Ir al contenido

Diferencia entre revisiones de «Historia de la Tierra»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
m Revertidos los cambios de 88.2.145.232 (disc.) a la última edición de Makete
Línea 10: Línea 10:
[[Archivo:Protoplanetary disk.jpg|thumb|Representación artística de un disco protoplanetario.]]
[[Archivo:Protoplanetary disk.jpg|thumb|Representación artística de un disco protoplanetario.]]


El origen de La Tierra es el mismo que el del [[Sistema Solar]](el nuestro, obviamente). Lo que terminaría siendo el Sistema Solar inicialmente existió como una extensa mezcla de nubes de [[gas]], [[roca]]s y [[polvo]] en rotación. Estaba compuesta por [[hidrógeno]] y [[helio]] surgidos en el [[Teoría del Big Bang|Big Bang]], así como por [[elemento químico|elementos]] más pesados producidos por [[supernova]]s. Hace unos 4.600 [[Ma]], una [[estrella]] cercana se transformó en [[supernova]] y su explosión envió una [[onda de choque]] hasta la [[nebulosa protosolar]] incrementando su [[momento angular]]. A medida que la nebulosa empezó a incrementar su [[rotación]], [[gravedad]] e [[inercia]], se aplanó conformando un [[disco protoplanetario]] (orientado perpendicularmente al eje de rotación). La mayor parte de la masa se acumuló en su centro y empezó a calentarse, pero debido a las pequeñas [[perturbación (astronomía)|perturbaciones]] del momento angular y a las colisiones de los numerosos escombros generados, empezaron a formarse [[protoplaneta]]s. Aumentó su velocidad de giro y gravedad, originándose una enorme [[energía cinética]] en el centro. La imposibilidad de transmitir esta energía a cualquier otro proceso hizo que el centro del disco aumentara su temperatura. Por último, comenzó la [[fusión nuclear]]: de [[hidrógeno]] a [[helio]], y al final, después de su contracción, se transformó en una [[estrella T Tauri]]: el [[Sol]]. La gravedad producida por la condensación de la [[materia]] –que previamente había sido capturada por la gravedad propio Sol–, hizo que las partículas de polvo y el resto del [[disco protoplanetario]] empezaran a segmentarse en anillos. Los fragmentos más grandes colisionaron con otros, conformando otros de mayor tamaño que al final formarían los protoplanetas.<ref>{{Cita web
El origen de La Tierra es el mismo que el del [[Sistema Solar]]. Lo que terminaría siendo el Sistema Solar inicialmente existió como una extensa mezcla de nubes de [[gas]], [[roca]]s y [[polvo]] en rotación. Estaba compuesta por [[hidrógeno]] y [[helio]] surgidos en el [[Teoría del Big Bang|Big Bang]], así como por [[elemento químico|elementos]] más pesados producidos por [[supernova]]s. Hace unos 4.600 [[Ma]], una [[estrella]] cercana se transformó en [[supernova]] y su explosión envió una [[onda de choque]] hasta la [[nebulosa protosolar]] incrementando su [[momento angular]]. A medida que la nebulosa empezó a incrementar su [[rotación]], [[gravedad]] e [[inercia]], se aplanó conformando un [[disco protoplanetario]] (orientado perpendicularmente al eje de rotación). La mayor parte de la masa se acumuló en su centro y empezó a calentarse, pero debido a las pequeñas [[perturbación (astronomía)|perturbaciones]] del momento angular y a las colisiones de los numerosos escombros generados, empezaron a formarse [[protoplaneta]]s. Aumentó su velocidad de giro y gravedad, originándose una enorme [[energía cinética]] en el centro. La imposibilidad de transmitir esta energía a cualquier otro proceso hizo que el centro del disco aumentara su temperatura. Por último, comenzó la [[fusión nuclear]]: de [[hidrógeno]] a [[helio]], y al final, después de su contracción, se transformó en una [[estrella T Tauri]]: el [[Sol]]. La gravedad producida por la condensación de la [[materia]] –que previamente había sido capturada por la gravedad propio Sol–, hizo que las partículas de polvo y el resto del [[disco protoplanetario]] empezaran a segmentarse en anillos. Los fragmentos más grandes colisionaron con otros, conformando otros de mayor tamaño que al final formarían los protoplanetas.<ref>{{Cita web
| apellido= Chaisson | nombre= Eric J. | año= 2005
| apellido= Chaisson | nombre= Eric J. | año= 2005
| url = http://www.tufts.edu/as/wright_center/cosmic_evolution/docs/text/text_plan_1.html
| url = http://www.tufts.edu/as/wright_center/cosmic_evolution/docs/text/text_plan_1.html

Revisión del 16:49 1 jun 2010

El planeta Tierra, fotografiado en el año 1972.

La historia de la Tierra abarca aproximadamente 4.600 Ma,[1]​ desde su formación a partir de la nebulosa protosolar. El Big Bang, origen del universo, se estima que tuvo lugar hace 13.700 Ma.[2]​ Este artículo es un resumen de las principales teorías científicas de su proceso.

Origen

Representación artística de un disco protoplanetario.

El origen de La Tierra es el mismo que el del Sistema Solar. Lo que terminaría siendo el Sistema Solar inicialmente existió como una extensa mezcla de nubes de gas, rocas y polvo en rotación. Estaba compuesta por hidrógeno y helio surgidos en el Big Bang, así como por elementos más pesados producidos por supernovas. Hace unos 4.600 Ma, una estrella cercana se transformó en supernova y su explosión envió una onda de choque hasta la nebulosa protosolar incrementando su momento angular. A medida que la nebulosa empezó a incrementar su rotación, gravedad e inercia, se aplanó conformando un disco protoplanetario (orientado perpendicularmente al eje de rotación). La mayor parte de la masa se acumuló en su centro y empezó a calentarse, pero debido a las pequeñas perturbaciones del momento angular y a las colisiones de los numerosos escombros generados, empezaron a formarse protoplanetas. Aumentó su velocidad de giro y gravedad, originándose una enorme energía cinética en el centro. La imposibilidad de transmitir esta energía a cualquier otro proceso hizo que el centro del disco aumentara su temperatura. Por último, comenzó la fusión nuclear: de hidrógeno a helio, y al final, después de su contracción, se transformó en una estrella T Tauri: el Sol. La gravedad producida por la condensación de la materia –que previamente había sido capturada por la gravedad propio Sol–, hizo que las partículas de polvo y el resto del disco protoplanetario empezaran a segmentarse en anillos. Los fragmentos más grandes colisionaron con otros, conformando otros de mayor tamaño que al final formarían los protoplanetas.[3]​ Dentro de este grupo había uno situado aproximadamente a 150 millones de km del centro: la Tierra. El viento solar de la recién formada estrella arrastró la mayoría del las partículas que tenía el disco, condensándolas en cuerpos mayores.

La Luna

Animación (no a escala) de Theia en la formación de la Tierra en el punto L5 y entonces, perturbado por la gravedad, chocó y se formó la Luna. La animación progresa suponiendo que la Tierra se mantiene inmóvil. La vista es desde el polo sur.

El origen de la Luna es incierto, aunque existen evidencias que apoyan la Hipótesis del gran impacto. La Tierra pudo no haber sido el único planeta que se formase a 150 millones kilómetros de distancia al Sol. Podría haber existido otro protoplaneta a la misma distancia del Sol, en el cuarto o quinto punto de Lagrange. Este planeta llamado Theia se estima que sería más pequeño que la actual Tierra, probablemente del mismo tamaño y masa que Marte. Iba oscilando tras la Tierra, hasta que finalmente chocó con esta hace 4.533 Ma.[4]​ La baja velocidad relativa y el choque oblicuo no fueron suficientes para destruir la Tierra, pero una parte de su corteza salió disparada al espacio. Los elementos más pesados de Theia se hundieron hacia el centro de la Tierra, mientras que el resto se mezcló y condensó con el del la Tierra. Esta órbita pudo ser la primera estable, pero el choque de ambos desestabilizó a la Tierra y aumentó su masa. El impacto cambió el eje de giro de la Tierra, inclinándolo hasta los 23,5º; siendo el causante de las estaciones (el modelo ideal de los planetas tendría un eje de giro sin inclinación, paralelo al del Sol, y por tanto sin estaciones).

La parte que salió despedida al espacio (la Luna), bajo la influencia de su propia gravedad se hizo más esférica y fue capturada por la gravedad de la Tierra.

La vida

El replicador más conocido es el ácido desoxirribonucleico. El ADN es bastante más complejo que el replicador original y el proceso de replicación está altamente elaborado.

Los detalles del origen de la vida se desconocen, aunque se han establecido unos principios generales. Hay dos teorías sobre el origen de la vida. La primera defiende la hipótesis de la "panspermia", y sugiere que la materia orgánica pudo haber llegado a la Tierra desde el espacio,[5]​ mientras que otros argumentan que tuvo origen terrestre. En cambio, es similar el mecanismo por el cual la vida surgió.

Si la vida surgió en la Tierra quizás hace unos 4.000 Ma, aunque el cálculo de cuando comenzó es bastante especulativo. Generada por la energía química de la joven Tierra, surgió una molécula (o varias) que poseía la capacidad de hacer copias similares a ella misma –el «primer replicador». La naturaleza de esta molécula se desconoce. Esta ha sido reemplazada en funciones, a lo largo del tiempo, por el actual replicador: el ADN. Haciendo copias de sí mismo, el replicador funcionaba con exactitud, pero algunas copias contenían algún error. Si este cambio destruía la capacidad de hacer nuevas copias, no podía hacer más y se extinguía. De otra manera, algunos cambios harían más rápida o mejor la réplica: esta variedad llegaría a ser numerosa y exitosa. A medida que aumentaba la materia viva, la "comida" iba agotándose, y las «cadenas» explotarían nuevos materiales, o quizás detenía el progreso de otras «cadenas» y recogía sus recursos, llegando a ser más numerosas.

Se han propuesto varios modelos para explicar cómo podría desarrollarse el replicador. Se han propuesto diferentes cadenas, incluidas algunas como las proteínas modernas, ácidos nucleicos, fosfolípidos, cristales, o incluso sistemas cuánticos. Actualmente no hay forma de determinar cual de estos modelos pudo ser el originario de la vida en la Tierra. Una de las teorías más antiguas, en la cual se ha estado trabajando minuciosamente, puede servir como ejemplo para saber cómo podría haber ocurrido. La gran energía de los volcanes, rayos, y la radiación ultravioleta podrían haber ayudado a desencadenar las reacciones químicas produciendo moléculas más complejas a partir de compuestos simples como el metano y el amoníaco. Entre estos compuestos orgánicos simples estarían los bloques con los que se construiría la vida. A medida que aumentaba esta "sopa orgánica", las diferentes moléculas reaccionaban unas con otras. A veces se obtenían moléculas más complejas. La presencia de ciertas moléculas podría aumentar la velocidad de reacción. Esto continuó durante bastante tiempo, con reacciones más o menos aleatorias, hasta que se creó una nueva molécula: el «replicador». Este tenía la extraña propiedad de promover reacciones químicas para conseguir una copia de sí mismo, con lo que comenzó realmente la evolución. Se han postulado otras teorías del replicador. En cualquier caso, el ADN ha reemplazado al replicador. Toda la vida conocida (excepto algunos virus y priones) usan el ADN como su replicador, de forma casi idéntica.

Las células

Sección de una membrana celular. Esta membrana celular actual, es bastante más compleja que la simple doble capa de fosfolípidos original (la pequeña capa de esferas azules). Las proteinas y los carbohidratos cumplen varias funciones regulando el paso de materia a través de la membrana y relacionándose con el ambiente.

En la actualidad se tiene que reproducir materia paquetada dentro de la membrana celular. Es fácil comprender el origen de la membrana celular así como el origen del replicador, debido a que las moléculas de fosfolípidos que construyen una membrana celular a menudo forman una bicapa espontáneamente cuando se colocan en agua (véase “Teoría de la burbuja”).[6]​ No se sabe si este proceso precede o da como resultado el origen del replicador (o quizás fuera el replicador). La teoría que predomina más es que el replicador, quizás el ARN (hipótesis del ARN mundial), junto a este instrumento de reproducción y tal vez otras biomoléculas, ya habían evolucionado. Al principio las protocélulas simplemente podrían haber explotado cuando crecían demasiado; el contenido esparcido podría haber recolonizado otras "burbujas". Las proteínas que estabilizaban la membrana, o que ayudaban en la división de forma ordenada, podrían estimular la proliferación de estas cadenas celulares. ARN es probablemente un candidato para un primer replicador ya que puede almacenar información genética y catalizar reacciones. En algunos puntos el ADN prevaleció el papel de recopilador genético sobre el ARN, y las proteínas conocidas como enzimas adoptador el papel de catalizar, dejando al ARN para transferir información y modular el proceso. Se tiende a creer que estas primigenias células pudieron evolucionar en grupos en las chimeneas volcánicas submarinas conocidas como "fumarolas negras";[7]​ o incluso calientes, rocas marinas.[8]​ No obstante, se cree que de todas estas múltiples células, o protocélulas, sólo una sobrevivió. Las evidencias sugieren que el último antepasado universal vivió durante el principio del Eón Arcaico, hace alrededor de 3.500 Ma o incluso antes.[9],[10]​ Esta célula "LUCA" es el antecesor común de todas las células y por tanto de toda la vida en la Tierra. Fue probablemente una procariota, la cual poseía una membrana celular y probablemente ribosomas, pero carente de un núcleo o orgánulos como mitocondrias o cloroplastos. Igual que todas las células modernas, utilizaba el ADN como código genético, el ARN para transferir información y sintetizar proteinas, y los enzimas para catalizar las reacciones. Algunos científicos opinan que en vez ser de un sólo organismo dar lugar al último antepasado universal, habían poblaciones de organismos intercambiándose genes en transferencia horizontal.[9]

La fotosíntesis y el oxígeno

El aprovechamiento de la energía solar dio lugar a varios de los mayores cambios de la vida en la Tierra.

Probablemente las primeras células eran todas heterótrofas, utilizando todas las moléculas orgánicas (incluso las de otras células) como materia prima y como fuente de energía.[11]​ Así como el suministro de comida disminuía, algunas desarrollaron una nueva estratégia. En vez utilizar los cada vez menores grupos de moléculas orgánicas libres, estas moléculas adoptaron la luz solar como fuente de energía. Las estimaciones varían, pero hace unos 3.000 Ma,[12]​ algo similar a la actual fotosíntesis se había desarrollado. Esto hizo que la energía solar disponible no sólo para los autotrofos sino que también para los heterótrofos que se nutrían de ellos. La fotosíntesis consume bastante CO2 y agua como materia prima y, con la energía de la luz solar, produce moléculas ricas en energía (los carbohidratos).

Además, se producía oxígeno como desecho de la fotosíntesis. Al principio se combinaba con caliza, hierro, y otros minerales. Hay una prueba sólida de esto en las capas ricas de hierro oxidado en el estrato geológico correspondiente a este periodo. Los océanos habrían cambiado el color a verde mientras el oxígeno estaba reaccionando con los minerales. Cuando cesaron las reacciones, el oxígeno podría finalmente llegar a la atmósfera. Sin embargo cada célula sólo producía una pequeña cantidad de oxígeno, el metabolismo combinado de muchas células durante un basto período transformó la atmósfera terrestre al estado actual.[13]

Esta, entonces, es la tercera atmósfera de la Tierra. La radiación ultravioleta excitó parte del oxígeno formando ozono, el cual se fue acumulando en una capa cerca de la zona superior de la atmósfera. La capa de ozono absorbía, y absorbe aún, una cantidad significativa de la radiación ultravioleta que, antes atravesaba sin impedimentos la atmósfera. Esto permitía a colonizar las células de la superficie del océano y, en definitiva, la tierra:,[14]​ sin la capa de ozono, la radiación ultravioleta bombardeando la superficie habría causado niveles insostenibles de mutación en las células expuestas. Además de proporcionar una gran cantidad de energía disponible para vida y bloquear radiación ultravioleta, la fotosíntesis tenía otro tercer efecto, el más importante, y que tendría un impacto a escala planetaria. El oxígeno era tóxico; probablemente gran parte de la vida en la tierra murió al aumentar sus niveles (la "catástrofe del oxígeno").[14]​ Las formas de vida que sobrevivieron y prosperaron, y algunos desarrollaron la capacidad de utilizar el oxígeno para mejorar su metabolismo y obtener más energía de la misma materia orgánica.

Endosimbiosis y los tres dominios de la vida

Algunas de las vías por las que los diversos endosimbiomismos pudiera haber surgido.

La moderna Taxonomía clasifica la vida en tres dominios. El momento del origen de estos dominios es teórico. El dominio Bacteria fue probablemente el primero que se separó de las otras formas de vida (que a veces se agrupan en Neomura), pero esta suposición es controvertida. Después de esto, hace 2.000 Ma,[15]​ Neomura se dividió dando lugar a los otros dos dominios, Archaea (arqueas) y Eukaryota (eucariotas). Las células eucarióticas son más grandes y más complejas que las procarióticas (bacterias y arqueas), y el origen de su complejidad sólo ahora está saliendo a la luz. Sobre este período una pequeña proteobacteria alfa relacionada con las actuales Rickettsia[16]​ se introdujo en una célula procariota más grande. Tal vez fue un intento de ingestión por parte de la célula grande que falló (debido a la evolución de las defensas de la pequeña proteobacteria). Quizás la célula más pequeña trató de parasitar a la más grande. En cualquier caso, las células más pequeñas sobrevivieron en el interior de las más grandes. El uso del oxígeno, permitió metabolizar los desechos de las células más grandes y así obtener más energía. Parte de este excedente de energía fue devuelto a la reserva. Las células más pequeñas se reproducían en el interior de la más grande, y al poco tiempo dio lugar una relación simbiótica estable. Con el tiempo la célula más grande adquirió algunos de los genes de las células más pequeñas, y los dos tipos llegaron a ser uno dependiente del otro: la célula más grande no podrían sobrevivir sin la energía producida por las más pequeñas, y estas, a su vez, no podrían sobrevivir sin la materia prima proporcionadas por la célula mayor. La simbiosis que se consiguió, entre las células más grandes y del grupo de células más pequeñas que estaban en su interior, fue tal que se considera que se han convertido en un solo organismo, las células más pequeñas están clasificadas como orgánulos llamados mitocondrias. Algo parecido pasó con la fotosíntesis de las cyanobacteria[17]​ Entrando en las células heterótrofas más grandes y llegando a ser cloroplastos.[18],[19]​ Probablemente como resultado de estos cambios, un grupo de células capaces de realizar la fotosíntesis se separó de las demás eucariotas hará unos 1.000 Ma. Había probablemente tal inclusión de eventos, como la figura de la izquierda indica. Además de la teoría endosimbiótica del origen celular de las mitocondrias y cloroplastos, se ha sugerido que las células dieron lugar a las peroxisomas y spirochaetes también dieron lugar a los cilios y flagelos, y quizás a un virus ADN; además de dar lugar al núcleo celular,[20],[21]​ aunque ninguna de estas teorías es generalmente aceptada.[22]​ Durante este período, se cree que ha existido un supercontinente llamado Columbia, probablemente, hace alrededor de 1.800 a 1.500 Ma, es el supercontinente más antiguo.[23]

Los organismos pluricelulares

Se cree que el volvox aureus es similar a las primeras plantas pluricelulares.

Las archaeas, bacterias y eucariotas continuaron dispersándose y llegando a ser más complejas y mejor adaptadas a su medio ambiente. Cada dominio continuamente se distribuye en múltiples linajes, aunque se sabe poco sobre la historia de las bacterias y archaeas. Hace alrededor de 1.100 Ma, se formó el supercontinente Rodinia.[24]​ Estas células se diversificado por todas las líneas de los tres reinos (plantae, animalia, y fungi), a pesar de que aún existen células solitarias. Algunos vivían en colonias, y gradualmente se produjo la división del trabajo, por ejemplo, las células de la periferia podrían haber comenzado a asumir funciones diferentes de las existentes en el interior. Aunque la división entre una colonia de células especializadas y un organismo pluricelular no siempre es clara, hace alrededor de 1.000 Ma,[25]​ Las primeras plantas pluricelulares surgieron, probablemente, de las algas verdes.[26]​ Probablemente hace unos 900 Ma,[27]​ el verdadero pluricelular también había evolucionado a animales. Al principio, probablemente, algo semejante a la actual esponja, en el que todas las células eran totipotentes y un organismo mutilado regenerarse.[28]​ Como la división del trabajo se volvió más completo en todos los sentidos en los organismos pluricelulares, las células se volvieron más especializadas y más dependientes de los demás; las aisladas células morirían. Muchos científicos creen que una glaciación muy severa comenzó hace alrededor de 770 Ma, de tal gravedad que la superficie de todos los océanos se congelaron por completo (la glaciación global). Finalmente, después de 20 Ma, cuando el suficiente dióxido de carbono volcánico llegara a la atmósfera; se provocó el consiguiente efecto invernadero subiendo la temperatura global del planeta.[29]​ Por la misma época, hace unos 750 Ma,[30]​ Rodinia comenzó a fracturarse.

La colonización de la superficie

Durante la mayor parte de la historia de la Tierra, no existían organismos pluricelulares en la tierra. La superficie se asemejaba vagamente a la de Marte, uno de los planetas vecinos de la Tierra.

La acumulación de oxígeno de la fotosíntesis dio lugar a la formación de una capa de ozono que absorbía gran parte de la radiación ultravioleta del Sol, en el sentido de organismos unicelulares que llegaron a la superficie de la tierra tenían menos probabilidades de morir, y los procariotas empezaron a multiplicarse y a adaptarse mejor a la supervivencia fuera del agua. Los procariotas probablemente había colonizado la tierra ya hace 2.600 Ma[31]​ incluso antes de que el origen de las eucariotas. Durante mucho tiempo, se mantuvo superficie estéril de los organismos multicelulares. El supercontinente Pannotia formado alrededor de 600 Ma y luego se fracturó sólo 50 Ma más tarde.[32]​Los peces, los primeros vertebrados, aparecieron en los océanos alrededor de 530 Ma.[33]​ A finales del Cámbrico ocurrió una extinción masiva,[34]​ la cual terminó hace 488 Ma.[35]


Hace varios cientos de millones de años, las plantas (probablemente parecido a las algas) y los hongos se empezó a desarrollar en los bordes del agua, y después fuera de ella.[36]​ Los fósiles más antiguos de la tierra hongos y plantas se data alrededor de 480 a 460 Ma, aunque la evidencia molecular sugiere que hongos pueden haber colonizado la tierra ya hace 1.000 Ma y las plantas hace 700 Ma.[37]​ Al principio cerca del borde del agua, después las mutaciones y variaciones dieron lugar a un nuevo colonización de este nuevo entorno. El momento de los primeros animales a salir de los océanos no se conoce con precisión: la más antigua evidencia clara en la superficie son los artrópodos hace alrededor de 450 Ma,[38]​ prósperos y cada vez mejor adaptados debido a la gran fuente de alimento proporcionado por la plantas terrestres. También hay algunas pruebas de que los artrópodos no confirmados, que puede haber aparecido en la tierra hace 530 Ma.[39]​ Al final del período Ordovícico, hace 440 Ma, se produjeron otra extinción masiva, debido, quizá, a una glaciación.[40]​ Hace alrededor de 380 a 375 Ma, los primeros tetrápodos evolucionó a partir de los peces.[41]​ Se piensa que quizás las aletas evolucionaron hasta convertirse en las extremidades que permitían a los primeros tetrápodos levantar la cabeza fuera del agua para respirar aire. Esto les permitirían sobrevivir en aguas pobres en oxígeno o perseguir pequeñas presas en aguas poco profundas.[41]​ Más tarde podrían aventurarse en tierra por breves períodos. Progresivamente, algunos llegaron se adaptaron tan bien a la vida terrestre que pasaban su vida adulta en la tierra, a pesar de nacer y tener que poner los huevos en el agua. Este fue el origen de los anfibios. Hace cerca de 365 Ma, se produjo una nueva extinción masiva, tal vez como resultado de un enfriamiento global.[42]​ Plantas desarrollaron semillas, que se aceleró drásticamente su propagación en la tierra, en esta época (hace unos 360 Ma).[43],[44]

Pangea, el supercontinente más reciente, existió de 300 a 180 Ma. Las siluetas de los continentes modernos y otras masas de tierra se indican en este mapa.

Unos 20 millones de años más tarde (hace 340 Ma[45]​), el evolucionado huevo amniótico, que podría ponerse en la tierra, dando una ventaja en la supervivencia de los embriones de tetrápodos. Esto dio lugar a la divergencia de los amniotas y los anfibios. Otros 30 millones de años (hace 310 Ma[46]​) se observa la divergencia de los synapsidas (incluidos los mamíferos) y los saurópsidos (incluidas las aves, no aves y los reptiles no mamíferos). Otros grupos de organismos continuó evolucionando en líneas divergentes (en peces, insectos, bacterias, etc), pero se conocen menos detalles. Hace 300 Ma, se formó el supercontinente más cercano a la actualidad, llamado Pangea. La extinción más grave hasta hoy tuvo lugar hace 250 Ma, en el límite de los períodos Pérmico y Triásico, el 95% de la vida en la Tierra desapareció,[47]​ posiblemente debido al evento volcánico llamado trampas siberianas. El descubrimiento del cráter de la Tierra de Wilkes en la Antártida podría sugerir una conexión con la extinción Pérmico-Triásico, pero la edad del cráter que no se conoce.[48]​ Pero la vida continuó, y en torno a 230 Ma,[49]​ los dinosaurios se separó de sus antepasados reptiles. Un extinción masiva entre los períodos Triásico y Jurásico hace 200 Ma prescindió de muchos de los dinosaurios,[50]​ aunque pronto se convirtió en los dominantes entre los vertebrados. Aunque algunos de los mamíferos empezaron a diverger durante este periodo, los mamíferos que existían eran probablemente todos semejantes pequeñas musarañas.[51]​ Hace unos 180 Ma, Pangea se dividió en Laurasia y Gondwana. El límite entre las aves y los dinosaurios no-aves no está claro. Archaeopteryx, considerado tradicionalmente una de las primeras aves, vivó hace alrededor de 150 Ma.[52]​ Las primeras evidencias de las angiospermas es durante el período Cretácico, unos 20 millones de años más tarde (hace 132 Ma)[53]​ La competencia con las aves condujo a la extinción a muchos pterosaurios, y los dinosaurios fueron probablemente ya en declive por varios motivos[54]​ cuando, hace 65 Ma, un meteorito de 10 kilómetros chocó con la Tierra cerca de la Península de Yucatán, expulsó grandes cantidades de partículas de polvo y vapor a la atmósfera impidiendo la llegada de luz solar a la superficie, y por tanto la fotosíntesis. La mayoría de los grandes animales, incluidos los dinosaurios no-aves, se extinguieron.,[55]​ que marca el fin del período Cretácico y la era Mesozoica. Posteriormente, en el Paleoceno, los mamíferos se diversificaron rápidamente, aumentando en tamaño, y se convirtieron en los vertebrados dominantes. Tal vez un par de millones de años más tarde (hace alrededor de 63 Ma), vivió el último ancestro común de los primates.[56]​ A fines del Eoceno, hace 34 Ma, algunos mamíferos terrestres regresaron al mar para convertirse en animales como Basilosaurus, que más tarde dio lugar a los delfines y ballenas.[57]

Los homínidos

Archivo:Austrolopithecus africanus.jpg
Australopithecus africanus, uno de los primeros hominidos.

Un pequeño mono africano que vivió hace unos a seis millones de años fue la última de animales cuyos descendientes se incluyen tanto los humanos modernos y sus parientes más cercanos, los bonobos y chimpancés.[58]​ Sólo sobreviven dos ramas de su árbol de familia. Muy poco después de la división, por razones que aún se debaten, una rama desarrolló la capacidad de caminar en posición vertical.[59]​ El tamaño del cerebro aumentó rápidamente, y hace 2 Ma, aparecieron los primeros animales clasificados en el género Homo.[60]​ Por supuesto, la línea entre diferentes especies o incluso géneros es bastante arbitraria así como los continuos cambios producidos durante generaciones. En la misma época, la otra rama dio lugar a los antepasados del chimpancé común y bonobo, que evolucionaron simultáneamente.[58]​ La capacidad de controlar el fuego que comenzó con el Homo erectus (o el Homo ergaster), probablemente hace por lo menos 790.000 años[61]​ o quizás tan pronto como hace 1,5 Ma.[62]​ Es más difícil establecer el origen del lenguaje, no está claro si el Homo erectus podía hablar o si esa capacidad no había empezado hasta el Homo sapiens.[63]​ Con el aumento de tamaño del cerebro, los bebés nacieron antes, antes sus cabezas crecían demasiado como para pasar a través de la pelvis. Como resultado, se exhiben más plasticidad, y por lo tanto poseen una mayor capacidad de aprender y requiere un período más largo de dependencia. Las habilidades sociales se hicieron más complejas, el lenguaje se hizo más avanzados, y las herramientas eran más elaboradas. Esto contribuyó a aumentar la cooperación y el desarrollo cerebral.[64]​ Anatómicamente los humanos modernos - Homo sapiens - se cree que se originó hace alrededor de 200.000 años o antes en África; los más antiguos fósiles que datan de unos 160.000 años.[65]​ Los primeros seres humanos para mostrar pruebas de la espiritualidad son los Neandertales, enterraban a sus muertos, al parecer a menudo con alimentos o herramientas.[66]​ Sin embargo, las pruebas de las creencias más sofisticadas, como la de los primeros Cromagnon, las pinturas rupestres (probablemente con significado religioso o mágico)[67]​ no aparecieron hasta hace unos 32.000 años.[68]​ Cro-Magnons también dejaron figuras de piedra como la Venus de Willendorf, que probablemente también tuviera significado religioso.[67]​ Hace unos 11.000 años, el Homo sapiens había llegado a la punta sur de América del Sur, el último de los continentes deshabitados.[69]​ Las herramientas y el idioma continuó mejorándose; las relaciones interpersonales se hicieron más complejas.

La civilización

El hombre de Vitruvio de Leonardo da Vinci personificó los avances en el arte y la ciencia vistos durante el Renacimiento.

A lo largo de más del 90% de su historia, el Homo sapiens vivió en pequeños grupos nómadas de cazadores-recolectores.[70]​ Mientras que la lengua llegó a ser más compleja, la capacidad de recordar y de transmitir la información dio lugar a una nueva clase de replicator: el meme.[71]​ Las ideas se podían intercambiar rápidamente y pasaron de generación a generación. Evolución cultural superado rápidamente la evolución biológica, y comenzó propiamente la. En algún punto entre 8500 y 7000 adC, los seres humanos en el fértil en el Oriente Medio comenzaron de manera sistemática, la cría de animales y plantas: la agricultura.[72]​ Esto se extendió a las regiones vecinas, y también desarrolladose independientemente en otros lugares, hasta que la mayoría Homo sapiens vivieron vida sedentaria en asentamientos permanentes, como los agricultores. No todas las sociedades abandonaron el nomadismo, en especial los que están en zonas aisladas del planeta pobre en especies de plantas domesticables, tales como Australia.[73]​ Sin embargo, entre esas civilizaciones que adoptaron la agricultura, la seguridad y la productividad creciente relativas proporcionadas cultivando permitió que la población se ampliara. La agricultura tenía un impacto importante; los seres humanos comenzaron a afectar el ambiente como nunca antes. Los excedentes de alimentos permitieron surgir a la clase sacerdotal o gobernante, seguido por un aumento de la división del trabajo. Esto condujo a la primera civilización de la tierra en Sumeria en el Oriente Medio, entre 4000 y 3000 a. C.[74]​ Otras civilizaciones sugieron rápidamente en Egipto y en el valle del río Indo.

A partir de alrededor de 3000 a. C., el hinduismo, una de las religiones más antiguas todavía se practica hoy en día, comenzó a tomar forma.[75]​ Surgieron otras pronto. La invención de la escritura permitió a sociedades complejas presentarse: el mantenimiento de registros y las bibliotecas sirvieron como almacén del conocimiento y aumentaron la transmisión cultural de la información. Los seres humanos ya tenían que gastar todo su tiempo en la supervivencia y la educación llevó a la búsqueda del conocimiento y la sabiduría. Diversas disciplinas, incluyendo la ciencia (en una forma primitiva) aparecieron. Nueva civilizaciones surgieron, comerciando entre ellas, o participando en guerras por territorios y recursos: se empezaban a formar los imperios. alrededor del 500 a. C., hubo imperios en el Medio Oriente, Irán, la India, China y Grecia, aproximadamente de la misma forma.[76]

En el siglo XIV, el Renacimiento comenzó en Italia con los avances en religión, arte y ciencia.[77]​ A comienzos de 1500, la civilización europea comenzó a experimentar los cambios que conducían a la revolución científica e industrial: ese continente comenzó a ejercer una dominación política y cultural sobre las sociedades humanas de todo el planeta.[78]​ De 1914 a 1918 y de 1939 a 1945, la mayoría de las naciones del mundo estuvieron envueltas en las guerras mundiales. Creada después de la Primera Guerra Mundial, la Sociedad de Naciones fue un primer paso hacia un gobierno mundial; después de la Segunda Guerra Mundial que fue sustituido por la ONU. En 1992, varios países europeos, se unieron para formar la Unión Europea. Como el transporte y la mejora de la comunicación, la economía y los asuntos políticos de las naciones de todo el mundo se han vuelto cada vez más interrelacionadas. Esta globalización ha producido con frecuencia la discordia, aunque también una mayor colaboración internacional.

Hechos recientes

Cuatro mil millones y medio de años después de la formación del planeta, una de las formas de vida terrestre salió libre de la biosfera. Por primera vez en la historia, la Tierra se vio desde la perspectiva del espacio.

El cambio ha continuado a un ritmo rápido a partir de mediados de la década de 1940. Los progresos tecnológicos incluyen armas nucleares, ordenadores, ingeniería genética, y nanotecnología. La globalización de la economía impulsada por los avances tecnológicos en comunicación y transporte ha influido en la vida cotidiana de muchas partes del mundo. Formas culturales e institucionales, tales como democracia, capitalismo, y el movimiento ecologista han aumentado su influencia. Las principales preocupaciones y problemas como enfermedades, guerra, pobreza, radicalismo violento, y más recientemente, el calentamiento global han aumentado a medida que aumenta la población mundial.

En 1957, la Unión Soviética lanzó el primer satélite artificial en órbita y, poco después, Yuri Gagarin se convirtió en el primer humano en el espacio. Neil Armstrong, un estadounidense, fue el primero en poner pie sobre otro objeto espacial, el satélite de la Tierra (la Luna). Sondas no tripuladas han sido enviadas hacia todos los planetas en el sistema solar, y algunos (como los Voyager) está el proceso de abandonar el sistema solar. La Unión Soviética y los Estados Unidos fueron al principio los principales líderes en la exploración espacial en el siglo XX. Cinco agencias espaciales, que representan a más de quince países,[79]​ han trabajado juntos para construir la Estación Espacial Internacional. A bordo de ella, ha habido una continua presencia humana en el espacio desde el 2000.[80]


Referencias

  1. «Sonda Dawn escudriñará misterios del Sistema Solar». Deutsche Welle 27.09.2007. 2007. Consultado el 30 de diciembre de 2007. 
  2. «"Una nueva imagen del comienzo del universo muestra la época de las primeras estrellas, la edad del cosmos y más cosas"». NASA. 11 de febrero de 2003.  Parámetro desconocido |Publicado el= ignorado (ayuda)
  3. Chaisson, Eric J. (2005). «Solar System Modeling». Cosmic Evolution. Tufts University. Consultado el 27 de marzo de 2006. 
  4. «Marte y la Tierra: dos hermanos distintos». Deutsche Welle 17.05.2006. 2006. Consultado el 30 de diciembre de 2007. 
  5. «What Is A Comet?». Deutsche Welle 26.02.2004 (en inglés). 2004. Consultado el 30 de diciembre de 2007. 
  6. Fortey, Richard (Septiembre de 1999) [1997]. «Dust to Life». Life: A Natural History of the First Four Billion Years of Life on Earth. New York: Vintage Books. p. 40. ISBN 0-375-70261-X. 
  7. Fortey, Richard (Septiembre de 1999) [1997]. «Dust to Life». Life: A Natural History of the First Four Billion Years of Life on Earth. New York: Vintage Books. pp. 42-44. ISBN 0-375-70261-X. 
  8. Dawkins, Richard (2004). «Canterbury». The Ancestor's Tale: A Pilgrimage to the Dawn of Life. Boston: Houghton Mifflin Company. p. 580. ISBN 0-618-00583-8. 
  9. a b Penny, David; Anthony Poole (Diciembre de 1999). «The nature of the last universal common ancestor». Current Opinions in Genetics and Development 9 (6): 672-677. PMID 1060760.  (PDF)
  10. «Earliest Life». Universidad de Münster. 2003. Consultado el 28 de marzo de 2006. 
  11. Dawkins, Richard (2004). «Canterbury». The Ancestor's Tale: A Pilgrimage to the Dawn of Life. Boston: Houghton Mifflin Company. pp. 564-566. ISBN 0-618-00583-8. 
  12. De Marais, David J. (8 de septiembre, 2000). «Evolution: When Did Photosynthesis Emerge on Earth?». Science 289 (5485): 1703-1705. PMID 11001737.  (full text)
  13. Fortey, Richard (September de 1999) [1997]. «Dust to Life». Life: A Natural History of the First Four Billion Years of Life on Earth. New York: Vintage Books. pp. 50-51. ISBN 0-375-70261-X. 
  14. a b Chaisson, Eric J. (2005). «Early Cells». Cosmic Evolution. Universidad Tufts. Consultado el 29 de marzo de 2006. 
  15. Woese, Carl; J. Peter Gogarten (21 de octubre, 1999). «When did eukaryotic cells evolve? What do we know about how they evolved from earlier life-forms?». Scientific American. 
  16. Andersson, Siv G. E.; Alireza Zomorodipour, Jan O. Andersson, Thomas Sicheritz-Pontén, U. Cecilia M. Alsmark, Raf M. Podowski, A. Kristina Näslund, Ann-Sofie Eriksson, Herbert H. Winkler, & Charles G. Kurland (12 de noviembre, 1998). «The genome sequence of Rickettsia prowazekii and the origin of mitochondria». Nature 396 (6707): 133-140. PMID 9823893, doi 10.1038/24094. 
  17. Berglsand, Kristin J.; Robert Haselkorn (Junio de 1991). «Evolutionary Relationships among the Eubacteria, Cyanobacteria, and Chloroplasts: Evidence from the rpoC1 Gene of Anabaena sp. Strain PCC 7120». Journal of Bacteriology 173 (11): 3446-3455. PMID 1904436.  (PDF)
  18. Dawkins, Richard (2004). «The Great Historic Rendezvous». The Ancestor's Tale: A Pilgrimage to the Dawn of Life. Boston: Houghton Mifflin Company. pp. 536-539. ISBN 0-618-00583-8. 
  19. Fortey, Richard (Septiembre de 1999) [1997]. «Dust to Life». Life: A Natural History of the First Four Billion Years of Life on Earth. New York: Vintage Books. pp. 60-61. ISBN 0-375-70261-X. 
  20. Takemura, Masaharu (Mayo de 2001). «Poxviruses and the origin of the eukaryotic nucleus.». Journal of Molecular Evolution 52 (5): 419-425. PMID 11443345. 
  21. Bell, Philip J (Septiembre de 2001). «Viral eukaryogenesis: was the ancestor of the nucleus a complex DNA virus?». Journal of Molecular Evolution 53 (3): 251-256. PMID 11523012. 
  22. Gabaldón, Toni; Berend Snel, Frank van Zimmeren, Wieger Hemrika, Henk Tabak, and Martijn A. Huynen (23 de marzo, 2006). «Origin and evolution of the peroxisomal proteome.». Biology Direct 1 (1): 8. PMID 16556314.  (PDF)
  23. Whitehouse, David (2002). «Ancient supercontinent proposed». BBC. Consultado el 16 de abril de 2006. 
  24. Hanson, Richard E.; James L. Crowley, Samuel A. Bowring, Jahandar Ramezani, Wulf A. Gose, et al. (21 de mayo, 2004). «Coeval Large-Scale Magmatism in the Kalahari and Laurentian Cratons During Rodinia Assembly». Science 304 (5674): 1126-1129. doi 10.1126/science.1096329. 
  25. Chaisson, Eric J. (2005). «Ancient Fossils». Cosmic Evolution. Universidad Tufts. Consultado el 31 de marzo de 2006. 
  26. Bhattacharya, Debashish; Linda Medlin (1998). «Algal Phylogeny and the Origin of Land Plants». Plant Physiology 116: 9-15.  (PDF)
  27. Dawkins, Richard (2004). «Choanoflagellates». The Ancestor's Tale: A Pilgrimage to the Dawn of Life. Boston: Houghton Mifflin Company. p. 488. ISBN 0-618-00583-8. 
  28. Dawkins, Richard (2004). «Sponges». The Ancestor's Tale: A Pilgrimage to the Dawn of Life. Boston: Houghton Mifflin Company. pp. 483-487. ISBN 0-618-00583-8. 
  29. Hoffman, Paul F.; Alan J. Kaufman, Galen P. Halverson, & Daniel P. Schrag (28 de agosto de 1998). «A Neoproterozoic Snowball Earth». Science 281 (5381): 1342-1346. doi 10.1126/science.281.5381.1342. Consultado el 16 de abril de 2006.  (abstract)
  30. Torsvik, Trond H. (30 de mayo, 2003). «The Rodinia Jigsaw Puzzle». Science 300 (5624): 1379-1381. doi 10.1126/science.1083469. 
  31. Pisani, Davide; Laura L. Poling, Maureen Lyons-Weiler, & S. Blair Hedges (19 de enero de 2004). «The colonization of land by animals: molecular phylogeny and divergence times among arthropods». BMC Biology 2 (1). doi 10.1186/1741-7007-2-1. 
  32. Lieberman, Bruce S. (2003). «Taking the Pulse of the Cambrian Radiation». Integrative and Comparative Biology 43 (1): 229-237. doi 10.1093/icb/43.1.229. 
  33. Dawkins, Richard (2004). «Lampreys and Hagfish». The Ancestor's Tale: A Pilgrimage to the Dawn of Life. Boston: Houghton Mifflin Company. p. 354. ISBN 0-618-00583-8. 
  34. «The Mass Extinctions: The Late Cambrian Extinction». BBC. Consultado el 09-04-2006. 
  35. Landing, E.; S. A. Bowring, K. L. Davidek, R. A. Fortey, & W. A. P. Wimbledon (2000). «Cambrian–Ordovician boundary age and duration of the lowest Ordovician Tremadoc Series based on U–Pb zircon dates from Avalonian Wales». Geological Magazine 137 (5): 485-494. doi 10.1017/S0016756800004507.  (abstract)
  36. Fortey, Richard (Septiembre de 1999) [1997]. «Landwards». Life: A Natural History of the First Four Billion Years of Life on Earth. New York: Vintage Books. pp. 138-140. ISBN 0-375-70261-X. 
  37. Heckman, D. S.; D. M. Geiser, B. R. Eidell, R. L. Stauffer, N. L. Kardos, & S. B. Hedges (10 de agosto de 2001). «Molecular evidence for the early colonization of land by fungi and plants.». Science 10 (293): 1129-1133. PMID 11498589, doi 10.1126/science.1061457.  (abstract)
  38. Johnson, E. W.; D. E. G. Briggs, R. J. Suthren, J. L. Wright, & S. P. Tunnicliff (Mayo de 1994). «Non-marine arthropod traces from the subaereal Ordivician Borrowdale volcanic group, English Lake District». Geological Magazine 131 (3): 395-406.  (abstract)
  39. MacNaughton, Robert B.; Jennifer M. Cole, Robert W. Dalrymple, Simon J. Braddy, Derek E. G. Briggs, & Terrence D. Lukie (2002). «First steps on land: Arthropod trackways in Cambrian-Ordovician eolian sandstone, southeastern Ontario, Canada». Geology 30 (5): 391-394. doi <0391:FSOLAT>2.0.CO;2 10.1130/0091-7613(2002)030<0391:FSOLAT>2.0.CO;2.  (abstract)
  40. «The Mass Extinctions: The Late Ordovician Extinction». BBC. Consultado el 22 de mayo de 2006. 
  41. a b Clack, Jennifer A. (Diciembre de 2005). «Getting a Leg Up on Land». Scientific American. 
  42. «The Mass Extinctions: The Late Devonian Extinction». BBC. Consultado el 04-04-2006. 
  43. Willis, K. J.; J. C. McElwain (2002). The Evolution of Plants. Oxford: Oxford University Press. p. 93. ISBN 0-19-850065-3. 
  44. «Plant Evolution». Universidad de Waikato. Consultado el 07-04-2006. 
  45. Dawkins, Richard (2004). «Amphibians». The Ancestor's Tale: A Pilgrimage to the Dawn of Life. Boston: Houghton Mifflin Company. pp. 293-296. ISBN 0-618-00583-8. 
  46. Dawkins, Richard (2004). «Sauropsids». The Ancestor's Tale: A Pilgrimage to the Dawn of Life. Boston: Houghton Mifflin Company. pp. 254-256. ISBN 0-618-00583-8. 
  47. «The Day the Earth Nearly Died». Horizon. BBC. 2002. Consultado el 09-04-2006. 
  48. «Big crater seen beneath ice sheet».  . BBC News. 3 de junio de 2006. Consultado el 15 de noviembre de 2006. 
  49. «New Blood». Walking with Dinosaurs. . 1999.  (description)
  50. «The Mass Extinctions: The Late Triassic Extinction». BBC. Consultado el 09-04-2006. 
  51. Dawkins, Richard (2004). «The Great Cretaceous Catastrophe». The Ancestor's Tale: A Pilgrimage to the Dawn of Life. Boston: Houghton Mifflin Company. p. 169. ISBN 0-618-00583-8. 
  52. «Archaeopteryx: An Early Bird». Universidad de California, Berkeley Museo de paleontología. 1996. Consultado el 09-04-2006. 
  53. Soltis, Pam; Doug Soltis, & Christine Edwards (2005). «Angiosperms». The Tree of Life Project. Consultado el 09-04-2006. 
  54. «Death of a Dynasty». Walking with Dinosaurs. . 1999.  (description)
  55. Chaisson, Eric J. (2005). «Recent Fossils». Cosmic Evolution. Universidad Tufts. Consultado el 09-04-2006. 
  56. Dawkins, Richard (2004). «Lemurs, Bushbabies and their Kin». The Ancestor's Tale: A Pilgrimage to the Dawn of Life. Boston: Houghton Mifflin Company. p. 160. ISBN 0-618-00583-8. 
  57. «Whale Killer». Walking with Beasts. . 2001. 
  58. a b Dawkins, Richard (2004). «Chimpanzees». The Ancestor's Tale: A Pilgrimage to the Dawn of Life. Boston: Houghton Mifflin Company. pp. 100-101. ISBN 0-618-00583-8. 
  59. Dawkins, Richard (2004). «Ape-Men». The Ancestor's Tale: A Pilgrimage to the Dawn of Life. Boston: Houghton Mifflin Company. pp. 95-99. ISBN 0-618-00583-8. 
  60. Fortey, Richard (Septiembre de 1999) [1997]. «Humanity». Life: A Natural History of the First Four Billion Years of Life on Earth. New York: Vintage Books. p. 38. ISBN 0-375-70261-X. 
  61. Goren-Inbar, Naama; Nira Alperson, Mordechai E. Kislev, Orit Simchoni, Yoel Melamed, Adi Ben-Nun, & Ella Werker (30 de abril de 2004). «Evidence of Hominin Control of Fire at Gesher Benot Ya`aqov, Israel». Science 304 (5671): 725-727. doi 10.1126/science.1095443. Consultado el 11 de abril de 2006.  (abstract)
  62. Dawkins, Richard (2004). «Ergasts». The Ancestor's Tale: A Pilgrimage to the Dawn of Life. Boston: Houghton Mifflin Company. p. 67. ISBN 0-618-00583-8. 
  63. Dawkins, Richard (2004). «Ergasts». The Ancestor's Tale: A Pilgrimage to the Dawn of Life. Boston: Houghton Mifflin Company. pp. 67-71. ISBN 0-618-00583-8. 
  64. McNeill, Willam H. (1999) [1967]. «In The Beginning». A World History (4th ed. edición). New York: Oxford University Press. p. 7. ISBN 0-19-511615-1. 
  65. Gibbons, Ann (13 de junio de 2003). «Oldest Members of Homo sapiens Discovered in Africa». Science 300 (5626): 1641. doi 10.1126/science.300.5626.1641. Consultado el 11 de abril de 2006.  (abstract)
  66. Hopfe, Lewis M. (1987) [1976]. «Characteristics of Basic Religions». Religions of the World (4th ed. edición). New York: MacMillan Publishing Company. p. 17. ISBN 0-02-356930-1. 
  67. a b Hopfe, Lewis M. (1987) [1976]. «Characteristics of Basic Religions». Religions of the World (4th ed. edición). New York: MacMillan Publishing Company. pp. 17-19. ISBN 0-02-356930-1. 
  68. «Chauvet Cave». Metropolitan Museum of Art. Consultado el 11-04-2006. 
  69. Patrick K. O’Brien, ed., ed. (2003) [2002]. «The Human Revolution». Atlas of World History (concise edition edición). New York: Oxford University Press. p. 16. ISBN 0-19-521921-X. 
  70. McNeill, Willam H. (1999) [1967]. «In The Beginning». A World History (4th ed. edición). New York: Oxford University Press. p. 8. ISBN 0-19-511615-1. 
  71. Dawkins, Richard (1989) [1976]. «Memes: the new replicators». The Selfish Gene (2nd ed. edición). Oxford: Oxford University Press. pp. 189-201. ISBN 0-19-286092-5. 
  72. Tudge, Colin (1998). Neanderthals, Bandits and Farmers: How Agriculture Really Began. London: Weidenfeld & Nicolson. ISBN 0-297-84258-7. 
  73. Diamond, Jared. Guns, Germs, and Steel. W. W. Norton & Company. ISBN 0-393-31755-2.  Parámetro desconocido |origdate= ignorado (ayuda)
  74. McNeill, Willam H. (1999) [1967]. «In The Beginning». A World History (4th ed. edición). New York: Oxford University Press. p. 15. ISBN 0-19-511615-1. 
  75. «History of Hinduism». BBC. Consultado el 27 de marzo de 2006. 
  76. McNeill, Willam H. (1999) [1967]. «Emergence and Definition of the Major Old World Civilizations to 500 B.C. (introduction)». A World History (4th ed. edición). New York: Oxford University Press. pp. 3-6. ISBN 0-19-511615-1. 
  77. McNeill, Willam H. (1999) [1967]. «Europe’s Self-Transformation: 1500–1648». A World History (4th ed. edición). New York: Oxford University Press. pp. 317-319. ISBN 0-19-511615-1. 
  78. McNeill, Willam H. (1999) [1967]. «The Dominance of the West (introduction)». A World History (4th ed. edición). New York: Oxford University Press. pp. 295-299. ISBN 0-19-511615-1. 
  79. «Human Spaceflight and Exploration — European Participating States». ESA. 2006. Consultado el 27 de marzo de 2006. 
  80. «Expedition 13: Science, Assembly Prep on Tap for Crew». NASA. 11 de enero, 2006. Consultado el 27 de marzo de 2006. 

Véase también