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Abstract
Two experiments are reported that provide evidence for per-
ceptual differentiation between a pair of novel, integral dimen-
sions, in contrast to previous attempts that failed to differenti-
ate these same two dimensions (Op de Beeck, Wagemans, &
Vogels, 2003). In Experiment 1, an acquired distinctiveness
effect was created on the category-relevant dimension through
a categorization training regimen that gradually increased in
difficulty. Response times for correct trials were faster across
the category boundary. This effect was replicated in Experi-
ment 2 using a new training procedure where participants had
to predict category boundaries while watching an animation in
which shapes transformed along the category-relevant dimen-
sion. Furthermore, the accuracy results of Experiment 2 also
indicated that discriminability was changed on the category-
relevant dimension relative to the irrelevant dimension across
the entire range of the dimension, not just at the category
boundary.

Keywords: visual perception; perceptual learning; categorical
perception; selective attention

Introduction
Our ability to categorize depends on our ability to selectively
attend to dimensions and unitary features. To tell a cat from a
dog, we will probably pay attention to certain morphological
(e.g., ear and nose shape) and behavioral (e.g., barking vs.
meowing, tail wagging) features while deemphasizing oth-
ers (e.g., the fact they both have eyes); to tell a Beagle from
a Basset Hound we will probably also attend to dimensions
such as height, weight, color and ear length, while perhaps
ignoring the shininess of their fur. This ability to analyze our
perceptions in terms of features and dimensions appears to
improve gradually through development (Smith, 1989). Fur-
thermore, as we become more expert in a domain, we im-
prove our ability to perceive and appreciate previously dif-
ficult domain-relevant distinctions (Burns & Shepp, 1988).
Indeed, much work has shown that our perceptual systems
are not fixed—they can be tuned by our experiences in the
world (see Goldstone (1998) for a summary). But just how
malleable are they? This paper examines processes by which
experience might change the visual dimensions along which
we perceive the world.

In previous work, categorization training has been shown
to affect the dimensions underlying visual perception. For
easily separable dimension pairs1, such as size and brightness
(Goldstone, 1994) or aspect ratio and curvature (Op de Beeck
et al., 2003), the discriminability of either dimension was in-
dependently improved if it was relevant for categorization.

For more integral dimension pairs, such as color saturation
and brightness, it has been shown that, while categorization
training helped improve the discriminability of both dimen-
sions, there was more improvement in the discriminability
of the category-relevant dimension (Goldstone, 1994). Fur-
thermore, Goldstone and Steyvers (2001) went on to show
with more abstract dimensions (created by arbitrary combi-
nations of images of faces) that after categorization training
where only one dimension is relevant, it is easier to learn a
category rule based only on the irrelevant dimension, but not
on a combination of the relevant and irrelevant dimensions.
These findings were taken to support a hypothesis that cate-
gory training could lead to dimension differentiation, increas-
ing the separability of integral dimensions.

However, recently Op de Beeck et al. (2003) challenged
this conclusion with a set of novel, perceptually-integral di-
mensions. With these dimensions, there was no evidence that
categorization led to a greater improvement in discriminabil-
ity along the category-relevant dimension relative to the ir-
relevant dimension. From this, they speculated that category
learning is only capable of biasing already separable dimen-
sions, but not of making integral dimensions more separable.
In other words, only if we can already separate two dimen-
sions can we learn to selectively attend to one of them at the
expense of the other. However, Op de Beeck et al. (2003) only
examined one method of category learning. It remains open
whether different training methods might lead to dimension
differentiation with this challenging stimulus set. The goal of
the present experiments was to test this possibility.

This question – can the degree of separability of
perceptually-integral dimensions be changed – is an impor-
tant one because it bears on theories of conceptual develop-
ment. Are our concepts grounded on a universal set of percep-
tual primitives? And, if not, how do our experiences change
these building blocks? The present studies shed light on these
questions by utilizing novel shape dimensions that are un-
likely to correspond to any independent built-in perceptual
primitives.

1 We say two dimensions are separable when we have the abil-
ity to attend to one dimension without attending to the other (cf.
Garner & Felfoldy, 1970). To the degree that variation along one
dimension influences discrimination along the other, we say the two
dimensions are integral. This is not a binary classification; the sep-
arability/integrality of two dimensions is a matter of degree.
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Figure 1: RFC shapes used for discrimination tests in Experi-
ments 1 and 2. The “horizontal” dimension varied along the rows;
the “vertical” dimension varied along the columns.

The Present Studies
In Experiment 1, a standard categorization training procedure
with feedback was used . The main difference between this
procedure and that employed by Op de Beeck et al. (2003)
was that the order of training trials was carefully controlled
to start with easy categorizations—shapes far from the cat-
egory boundary—and gradually increase in difficulty to in-
clude shapes nearer to the boundary. In Experiment 2, a non-
standard type of training was employed, inspired by Hock-
ema (2004). Subjects were exposed to animations showing
the gradual transformation of a shape from one category to
the other along the category-relevant dimension and taught to
predict the point when the category boundary was crossed.
In both experiments, the training phase was followed by a
test phase to assess the discriminability of both the category-
relevant and category-irrelevant dimension.

The stimuli used by Op de Beeck et al. (2003) were created
by combining seven sinusoidal functions (each with three pa-
rameters: frequency, phase, and amplitude), referred to indi-
vidually as radial frequency components (RFCs) into a sin-
gle, complex curve and then bending these to create closed
contours. While five of the seven RFCs remained fixed, two
were chosen to have their amplitudes varied to define a two-
dimensional space of “blobs”. Op de Beeck et al. (2003)
showed that these dimensions are relatively integral. Exam-
ples are shown in Figure 1. One of these dimensions was arbi-
trarily chosen to be referred to as the “Horizontal” dimension
and the other as the “Vertical” dimension. (This labeling was
consistent across experiments.) All stimuli were created us-
ing Matlab code provided by Op de Beeck as used in (Op de
Beeck et al., 2003), where more details can be found about
their specification and characteristics. (The only difference
between what is reported there and the stimuli used here is
that our stimuli were slightly blurred using a Gaussian filter,
in order to remove the pixelated edges.)

Experiment 1
The hypothesis of this study was that training on a catego-
rization task in which one of the RFC dimensions was rele-
vant and one was not would lead to selective sensitization of
the relevant dimension, allowing participants to discriminate

B

W W

W

1 2

12

Figure 2: Examples of the four equivalence classes of trial type
on the discrimination task in the test phase: B – distractor is across
category boundary; W12 – distractor is perpendicular to boundary
but within same category; W1 – within-category distractor is parallel
with and near to boundary; W2 – within-category distractor is paral-
lel with and far from boundary.

along that dimension either more rapidly, more accurately, or
both. To test this hypothesis we trained participants to dis-
criminate between two categories of RFC stimuli, such that
only one of the two varying dimensions was relevant for the
task. Participants then performed a delayed-match-to-sample
task, wherein they decided which of a displayed pair of stim-
uli was displayed immediately prior. For this discrimination
task, trials were grouped into four types: within-category
discriminations in the first row/column of stimuli parallel to
the category boundary (W1), within-category discriminations
in the second, more distant, row/column of stimuli parallel
to the category boundary (W2), within-category discrimina-
tions along the relevant dimension between the first and sec-
ond rows (W12), and boundary discriminations (B), where the
relevant-dimension distractor was in the other category. (See
Figure 2.)

There were several possible univocal outcomes. First, there
could be no effect of category training on the discrimination
of RFC stimuli. This result would be consistent with the idea
that there are limits on the influence of experience on percep-
tual processing. In particular, although experience may serve
to differentiate perceptual dimensions that are already coded
by the perceptual system, other not so privileged dimensions,
such as the RFC dimensions, cannot be so flexibly used. Sec-
ond, there could be faster or more accurate discrimination of
stimuli along the relevant dimension (W12 and B trials) than
along the irrelevant ones (W1 and W2 trials). This would occur
if training sensitized the relevant RFC dimension along the
entire trained range of its values. Finally, there might be an
acquired distinctiveness effect, i.e. a faster or better discrimi-
nation for trials where the distractor is in another category (B
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trials) than when the distractor is in the same category (W1,
W2, W12; Goldstone, 1994).

Method

Participants Ninety-five students at Indiana University
participated in partial fulfillment of a class requirement. Par-
ticipants were randomly assigned to either the horizontal
boundary or the vertical boundary condition. Forty-nine were
in the horizontal boundary condition, and 46 were in the ver-
tical boundary condition.

Stimuli Stimuli were complex, closed contours composed
of seven RFCs as described above and in Op de Beeck et al.
(2003). There were 16 different values along each of the two
dimensions, making a square stimulus space. The stimuli
used during categorization training were two units apart on
each dimension. The stimuli used during the discrimination
task were four units apart and distinct from the stimuli used
during the training phase. Illustrations of the stimuli used for
the discrimination phase are shown in Figure 1.

Procedure There were 368 categorization trials followed
by 192 discrimination trials. On each categorization trial, a
stimulus was displayed on a black background near the center
of the screen. The exact position of the stimulus was varied
randomly as much as 25 pixels to either side of the center,
both horizontally and vertically. For each stimulus the partic-
ipant pressed either the ‘1’ key or the ‘0’ key on the keyboard,
indicating the category to which they believed the stimulus
belonged. The correct response was presented to the left of
the stimulus, either in white, or if the participant responded
incorrectly, in red. The next trial began after a black screen
was displayed for 500 m.s. There were 23 trial blocks with 16
stimuli each and no breaks between trial blocks. The 16 stim-
uli in each of the blocks consisted of four from each quadrant
of the space. The order of presentation of the stimuli within
a trial block was randomized for each participant. Initially,
the stimuli presented were those in the center of the irrelevant
dimension and perpendicular to the category boundary. As
training progressed, the stimuli presented were those closer
to the boundary. In the final trial blocks, the stimuli presented
were those closest to, and parallel with, the category bound-
ary. (See Figure 3.) Both the horizontal and vertical condi-
tions were shown identical stimuli with the same frequency,
but in the opposite order.

After all the training trials were completed, instructions for
the discrimination test appeared on the screen. On each dis-
crimination trial, a stimulus was shown in the center of the
screen, near the bottom, for 2000 m.s., followed by a mask for
500 m.s. Finally, two stimuli were shown near the top of the
screen. These two stimuli remained, along with instructions
for the participant to choose which of them was identical to
the initial stimulus, until the participant responded. We used
a forced-choice task rather than the same/different task that
Op de Beeck et al. (2003) and Goldstone and Steyvers (2001)
used because the same/different task is not bias free. (Partici-
pants may have a bias to respond “same” or “different” in the
previously-used task and this bias could potentially influence
the d′ measure (Balakrishnan, 1998).)

The experiment lasted approximately 30–40 minutes for
most participants.

Results
Overall, there were no differences across the horizontal and
vertical boundaries, and so for all analyses we collapsed
across conditions. Training, which progressed from simpler
to more difficult categorizations, produced good performance
early in training, greater than 80% correct, and dropped
slowly to 60% by the final trial block, which is significantly
better than chance, t(94) = 6.03, p < .0001. Accuracy during
the discrimination phase did not differ by condition, F ≈ 1,
and participants were 67% correct overall. In the analysis
of participants’ reaction times, we used only correct trials2

for which the reaction time was between 300 m.s. and three
standard deviations above the mean (8012 m.s.). In addition,
while most participants had few if any responses that did not
meet the inclusion criteria, there were seven participants with
less than 80% of their responses meeting the inclusion cri-
teria. These participants were excluded from this analysis.
An Analysis of Variance using discrimination trial type (W1,
W2, W12, B) as a within-subjects variable yielded a signifi-
cant main effect, F(3,279) = 8.85, p < .001. Pair-wise com-
parisons revealed that participants were significantly faster
(p < .01) to respond to B trials (M = 1470 m.s.) than any
of the other trial types (1572-1593 m.s.) and that there were
no significant differences among the other groups.

That participants are faster to reject distractors near the cat-
egory boundary when they are along the relevant dimension
than when they are along the irrelevant dimension suggests
selective sensitization of the sort for which Op de Beeck et al.
(2003) failed to find evidence. That participants are faster
at making accurate discriminations at the category boundary
than farther back on the relevant dimension makes this result
a case of acquired distinctiveness, echoing earlier results by
Goldstone (1994).

Experiment 2
Although Experiment 1 successfully showed an effect where
the category-relevant but not the irrelevant dimension im-
proved at the category boundary, we will next consider
whether it could be possible to differentiate the two dimen-
sions in other regions of the space as well. In order to do
this, we devised a new testing procedure designed to make the
category-relevant dimension as salient as possible throughout
the two-dimensional space: participants were shown anima-
tions of change along the category-relevant dimension.

Method
Participants Ninety-seven students at Indiana University
participated in partial fulfillment of a class requirement. Par-
ticipants were randomly assigned to either the horizontal an-
imation or the vertical animation condition. Forty-eight were
in the horizontal animation condition, and 49 were in the ver-
tical animation condition.

Stimuli The stimuli used in the discrimination phase were
identical to those used in Experiment 1. The animations for
the training phase were created by linearly interpolating be-
tween the points on this grid, one animation each per row and

2 On incorrect trials, reaction time may or may not correlate with
discriminability. For example, the trial might be incorrect because
the subject has lost interest and did not try, but rather clicked a choice
immediately.

955



Block 1  (repeated 6 times) Block 2  (repeated 4 times) Block 3  (repeated 1 times) Block 4  (repeated 1 times)

Block 5  (repeated 1 times) Block 6  (repeated 4 times) Block 7  (repeated 6 times)

Category Boundary

Figure 3: Training Phase progression for participants in the Vertical Boundary condition. (For participants in Horizontal Boundary condition,
the block sequence would be in reverse order.) Within a block, the order was randomized.

column of the 16x16 space. Each animation consisted of 120
frames and lasted 8 seconds.

Procedure In the training phase, participants were first
shown an animation where a man’s face morphed into a
woman’s as an example of a transition from an instance of
one category to another. They were told that they would be
watching similar transitions with two novel categories and
had to learn to identify the boundary point. On each trial,
an animation across a single row or column (depending on
the condition) was shown and participants were to press the
space bar at the point they guessed the boundary was crossed.
When they pressed the space bar a beep would sound (and
the precise point in time would be recorded), but the anima-
tion always continued to its conclusion. At the end of the
trial, feedback was given as to the position of the participant’s
guess relative to the category boundary by displaying what
the shape looked like at the point of the guess and point-
ing to where this was on an axis abstractly representing the
dimension (the category boundary was always shown as the
midpoint of this axis). Figure 4 shows a screen shot of this.
To prevent participants from learning to predict the boundary
based simply on how much time had elapsed in the anima-
tion, the starting point was chosen randomly on each trial to
be somewhere within the first 3.2 seconds of the animation.
This was reflected on the feedback axis by shortening the por-
tion prior to the midpoint by the appropriate amount.

The animations proceeded twice through the space in or-
der from the first row (or column) consecutively up to the
sixteenth and then back down to the first. For each row (or
column), there was one trial where the animation was shown
normally and one trial where it was shown in reverse, making
128 training trials in total. By showing the animation going
both directions along the dimension, participants had to learn
to predict the category boundary from both sides. For each of
the two consecutive trials on a row (or column), the direction
to show first (for example, ‘left’ or ‘down’ vs. ‘right’ or ‘up’)
was randomly chosen.

Figure 4: Screen shot of feedback given during Training phase.
On this trial, the button was pressed too late, after the boundary had
been passed.

The animation phase was then followed by a discrimination
phase exactly the same as in Experiment 1 with the exception
that, in the interest of time, there were only 96 trials. Figure
5 illustrates the procedure.

Results
For each training trial, ∆t , the absolute value of the distance
in seconds between a participant’s guessed boundary point
and the actual boundary, was calculated. If participants are
improving at this task, then as training progresses, ∆t should
decline. Thus, a negative correlation between ∆t and the num-
ber of the training trial is evidence of learning in this task.
This was true for seventy-six of the 97 participants, with the
average correlation across all participants being r = −.754
(p � 0.0001). The average ∆t started around 1.4 seconds and
decreased to about 1.0 second.
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Figure 5: Training Phase animations proceeded across/down one row/column, depending on the condition (top two panels), and then back
again on the next trial. The starting point was randomized as shown. Only four rows/columns are shown here, but in the experiment there
were 16. Examples of two Testing Phase trials are shown for each condition (bottom two panels), one of each type. On a trial, a target (‘T’)
was shown, then a mask, and then the target with the distractor (‘D’).

In the discrimination phase, the mean accuracy was 71.3%
(S.D. = 9.5%) and the mean response time over all trials was
1694 m.s. (S.D. = 1175 m.s.). The overall error rates in the
horizontal and vertical conditions were not significantly dif-
ferent. Any trial with a response time less than 300 m.s. or
greater than 8012 m.s. was discarded, and one participant
was not included because this was true for more than 20% of
their trials. Additionally, six more participants were excluded
because the pattern of their results indicated that they had re-
sponded randomly. Thus, 90 participants were included for
the remaining analyses, 44 in the horizontal condition and 46
in the vertical.

Each trial in the discrimination phase was classified as con-
sistent with the animation if the distractor was displaced on
the category-relevant dimension (the dimension along which
the animation took place) and inconsistent if it was displaced
along the irrelevant dimension. The mean error rates relative
to the total number of errors for each subject on the consis-
tent and inconsistent dimension (globally, .522 and .478 re-
spectively) were compared using a paired-samples t-test and
found to be significantly different (t(89) = 2.13, p < .04).
This is evidence that the animation differentially changed per-
formance on one dimension more than the other. The fact
that the consistent-dimension distractor caused more errors
than the inconsistent dimension is consistent with the results
found by Hockema (2004), where viewing animations along
a dimension caused decreased discrimination along that di-
mension.

When location in the space was taken into account by di-
viding the discriminations into four categories based upon
whether or not they occurred on a horizontal or vertical edge
of the grid, discriminations in the middle of the space (both B
and W1 in Figure 2) were more accurate (p < .001) and faster
(p < .001) than those on the borders (W2 and W12). This re-
flects the fact that participants were exposed more to these

stimuli in general, given both the random starting offsets of
the animations on each trial and the probability that they did
not watch the animation as closely after pressing the space
bar on a trial. However, there were no significant interactions
between condition and accuracy by grid location. Thus, the
differential accuracy effect appears to have affected the whole
dimension.

Finally, similar to Experiment 1, while the average re-
sponse times for consistent and inconsistent trials in gen-
eral were not significantly different, participants were signif-
icantly faster at making accurate (consistent) discriminations
across the boundary (B trials) than they were at making accu-
rate discriminations elsewhere (p � .0001), including W1 tri-
als (p < .02). Thus, the acquired distinctiveness effect found
in Experiment 1 was replicated here as well.

General Discussion
Experiments 1 and 2 successfully showed that categorization
training can lead to acquired distinctiveness of the relevant
dimension. Experiment 2 went even further to show that the
differential effects are not just limited to occurring at the cat-
egory boundary. Taken together, these results provide strong
evidence that novel, perceptually-integral dimensions can in-
deed be differentiated with appropriate categorization train-
ing.

For Experiment 2, the fact that the error rate for discrim-
ination trials with the distractor differing on the animated
(category-relevant) dimension was higher than the irrelevant
dimension is consistent with Hockema (2004), where it was
modeled using a recurrent connectionist network. One theory
as to why this might be the case is that because the path-
way between the two adjacent shapes—the target and the
distractor—on this dimension has been explicitly elucidated,
they might be seen as more similar to one another. That is,
the animation might change the underlying similarity space.
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Another theory is that the animation could make the system
more sensitive along the category-relevant dimension, mak-
ing subsequent comparisons more sensitive to noise inherent
in the low-level perceptual system. In any event, the main
point here is that the category-relevant and irrelevant dimen-
sions were affected differently by the animation throughout
the two-dimensional space.

We believe that the discrepancy between the results re-
ported here and those reported by Op de Beeck et al. (2003)
are probably due to differences in the training procedure. In
Experiment 1, the procedure may have helped them learn the
category boundary better, or it may have helped them learn
the two categories as categories better (as opposed to merely
memorizing some of the stimuli with their associated labels
through repetition). If the latter, this would be consistent with
work like that of Zaki and Homa (1999) that variations in the
order of the training sequence can lead to more or less robust
categories. Indeed, in their work they found that if the train-
ing sequence progressed through the category in a systematic
way to highlight the category-relevant dimensions, this led to
“transformational knowledge” of the category, in turn mak-
ing it more robust. This idea also underlies the training we
employed in Experiment 2.

Furthermore, the animations appear to have been an es-
pecially effective way to selectively highlight the category-
relevant dimension and trigger perceptual learning. Again,
this is consistent with the results found by Hockema (2004)
where two dimensions were made more integral by a simi-
lar animation technique in which they were co-varied. Both
cases rely on the underlying principle that our perceptual sys-
tems are oriented around transformations. Transformations
contain rich information about the structure of the world. In-
deed, it is through this temporal structure that we perceive
atemporal structure. (For example, movement is very impor-
tant for the detection of occluding edges.) This idea has a long
history in psychology, going back through Gibson (1979) at
least as far as James (1890) and Helmholtz (1866). In Ex-
periment 2, this principle was successfully applied to trigger
a perceptual adaptation that lasted long enough to affect the
discrimination phase accuracy results. In future work, we will
explore just how long this adaptation can last, for example, by
testing to see if the differential discriminability effects wear
off and, if so, how easily they can be renewed.

The present results raise at least three other interesting
questions for future research. First, what are the neural mech-
anisms that underlie dimension differentiation? Second, what
are the constraints on the dimensions that can be differenti-
ated? For example, obviously, at a minimum, they have to
be built out of our available sensory streams: we have to al-
ready be sensitive to changes on both dimensions (i.e. have
the ability to perceive them integrally). For both of these
questions, are the answers the same for different dimensions
and across modalities, for different ages? Finally, can the
techniques employed here be developed into training proce-
dures for teaching hard-to-learn distinctions in the real world?
As one example, it might be possible to better train Japanese
adults learning English as a second language to discriminate
and produce English /r/ and /l/ phonemes (something that
has proven to be very difficult (Yamada, 1995)) with a suit-
able training procedure. There has already been some success

training this distinction by using minimal-pair exemplars of
each phoneme from multiple speakers and in differing pho-
netic contexts in a forced-choice categorization task (Brad-
low, Akahane-Yamada, Pisoni, & Tohkura, 1999). In the
context of the work presented here, this is similar to training
block 7 in Figure 3: lots of variation on irrelevant dimensions
but minimal, across-boundary pairs along the relevant dimen-
sions. Thus, there are practical applications for dimension
differentiation techniques that provide additional incentive to
understanding the process.
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