
Breaking the Blindfold: Deep Learning-based Blind Side-channel Analysis

Azade Rezaeezade
Delft University of Technology, The Netherlands

Trevor Yap
Nanyang Technological University, Singapore

Dirmanto Jap
Nanyang Technological University, Singapore

Shivam Bhasin
Nanyang Technological University, Singapore

Stjepan Picek
Radboud University, The Netherlands

Abstract
Physical side-channel analysis (SCA) operates on the foun-

dational assumption of access to known plaintext or ciphertext.
However, this assumption can be easily invalidated in various
scenarios, ranging from common encryption modes like Ci-
pher Block Chaining (CBC) to complex hardware implemen-
tations, where such data may be inaccessible. Blind SCA ad-
dresses this challenge by operating without the knowledge of
plaintext or ciphertext. Unfortunately, prior such approaches
have shown limited success in practical settings.

In this paper, we introduce the Deep Learning-based Blind
Side-channel Analysis (DL-BSCA) framework, which lever-
ages deep neural networks to recover secret keys in blind SCA
settings. In addition, we propose a novel labeling method,
Multi-point Cluster-based (MC) labeling, accounting for de-
pendencies between leakage variables by exploiting multiple
sample points for each variable, improving the accuracy of
trace labeling. We validate our approach across four datasets,
including symmetric key algorithms (AES and ASCON) and
a post-quantum cryptography algorithm, Kyber, with plat-
forms ranging from high-leakage 8-bit AVR XMEGA to
noisy 32-bit ARM STM32F4. Notably, previous methods
failed to recover the key on the same datasets. Furthermore,
we demonstrate the first successful blind SCA on a desyn-
chronization countermeasure enabled by DL-BSCA and MC
labeling. All experiments are validated with real-world SCA
measurements, highlighting the practicality and effectiveness
of our approach.

1 Introduction

While standard cryptographic algorithms are considered theo-
retically secure, they remain vulnerable to physical attacks,
such as side-channel analysis (SCA) [19]. In physical SCA, an
adversary observing physical leakages, such as power or elec-
tromagnetic emanation, can exploit those to learn sensitive
information like the secret key. SCA typically involves two
scenarios: non-profiled and profiled [9]. Profiled attacks, such

as template attacks [3,9], stochastic attacks [10,40], and more
recently, deep learning-based methods [23, 28], have demon-
strated remarkable effectiveness when a clone device is avail-
able. There, a training dataset is obtained from a clone device
to build a leakage profile or model. Traces from the target de-
vice (with an unknown key) but known plaintext or ciphertext
are then compared to this profiled model to extract informa-
tion about the secret key. In contrast, non-profiled attacks like
Correlation Power Analysis (CPA) [6] directly compute statis-
tical dependencies between SCA traces and an intermediate
value generated using known plaintext/ciphertext to recover
the key without requiring a profiling phase.

Physical SCAs are practical and demonstrated in real-world
settings [36]. Furthermore, deep learning-based SCAs are
becoming increasingly relevant and powerful [37]. Early
works on deep learning-based SCA focused on both pro-
filed [4, 22, 28] and non-profiled scenarios [39, 43], while
later studies extended this to more challenging settings, such
as weakly supervised attacks [45], leakage model-flexible
attacks [46], and collision attacks [42, 47]. Moreover, the
Federal Office for Information Security (BSI) in Germany
recently published a document describing the requirements
for machine learning-based SCA [7].1

A critical assumption underlying both profiled and non-
profiled attacks is that attackers have access to known data,
such as plaintext or ciphertext. This dependency on known
input or output is foundational to most SCA techniques but
is not always valid in real-world settings where access to
such data may be restricted. For example, common encryption
modes like Cipher Block Chaining (CBC) or Output Feedback
Mode (OFB) limit access to the input/output of the encryption
block, except for the initial block. These constraints present a
unique challenge for adversaries, leading to the emergence of
techniques targeting implementations where input/output data
is unknown—a scenario referred to as blind SCA [11, 21].

In blind SCA, attackers rely exclusively on side-channel

1This document is a part of the AIS 46 document (information regarding
the evaluation of cryptographic algorithms and additional information for the
evaluation of random number generators).

1

Table 1: Blind SCA works with practical demonstrations.

Ref. Board Target
[21] 8-bit AVR ATMega AES-128
[11] 8-bit AVR ATMega AES-128
[32] 32-bit STM32F3 Kyber (profiled)

This work 8-bit AVR XMEGA AES-128
This work 8-bit AVR XMEGA Protected AES-128 (desynchronized)
This work 32-bit STM32F3 Kyber
This work 32-bit STM32F4 ASCON

traces, captured as the device processes confidential data tied
to the secret key, without access to plaintext or ciphertext.
This significantly complicates the attack process, making
blind SCA a compelling focus for advancing the field of side-
channel research.

Despite some advancements seen in the last few years,
most blind SCA research remains confined to simulated en-
vironments. Practical demonstrations are typically limited
to platforms such as the 8-bit AVR microcontroller [11, 21]
targeting AES-128 with no side-channel countermeasures.
These platforms are known for their exceptionally high signal-
to-noise ratio (SNR), which makes them less representative
of real-world conditions. Attempts to extend blind SCA to
countermeasures like masking have been limited to simulated
environments, as in [11]. While Ravi et al. [32] reported blind
SCA targeting Kyber on 32-bit STM32F3, it assumes a strong
adversary with access to a clone device to train classifiers re-
lated to precise knowledge of secret inputs and trace leakage
samples. Furthermore, all practical implementations tested to
date have not been hardened against SCA.

Contributions. In this paper, we address key limitations in
existing blind SCA techniques by employing a deep learning-
based approach. We demonstrate blind SCA across a broad
range of platforms, cryptographic algorithms, and desynchro-
nization countermeasures, validating all attacks with real-
world measurements and significantly advancing the practical
applicability of blind SCA. This is compared with prior works
in Table 1.

More precisely, blind SCA’s main challenge lies in inferring
labels for each measurement, as it does not rely on known
plaintext or ciphertext. We model this as a deep learning
problem with noisy labels and show that deep neural networks
(DNNs) effectively identify the underlying distribution of
these measurements, outperforming traditional techniques in
blind SCA performance.

To emphasize the real-world applicability, we consider vari-
ous cryptographic algorithms: AES - NIST Advanced Encryp-
tion Standard (AES), ASCON - NIST lightweight cryptog-
raphy standard, and Kyber - NIST post-quantum encryption
standards for key encapsulation mechanism. Moreover, we de-
ploy the implementations on various platforms, including an
ARM Cortex-M4 chip. We emphasize that ARM Cortex-M
represents the highest market share among all ARM prod-

ucts, leading with a market share of USD 6.0 billion in 2023,
projected to grow to USD 10.5 billion by 2032, , reflecting
its dominance in embedded applications and low-power de-
vices [13]. Finally, ARM Cortex-M4 is the preferred platform
for the NIST post-quantum cryptography competition and the
associated public pqm4 library [18].

The main contributions of this work are as follow:
1. We consider blind SCA as a deep learning problem

with noisy labels, formalized under the proposed Deep
Learning-based Blind Side-channel Attacks (DL-
BSCA) framework.

2. We introduce an efficient unsupervised labeling scheme
called Multi-point Cluster-based (MC) labeling for iden-
tifying labels from side-channel traces. This is the first
multivariate labeling technique proposed within the
context of blind SCA.

3. We validate our approach on three devices and four
datasets using real measurements. Unlike prior work,
which focused on low-noise simulations or 8-bit AVR
ATMEGA platforms, we demonstrate that blind SCA
is practical on various platforms. Notably, previous
methods failed to recover the key on the same datasets.

4. We present the first successful blind SCA on a desyn-
chronization countermeasure, exploiting the MC la-
beling technique to utilize multiple leakage samples also
known as points of interest (PoIs).

The source code is available on the following anonymous
repository.2

2 Background

2.1 Side-channel Attacks

Side-channel attacks (SCAs) exploit unintended physical leak-
ages from cryptographic devices, such as power consumption,
electromagnetic radiation, or timing variations, to extract sen-
sitive information like secret keys. Unlike traditional crypt-
analysis, which relies on weaknesses in cryptographic algo-
rithms, SCAs target the implementation of these algorithms.
SCAs are classified into profiled and non-profiled attacks [9].
Profiled SCAs require the attacker to have access to a clone
device to model the side-channel leakage behavior. The at-
tacker collects side-channel traces from this device while
processing known plaintext or ciphertext, building a profile
of how the device behaves under specific conditions. This
profile is then used to correlate side-channel measurements
from the target device to the secret key or other sensitive
data. Techniques ranging from template attacks [9] to deep
learning-based methods [23] are often employed in profiled
SCAs. Non-profiled SCAs, on the other hand, exploit statisti-
cal relationships between the side-channel measurements and
the cryptographic operations related to known plaintext or

2https://anonymous.4open.science/r/DL-BSCA-EFF0/

2

https://anonymous.4open.science/r/DL-BSCA-EFF0/

ciphertext without needing a model of the system. As evident,
both profiled and non-profiled SCAs require access to input
plaintext or output ciphertext.

2.2 Blind Side-channel Attacks
In a blind SCA scenario, the attackers lack access to any
known data (e.g., plaintext/ciphertext) and can only use the
target device’s side-channel measurements to deduce the key.
This poses a significantly harder task than usual SCAs. We
focus on the work by Linge et al. [21] and Claiver et al. [11]
as we consider the same scenario.

Both works assume that the adversary can precisely locate
the PoIs related to targeted intermediate variables. Conse-
quently, finding PoIs is crucial as these points are used to
estimate the Hamming weights and empirical distribution.
Since accessing the plaintext/ciphertext is not possible, tech-
niques that use that knowledge cannot be used. Nevertheless,
techniques like variance analysis, along with reasonable as-
sumptions about the implementation, can be used to locate
these PoIs. Both [21] and [11] consider the framework il-
lustrated in Figure 1. This framework comprises three steps,
which are discussed below.

Computing theoretical joint distribution. Suppose m is a
public variable (plaintext or ciphertext) while y is the sensitive
intermediate variable (e.g., y = Sbox(m⊕k∗) where Sbox is a
Substitution Box, and k∗ is the secret key). Assuming that the
leakage is following Hamming weight (HW) model, the key
observation is that the joint distributions (HW (m),HW (y))
of the public variable and the sensitive intermediate variables
are distinct for every secret key k∗. Therefore, in this step, the
theoretical joint distribution (HW (m),HW (y)) is computed
for all key candidates. This is done by iterating through all the
keys and m to count the number of times (HW (m),HW (y))
tuples appear. Then, we normalize the frequencies to obtain
a probability distribution. This can be computed beforehand
since it is independent of the measurements collected from
the device. For a clearer understanding of theoretical joint
distribution calculation for different targeted algorithms in
this work, please refer to Appendix A.

Labeling traces to obtain empirical distribution. The
goal of this step is to acquire the empirical distribution. For
that purpose, first one needs to identify a suitable PoI that
represents HW (m) and another suitable PoI that represents
HW (y). Both [21] and [11] use one PoI for each targeted
variable. Next, one needs to obtain the empirical distribution
using the selected PoIs. This is achieved by labeling the traces.
Two labeling methods are proposed in [21] and [11]. We re-
call both labeling methods: Slicing labeling [21] and Variance
Analysis (VA) labeling [11].

• Slicing labeling [21]: Linge et al. [21] decided on the
Hamming weight value based on the amplitude of the

measurements at selected PoI, which they call slicing,
thus Slicing labeling. The underlying assumption is that
if the amplitude of the consumed power at the considered
PoI is small, then the Hamming weight of the correspond-
ing intermediate value is small.
Suppose there are N number of traces to be labeled. They
first sort the traces according to their amplitude values
in ascending order. Then, it is reasonable to assign the
smallest values to the Hamming weight h = 0, then the
next smallest values to h = 1, and so on. If the targeted
variable has B bits, its corresponding Hamming weight
can take values between 0 (when all bits are 0) to B
(when all bits are 1). To assign the correct number of
traces to each Hamming weight, they fragmented the
traces based on the distribution of the Hamming weight.
The proportion of the different Hamming weight from 0
to B can be calculated using

(B
h

)
. With the assumption of

a uniform distribution for cryptographic data, among the
N traces, theoretically, (N

2B

(B
h

)
) of them should have the

Hamming weight equal to h, 0≤ h≤B . They applied the
above for both PoIs that represent HW (m) and HW (y)
separately.

• VA labeling [11]: Similar to [21], Clavier and Rey-
naud [11] also assume the knowledge of two suitable
PoIs for HW (m) and HW (y). They proposed two lin-
ear regression methodologies to label the traces in-
stead of using slicing to label their traces. However,
the first method requires the knowledge of the inter-
mediate byte values, which is not practical because of
plaintext/ciphertext inaccessibility. Thus, we only recall
the second linear regression known as Variance Analy-
sis (VA) labeling. First, the authors assume the noisy
leakage of the sample point as ℓ = αHW (v) + β + ε

where α,β are constants to be determined, ε is the noise,
and v is the sensitive variable to be considered (i.e.,
v = m or v = y). Hence, the variance can be written as
Var(l) = α2Var(HW (v))+Var(ε). HW (v) can be con-
sidered as Binomial distribution B(B, p), with B being
the number of bits and p being the probability of hav-
ing value 1. Hence, the variance can be calculated as
B p(1− p). Since the distribution of bits 0 and 1 is uni-
form, p = 0.5, and as such, Var(HW (v)) = 0.25B . For
an 8-bit implementation, Var(HW (v)) = 2. Thus, we can
obtain α and β as follows:

α =
√
(Var(ℓ)−Var(ε))/(0.25B),

β = E(ℓ)−4α.
(1)

Then, the estimated Hamming weight will be h = ℓ−β

α
.

Comparing the empirical distribution with the theoret-
ical joint distribution. Various methodologies were pro-
posed to compare an empirical distribution with its theoretical
joint distribution. The authors in [21] considered different

3

Figure 1: Blind Side-channel Analysis Framework

metric-based comparisons like χ2 distance, inner product, or
harmonic mean. Le Bouder proposed to use the maximum
likelihood criterion to compare instead [20]. The authors
in [11] compared these techniques and found that the max-
imum likelihood criterion obtained better results. Thus, we
recall the maximum likelihood criterion next.

Let (h∗m,h
∗
y) denote the true Hamming weight tuple of

(m,y), while the recovered Hamming weight tuple using la-
beling technique is (hm,hy) = (h∗m + εm,h∗y + εy) where εm
and εy are Gaussian noise with standard deviations σm and
σy, respectively. Based on the Bayes formula, the probability
of the key k given a single observation (hm,hy) is given as

Pr(k|(hm,hy)) =
Pr((hm,hy)|k) ·Pr(k)

Pr((hm,hy))
. (2)

Here, the denominator Pr((hm,hy)) is a normalization term
independent of the key, so we can ignore it. Moreover, Pr(k)
is assumed to be uniformly distributed. The probability of the
key given the set of observation ((hm,hy)i)i=1,...N is denoted
as

Pr(k|((hm,hy)i)i=1,...,N)

= Pr((hm,hy)N |k) ·Pr(k|((hm,hy)i)i=1,...,N−1).
(3)

Then, by law of total probability, we can rewrite

Pr((hm,hy)i|k)
= ∑

h∗m,h∗y

Pr((hm,hy)i|(h∗m,h∗y)) ·Pr((h∗m,h
∗
y)|k) (4)

for each i. For the second term, we use the theoretical joint dis-
tribution from before, while for the first term, we can rewrite
it as the probability of its noise, which we assume follows a
Gaussian distribution:

Pr((hm,hy)i|(h∗m,h∗y))
= Pr(εm,i = h∗m −hm,i) ·Pr(εm,i = h∗y −hy,i)

= (
1

σm
√

2π
e−

1
2 (

hm−h∗m
σm)2

) · (1
σy
√

2π
e−

1
2 (

hy−h∗y
σy)2

).

(5)

Attack Metrics: Using these equations, we can consider
Pr(k|((hm,hy)i)i=1,...,N) as the score. The key candidate with

the highest probability across N traces is considered the
most likely key. Formally, we sort the score in descend-
ing values and classify them into a key guessing vector
GGG = (G0, . . . ,G|K |−1) where K is the key space. Therefore,
the key candidate corresponding to G0 is the most likely key
candidate while the G|K |−1 is the least likely key candidate.
The index in GGG is the key rank. We denote the guessing en-
tropy GE as the average rank of the correct key over multiple
experiments (we average the guessing entropy over 100 exper-
iments in Section 4 for the reported results). When GE < o
for a fixed number of traces, this indicates that the secret key
is ranked in the top o key candidates on average. When the
attack guesses the secret key as the best key candidate over
all the experiments, i.e., GE = 0, NT GE denotes the smallest
number of traces required to achieve GE = 0.

In the following, we focus on the attack’s ability to recover
the secret key when GE ≤ 10. Specifically, having GE ≤ 10
indicates that the attack consistently identifies the correct key
within the top 10 candidates.3

2.3 Gaussian Mixture Model
Here, we recall the well-known clustering technique called
Gaussian Mixture Model (GMM) [5], which will be used in
our proposed labeling technique. The GMM clustering tech-
nique is a probabilistic method that assumes the data can be
represented as a combination of several Gaussian distributions.
This assumption is often valid for side-channel measurements
because the noise in these measurements can typically be
approximated by a Gaussian distribution [9].

To apply the GMM clustering method, we must first define
the number of clusters the model should generate. In our case,
this is straightforward because we know the possible Ham-
ming weights that the values of m and y can take for various
cryptographic algorithms. The GMM clustering begins by
initializing the parameters for each cluster, which include the
mean, covariance, and mixing coefficients.4 Once initialized,

3Note that while GE ≤ 10 renders the attack practical for recovering a
targeted portion of the key, it still necessitates brute-force or key enumeration
techniques for complete key recovery.

4Mixing coefficients, denoted by πl , represent the contribution of each
Gaussian distribution l to the overall mixture: p(x) = ∑

L
k=l πlN (x|µµµl ,ΣΣΣl).

4

the model uses the Expectation-Maximization (EM) algo-
rithm to refine these parameters iteratively.

The EM algorithm operates in two main steps.
1. Expectation Step: Compute the probability that each

data point belongs to each Gaussian distribution, given
the current estimates of the model’s parameters.

2. Maximization Step: Update the parameters (mean, co-
variance, and mixing coefficients) to maximize the ex-
pected likelihood of the data, given these probability
estimates.

We repeat both steps until the model converges or until a spec-
ified number of iterations is reached, providing a set of pa-
rameters for the GMM clustering method to generate clusters.
We will use this approach in our proposed labeling method
described in Section 3.3.

3 Deep Learning-based Blind Side-channel
Analysis

3.1 Threat Model

We follow the same threat model as blind SCA presented in
both [21] and [11]. Adversary has no prior knowledge about
the data being processed (like plaintexts or ciphertexts) and
must solely rely on SCA measurements to infer the secret
key. This presents a considerably more challenging scenario
compared to traditional SCAs where each SCA trace has a
known plaintext or.ciphertext associated with each trace. In
addition, adversary is assumed to have knowledge of most
informative PoIs. In the following, we use the correlation
between the measurements and the actual Hamming weight
of the target variables to locate the necessary PoIs.

3.2 Methodology

Within the blind SCA framework, the main problem is to
label the traces (step 2 of Figure 1). If the traces are labeled
correctly, the attack will be successful. But if there are too
many mislabeled traces, the attack will fail. On the other hand,
DNNs have been shown to generalize unseen data, even with
mislabeled data [1]. To harness the capabilities of DNNs in
blind SCA, we propose the Deep Learning-based Blind Side-
channel Analysis (DL-BSCA) framework, as illustrated in
Figure 2. Our framework consists of the same three steps
outlined in Section 2.2. Steps 1 and 3 remain unchanged; the
modification has been introduced in Step 2. To label traces
and obtain the empirical distribution, we divide Step 2 into
two substeps:
(a) Labeling a subset of the traces and training DNN with it.
(b) Predict the labels of remaining traces using DNN to

obtain empirical distribution.

Since we work with more than one PoI, we use multivariate Gaussian distri-
butions.

Unlike the blind SCA framework, which consists of one
set of traces, DL-BSCA has two sets of traces. One set of
traces is labeled using a certain labeling technique to train the
DNN, which we denote as training traces, while the other set
of traces are passed through the trained DNN to obtain the
empirical distribution, which we call attack traces.

Since the labeling technique may result in many mislabeled
traces, the DL-BSCA can be viewed as training a DNN with
noisy labels. The issue of “noisy labels” is well-recognized
in the deep learning community [16, 41, 52].5 An interest-
ing observation for DNNs is that they tend to learn simpler
patterns first and memorize instances that do not show the
straightforward relation between input features and labels
later in training [1]. This behavior implies that the network
can capture the core data patterns from correct labeled data
early in training, even with noisy labels.

The problem of training DNNs with noisy labels is also
not completely new for SCA. In [26], Perin et al. proposed
an iterative framework to improve the percentage of correct
labels using accurately labeled traces slightly better than ran-
dom guess within the context of a horizontal attack on public
datasets.6 However, in blind SCA, determining the correct
measurement labels is highly challenging and often impracti-
cal.7 Therefore, the labeling technique we use is critical, as it
determines the number of mislabeled traces within the dataset
used for training the DNN. In this context, both Slicing label-
ing and VA labeling, which were previously proposed, can
be applied. In the following, we also propose a new labeling
method called MC labeling.

3.3 Multi-point Cluster-based Labeling

As mentioned above, the labeling technique is a key aspect
of the framework. Unlike Slicing labeling and VA labeling,
which consider only one PoI for HW (m) and HW (y) each, we
use a set of PoIs to represent better HW (m) and HW (y) when
labeling. By selecting multiple PoIs, we can better account for
noise introduced by the environment and device, as each PoI
reflects the same value for the target variable. We consider
50 PoIs for both HW (m) and HW (y). Our experiments show
that using 50 PoIs for each variable is suitable mostly because
it provides enough information for accurate clustering despite
the noise. At the same time, 50 PoIs is a manageable number
allowing us to consolidate all the information from the points
and assign a unique label to each trace.

5Noisy labels can originate from various sources, such as the complex-
ity of determining accurate labels, non-expert labeling, or even adversarial
manipulation.

6We conducted various experiments using the iterative framework pro-
posed by Perin et al. [26] within the context of DL-BSCA. However, it
yielded suboptimal results, likely due to the significantly higher number of
mislabeled traces compared to the setup in [26].

7The accurate labeling when using Slicing labeling and VA labeling on
CW datasets is only around 2%, while the setting in [26] has a dataset with
52% accuracy.

5

Figure 2: DL-BSCA Framework

We refer to the selected 50 PoIs for HW (m) as PoIm and
the other selected 50 PoIs for HW (y) as PoIy. We truncate the
traces into traces with 100 sample points in total (i.e. |PoIm|+
|PoIy|= 100, where |PoIℓ| denote the number of sample points
in the set PoIℓ for ℓ= m,y).

The MC labeling can be executed in two stages: Produce
Clusters and Provide Labels.

Produce Clusters. In this step, the truncated traces with
100 sample points are given to a clustering technique. Our
technique clusters the traces considering all the target vari-
ables at once. The number of clusters is specified with the
number of bits for a target variable, B , and the number of vari-
ables considered, nb. Therefore, the number of clusters equals
(B + 1)nb . In other words, instead of clustering the traces
based on the sample points from PoIm and PoIy separately, we
cluster the traces considering both sets of sample points from
PoIm and PoIy together and cluster the traces with the same
HW (y) and HW (m) into one cluster. Figure 3 illustrates the
cluster generation step in the MC labeling process.

For example, in AES, we group traces into 81 clusters and
consider both HW (y) and HW (m) simultaneously. This is to
capture the interaction between m and y and provide a more
comprehensive view of the data, which is particularly useful
when the variables are interdependent (in the AES example,
y = Sbox(m⊕ k) is a function of m and the secret key). If
we cluster the traces based on the sample points from PoIm
and PoIy separately, we will lose information on the relation
between m and y. Therefore, we consider both PoIm and PoIy
together (a total of 100 sample points) when applying the
clustering technique.

In our work, we uses GMM as the clustering technique
as we found the most success compared to other clustering
techniques. We use the scikit-learn library when applying the

GMM for clustering. Then, we use the predict function to
obtain the clusters of traces.

Figure 3: Pictorial illustration of MC labeling step to produce
clusters.

Provide Labels. The clustering processes group traces
based on similarities, but the clusters still lack labels. Thus, we
must map each cluster C to an associated label, (Y (m)

C ,Y (y)
C).

(Y (m)
C ,Y (y)

C) will represent the label (HW (m),HW (y)).
We provide the label of each cluster based on the following

steps:
1. We first compute the ‘center’ of each cluster. Let CTC ∈

R|PoIm|+|PoIy| be the center of cluster C . CTC can be at-
tained by averaging each PoI of all the traces within the
cluster C . Formally, we have

CTC [i] =
1

NC

NC−1

∑
t=0

traceC [t, i] (6)

where traceC [t, i] is the ith sample point of the tth trace
from the cluster C and NC is the total number of traces
in cluster C .

6

2. We split the PoIs of CTC based on PoIm and PoIy, which
we denote as CT PoIm

C and CT PoIy
C , respectively. Now, sup-

pose there are M different clusters. We define

CT PoIm [i] = {CT PoIm
C j

[i]| j ∈ {0, . . . ,M}} and

CT PoIy [i] = {CT PoIy
C j

[i]| j ∈ {0, . . . ,M}}
(7)

where CT PoIℓ
C j

[i] denote the ith sample point within the
PoIℓ portion of the center trace CTC j for ℓ= m or y.
We describe following methodology for CT PoIm to ob-
tain Y (m)

C j
for all clusters C j. The technique can be anal-

ogously applied to CT PoIy to attain Y (y)
C j

for all clusters
C j.

3. For each sample point i in PoIm, we label CT PoIm
C j

[i] of all

C j when applying the slicing labeling on the CT PoIm [i].
This yields a collection of possible labels for a CT PoIm

C j
,

one from each sample point. More precisely, for each
C j, we have |PoIm| number of possible labels. This is
depicted on the left side of Figure 4.

4. To obtain one label for the cluster, we apply the weighted
majority voting to obtain the overall label Y (m)

C j
for all

clusters C j. From the collection of possible labels, we
apply the weighted majority voting as follows:

Y m
C j

= argmaxh∈{0,...,B}(
|CT PoIm,h

C j
|(B

h

)) (8)

with B being the number of bits for a target variable, h be-
ing the corresponding Hamming weight, and |CT PoIm,h

C j
|

being the number of sample points in CT PoIm
C j

labeled
as the Hamming weight h through slicing labeling. We
consider the weighted version because the nature of Ham-
ming weight and the slicing labeling causes an imbalance
within the collection of labels. Indeed, the proportion of
appearance of, e.g., Hamming weights 4 and 5 is higher
than the Hamming weights 0 and 8 for AES [29]. To com-
pensate for that, we assign more weight to the extreme
values of Hamming weights 0 and 8. Thus, we prevent
the more occurring Hamming weights from dominating
the decision-making process. The weights corresponding

to each Hamming weight are calculated using
(B

h

)−1
.

5. We repeat the same steps 3 and 4 for CT PoIy
C j

to obtain

Y (y)
C j

. Lastly, we set all the traces within the cluster C j to

the same label (Y (m)
C j

,Y (y)
C j

).
We illustrate steps 3 and 4 in Figure 4.
The MC labeling introduced here described attacks using

two variables m and y (e.g., AES and Kyber in Section 4).
However, the MC labeling technique can be generalized to
three or more variables, as shown for ASCON in Section 4.4.

Figure 4: Pictorial illustration of MC labeling step 3 and 4 to
provide label Y (m)

C .

The proposed MC labeling can be used directly with the pre-
viously proposed blind SCA [11,21] to label all the traces and
obtain the empirical distribution. Alternatively, MC labeling
can be combined with DL-BSCA, where MC labeling is used
to label the traces for training the DNN.

4 Experimental Setup and Results

4.1 Neural Networks and Hyperparameter
Search Space

As the hyperparameter of the neural networks will affect the
performance, we randomly sample different hyperparameters
as listed in Table 2. These ranges are chosen based on the
reported ranges in the previous works [27, 31, 51]. Moreover,
it has been shown that using regularization techniques helps to
maintain the generalization performance of neural networks
in the presence of noisy labels [1] and deep learning-based
SCA [34]. Thus, we report the results in two scenarios, one
with dropout and one without dropout regularization.

We randomly sampled 100 different models to find the best
network for each dataset considered for our experiments. We
consider two types of architectures: CNNs and MLPs, which
have been widely and successfully used in deep learning-
based SCA [28, 30, 35, 50]. When training the DNNs, we
use categorical cross-entropy. We note that when the label
is stored as a tuple i.e. (HW (m),HW (y)), transformation is
required to facilitate single-input and single-output DNN for
training. To address this, we convert the tuple to a single value
via (B +1)∗HW (m)+HW (y).

4.2 ChipWhisperer
ChipWhisperer (CW) dataset provides measurements of an
unprotected AES software implementation running on an
8-bit XMEGA mounted on a ChipWhisperer CW308 UFO

7

Table 2: Hyperparameters search space of MLP and CNN

Hyperparameters Range

Dense layers

Number of neurons [10, 30, 50, 70, 90, 120, 150, 200, 250, 300, 400, 500]
Number of layers [2, 8], step = 1

Convolution layers

Number of layers [2,4], step = 1
Number of neurons [50,100,150,200,300,400,500]
Number of kernels [4,20], step = 2
First layer’s filter size [4,8,12,16,24]
ith layer filter size ((i−1)th f ilter_size)2

Pooling “Average”, “Max”
stride [2,10], step = 2
Pooling size and stride [4,10], step = 2

Learning hyperparameters

Weight initialization “random_uniform”, “he_uniform”, “glorot_uniform”
Activation function “relu”, “selu”, “elu”, “tanh”
Batch size [128,256,512]
Learning rate [1e−3,5e−4,1e−4,5e−5,1e−5]
Optimizer Adam
Dropout rate 0.5
Epochs ChipWhisperer: 100, Kyber and Ascon: 25

board [25]. This dataset has been used in previous works [48,
49].

Attack Point. For AES, the attack point for the DL-BSCA
is the Sbox output of the first round, as it represents the non-
linear part of the algorithm. Consequently, the two interesting
variables to build the joint distribution in the AES primitive
are the plaintext, m, and the Sbox output, y = Sbox(m⊕ k∗).
Using these two variables, we estimate the joint distribution
of (HW (m),HW (y)) to carry out the attack on AES.

Dataset. The dataset consists of 10,000 traces with fixed
key. Each trace includes 5,000 sample points. We use 8,000
traces for labeling and training the DNN and 2,000 for the
attack. The reported values for the guessing entropy are the av-
erage values over repeating the attack 100 times using 1,700
random traces from the attack set.8

Experimental Results for the CW Dataset. First, we ap-
plied the method from Linge et al. [21] and Clavier and Rey-
naud [11] on the CW dataset and could not recover the secret
key despite the relatively high SNR (see Figure 5). This shows
previous attacks are not necessarily practical even with higher
SNR. We also applied MC labeling on its own without using
DNN and observed that the secret key could not be retrieved.

Then, we employ the DL-BSCA framework with various
architectures with or without dropout and different labeling

8Guessing entropy measures the average rank of the key across multiple
attacks. Since the attack set has limited traces, we randomly select a portion of
these traces for each attack iteration. This approach helps make the results less
dependent on specific traces and more reflective of realistic attack scenarios.

Figure 5: Guessing Entropy on CW dataset using classical
blind SCA framework without DNN.

Without DNN CNN MLP

Linge et al. [21] GE = 218 − −
Clavier & Reynaud [11] GE = 223 − −
MC labeling GE = 79 − −

DNN + Slicing - GE = 7.11 1475

DNN + Slicing + Dropout - GE = 6.14 GE = 0.14

DNN + VA - GE = 7.13 901

DNN + VA + Dropout - GE = 7.24 GE = 8.21

DNN + MC - GE = 3.05 GE = 15.05

DNN + MC + Dropout - GE = 1 1455

Table 3: Performance for the CW dataset. We highlight suc-
cessful attacks in blue (i.e., either GE ≤ 10 or NT GE when
GE = 0).

techniques. Table 3 provides the overall NT GE and GE ob-
tained in the various tested scenarios. Figures 6 and 7 illustrate
GE for MLP and CNN, respectively. We observe that when
using the DL-BSCA framework, GE converges below 10 for
all cases except for the CNN with MC labeling. This shows
the effectiveness of DL-BSCA compared to previous works.
In fact, we can obtain GE = 0 in some instances, where at
least one scenario for each labeling technique when used with
DNN. The best results are obtained when we apply DL-BSCA
with VA labeling; we achieve NT GE values of 901.

4.3 Kyber

CRYSTAL-Kyber is the standard for Key Encapsulation
Mechanism (KEM), which NIST selected for Post Quantum
Cryptographic (PQC) applications. We briefly introduce key
parameters and components of the Kyber algorithm, which are
essential for understanding our attack. For more information,
please refer to [2].

The Kyber KEM has three procedures for a full key ex-
change between two parties. The first party generates the
secret key and public key pair, (pk,sk), using the KeyGen()

8

Figure 6: Guessing Entropy for the CW dataset with CNN.

Figure 7: Guessing Entropy for the CW dataset with MLP.

procedure. The secret key is a k-dimension vector of polyno-
mials, which are elements of the ring Zq[X]/(Xn+1). Kyber’s
security level is therefore determined by parameters k, n, and
q. In this work, we focus on security level 3, also known as
Kyber768, where the parameters are set as k = 3, n= 256, and
q = 3329. Subsequently, the second party employs the public
key to encrypt a message through the procedure referred to as
Encapsulation(pk). Finally, the first party utilizes its secret
key to decrypt the received ciphertext and extract the origi-
nal message via Decapsulation(sk,c). In this work, we focus

Algorithm 1 Kyber.CPAPKE.Dec(sk,c): decryption

Input: Secret key sk ∈ B12·k·n/8

Input: Ciphertext c ∈ Bdu·k·n/8+dv·n/8

Output: Message m ∈ B32

1: u := Decompressq(Decodedu(c),du)
2: v := Decompressq(Decodedv(c+du · k ·n/8),dv)
3: ŝ := Decode12(sk)
4: m :=Encode1

(
Compressq

(
v−NTT−1 (ŝT ◦NTT(u)

)
,1
))

5: return m

on acquiring the secret key from the Decapsulation(sk,c)
procedure. Algorithm 1 shows the decryption steps in the

Decapsulation(sk,c) procedure of Kyber. We target the op-
eration in line 4 of the algorithm, which is highlighted in
red.

Attack Point. In line 4 of Algorithm 1, the secret key in
the Number Theoretic Transform (NTT) domain, ŝT , is mul-
tiplied with the ciphertext u in the NTT domain, to decrypt
the message. The NTT is a specialized variant of the Discrete
Fourier Transform that operates over finite fields. Transferring
the polynomials into the NTT domain provides an efficient
way of multiplying them(linear time instead of quadratic time
complexity). When converting the polynomials to the NTT
domain, the roots of unity of the polynomials are needed. Us-
ing NTT transform, a polynomial of degree 255 converts into
128 polynomials of degree one.9 Eq. (9) shows the expres-
sion of the polynomial a(x) = a0+a1x+ . . .+an−1xn−1, with
n = 256, in the NTT domain. As one can see, each degree one
polynomial in the NTT domain has two coefficients.

NTT(a) = a0 +a1x,a2 +a3x, . . . ,a254 +a255x. (9)

The forms of the ciphertext u and secret key s are the same
as Eq. (9) in the NTT domain. In the case of Kyber, with
the incomplete transform of the polynomials to the NTT do-
main, we need to use pair-pointwise multiplication to compute
the polynomial multiplication. With pair-pointwise multipli-
cation, the coefficients of the deciphered message can be
obtained using the coefficients of u and s as follows:

m0 = s0u1 + s1u0

m1 = s0u0 + s1u1ζ,
(10)

where s0 and s1, and u0 and u1 are coefficients of first poly-
nomials of s and u in the NTT domain, respectively. ζ is the
root of unity corresponding to the first polynomials.

We consider the attack point for Kyber with m = u0 and
y = s0u0 (highlighted in red in Eq. (10)). These points
are chosen because s0u0 involves multiplication of the se-
cret key coefficients with those of different ciphertexts, and
u0 is the public variable. The theoretical joint distribution
(HW (m),HW (y)) for two Kyber secret key coefficients dif-
fers (see Appendix B). Thus, we can compare the empirical
joint distribution of m = u0 and y = s0u0 with the theoretical
ones to recover the secret key coefficient, s0.

Dataset. The dataset is similar to the one from [32]. It
is based on the reference implementation of Kyber KEM
taken from pqm4 [17] library. This library is a benchmark-
ing and testing framework for PQC schemes on the 32-bit
ARM Cortex-M4 microcontroller. The library is also a NIST

9This is called an incomplete NTT.

9

Without DNN CNN MLP

Linge et al. [21] GE = 1242 − −
Clavier & Reynaud [11] GE = 2415 − −
MC labeling GE = 1146 − −

DNN + Slicing − GE = 165 GE = 255

DNN + Slicing + Dropout − GE = 57 GE = 58

DNN + VA − GE = 2369 GE = 1372

DNN + VA + Dropout − GE = 2356 GE = 1143

DNN + MC − GE = 2.01 GE = 9.2

DNN + MC + Dropout − GE = 8.04 GE = 16.2

Table 4: Performance for the Kyber dataset. We highlight
successful attacks in blue (i.e., either GE ≤ 10 or NT GE
when GE = 0).

recommended optimization target for embedded software im-
plementations. The traces are captured from an STM32F3 mi-
crocontroller running at 7.372 MHz when using a ChipWhis-
perer CW308 setup [25]. Measurements are collected with
a Lecroy 610Zi oscilloscope at a sampling rate of 500×106

samples per second. We captured 100,000 traces with fixed
secret key. In the original dataset, each trace involves 50,000
time samples. To reduce the number of samples in the dataset,
we used the window resampling technique from [28], which
was shown to be effective in previous works. The final traces
after window resampling have 10,000 samples each. We use
80,000 traces for labeling and training the neural network,
and the remaining 20,000 traces are used to compute the
empirical distribution. The reported values for the guessing
entropy are the average values over repeating the attack 100
times using 5,000 random traces from the attack set.

Experimental Results on Kyber. We first tried the classical
blind SCA with various labeling techniques without using
DNN. We could not recover any of the keys in these settings
(reported in Table 4). Next, we run experiments with various
scenarios of DL-BSCA and record the performance in Table 4.
Figures 8 and 9 provide the performance results for CNN
and MLP, respectively. We observe that only MC labeling
with DNN could bring GE to values smaller than 10. This
shows that with the Kyber dataset, MC labeling gains great
performance.

4.4 ASCON

ASCON is both CEASAR and NIST lightweight cryptography
competition winner, currently being standardized for broad
public use [14]. It is an authenticated encryption algorithm
based on sponge construction. ASCON encrypts a message to
maintain its confidentiality while also providing integrity by
attaching a tag to the encrypted message and associated data.
ASCON has four inputs: plaintext P, associated data A, nonce
N, and a key K. It then outputs the authenticated ciphertext C

Figure 8: Guessing Entropy for the Kyber dataset using CNN
models.

Figure 9: Guessing Entropy for the Kyber dataset using MLP
models.

and an authentication tag T . The algorithm has four operation
phases. They are initialization, associated data processing,
plaintext processing during encryption (resp. ciphertext pro-
cessing during decryption), and finalization. The input of the
initialization phase is a 320 bits state that can be written as
five 64 bit words X0 to X4 with X0 being the initialization
value constant IV , X1 and X2 consisting of the 128 bits se-
cret key k, and lastly, X3 and X4 being another 128 bits fresh
nonce N. The permutation round function of ASCON consists
of three parts: addition of the round constants, application of
5-bit nonlinear Sbox in a column-wise manner (see blue com-
ponent in Figure 10), and a linear diffusion layer. Figure 10
provides the visualization of the first round substitution and
where the variables are located.

This work considers the Sbox output of the first round of the
permutation as the attack point. Similar to [33], we consider
the leakage from the first 8 bits of Y4. After substituting the
IV, key, and nonce, we have:

y = k1&(255⊕ IV0 ⊕m0)⊕m0 ⊕m1, (11)

where IV0 is the first 8 bits constants from X0 block (in green
block of Figure 10), while m0,m1 are nonces from the X3 and

10

m0
m1

k1

IV0

X4

X3

X2

X1

X0
Sbox

y Y4

Y3

Y2

Y1

Y0

Figure 10: ASCON Substitution Layer: Sbox operation takes
in 5 bits input in a column-wise manner, one bit from each
word Xi and outputs 5 bits output with one bit from each
word Yi (highlighted in blue). The green block corresponds
to the 8 bits of IV used to compute the leakage. The attack
points used in our DL-BSCA are highlighted in red. Each red
block corresponds to 8 bits in the state. The orange block k1
corresponds to the 8 bits key we are trying to recover.

Without DNN CNN MLP

Linge et al. [21] GE = 77 − −
Clavier & Reynaud [11] GE = 77 − −
MC GE = 45 − −

DNN + Slicing − GE = 81 GE = 49

DNN + Slicing + Dropout − GE = 12.5 GE = 51

DNN + VA − GE = 48 GE = 54

DNN + VA + Dropout − GE = 11.5 GE = 18

DNN + MC (50 PoIs each) − GE = 2 GE = 39

DNN + MC (50 PoIs each) + Dropout − GE = 19.5 GE = 32

DNN + MC (7 PoIs each) − GE = 5.7 GE = 3.5

DNN + MC (7 PoIs each) + Dropout − GE = 4 GE = 0.64

Table 5: Performance for the ASCON dataset. We highlight
successful attacks in blue (i.e. either GE ≤ 10 or NT GE when
GE = 0).

X4 block in the input. Lastly, k1 is the 8 bit key we are trying
to recover (orange block in Figure 10 on the X1 block). As
seen from eq 11, for ASCON, there are three variables for
the attack point instead of two. Therefore, we consider both
parts of the nonce and the Sbox output in the joint distribu-
tion, i.e., (HW (m0),HW (m1),HW (y)), for both theoretical
and empirical.

Dataset. The ASCON dataset is a public dataset obtained
from [44]. Traces are captured using a ChipWhisperer Lite
board and an 8-bit precision oscilloscope connected to the
STM32F4 target. The target microcontroller is a 32-bit plat-
form operating at a default clock frequency of 7.37 MHz.
The traces are recorded to include power samples only from
the first round of the initialization permutation of the un-
protected software implementations. The dataset consists
of 200,000 traces, each containing 772 samples. The last
100,000 traces are collected using fixed keys, and we only
use them. The 80,000 traces are used as training, while the re-
maining 20,000 are used as attack traces. The reported values
for the guessing entropy are the average values over repeating
the attack 100 times using 5,000 traces randomly picked from
the attack set.

Figure 11: Guessing Entropy for the ASCON dataset using
CNN models.

Figure 12: Guessing Entropy for the ASCON dataset using
MLP models.

Experimental Results for ASCON. Applying DL-BSCA
on ASCON implementation is interesting because we need
to extend the framework for three variables: both half of the
nonce m0 and m1, and the Sbox output y4. As mentioned ear-
lier, the theoretical and empirical joint distributions should
also include HW of these three variables, and the labeling
method should apply to all three. Slicing labeling and VA
labeling can be trivially extended by considering one more
PoI. As for MC labeling, since these three variables are in
bytes (8 bits), the number of clusters that the GMM cluster-
ing technique generates is (B + 1)3 = (8+ 1)3 = 729. The
difference in the case of three variables compared to two vari-
ables is that we provide PoIs for all three variables at once to
GMM clustering technique, and the CTC is divided into three
portions CT

PoIm0
C , CT

PoIm1
C , and CT PoIy

C after clustering. The
rest of the technique remains the same as described earlier in
Section 3.3.

We applied both methodologies from [21] and [11] but
were unable to recover the secret key practically (see Table 5).
Thus, we will focus exclusively on scenarios using DL-BSCA.
We run experiments for the various settings of DL-BSCA and
show the results in Table 5, and Figures 11 and 12. We could
not recover the secret key except for CNN combined with
MC labeling when using DL-BSCA. This poor performance
could be due to the leakage of y, m0, and m1 overlapping in

11

Without DNN CNN MLP

Linge et al. [21] GE = 67 − −
Clavier & Reynaud [11] GE = 208 − −
MC labeling GE = 55 − −

DNN + Slicing − GE = 45 GE = 20.5

DNN + Slicing + Dropout − GE = 41 GE = 19.5

DNN + VA − GE = 186 GE = 209

DNN + VA + Dropout − GE = 198 GE = 128

DNN + MC − GE = 2.4 GE = 3.5

DNN + MC + Dropout − GE = 2.1 GE = 1.41

Table 6: Performance for the desynchronized CW dataset. We
highlight successful attacks in blue (i.e., either GE ≤ 10 or
NT GE when GE = 0).

multiple sample points, resulting in much more mislabeled
traces (see Figure 16 of Appendix C). This will result in very
similar labels between y, m0 and m1 when labeling all their
CT PoIℓ

C j
[i] in step 4 of the MC labeling. Therefore, it resulted

in more mislabeled traces. To confirm this, we select 7 sample
points for each leakage with the highest correlation to their
corresponding leakages with minor overlap. We observe that
GE decreases to under 10 for both CNN and MLP with and
without dropout when we use MC labeling. This observation
shows that one should consider non-overlapping PoIs when
using MC labeling with DL-BSCA for key recovery. Overall,
the performance improves significantly when using the DL-
BSCA framework instead of just the BSCA framework.

5 Targeting Countermeasures

Experimental Results on Desynchronized CW Dataset.
Previous blind SCA approaches selected a single PoI for each
variable. Naturally, a hiding countermeasure like desynchro-
nization, which hampers the alignment of the traces, prevents
an adversary from selecting a single relevant PoI. Thus, pre-
vious blind SCA methods were never applied to desynchro-
nization (or other hiding) countermeasures. The proposed DL-
BSCA framework considers 50 PoIs per variable. Moreover,
the ability of DNN to handle desynchronization is already
demonstrated in prior works [8, 15, 50].

Our desynchronized dataset is derived by applying random
desynchronization of up to 10 samples (in either direction)
to the CW dataset. We use 8,000 training traces and 2,000
attack traces. The results are averaged over 100 experiments
using 1,700 random attack traces. Then, we run the experi-
ments for the different settings with DL-BSCA. The results
are provided in Table 6, and illustrated in Figures 13 and 14.
As before, without using DNN, we are unable to recover the
secret key. Furthermore, with both Slicing and VA labeling
GE > 10. We can obtain GE < 4 in scenarios when using
DL-BSCA with MC labeling. This shows the effectiveness of

Figure 13: Guessing Entropy for the CW dataset protected
with desynchronization using CNN models.

Figure 14: Guessing Entropy for the CW dataset protected
with desynchronization using MLP models.

MC labeling with the DL-BSCA framework in recovering the
secret key, even when desynchronization is used to protect
the dataset. In fact, this is the first time that a viable attack on
a desynchronized target is demonstrated in the realm of blind
SCA, which was previously considered impossible.

Masking Previous works analyze masking in a weak set-
ting [11,12]. Moreover, all blind SCA on masking are reported
in a simulated setting. Naive application of the DL-BSCA
framework to masked implementations is not feasible. The
randomized shares obscure the original leakage values, ren-
dering it impossible to produce informative labels essential
for training the DNN within DL-BSCA. Therefore, attacking
the masked implementation in a practical setting remains an
open problem that is left for future work.

6 Related Work

The blind SCA framework was first introduced by Linge et
al. [21], which also proposed first labeling technique, slicing.
Later, Clavier and Reynaud [11] proposed another labeling
technique called VA labeling that leveraged variance analysis
for Hamming weight estimation. This attack was practically

12

demonstrated on an 8-bit AVR microcontroller (Arduino Uno)
with a high signal-to-noise ratio running an unprotected AES
implementation.

Blind SCAs are also explored on popular SCA counter-
measures, called masking, in [11] and [12]. Clavier and Rey-
naud [11] assume the same mask is used for the input and out-
put bytes, whereas [12] extends the attack to scenarios where
masks are reused across rounds but applied uniformly to all
bytes within a single round. However, these settings represent
weak masking schemes, as mask reuse is generally consid-
ered poor practice in secure implementations. Both studies
were validated only in simulated environments, highlighting
the complexity of attacking protected implementations with
blind SCA (although [11] includes a practical demonstration,
it relies on known plaintext, making it incompatible with the
blind SCA). Moreover, all the aforementioned blind SCA ap-
proaches only exploit one single PoI. As a result, these meth-
ods are not inherently effective against hiding countermea-
sures such as desynchronization, which introduce additional
challenges by obscuring the leakage’s temporal alignment.

Recently, Ravi et al. [32] demonstrated blind SCA on a
newly standardized PQC algorithm, Kyber, making it the first
blind SCA on public key cryptosystem. The attack targets
the decapsulation procedure where the secret key is manip-
ulated. The work was validated on the STM32F3 platform
but required access to a clone device. Access to clone device
was required to train Random Forest classifiers related to pre-
cise knowledge of secret inputs and precise PoI selection. In
other words, although the attacker only requires side-channel
traces without knowledge of input ciphertexts during the at-
tack phase, the adversary still needs knowledge of secret and
known inputs from the clone device to train the Random
Forest classifier, which may not be a realistic assumption in
practice.

Separately, blind SCAs have also been investigated on other
cryptographic scheme, namely on authenticated encryption
with associated data (AEAD). The works [24, 38] proposed
theoretical blind SCA targeting the LFSR-based counter, on
Elephant and Sparkle. Both of these are validated solely in
simulated environment.

In contrast, the methods proposed in this paper address the
major limitations of existing blind SCA by leveraging deep
learning. Table 7 compares our work with [11, 21].10 Our ap-
proach successfully demonstrates blind SCA on a wide range
of platforms, cryptographic algorithms, and countermeasures,
validated through real-world experiments. This significantly
enhances the practical applicability of blind SCA.

10Other works are excluded from comparison as they were either simula-
tions only or fully profiled.

CW CW (desync) Kyber ASCON

Linge et al. [21] ××× ××× ××× ×××
Clavier & Reynaud [11] ××× ××× ××× ×××

MLP + MC ××× ✓ ✓ ✓

MLP + MC + Dropout ✓ ✓ ××× ✓

CNN + MC ✓ ✓ ✓ ✓

CNN + MC + Dropout ✓ ✓ ✓ ✓

Table 7: Comparison of proposed results on different
datasets/devices with prior works. We highlight successful
attacks in ✓ and fail attacks in ×××.

7 Conclusions and Future Work

This work proposes DL-BSCA, a novel framework for deep
learning-based blind side-channel analysis. DL-BSCA har-
nesses the power of deep learning to effectively handle noisy
datasets, addressing key challenges in blind SCA. Unlike
prior works that focused on simulated environments or high-
leakage devices, we demonstrate successful attacks across
diverse platforms, validating our approach on four datasets
of real measurements from symmetric key and post-quantum
cryptography algorithms. Another key innovation in our work
is the MC labeling method, which improves trace labeling by
considering dependencies between secret and public variables.
This approach outperforms prior techniques, particularly in
scenarios where leakage points do not overlap, as evidenced
by our results on AES and Kyber datasets. Moreover, we
report the first successful blind SCA on hiding countermea-
sures like desynchronization, showcasing the versatility of
the DL-BSCA framework.

Despite these advances, open challenges remain. Could
blind SCA be extended to effectively target masked implemen-
tations? Previous works consider weak masking and experi-
ment with simulated traces only. Existing studies, including
ours, assume adversaries can locate points of interest (PoIs).
Addressing these limitations would significantly broaden the
applicability of blind SCA, paving the way for more robust
evaluations of cryptographic implementations.

8 Ethical Considerations

This paper proposes a new deep learning-based blind side-
channel attack framework that enables to break protected
cryptographic implementations even when no access to plain-
text/ciphertext is available. Our objective is to identify vul-
nerabilities to improve the security of cryptographic imple-
mentations rather than exploiting weaknesses. We do not use
live systems or violate terms of service and to the best of our
knowledge we follow all laws. Our research does not con-
tain elements that could potentially negatively impact team
members. The results of our research are shared with relevant

13

evaluation labs.

9 Open Science Policy

We open-source our code in an anonymous repository with
the link included in the submission. Our research results are
available to the public. All used datasets are publicly avail-
able.

References

[1] Devansh Arpit, Stanislaw Jastrzebski, Nicolas Ballas,
David Krueger, Emmanuel Bengio, Maxinder S. Kan-
wal, Tegan Maharaj, Asja Fischer, Aaron C. Courville,
Yoshua Bengio, and Simon Lacoste-Julien. A closer
look at memorization in deep networks. In Doina Pre-
cup and Yee Whye Teh, editors, Proceedings of the 34th
International Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6-11 August 2017, vol-
ume 70 of Proceedings of Machine Learning Research,
pages 233–242. PMLR, 2017.

[2] Roberto Avanzi, Joppe W. Bos, Leo Ducas, Eike Kiltz,
Tancrede Lepoint, Vadim Lyubashevsky, John Schanck,
Peter Schwabe, Gregor Seiler, and Damien Stehlé.
CRYSTALS-Kyber (version 3.0): Algorithm specifica-
tions and supporting documentation (October 1, 2020).
Submission to the NIST post-quantum project, 2020.

[3] Timo Bartkewitz and Kerstin Lemke-Rust. Efficient
template attacks based on probabilistic multi-class sup-
port vector machines. In International Conference on
Smart Card Research and Advanced Applications, pages
263–276. Springer, 2012.

[4] Shivam Bhasin, Anupam Chattopadhyay, Annelie
Heuser, Dirmanto Jap, Stjepan Picek, and Ritu Ranjan
Shrivastwa. Mind the portability: A warriors guide
through realistic profiled side-channel analysis. IACR
Cryptol. ePrint Arch., page 661, 2019.

[5] Christopher M. Bishop. Pattern Recognition and Ma-
chine Learning (Information Science and Statistics).
Springer-Verlag, Berlin, Heidelberg, 2006.

[6] Eric Brier, Christophe Clavier, and Francis Olivier. Cor-
relation Power Analysis with a Leakage Model. In
Marc Joye and Jean-Jacques Quisquater, editors, Cryp-
tographic Hardware and Embedded Systems - CHES
2004, pages 16–29, Berlin, Heidelberg, 2004. Springer
Berlin Heidelberg.

[7] Germany BSI. Guidelines for Evaluating Machine-
Learning based Side-Channel Attack Resistance Part
of AIS 46, 2024.

[8] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff.
Convolutional neural networks with data augmentation
against jitter-based countermeasures - profiling attacks
without pre-processing. In Wieland Fischer and Nao-
fumi Homma, editors, Cryptographic Hardware and
Embedded Systems - CHES 2017 - 19th International
Conference, Taipei, Taiwan, September 25-28, 2017, Pro-
ceedings, volume 10529 of Lecture Notes in Computer
Science, pages 45–68. Springer, 2017.

[9] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Tem-
plate Attacks. In Burton S. Kaliski, çetin K. Koç, and
Christof Paar, editors, Cryptographic Hardware and Em-
bedded Systems - CHES 2002, pages 13–28, Berlin, Hei-
delberg, 2003. Springer Berlin Heidelberg.

[10] Marios O. Choudary and Markus G. Kuhn. Efficient
Stochastic Methods: Profiled Attacks Beyond 8 Bits.
In Marc Joye and Amir Moradi, editors, Smart Card
Research and Advanced Applications, pages 85–103,
Cham, 2015. Springer International Publishing.

[11] Christophe Clavier and Léo Reynaud. Improved blind
side-channel analysis by exploitation of joint distribu-
tions of leakages. In Wieland Fischer and Naofumi
Homma, editors, Cryptographic Hardware and Embed-
ded Systems - CHES 2017 - 19th International Con-
ference, Taipei, Taiwan, September 25-28, 2017, Pro-
ceedings, volume 10529 of Lecture Notes in Computer
Science, pages 24–44. Springer, 2017.

[12] Christophe Clavier, Léo Reynaud, and Antoine Wurcker.
Quadrivariate improved blind side-channel analysis on
boolean masked aes. In Junfeng Fan and Benedikt Gier-
lichs, editors, Constructive Side-Channel Analysis and
Secure Design, pages 153–167, Cham, 2018. Springer
International Publishing.

[13] Aarti Dhapte. ARM Microcontroller Market Research
Report By Microcontroller Architecture, 2025.

[14] Christoph Dobraunig, Maria Eichlseder, Florian Mendel,
and Martin Schläffer. Ascon v1. 2: Lightweight authen-
ticated encryption and hashing. Journal of Cryptology,
34:1–42, 2021.

[15] Suvadeep Hajra, Siddhartha Chowdhury, and Debdeep
Mukhopadhyay. Estranet: An efficient shift-invariant
transformer network for side-channel analysis. IACR
Transactions on Cryptographic Hardware and Embed-
ded Systems, 2024(1):336–374, 2024.

[16] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao
Xu, Weihua Hu, Ivor W. Tsang, and Masashi Sugiyama.
Co-teaching: Robust training of deep neural networks
with extremely noisy labels. In Samy Bengio, Hanna M.
Wallach, Hugo Larochelle, Kristen Grauman, Nicolò

14

Cesa-Bianchi, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems
2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, pages 8536–8546, 2018.

[17] Matthias J. Kannwischer, Joost Rijneveld, Peter
Schwabe, and Ko Stoffelen. PQM4: Post-quantum
crypto library for the ARM Cortex-M4. https://
github.com/mupq/pqm4.

[18] Matthias J. Kannwischer, Joost Rijneveld, Peter
Schwabe, and Ko Stoffelen. pqm4: Testing and bench-
marking NIST PQC on ARM cortex-m4. Cryptology
ePrint Archive, Paper 2019/844, 2019.

[19] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Dif-
ferential power analysis. In Advances in Cryptol-
ogy—CRYPTO’99: 19th Annual International Cryptol-
ogy Conference Santa Barbara, California, USA, August
15–19, 1999 Proceedings 19, pages 388–397. Springer,
1999.

[20] Hélène Le Bouder. UN FORMALISME UNIFIANT
LES ATTAQUES PHYSIQUES SUR CIRCUITS CRY-
TOGRAPHIQUES ET SON EXPLOITATION AFIN DE
COMPARER ET RECHERCHER DE NOUVELLES AT-
TAQUES. Theses, Ecole Nationale Supérieure des Mines
de Saint-Etienne, October 2014.

[21] Yanis Linge, Cécile Dumas, and Sophie Lambert-
Lacroix. Using the joint distributions of a cryptographic
function in side channel analysis. In Constructive
Side-Channel Analysis and Secure Design: 5th Inter-
national Workshop, COSADE 2014, Paris, France, April
13-15, 2014. Revised Selected Papers 5, pages 199–213.
Springer, 2014.

[22] Xiangjun Lu, Chi Zhang, Pei Cao, Dawu Gu, and Hain-
ing Lu. Pay attention to raw traces: A deep learning ar-
chitecture for end-to-end profiling attacks. IACR Trans-
actions on Cryptographic Hardware and Embedded Sys-
tems, page 235–274, July 2021.

[23] Houssem Maghrebi, Thibault Portigliatti, and Em-
manuel Prouff. Breaking cryptographic implementa-
tions using deep learning techniques. In Claude Carlet,
M. Anwar Hasan, and Vishal Saraswat, editors, Secu-
rity, Privacy, and Applied Cryptography Engineering
- 6th International Conference, SPACE 2016, Hyder-
abad, India, December 14-18, 2016, Proceedings, vol-
ume 10076 of Lecture Notes in Computer Science, pages
3–26. Springer, 2016.

[24] Awaleh Houssein Meraneh, Christophe Clavier,
Hélène Le Bouder, Julien Maillard, and Gaël Thomas.
Blind side channel on the elephant LFSR. In Sabrina

De Capitani di Vimercati and Pierangela Samarati, edi-
tors, Proceedings of the 19th International Conference
on Security and Cryptography, SECRYPT 2022, Lisbon,
Portugal, July 11-13, 2022, pages 25–34. SCITEPRESS,
2022.

[25] Colin O’Flynn and Zhizhang (David) Chen. Chipwhis-
perer: An open-source platform for hardware embedded
security research. In Emmanuel Prouff, editor, Construc-
tive Side-Channel Analysis and Secure Design, pages
243–260, Cham, 2014. Springer International Publish-
ing.

[26] Guilherme Perin, Lukasz Chmielewski, Lejla Batina,
and Stjepan Picek. Keep it unsupervised: Horizontal at-
tacks meet deep learning. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2021(1):343–372, 2021.

[27] Guilherme Perin and Stjepan Picek. On the influence
of optimizers in deep learning-based side-channel anal-
ysis. In Orr Dunkelman, Michael J. Jacobson Jr., and
Colin O’Flynn, editors, Selected Areas in Cryptography
- SAC 2020 - 27th International Conference, Halifax,
NS, Canada (Virtual Event), October 21-23, 2020, Re-
vised Selected Papers, volume 12804 of Lecture Notes
in Computer Science, pages 615–636. Springer, 2020.

[28] Guilherme Perin, Lichao Wu, and Stjepan Picek. Explor-
ing feature selection scenarios for deep learning-based
side-channel analysis. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2022(4):828–861, 2022.

[29] Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam
Bhasin, and Francesco Regazzoni. The Curse of Class
Imbalance and Conflicting Metrics with Machine Learn-
ing for Side-channel Evaluations, volume=2019. IACR
Transactions on Cryptographic Hardware and Embed-
ded Systems, (1):209–237, Nov. 2018.

[30] Stjepan Picek, Guilherme Perin, Luca Mariot, Lichao
Wu, and Lejla Batina. Sok: Deep learning-based physi-
cal side-channel analysis. ACM Comput. Surv., 55(11),
February 2023.

[31] Emmanuel Prouff, Rémi Strullu, Ryad Benadjila,
Eleonora Cagli, and Cécile Dumas. Study of deep learn-
ing techniques for side-channel analysis and introduc-
tion to ASCAD database. IACR Cryptol. ePrint Arch.,
page 53, 2018.

[32] Prasanna Ravi, Dirmanto Jap, Shivam Bhasin, and Anu-
pam Chattopadhyay. Machine learning based blind side-
channel attacks on pqc-based kems-a case study of kyber
kem. In 2023 IEEE/ACM International Conference on
Computer Aided Design (ICCAD), pages 01–07. IEEE,
2023.

15

https://github.com/mupq/pqm4
https://github.com/mupq/pqm4

[33] Azade Rezaeezade, Abraham Basurto-Becerra, Léo
Weissbart, and Guilherme Perin. One for all, all for as-
con: Ensemble-based deep learning side-channel analy-
sis. In Martin Andreoni, editor, Applied Cryptography
and Network Security Workshops, pages 139–157, Cham,
2024. Springer Nature Switzerland.

[34] Azade Rezaeezade and Lejla Batina. Regularizers to
the rescue: Fighting overfitting in deep learning-based
side-channel analysis. IACR Cryptol. ePrint Arch., page
1737, 2022.

[35] Jorai Rijsdijk, Lichao Wu, Guilherme Perin, and Stjepan
Picek. Reinforcement learning for hyperparameter tun-
ing in deep learning-based side-channel analysis. IACR
Transactions on Cryptographic Hardware and Embed-
ded Systems, 2021(3):677–707, 2021.

[36] Thomas Roche. EUCLEAK Side-Channel Attack on
the YubiKey 5 Series (Revealing and Breaking Infineon
ECDSA Implementation on the Way), 2024.

[37] Thomas Roche, Victor Lomné, Camille Mutschler, and
Laurent Imbert. A side journey to titan. In 30th USENIX
Security Symposium (USENIX Security 21), pages 231–
248. USENIX Association, August 2021.

[38] Modou Sarry, Hélène Le Bouder, Eïd Maaloouf, and
Gaël Thomas. Blind side channel analysis against
AEAD with a belief propagation approach. In Shivam
Bhasin and Thomas Roche, editors, Smart Card Re-
search and Advanced Applications - 22nd International
Conference, CARDIS 2023, Amsterdam, The Nether-
lands, November 14-16, 2023, Revised Selected Papers,
volume 14530 of Lecture Notes in Computer Science,
pages 127–147. Springer, 2023.

[39] Ioana Savu, Marina Krček, Guilherme Perin, Lichao Wu,
and Stjepan Picek. The Need for MORE: Unsupervised
Side-Channel Analysis with Single Network Training
and Multi-output Regression, page 113–132. Springer
Nature Switzerland, 2024.

[40] Werner Schindler, Kerstin Lemke, and Christof Paar. A
stochastic model for differential side channel cryptanal-
ysis. In International Workshop on Cryptographic Hard-
ware and Embedded Systems, pages 30–46. Springer,
2005.

[41] Hwanjun Song, Minseok Kim, Dongmin Park, Yooju
Shin, and Jae-Gil Lee. Learning from noisy labels with
deep neural networks: A survey. IEEE Trans. Neural
Networks Learn. Syst., 34(11):8135–8153, 2023.

[42] Marvin Staib and Amir Moradi. Deep learning side-
channel collision attack. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems, page
422–444, June 2023.

[43] Benjamin Timon. Non-Profiled Deep Learning-based
Side-Channel attacks with Sensitivity Analysis. volume
2019, page 107–131, Feb. 2019.

[44] Léo Weissbart and Stjepan Picek. Lightweight but not
easy: Side-channel analysis of the ascon authenticated
cipher on a 32-bit microcontroller. IACR Cryptol. ePrint
Arch., page 1598, 2023.

[45] Lichao Wu, Guilherme Perin, and Stjepan Picek. Weakly
profiling side-channel analysis. IACR Transactions
on Cryptographic Hardware and Embedded Systems,
2024:707–730, 2024.

[46] Lichao Wu, Azade Rezaeezade, Amir Ali-pour, Guil-
herme Perin, and Stjepan Picek. Leakage model-flexible
deep learning-based side-channel analysis. IACR Com-
munications in Cryptology, 1(3), 2024.

[47] Lichao Wu, Sébastien Tiran, Guilherme Perin, and
Stjepan Picek. Plaintext-based side-channel collision at-
tack. IACR Communications in Cryptology, 1(3), 2024.

[48] Lichao Wu, Léo Weissbart, Marina Krček, Huimin Li,
Guilherme Perin, Lejla Batina, and Stjepan Picek. Label
correlation in deep learning-based side-channel analysis.
Trans. Info. For. Sec., 18:3849–3861, January 2023.

[49] Trevor Yap, Shivam Bhasin, and Stjepan Picek. OccPoIs:
Points of interest based on neural network’s key recovery
in side-channel analysis through occlusion. Cryptology
ePrint Archive, Paper 2023/1055, 2023.

[50] Trevor Yap, Shivam Bhasin, and Léo Weissbart. Train
wisely: Multifidelity bayesian optimization hyperparam-
eter tuning in side-channel analysis. Cryptology ePrint
Archive, Paper 2024/170, 2024.

[51] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and
Alexandre Venelli. Methodology for efficient CNN
architectures in profiling attacks. IACR Transactions
on Cryptographic Hardware and Embedded Systems,
2020(1):1–36, 2020.

[52] Zhilu Zhang and Mert R. Sabuncu. Generalized cross
entropy loss for training deep neural networks with noisy
labels. In Samy Bengio, Hanna M. Wallach, Hugo
Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and
Roman Garnett, editors, Advances in Neural Information
Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018,
December 3-8, 2018, Montréal, Canada, pages 8792–
8802, 2018.

16

A Algorithms for Joint Distribution Calcula-
tion

Algorithm 2 to 4 show how to calculate the theoretical joint
distributions for the different cryptographic algorithms we
attacked in this work. The difference in these algorithms
stems from the difference in the targeted variables and the
cryptography algorithms’ nature. It even results in different
dimensions (three dimensions) in the case of ASCON (look
Algorithm 4).

Algorithm 2 (HW (m),HW (y)) Joint Distribution Calcula-
tion for AES

1: for fixed k, k ∈ {0, . . . ,255} do
2: for each m, m ∈ {0, . . . ,255} do
3: Calculate y = Sbox(k⊕m)
4: Calculate HW (m) and HW (y)
5: Record occurrence of (HW (m),HW (y)) tuple
6: end for
7: Count the frequency of each tuple (HW (m),HW (y))
8: Dividing by the total number of observations
9: Save values obtained in line 8 as expected theoretical

joint distribution while using key k to be used later
10: end for

Algorithm 3 (HW (u0),HW (w0)) Joint Distribution Calcula-
tion for Kyber

1: for fixed s0, s0 ∈ {0, . . . ,q} (With q = 3329) do
2: for each u0, u0 ∈ {− q

2 , . . . ,
q
2} do

3: Calculate w0 = reduced(u0.s0)
4: Calculate HW (u0) and HW (w0)
5: Record occurrence of (HW (u0),HW (w0)) tuple
6: end for
7: Count the frequency of each tuple

(HW (u0),HW (w0))
8: Divide by the total number of observations
9: Save values obtained in line 8 as expected theoretical

joint distribution while using key s0 to be used later
10: end for

B Visualization of theoretical joint distribution
for Kyber

The theoretical joint distribution (HW (m),HW (y)) for two
Kyber secret key coefficients differs. For example, the theo-
retical joint distribution for the secret key coefficient s0 = 52
differs significantly from the theoretical joint distribution for
s0 = 2056 as shown in Figure 15. This means we can compare
the empirical joint distribution of m = u0 and y = s0u0 with
the theoretical ones to recover the secret key coefficient, s0.

Algorithm 4 (HW (m1),HW (m2),HW (y) Joint Distribution
Calculation for Ascon

1: Set the initial vector iv = [128,64,12,6,0,0,0,0]
2: for for each fixed k, k ∈ {0, . . . ,255} do
3: for each m1, m1 ∈ {0, . . . ,255} do
4: for each m2, m2 ∈ {0, . . . ,255} do
5: Calculate y= k1&(255⊕IV0⊕m0)⊕m0⊕m1
6: Calculate HW (m1), HW (m2), HW (y)
7: Record occurrence of triple

(HW (m1),HW (m2),HW (y)
8: end for
9: end for

10: Count the frequency of each triple
(HW (m1),HW (m2),HW (y)

11: Divide by the total number of observations
12: Save values obtained in line 8 as expected theoretical

joint distribution while using key k to be used later
13: end for

Figure 15: Two theoretical joint distribution of
(HW (m),HW (y)) considering two different secret key
in Kyber.

C Correlation Analysis for ASCON

Figure 16 shows the correlation analysis of the variables in-
volved in the attack with the traces.

Figure 16: Correlation of various leakage for the ASCON
dataset.

As it can be seen, some points with high correlation for y are

17

overlapped with m0 or m1. Examples are points around sample
200 and 500. Since the MC algorithm uses all the PoIs to
decide about the HW of all three variables simultaneously, this
overlapping can confuse the clustering technique, resulting in
more mislabeled traces.

18

	Introduction
	Background
	Side-channel Attacks
	Blind Side-channel Attacks
	Gaussian Mixture Model

	Deep Learning-based Blind Side-channel Analysis
	Threat Model
	Methodology
	Multi-point Cluster-based Labeling

	Experimental Setup and Results
	Neural Networks and Hyperparameter Search Space
	ChipWhisperer
	Kyber
	Ascon

	Targeting Countermeasures
	Related Work
	Conclusions and Future Work
	Ethical Considerations
	Open Science Policy
	Algorithms for Joint Distribution Calculation
	Visualization of theoretical joint distribution for Kyber
	Correlation Analysis for Ascon

