent motif we then consider each acceptable threshold. For any 

antecedent motif, we can use equation 0 to calculate its contribution, TUVW, to the rule 

score. To achieve this, we must consider all possible thresholds for each antecedent. In 

Figure 29 we have shown that the threshold space is limited. We can further prune 

thresholds by calculating their optimal score contribution and then abandoning when the 

upper bounding score drops below a best so far. Using equation 0, the upper bounding 

best score, TXYZW, of a consequent candidate of length [, \[, within any one CSS is: 

 C]^_` = �@	<!� − = × costbcd� 
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where costbcd is the minimum bits needed to store a differenced value. By defining the 

description length of any subsequence as simply: 

�@	<!� = = × log�	<4;8674=6>?�� 

we are unbiased to the shape of the subsequence. Using this definition with equation 0, we 

can measure the description cost of a consequent before actually conducting a motif search 

for it. 

Using equation 0 with equation 0, we can compute an upper bound rule score, C�� , of 

a rule with only a given consequent length, antecedent, and a threshold which matches 7 

subsequences: 

(3.1) C�� = C��` − �@	<!� + C]^_` × 7� 

Equation (3.1) calculates the highest possible rule score for an antecedent where a 

consequent motif of length l is found that matches perfectly to a subsequence in every 

CSS. If this score is less than the best-so-far score, we can forgo all consequent motif 

searches of length = as well as their necessary subsequence comparisons. If we cannot 

prune this {antecedent, threshold, consequent length} triplet, we must proceed with 

searching for motifs of length = which fit the current CSS constraints. 

Once the consequent motif search is completed, we then must score each discovered 

candidate consequent. Again, equation (3.1) provides an upper bound for any consequent 

motif with a given antecedent and threshold. With a small modification we can iteratively 

update our upper bounding score as we search for the best CSS matches for a candidate 
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consequent. As we find the best subsequence within each CSS, we will update the upper 

bound for the current consequent candidate and check to see if abandoning is possible. For 

CSS i of n, there exists a subsequence which has maximum score, :<D;9�, using equation 

0. If we have discovered the best scores from k amount of CSS, we then can calculate the 

new rule’s upper score bound as: 

(3.2) C� = C��` − �@	<!� + ∑ [:<D;9�]���� + C]^_` × 	7 − g�� 

In this equation, the first half (up to and including the summation) are exact rule score 

calculations while the remaining quotient is the upper bounding contribution of the 

uncalculated CSS matches. Note that at g = 0, equation (3.2) equals the upper bound 

equation (3.1) and when g = 7, equation (3.2) is the rule’s exact score. 

We can further prune one level deeper in our search. As we search for the best 

subsequence match within a CSS, we must calculate the distances between every time 

point of a candidate consequent and candidate subsequence. Because the cost, <�, supplied 

from our Huffman encoding for a distance, 8�, is a scalar function on Euclidean distance, 

we can conduct early abandoning techniques, similar to the Euclidean distance early 

abandoning conducted in [70], and prune distance calculations. 

3.6     Experimental Evaluation 

To ensure that our experiments are easily reproducible, we have built a website which 

contains all the data and commented code, together with raw spreadsheets for the results 
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[85]. In addition this website contains many additional experiments that are omitted here 

for brevity. 

We provide two sources of evaluation of quality. In some cases, as in “The Raven” 

example, we show the rules are meaningful by considering annotation available by 

external labels of some kind. In the more general case, we use the Euclidean distance 

between our predicted consequent and the F matching locations, a value we denote as 

Ferror (this is essentially the root-mean-squared error).  Because this number is difficult to 

interpret by itself, and motivated by results of previous methods on random data, we do 

the following: on the same testing set, using the same consequent, using the same maxlag, 

we fire the rule randomly F times and measure the Euclidean distance between our 

predicted consequent and the F random locations. We denote this value as Rerror (which is 

averaged over 1,000 random runs). Our reported measure of quality then is just 

i =, jkllmlnkllml. 

Q values close to one suggest our rules are no better than random guessing and values 

less than one indicate that we are finding true structure in the data. Each of the following 

datasets has been sampled at 100 Hz. 

1)     Finding Rules in Bird Songs. 

Most animals communicate using hardwired, innately determined sounds. Humans and 

songbirds, in contrast, are among the few animals that learn their communication skills. 

As songbirds, in particular zebra finches (Taeniopygia guttata), are easy to study in the 

laboratory, they are often used as model organisms to investigate the neural bases of 
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learning, memory, sensorimotor integration, and even models of cultural transmission 

[63][71][76]. 

For at least a decade, experts have been examining bird songs, usually by manually 

inspecting the visually intuitive spectrogram plots, looking for structure and grammar [76]. 

Could such grammars manifest as time series rules? To test this, we converted zebra finch 

songs donated by the authors of [76] into MFCC space (as with “The Raven”, c.f. Figure 

17) and searched for rules. We begin by considering an entire call small enough, four 

seconds, to be completely reproduced in Figure 30. 

 

Figure 30: left) A short snippet of bird song in 1st coefficient MCFF space. right) The 

first ranked rule learned from it. 

We then tested this top ranked rule on the full recording of the same finch; the results are 

shown in Figure 31. 

 

Figure 31: The rule shown in Figure 30.right was invoked on this section of song by the 

same bird. 

The rule firing here is visually intuitive, and also appears correct if viewed as a 

spectrogram plot. The quality of this rule was i = 0.213; however, that was based on a 
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single firing. In Figure 32, we show the firing of the learned rule on a different bird’s call 

which fires six times in its complete twelve-second period. Its quality was i = 0.237, 

suggesting a very robust predictive rule that generalizes to other data. 

 

Figure 32: The rule learned in Figure 30 on an independent dataset was fired six times in 

this twelve second song. 

Do rules change over time? Do rules learned from a parent generalize to their 

offspring? These questions are currently under investigation.  

2)     Finding Rules in NASA Telemetry Data. 

The NASA valve data set consists of 36 events of interleaved erroneous and nominal 

solenoid voltage measurements recorded off of Marrotta series MPV-41 valves as they are 

tested in a laboratory [60]. We conducted rule finding on the entire time series. Figure 

33.right shows the top ranked rule learned from the training segment in Figure 33.left, 

where the first peak is that of a failed solenoid. 

 

Figure 33: left) A short training segment of the NASA data.  right) The first ranked rule 

learned which characterizes a nominal discharge. 
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This rule appears to describe a normal solenoid discharge event: a rapid decrease in the 

current is immediately followed by a slight ramp and gradual, complete discharge. 

Because of the variety of malfunction events, in contrast to the homogeneity of normal 

solenoid readings in this data set, this rule learned from successful tests achieves a higher 

MDL score as well as an exceptional i = 0.053. Note that this rule is also learned from a 

single failure instance at the fourth marked peak. This may indicate that the valve 

assembly miss-cycled and that the solenoid itself still experienced a nominal discharge. 

Apart from this outlier, the entire set of 18 normal solenoid trials was detected with this 

rule. 

3)     Finding Rules in Human Speech. 

We note that the rule in our running example on “The Raven” was actually a learned 

rule. A similar rule trained on the first verses is shown in Figure 34, and two invocations 

of it on independent test data (the remaining 17 verses) are shown in Figure 35.  

 

Figure 34: left) The first verse of “The Raven” converted into MFCC space with the 

learned rule shown. right) The learned rule which corresponds to “my chamber” and  

“door”. 
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Figure 35: The rule learned in Figure 34 is applied to the rest of the data set. The 

displayed rule firings correspond to the utterances “my chamber door” in verse three. 

This rule antecedent corresponds to “... my chamber...” This phrase does appear six 

more times in the text and our learned rule fires twice and in the correct places located in 

the third verse, achieving i = 0.199. The firing of the rule only twice suggests our simple 

threshold value selection was too conservative. In fact, if we manually increase it by a few 

percent we do correctly detect all of the other occurrences. 

Clearly learning the threshold from just two examples is difficult, tentative experiments 

suggest that we could use transfer learning to mitigate this issue [84], an idea we gloss 

over due to space limitations. 

4)     Randomized Rule Data Set. 

We believe that the results in the previous section provide forceful and intuitive 

evidence of the utility of our ideas. However the number of case studies presented is 

necessarily limited by space considerations (additional examples are at [85]).  To 

summarize our performance on thousands of labeled data sets, we must resort to 

generating synthetic time series into which we embed synthetic rules to be discovered. 

To create such data sets, we construct a random walk time series of length ="^�, which 

is in the range of [75 : 250]. A split point is randomly chosen, and then the left partition is 

5400 5600 5800 6000 6200 6400 
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treated as our rule antecedent while the remaining section is the consequent. An example 

of a generated rule is shown in Figure 36.right. A maxlag is also randomly chosen from 

the range [0 :  ="^� x 0.1]. We then create a second random walk time series, of a fixed 

length of 10,000, and with an added caveat; at every time point calculation the generated 

rule antecedent may be inserted (rather than a length of random walk points). If an 

antecedent is injected, there is a likely probability of 95% that the consequent will be 

inserted after at most the selected maxlag. Rule antecedents and consequents are appended 

to the current random walk with some added Gaussian noise, with amplitude equal to 5% 

of the standard deviation of the data. 

 

Figure 36: right) A randomly generated rule. left) A small example random walk with 

occurances of the rule. Note that the third antecedent injection does not have a 

corresponding consequent. 

With our synthetic data we can perform our rule finding method and directly measure 

our detection capabilities with the classic measures of precision and recall.  We define a 

detected region as precisely detected if the tentatively discovered rule and the ground truth 

region have at least 90% overlap each. A ground truth region can only be associated to one 

suggested region. 

Because we can produce arbitrary amounts of such data, we averaged our findings over 

1,000 randomly generated rules and with 1,000 injected random walk time series for each 

rule. On average, our method has a precision of 0.85 with a recall of 0.86. Note that unlike 
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some of the real-world examples in the previous section, in most cases the synthetic rules 

are so subtle as to evade even careful human inspection.  

Our recall rate reflects our conservative threshold setting. As previously demonstrated 

with “The Raven” data set, slightly increasing the threshold manually allows us to recover 

the additional rule regions. This suggests that the setting of the threshold warrants further 

research. 

5)     Runtime Analysis. 

As our intent is to introduce a novel framework for meaningful rule discovery in time 

series, we have not optimized our initial implementation for speed. We begin our search 

over all possible antecedent lengths; this operation is linear with respect to the length of 

the test time series and each search costs u	V[vw	V��. For each motif, we then conduct a 

second motif search for candidate consequents in the CSS ranges; this is done for each 

possible threshold of a candidate antecedent, running at u	V[vw	V� × Vx� where m is the 

length of the candidate antecedent. For each candidate consequent we find its closest 

subsequence in each CSS, but we extract these distances cached from motif search. This 

leads to a worse case runtime of u	Vy [vwz	V��. 

As described in Section 3.54), on average our rule search space is greatly reduced by 

several things. First, our definition of antecedents and consequents as motifs immensely 

prunes the number of subsequences we must test. Extending to a one-time batch lookup of 

motifs for both antecedents and consequents could be performed, yielding a worse case 

runtime of {	7� + 7� =D|	7��, with some extra overhead for reconsidering subsequences 
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previously excluded as trivial matches. Second, motif lengths of both antecedents and 

consequents can be upper bounded. As an antecedent must occur at least twice, its length 

can be no more than 
�� − 2<, where c is an expected consequent length. Consequents must 

also fit within their CSS.  

Furthermore, as demonstrated in Figure 29, the threshold possibilities for antecedents 

are finite and, because antecedent matches may appear spatially close, can be significantly 

pruned. These exploits occur without any user rule preferences. If we further exploit user 

constraints, such as “The antecedent and consequent should be about the same length” 

(suggested by ornithologists) or “The maxlag should be close to zero” (suggested by 

linguists for the poetry example), this knowledge further greatly improves the algorithm’s 

runtime. Empirically, our pruned algorithm has demonstrated a considerable reduction 

(over 73.2% pruned at just the threshold search level) of the search space. We have 

performed additional analysis at [85]. 

Beyond our optimizations using early abandoning and pruning methods, we can 

improve the efficiency of the underlying critical sub-function of motif search. By applying 

a suite of abandoning and online calculations techniques to the problem of subsequence 

similarity, a core component of motif search, we can achieve speed up between 10x and 

100x for our time consuming motif search [75]. 

 Finally, we note that if a domain expert has spent several years to collect data, as is the 

case in both the bird song and NASA examples, they will probably not baulk at waiting a 

few minutes or even a few hours for an algorithm that can produce useful, actionable 
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knowledge. Thus we feel that time complexity is not a major bottleneck to the adoption 

and development of our ideas. 

3.7     Conclusions 

We now finished introducing a parameter-lite technique for finding rules in time series. 

Our rule representation is expressive enough to allow rules with different length 

antecedents/consequents/lags, but at the same time does not require extensive human 

intervention or tweaking. We have shown our framework can find intuitive, high-quality 

rules in diverse domains and that it can scale to large datasets by using state-of-the-art 

motif discovery algorithms to drastically reduced the space of possible antecedents and 

consequents. We have made all code/data freely available to the community [85], so that 

others can confirm, extend, and ultimately use our ideas. Future work includes further 

addressing scalability issues and dealing with the concept drift encountered in streams. 
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4    CHAPTER 4: CONCLUSIONS AND FUTURE WORK ON PATTERN-BASED SIMILARITY 

Throughout this work we have utilized the existence of patterns in data sets to enable 

for an extremely generalizable similarity measure for both images and audio and created a 

novel method for rule discovery in time series which operated on a motif base 

symbolization of the data. In our work, we have leveraged varying definitions of patterns. 

In images, we matched repeating textural patterns; for audio, we analyzed the repetitions 

of the auditory image spectrograms; in time series, we extracted motifs. These 

contributions indicate that for future classification problems on novel data, if we can 

provide a definition for a pattern in our data set then we can create similarity methods on 

the CK method, or discover relations between these patterns as we did for rule discovery 

in time series. As such, future works include an expansive analysis on the generality of 

CK based measures on further audio data sets and combining the analysis of image and 

time series data by measuring similarity in video. Another avenue of future research is the 

analysis of rules in heterogeneous data formats, such as the relation between the imagery 

and audio from a video, by symbolizing the data by their base patterns (as we did for rule 

discovery in time series). 
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