Ir al contenido

Diferencia entre revisiones de «Partición de un conjunto»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
Luckas-bot (discusión · contribs.)
Línea 31: Línea 31:


[[ar:تجزئة مجموعة]]
[[ar:تجزئة مجموعة]]
[[ca:Partició (matemàtiques)]]
[[da:Partition af en mængde]]
[[da:Partition af en mængde]]
[[de:Partition (Mengenlehre)]]
[[de:Partition (Mengenlehre)]]
Línea 46: Línea 47:
[[oc:Particion (matematicas)]]
[[oc:Particion (matematicas)]]
[[pl:Podział zbioru]]
[[pl:Podział zbioru]]
[[pt:Partição de um conjunto]]
[[pms:Partission]]
[[pms:Partission]]
[[pt:Partição de um conjunto]]
[[ru:Разбиение множества]]
[[ru:Разбиение множества]]
[[sq:Particioni i bashkësisë]]
[[sq:Particioni i bashkësisë]]

Revisión del 21:59 19 mar 2010

Partición del círculo en 6 partes {A1, ... , A6}

En matemática, diremos que la familia de subconjuntos {Ai: i ∈ I} de un conjunto A es una partición (sobre A) si se cumple que:

  1. para todo .
  2. .
  3. .

Por lo tanto, se trata de un recubrimiento en el que los subconjuntos pertenecientes a la familia, dos a dos, son disjuntos (es decir, su intersección es vacía).

Ejemplos

  • Todo conjunto de un elemento {x} tiene exactamente una partición: { {x} }.
  • Para cualquier conjunto no vacío X, P = {X} es una partición de X.
  • El conjunto { 1, 2, 3 } tiene estas 5 particiones:
    • { {1}, {2}, {3} }, a veces notada por 1/2/3.
    • { {1, 2}, {3} }, a veces notada por 12/3.
    • { {1, 3}, {2} }, a veces notada por 13/2.
    • { {1}, {2, 3} }, a veces notada por 1/23.
    • { {1, 2, 3} }, a veces notada por 123.
  • Obsérvese que
    • { {}, {1,3}, {2} } no es una partición (pues contiene al conjunto vacío).

El número de particiones de un conjunto finito

El número de Bell Bn, nombrado así en honor a Eric Temple Bell, es el número de particiones diferentes de un conjunto con n elementos. Los primeros números de Bell son: B0 = 1, B1 = 1, B2 = 2, B3 = 5, B4 = 15, B5 = 52, B6 = 203 ((sucesión A000110 en OEIS))

Los números de Bell satisfacen la siguiente relación recursiva: .

Véase también