
Shadowfax: Combiners for Deniability
Phillip Gajland
Max Planck Institute

for Security and Privacy
Ruhr University Bochum

Bochum, Germany

Vincent Hwang
Max Planck Institute

for Security and Privacy
Bochum, Germany
Radboud University

Nijmegen, The Netherlands

Jonas Janneck
Ruhr University Bochum

Bochum, Germany

ABSTRACT

As cryptographic protocols transition to post-quantum security,
most adopt hybrid solutions combining pre-quantum and
post-quantum assumptions. However, this shift often introduces
trade-offs in terms of efficiency, compactness, and in some cases,
even security. One such example is deniability, which enables
users, such as journalists or activists, to deny authorship of
potentially incriminating messages. While deniability was once
mainly of theoretical interest, protocols like X3DH, used in Signal
and WhatsApp, provide it to billions of users. Recent work (Collins
et al., PETS’25) has further bridged the gap between theory and
real-world applicability. In the post-quantum setting, however,
protocols like PQXDH, as well as others such as Apple’s iMessage
with PQ3, do not support deniability. This work investigates how
to preserve deniability in the post-quantum setting by leveraging
unconditional (statistical) guarantees instead of computational
assumptions - distinguishing deniability from confidentiality and
authenticity.

As a case study, we present a hybrid authenticated key
encapsulation mechanism (AKEM) that provides statistical
deniability, while maintaining authenticity and confidentiality
through a combination of pre-quantum and post-quantum
assumptions. To this end, we introduce two combiners at different
levels of abstraction. First, at the highest level, we propose a
black-box construction that combines two AKEMs, showing that
deniability is preserved only when both constituent schemes are
deniable. Second, we present Shadowfax, a non-black-box
combiner that integrates a pre-quantum NIKE, a post-quantum
KEM, and a post-quantum ring signature. We demonstrate that
Shadowfax ensures deniability in both dishonest and honest
receiver settings. When instantiated, we rely on statistical security
for the former, and on a pre- or post-quantum assumption in the
latter. Finally, we provide an optimised, yet portable,
implementation of a specific instantiation of Shadowfax yielding
ciphertexts of 1 781 bytes and public keys of 1 449 bytes. Our
implementation achieves competitive performance: encapsulation
takes 1.9 million cycles and decapsulation takes 800 000 cycles on
an Apple M1 Pro.

CCS CONCEPTS

• Security and privacy→ Cryptography.

KEYWORDS

Deniability, Authenticated KEM, Combiner

1 INTRODUCTION

The global roll out of post-quantum cryptography (PQC) is a
monumental challenge. While the multi-year National Institute of
Standards and Technology (NIST) standardisation [NIS16] has
been a critical milestone, it marks only the beginning of a much
larger effort. With the process nearing completion and four
algorithms selected (three standards have already been
released [MLK24, MLD24, SLH24]), the next phase of
implementation and adaptation is now underway. Migrating
countless systems to PQC will likely take decades. 1

Significant progress has been made towards adapting widely
deployed protocols to be post-quantum secure. Notable examples
include X3DH [MP16], which supports billions users on WhatsApp
and, more recently Messenger, and has been extended to a post-
quantum variant, PQXDH, deployed in Signal [KS24], as well as
Apple’s iMessage with PQ3 [App24]. Another prominent example
is TLS, which has been updated for post-quantum security by using
KEMs in multiple papers [BCNS15, PST20, BBCT22] and real-world
deployments [Lan16, Lan18, KV19, WR19].

A key aspect of all these adaptations is the hybrid approach,
which combines post-quantum algorithms with classical
cryptographic methods. This is essential, as post-quantum
solutions, despite their potential, lack the decades of cryptographic
analysis that traditional schemes such as RSA and (EC)DH have
undergone. Therefore, it is prudent to adopt hybrid solutions. This
strategy is widely endorsed by national security agencies. The
French National Agency for the Security of Information Systems
(ANSSI) recommends a hybrid adoption of PQC [ANS23]. The
German Federal Office for Information Security (BSI) is more
explicit, stating that “post-quantum cryptography should not be
used in isolation if possible, but only in hybrid mode,” for both key
agreement and authentication [BSI22]. The BSI has reiterated this
need in their recent updated technical guidelines, which “only
recommends the hybrid use of quantum-safe methods in combination
with classical methods” [BSI24].

1.1 Combiners

Traditionally, a hybrid scheme, or combiner, ensures security as
long as at least one of the combined methods remains secure. For
example, if cryptographically relevant quantum computers
(CRQCs) become available rendering problems like factoring and
discrete logarithms tractable [Sho94], the hybrid scheme would
still be secure as the post-quantum assumption remains intact.
Conversely, if advances in cryptanalysis or implementation issues
1Although it has been known for over twenty years that MD5 [Riv92] fails to provide
collision resistance [WFLY04], recent research continues to exploit this insecurity in
new vulnerabilities [GHH+24] within prevalent protocols.

2025-02-02 19:15. Page 1 of 1–37.

https://orcid.org/0009-0006-2315-3749
https://orcid.org/https://orcid.org/0009-0005-5645-4938
https://orcid.org/0000-0002-1385-3884

break the post-quantum scheme (classically) in polynomial time,
the classical security of the hybrid scheme would still hold due to
the hardness of the pre-quantum problem. In fact, recent work
demonstrated several classical attacks on post-quantum
schemes [Beu22, CD23, MMP+23, Rob23] underscoring the
importance of hybrids. Furthermore, only the basic post-quantum
primitives, such as KEMs and signatures, have been standardised,
necessitating the use of non-standard primitives and motivating
their adoption in hybrid configurations. Finally, to achieve the goal
of “cryptographic agility” [OPowp19] in the long run, the
permanent use of hybrid solutions may become common practice.

1.1.1 Combiners for Confidentiality and Authenticity. Combiners
have been used to achieve both confidentiality, for example by
combining pre- and post-quantum Key Encapsulation Mechanisms
(KEMs), and authenticity, such as by combining pre- and
post-quantum signature schemes.

Confidentiality. Hybrid KEMs have been explored as a means to
achieve confidentiality in the post-quantum era. For
instance, [GHP18] demonstrated that the simple KEM combiner
H(𝑘1, 𝑘2) does not provide ciphertext indistinguishability under
adaptive chosen ciphertext attacks, whereas incorporating the
ciphertexts as H(𝑘1, 𝑘2, 𝑐1, 𝑐2) resolves this issue.
Furthermore, [HV21] demonstrated a hybrid KEM combining the
CPA-secure versions of HQC [AAB+22] and LAC [LLJ+19]
achieving IND-CCA security. Industry leaders have also explored
hybrid approaches. In 2019 Cloudflare and Google conducted
experiments [KSL+19] to assess the performance of hybrid
cryptographic solutions in real-world scenarios. This work led to
the adoption of hybrid cryptography in platforms such as
Amazon’s s2n and various forks of OpenSSL and
OpenSSH [CPS19]. Further investigations into post-quantum
hybrid cryptography include benchmarks for its application in
TLS [PST20], underscoring industry’s intent to integrate these
solutions. The European Telecommunications Standards Institute
(ETSI) has also formalised quantum-safe hybrid key
exchanges [ETS20], while the TLS protocol is exploring hybrid key
exchange designs using concatenated key derivation
functions [SFG24]. Additionally, the Internet Key Exchange (IKE)
protocol is evolving to incorporate hybrid post-quantum
cryptographic methods [TTB+23]. A recent concrete hybrid KEM,
X-Wing [BCD+24], combines X25519 [LHT16] and ML-KEM-768,
though it is a specific instantiation rather than a generic combiner
as in [GHP18].

Authenticity. Hybrid solutions for authenticity, such as
combining digital signature schemes have also been
explored [BHMS17, OGP+24]. A natural way is to concatenate
signatures, accepting the result as valid only if all signatures are
valid. This achieves existential unforgeability under a chosen
message attack (EUF-CMA) but not strong existential
unforgeability. The works of [BHMS17, OGP+24] examined hybrid
digital signatures within public key infrastructure. In
particular, [BHMS17] introduced the concept of non-separability,
ensuring that a signature in a combined scheme cannot be split
into valid signatures for either of its individual components.

1.2 Deniability

While hybrid solutions for confidentiality and authenticity have
been studied in the literature, and require an adversary to break
both layers to compromise the scheme, the notion of deniability
does not appear to exhibit this property, and remains largely
unexplored. Informally, deniability allows a sender to plausibly
deny involvement in a authenticated transaction. It ensures that
the sender’s actions could have been done by anyone, making it
impossible to definitively prove the sender’s participation to a
third party. In fact, the generic natural combiner fails to preserve
deniability: if one component loses its deniability, making part of
the transcript undeniable, then how can the entire transcript,
which also includes this part, still remain deniable? This raises the
following question:

“Can combiners preserve deniability?”
To answer this, we must first understand the purpose and
motivation behind deniability itself.

1.2.1 The Case for Deniability. While hybrid solutions for
confidentiality and authenticity have been studied in the literature,
and require an adversary to break both layers to compromise the
scheme, the notion of deniability does not appear to exhibit this
property, and remains largely unexplored. Cryptographic
deniability, once deemed only of theoretical interest, rose to
prominence during the 2016 United States presidential election. In
the final weeks leading up to the election, approximately 58,000
emails from Hillary Clinton’s campaign were leaked [Wik16]. The
campaign vehemently denied the authenticity of the emails,
claiming they had been fabricated as part of a smear
campaign [Mas16, Car16, BBC16]. Typically, emails are
unauthenticated, which provides plausible deniability, allowing
senders to deny authorship. However, in this case, the situation
was complicated by the fact that the emails were cryptographically
signed - not by the authors, but by mail transfer agents, such as
Google’s servers, using DomainKeys Identified Mail (DKIM), a
widely adopted anti-spam measure [LF07]. As a result, the emails
were verifiably unaltered, undermining the campaign’s claims of
forgery. Political emails are just one example where the ability to
deny authorship is valuable. This feature has been proposed as a
means for dissidents, journalists and activists to protect
themselves from persecution by disavowing association with
controversial or subversive messages.

Deniability in Practice. Off-the-Record (OTR) [BGB04] was the
first protocol allowing encryption and authentication of messages
while removing the non-repudiation property of signature-based
protocols like GPG and S/MIME, enabling deniability. Since then,
deniability in protocols has gained significant attention in both
academia and industry. Successors to OTR are now used in over
two billion devices globally, through services like Signal [MP16],
WhatsApp [Wha20] and Messenger [Met23]. Despite limited
awareness of deniability’s benefits among
non-experts [RMA+23, YGS23], recent work has focused on
improving the real-world deniability of
protocols [RMA+23, RYAJ+24, CCH25, CCH23] particularly in
messaging systems. While screenshots of message transcripts have
traditionally been used as legal evidence, [CCH25, CCH23]

2025-02-02 19:15. Page 2 of 1–37.

Shadowfax: Combiners for Deniability

proposed enabling message editing at the application level,
enhancing real-world deniability. However, such solutions still rely
on underlying cryptographic deniability to be effective.

Cryptographic Deniability. Many protocols, such as
X3DH [MP16], provide deniability by design, while others, like
certain versions of the Hybrid Public Key Encryption
(HPKE) [BBLW22] standard, have deniability accidentally as a relic
of using Diffie-Hellman for implicit authentication. As noted
in [GJK24], the authenticated mode of HPKE [BBLW22] exhibits
some deniability properties as an unintended consequence of this
design choice. Another example is OPTLS by Krawczyk and
Wee [KW16], a proposal that eliminates the need for handshake
signatures in TLS. Such protocols typically use X25519 [LHT16] in
practice, and can be upgraded to the post-quantum setting with a
post-quantum non-interactive key exchange (NIKE). However,
existing post-quantum NIKEs are limited by prohibitively large
public keys [GdKQ+24] or slow performance [BBC+21]. As a
result, most protocols instead tend to rely on post-quantum KEMs
and/or standard post-quantum signature schemes. For example,
KEMTLS [SSW20] eliminates the need for handshake signatures
like OPTLS, but it uses static KEM keys for authentication, which
differs from the ephemeral key approach of protocols like X3DH.
This presents a dilemma: while post-quantum security is
achievable, many protocols lose additional security properties –
such as deniability – provided by their classical counterparts. For
instance, Signal’s new Post-Quantum Extended Diffie-Hellman
(PQXDH) protocol [KS24] combines classical and post-quantum
cryptography. However, PQXDH does not satisfy the same level of
deniability as its predecessor, X3DH [MP16], due to the signature
on the ephemeral key [FJ24]. Similarly, the analysis of Apple’s
iMessage with PQ3 [Ste24, LSB24], explicitly states that deniability
is not a design goal. We hypothesise that this omission stems from
the cost of providing deniability or the relative simplicity of
omitting it in favour of other security priorities. Moreover, a likely
approach to migrating authenticated HPKE [BBLW22] to the
post-quantum setting would likely involve using a KEM and
signatures for explicit authentication, which would eliminate the
deniability properties present in its pre-quantum counterpart.
Therefore, we revise the aforementioned question to be:

“Can combiners preserve deniability in a post-quantum
setting at minimal additional cost?”

1.3 Deniability for PQC

We argue that deniability is fundamentally different to both
authenticity and confidentiality. To understand this distinction, it
is useful to first consider the broader context of cryptographic
security. To this end, formalising the security of cryptosystems
often involves distinguishing between two distributions such as
encryptions of two different messages. Shannon’s seminal
work [Sha49] established that perfect secrecy (confidentiality),
achievable by the one-time-pad, requires a key length equal to the
message length [Sha49, Sec. 10]. Practical cryptosystems, therefore,
necessarily rely on weaker notions of secrecy.

1.3.1 Statistical and Computational Security. A natural relaxation
of perfect secrecy is statistical security, where an adversary’s

advantage in identifying the encrypted message is marginally
better than random guessing. A scheme is said to be 𝜖-statistically
indistinguishable if the statistical distance between the two
ciphertext distributions is at most 𝜖 . In other words, an unbounded
adversary’s probability of correctly distinguishing between two
encrypted messages is at most 1/2 + 𝜖 . For small values of 𝜖 , such
as 2−80, this remains a meaningful security notion. However, even
with statistical security, we cannot circumvent the impossibility
that keys may not be shorter than messages.

As a consequence, deployed cryptography primarily relies on
the computational infeasibility of certain mathematical problems.
Specifically, a classical adversary running in probabilistic
polynomial time relative to the input length 𝑛 cannot distinguish
between two distributions with probability greater than
1/2 + negl(𝑛), where negl(·) denotes some negligible function.
Security proofs typically show that achieving a better
distinguishing advantage would require breaking the underlying
hard problem. An unbounded adversary could, of course, solve
these problems by brute force. Similarly, a quantum adversary
running in polynomial time could distinguish two distributions if
their closeness relies on the hardness of a pre-quantum problem
such as factoring integers or solving discrete logarithms over finite
fields [Sho94]. Therefore, these problems are only considered
computationally hard for classical adversaries. Crucially, if the
distributions are statistically close, even a quantum adversary -
regardless of whether it is polynomial time or unbounded - cannot
distinguish between them. In other words, both perfect and
statistical security are unconditional.

1.3.2 The Difference between Confidentiality, Authenticity and
Deniability. A key distinction between authenticity, confidentiality,
and deniability lies in their reliance on computational hardness
assumptions. Authenticity, when based on asymmetric primitives
like signature schemes, necessarily relies on assumptions such as
the discrete logarithm problem (DLOG) [DH76], or the Short
Integer Solution (SIS) problem [Ajt96]. The existence of digital
signatures, in fact, is equivalent to the existence of one-way
functions [Rom90]. Similarly, confidentiality in asymmetric
primitives, such as KEMs or public key encryption (PKE), requires
computational hardness assumptions (likely more than only
OWFs [Dac16]), like integer factorisation [RSA78] or Learning
With Errors (LWE) [Reg05]. In contrast, deniability does not
necessarily depend on hardness assumptions like LWE, though it
may in some cases. Unlike authenticity and confidentiality,
deniability can often be proven unconditionally, without requiring
any computational assumptions. The central insight here is that
when deniability is perfect or statistical, it is immune to the failure
scenarios typically motivating the use of combiners. Since no
assumption underpins the deniability, the property holds even
against unbounded adversaries. This also resolves the issue that,
unlike confidentiality and authenticity, deniability does require
both components of a combined scheme to be deniable. Recall that
for confidentiality and authenticity, an adversary must break both
layers corresponding to pre- and post-quantum assumptions.
However, in a natural combiner, it is sufficient for the adversary to
break only one component’s deniability to compromise the entire
system’s deniability. When deniability is unconditional, failure

2025-02-02 19:15. Page 3 of 1–37.

scenarios, such as breaking a computational assumption or
encountering a new attack that invalidates the hardness of a
post-quantum assumption, become irrelevant. Of course, if one of
the schemes fails to provide deniability due to a design flaw rather
than a flawed assumption, the combiner will offer no security.

2 AKEM: A CASE STUDY

To illustrate these observations, we focus on a specific primitive:
the Authenticated Key Encapsulation Mechanism
(AKEM) [ABH+21]. The recent HPKE standard [BBLW22] defines
four distinct modes, two of which – Auth and AuthPSK – are
formalised via AKEMs [ABH+21]. The AuthPSK mode is currently
deployed in the MLS [BBR+23] standard. AKEMs, inspired by the
singcryption literature [DZ10], can be viewed as a generalisation
of the split-KEM primitive [BFG+20]. 2 Although not yet widely
deployed, AKEMs exhibit several desirable properties that make
them suitable for many practical applications. In this work, we
extend the ideas presented in [GJK24] and use AKEMs as a case
study to explore the design of combiners that preserve deniability.
While the principles outlined apply to other primitives, AKEMs
serve as a concrete example for a detailed examination of these
concepts. Informally, an AKEM has the same interfaces as a
standard KEM, but with two key differences: encapsulation proves
the sender’s authenticity requiring their secret key, while
decapsulation verifies the sender’s authenticity using their public
key.

2.1 Deniable AKEM Combiners

Deniability captures scenarios where a sender can plausibly deny
having sent a potentially incriminating message to a receiver, while
still ensuring the receiver can authenticate themessage’s origin. The
aim is to prevent a third party, the judge (modelled as an adversary),
from conclusively attributing the sender’s involvement. Formally,
we assume the existence of a simulator Sim that can generate a
ciphertext 𝑐 and key 𝑘 indistinguishable from those produced by
the encapsulation process Enc to any polynomial time adversary
A. The existence of such a simulator allows the sender to plausibly
deny sending specific messages encrypted under 𝑘 (where 𝑘 is used
in a KEM-DEM scheme for encrypting messages [BBLW22]), as
anyone could have generated the same ciphertexts using Sim.

Dishonest vs Honest Receivers. The model of deniability varies
depending on the scenario [GJK24]. For a dishonest receiver, Sim is
given the receiver’s secret key, representing a situation where the
receiver could forge a ciphertext to make it appear as if 𝑐

originated from the sender. For honest receivers the receiver is
assumed to not simulate any values and therefore Sim is not given
the receiver’s secret key. This distinction is critical: deniability in
the dishonest receiver setting does not imply deniability in the
honest receiver setting, whereas security with honest receivers
does imply security with dishonest receivers, as the simulator’s
capabilities increase while the adversary’s remain unchanged.
Further distinctions in deniability can be made for both honest and
dishonest receivers, based on the keys the adversary/judge is given.
For a detailed analysis of AKEM deniability, see [GJK24, Sec. 4.2].
2In fact, a symmetric split-KEM [BFG+20, Def. 4] is almost the same as an
AKEM [ABH+21, Def. 9].

In the post quantum setting we focus exclusively on the strongest
(and most meaningful) scenario, where A is assumed to be a
polynomial time quantum adversary, while Sim remains a classical
PPT machine.

Combiners. As noted, capturing deniability for combiners is
more complex than for confidentiality and authenticity. In the
latter cases, security is maintained as long as one component is
secure, requiring the adversary to break both. One might expect a
similar property for deniability, where the combiner preserves
deniability as long as one component is deniable. However,
achieving this in a black-box manner appears challenging.
Consider, for instance, the natural approach from [GHP18] where
𝑘 B H(𝑘1, 𝑘2, 𝑐1, 𝑐2) and 𝑐 B (𝑐1, 𝑐2). The primary challenge in
designing a deniable combiner lies in constructing a simulator for
the final scheme, which seems to require simulators for both
underlying schemes. In fact, we conjecture that it is impossible to
achieve a deniable AKEM by combining two AKEMs in a black-box
manner if only one of the schemes provides deniability. Thus, we
require both schemes to be deniable. Nevertheless, we argue that
this is not an issue by relying on statistical deniability, which
cannot be “lost” if assumptions are later broken unlike
computational deniability. Recall that the motivation of a combiner
is two fold: First, if quantum computers become capable of solving
problems like factoring or discrete logarithms efficiently, the
hybrid scheme retains security due to the post-quantum
assumption. Second, if advances in classical cryptanalysis or
implementation vulnerabilities compromise the post-quantum
scheme, the security of the hybrid scheme is maintained by the
hardness of the classical problem. By focusing on AKEM
constructions where deniability is a statistical property rather than
a computational one, we can ensure that deniability for the
combiner is preserved come what may.

Dishonest Receivers. In the case of dishonest receiver deniability,
we can construct a combiner where both AKEMs preserve their
deniability by relying on statistical guarantees, ensuring neither
breaks. For an AKEM where the authenticity (and confidentiality)
depend on a pre-quantum assumption, we can instantiate it using
a NIKE, where the dishonest deniability would rely on the
correctness of the NIKE (𝑔𝑎𝑏 is perfectly indistinguishable from
𝑔𝑏𝑎 , because they are the same). For the second AKEM where the
authenticity (and confidentiality) rely on a post-quantum
assumption we could construct it using ring signatures provided
the ring signature anonymity is statistical. Indeed
Gandalf [GJK24] does satisfy statistical anonymity. This
approach is ineffective for schemes where deniability relies on
computational assumptions, as the entire combiner’s deniability
could fail if those assumptions are broken. For instance, this issue
arises with ring signatures such as SMILE [LNS21] or
Erebor [BLL24] whose anonymity depends on hardness
assumptions.

Honest Receivers. If we want to take the same approach in the
honest receiver setting, we have the following practical problem. To
the best of our knowledge there are no efficient post-quantum

2025-02-02 19:15. Page 4 of 1–37.

Shadowfax: Combiners for Deniability

AKEMs that unconditionally satisfy honest receiver deniability. 3
For instance, the honest receiver deniability of the post-quantum
AKEM from [GJK24] relies on the confidentiality of the underlying
KEM and thus on a computational assumption. If we relax the
requirement for unconditional security in favour of computational
assumptions, we must address the conjectured impossibility by
considering a non-black-box construction. To that end, we propose
a concrete construction that satisfies honest receiver deniability by
relying on the security of just one pre-quantum or post-quantum
assumption. This is achieved by basing the confidentiality
requirement of the PQ-AKEM not only on its underlying KEM but
also on the pre-quantum NIKE, forming what we term a
“sub-combiner”. Importantly, this approach requires a
non-black-box construction, as it involves breaking open the
PQ-AKEM rather than assuming black-box access.

2.2 Contributions

We introduce a framework for reasoning about deniability in the
context of post-quantum combiners, an area previously unexplored.
As detailed above, our key insight is that deniability differs from
other security notions, such as confidentiality and authenticity. We
demonstrate that primitives with unconditional deniability can be
leveraged to achieve the desired combiner properties.

While much of our approach is generalisable to other primitives,
we focus on the authenticated key encapsulation mechanism
(AKEM) as a concrete example to explore and apply these insights
in detail. We present two combiners for AKEMs at different levels
of abstraction, each with distinct trade-offs:

• At the highest level of abstraction, we propose a generic,
black-box construction that combines two AKEMs. We
prove that deniability is preserved only if both underlying
schemes are deniable. Moreover, our construction requires
only one of the AKEMs to provide confidentiality, and
similarly, only one to provide authenticity, consistent with
the expected combiner characteristics.

• At a lower level of abstraction, we introduce Shadowfax, a
non-black-box combiner that builds on pre-quantum NIKE,
a post-quantum KEM, and a post-quantum ring signature
scheme. We show that Shadowfax achieves deniability
in two distinct settings: In the dishonest receiver setting,
deniability relies on the correctness of the NIKE and the
(possibly statistical) anonymity of the ring signature. In
the honest receiver setting, deniability is guaranteed under
one computational assumption: either the security of the
ephemeral NIKE or the KEM.

Our final contribution is a set of portable C implementations
designed for compactness, reproducibility, and easy integration
into existing cryptographic libraries. We provide C reference
implementations of the Gandalf ring signature scheme and the
post-quantum AKEM from [GJK24]. Additionally, we implement
our hybrid AKEM, Shadowfax. When instantiated with
X25519 [LHT16] as the NIKE, BAT [FKPY22] as the post-quantum
KEM and Gandalf [GJK24] as the post-quantum ring signature
scheme, Shadowfax features compact ciphertexts (1781 bytes)

3The NIKE-AKEM from [AJKL23] would satisfy such a notion but has prohibitively
large public keys.

and public keys (1449 bytes). Our platform-agnostic C
implementations leverage recent advancements in lattice-based
cryptography, offering competitive performance. On a Firestorm
core running at 3 GHz on an Apple M1 Pro, encapsulation takes
approximately 1.9 million cycles, while decapsulation takes
800,000 cycles. For detailed parameter sizes and performance
metrics, refer to Table 2, Table 3 and the project’s GitHub
repository at Shadowfax.

3 PRELIMINARIES

We introduce some relevant definitions used throughout the paper.
Further notions can be found in Appendix A.

3.1 Notations

Sets and Algorithms. We write 𝑠 $← S to denote the uniform
sampling of 𝑠 from the finite set S. For an integer 𝑛, we define
[𝑛] B {1, . . . , 𝑛}. The notation J𝑏K, where 𝑏 is a boolean statement,
evaluates to 1 if the statement is true and 0 otherwise. We use
uppercase letters A,B, . . . to denote algorithms. Unless otherwise
stated, algorithms are probabilistic, and we write
(𝑦1, . . .) $← A(𝑥1, . . .) to denote that A returns (𝑦1, . . .) when run
on input (𝑥1, . . .). We writeAB to denote thatA has oracle access
to B during its execution. For a randomised algorithm A, we use
the notation 𝑦 ∈ A(𝑥) to denote that 𝑦 is a possible output of A
on input 𝑥 . The support of a discrete random variable 𝑋 is defined
as sup(𝑋) B {𝑥 ∈ R | Pr[𝑋 = 𝑥] > 0}.

Security Games. We use standard code-based security
games [BR04]. A Game G is a probability experiment in which an
adversary A interacts with an implicit challenger that answers
oracle queries issued by A. The game G has one main procedure
and an arbitrary amount of additional oracle procedures which
describe how these oracle queries are answered. We denote the
(binary) output 𝑏 of game G between a challenger and an
adversary A as GA ⇒ 𝑏. A is said to win G if GA ⇒ 1, or
shortly G ⇒ 1. Unless otherwise stated, the randomness in the
probability term Pr[GA ⇒ 1] is over all the random coins in game
G. If a game is aborted the output is either 0 or a random bit in
case of an indistinguishability game, i.e. a game for which the
advantage of an adversary is defined as the absolute difference of
winning the game to 1

2 . To provide a cleaner description and avoid
repetitions, we sometimes refer to procedures of different games.
To call the oracle procedure Oracle of game G on input 𝑥 , we
shortly write G.Oracle(𝑥).

3.2 AKEM

Definition 1 (Authenticated Key Encapsulation Mechanism). An
authenticated key encapsulation mechanism AKEM is defined as a
tuple AKEM B (Gen, Enc,Dec) of the following algorithms.

(𝑠𝑘, 𝑝𝑘) $← Gen: The probabilistic generation algorithm Gen

returns a secret key 𝑠𝑘 and a corresponding public key 𝑝𝑘 .
We implicitly assume that 𝑝𝑘 defines a shared key space
K .

(𝑐, 𝑘) $← Enc(𝑠𝑘𝑠 , 𝑝𝑘𝑟): Given a sender’s secret key 𝑠𝑘𝑠 and a
receiver’s public key 𝑝𝑘𝑟 , the probabilistic encapsulation

2025-02-02 19:15. Page 5 of 1–37.

https://github.com/vincentvbh/shadowfax

algorithm Enc returns a ciphertext 𝑐 and a shared key
𝑘 ∈ K .

𝑘 ← Dec(𝑝𝑘𝑠 , 𝑠𝑘𝑟 , 𝑐): Given a sender’s public key 𝑝𝑘𝑠 , a
receiver’s secret key 𝑠𝑘𝑟 , and a ciphertext 𝑐 , the
deterministic decapsulation algorithm Dec returns a
shared key 𝑘 ∈ K , or a failure symbol ⊥.

The correctness error 𝛿AKEM is defined as

𝛿AKEM B Pr
Dec(𝑝𝑘𝑠 , 𝑠𝑘𝑟 , 𝑐) ≠ 𝑘

������
(𝑠𝑘𝑠 , 𝑝𝑘𝑠) $← Gen

(𝑠𝑘𝑟 , 𝑝𝑘𝑟) $← Gen

(𝑐, 𝑘) $← Enc(𝑠𝑘𝑠 , 𝑝𝑘𝑟)

 ,
where the probability is over the randomness of Gen and Enc.

Without loss of generality we assume the existence of an
efficiently computable function 𝜇 such that for all (𝑠𝑘, 𝑝𝑘) ∈ Gen it
holds 𝜇 (𝑠𝑘) = 𝑝𝑘 .

Confidentiality. We consider the strongest notion of CCA
security for an AKEM, in particular that of insider
security [ABH+21]. As a building block we will also need a weaker
notion of CCA security, namely outsider security [ABH+21]. We
formalise the notion of ciphertext indistinguishability for an
authenticated key encapsulation mechanism AKEM via the games
(n, 𝑄Enc, 𝑄Dec, 𝑄Chl)-Ins-CCAAKEM (A) and
(n, 𝑄Enc, 𝑄Dec)-Out-CCAAKEM (A), depicted in Figure 1
and Figure 2, respectively. The advantage of adversary A is
defined as

Adv(n,QEnc,QDec,QChl)-Ins-CCA
AKEM,A B����Pr [(n, 𝑄Enc, 𝑄Dec, 𝑄Chl)-Ins-CCAAKEM (A) ⇒ 1] − 1

2

����,
Adv(n,QEnc,QDec)-Out-CCA

AKEM,A B����Pr [(n, 𝑄Enc, 𝑄Dec)-Out-CCAAKEM (A) ⇒ 1] − 1
2

����.
Game (n, 𝑄Enc, 𝑄Dec, 𝑄Chl)-Ins-CCAAKEM (A)
01 D B ∅
02 for 𝑖 ∈ [𝑛]
03 (𝑠𝑘𝑖 , 𝑝𝑘𝑖) $← Gen

04 𝑏
$← {0, 1}

05 𝑏′ ← AEncps,Decps,Chall (𝑝𝑘1, . . . , 𝑝𝑘𝑛)
06 return J𝑏 = 𝑏′K
Oracle Encps(𝑠 ∈ [𝑛], 𝑝𝑘)
07 (𝑐, 𝑘) $← Enc(𝑠𝑘𝑠 , 𝑝𝑘)
08 return (𝑐, 𝑘)

Oracle Decps(𝑝𝑘, 𝑟 ∈ [𝑛], 𝑐)
09 if ∃ 𝑘 : (𝑝𝑘, 𝑝𝑘𝑟 , 𝑐, 𝑘) ∈ D
10 return 𝑘

11 𝑘 ← Dec(𝑝𝑘, 𝑠𝑘𝑟 , 𝑐)
12 return 𝑘

Oracle Chall(𝑠𝑘, 𝑟 ∈ [𝑛])
13 (𝑐, 𝑘) $← Enc(𝑠𝑘, 𝑝𝑘𝑟)
14 if 𝑏 = 1
15 𝑘

$← K
16 D ← D ∪ { (𝜇 (𝑠𝑘), 𝑝𝑘𝑟 , 𝑐, 𝑘) }
17 return (𝑐, 𝑘)

Figure 1: Game defining Ins-CCA for an authenticated key

encapsulation mechanism AKEM B (Gen, Enc,Dec) with

adversary A making at most; 𝑄Enc queries to Encps, 𝑄Dec
queries to Decps, 𝑄CSK queries to CorSK, and 𝑄Chl queries to

Chall.

Game (n, 𝑄Enc, 𝑄Dec)-Out-CCAAKEM (A)
01 D B ∅
02 for 𝑖 ∈ [𝑛]
03 (𝑠𝑘𝑖 , 𝑝𝑘𝑖) $← Gen

04 𝑏
$← {0, 1}

05 𝑏′ ← AEncps,Decps (𝑝𝑘1, . . . , 𝑝𝑘𝑛)
06 return J𝑏 = 𝑏′K

Oracle Encps(𝑠 ∈ [𝑛], 𝑝𝑘)
07 (𝑐, 𝑘) $← Enc(𝑠𝑘𝑠 , 𝑝𝑘)
08 if 𝑏 = 1 ∧ 𝑝𝑘 ∈ {𝑝𝑘1, . . . , 𝑝𝑘𝑛 }
09 𝑘

$← K
10 D ← D ∪ { (𝑝𝑘𝑠 , 𝑝𝑘, 𝑐, 𝑘) }
11 return (𝑐, 𝑘)

Oracle Decps(𝑝𝑘, 𝑟 ∈ [𝑛], 𝑐)
12 if ∃ 𝑘 : (𝑝𝑘, 𝑝𝑘𝑟 , 𝑐, 𝑘) ∈ D
13 return 𝑘

14 𝑘 ← Dec(𝑝𝑘, 𝑠𝑘𝑟 , 𝑐)
15 return 𝑘

Figure 2: Game defining Out-CCA for an authenticated key

encapsulation mechanism AKEM B (Gen, Enc,Dec) with

adversary A making at most; 𝑄Enc queries to Encps and 𝑄Dec
queries to Decps.

Authenticity. We consider outsider authenticity from [ABH+21],
the strongest notion that is achievable when also seeking
deniability [GJK24]. We formalise the notion via the game
(n, 𝑄Enc, 𝑄Chl)-Out-AutAKEM (A) depicted in Figure 3 and define
the advantage of an adversary A as

Adv(n,QEnc,QChl)-Out-Aut
AKEM,A B����Pr [(n, 𝑄Enc, 𝑄Chl)-Out-AutAKEM (A) ⇒ 1] − 1

2

����.
Games (n, 𝑄Enc, 𝑄Chl)-Out-AutAKEM (A)
01 D B ∅
02 for 𝑖 ∈ [𝑛]
03 (𝑠𝑘𝑖 , 𝑝𝑘𝑖) $← Gen

04 𝑏
$← {0, 1}

05 𝑏′ $← AEncps,Chall (𝑝𝑘1, . . . , 𝑝𝑘𝑛)
06 return J𝑏 = 𝑏′K
Oracle Encps(𝑠 ∈ [𝑛], 𝑝𝑘)
07 (𝑐, 𝑘) $← Enc(𝑠𝑘𝑠 , 𝑝𝑘)
08 D ← D ∪ { (𝑝𝑘𝑠 , 𝑝𝑘, 𝑐, 𝑘) }
09 return (𝑐, 𝑘)
Oracle Chall(𝑝𝑘, 𝑟 ∈ [𝑛], 𝑐)
10 if ∃ 𝑘 : (𝑝𝑘, 𝑝𝑘𝑟 , 𝑐, 𝑘) ∈ D
11 return 𝑘

12 𝑘 ← Dec(𝑝𝑘, 𝑠𝑘𝑟 , 𝑐)
13 if 𝑏 = 1 ∧ 𝑝𝑘 ∈ {𝑝𝑘1, . . . , 𝑝𝑘𝑛 } ∧ 𝑘 ≠ ⊥
14 𝑘

$← K
15 D ← D ∪ { (𝑝𝑘, 𝑝𝑘𝑟 , 𝑐, 𝑘) }
16 return 𝑘

Figure 3: Game defining Out-Aut for an authenticated key

encapsulation mechanism AKEM B (Gen, Enc,Dec) with

adversary A making at most 𝑄Enc queries to Encps and 𝑄Chl
queries to Chall.

Deniability. As in [GJK24], we consider deniability in two
independent settings. For dishonest receiver deniability, the
receiver is potentially dishonest and capable of simulating
ciphertexts. Therefore, the simulator is also given the receiver’s
secret key. In contrast, in the honest receiver setting, the receiver is
assumed to behave honestly, and the simulator only has access to
public key material. For an authenticated key encapsulation
mechanism AKEM and a PPT simulator Sim, we define deniability
in the dishonest receiver setting via game (n, 𝑄Chl)-DR-Den and in

2025-02-02 19:15. Page 6 of 1–37.

Shadowfax: Combiners for Deniability

the honest receiver setting via game (n, 𝑄Chl)-HR-Den as depicted
in Figure 4. The advantage of an adversary A is then defined as

Adv(n,QChl)-DR-Den
AKEM,A,Sim

B����Pr[(n, 𝑄Chl)-DR-DenAKEM,Sim (A) ⇒ 1] − 1
2

����,
Adv(n,QChl)-HR-Den

AKEM,A,Sim
B����Pr[(n, 𝑄Chl)-HR-DenAKEM,Sim (A) ⇒ 1] − 1

2

����.
Games (n, 𝑄Chl)-DR-DenAKEM,Sim (A)

(n, 𝑄Chl)-HR-DenAKEM,Sim (A)
01 R, C ← ∅
02 for 𝑖 ∈ [𝑛]
03 (𝑠𝑘𝑖 , 𝑝𝑘𝑖) $← Gen

04 𝑏
$← {0, 1}

05 𝑏′ ← ARev,Chall (𝑝𝑘1, . . . , 𝑝𝑘𝑛)
06 if R ∩ C ≠ ∅ //HR-Den
07 abort //HR-Den
08 return J𝑏 = 𝑏′K

Oracle Chall(𝑠 ∈ [𝑛], 𝑟 ∈ [𝑛])
09 if 𝑠 = 𝑟 return ⊥
10 C ← C ∪ {𝑟 }
11 (𝑐, 𝑘) $← Enc(𝑠𝑘𝑠 , 𝑝𝑘𝑟)
12 if 𝑏 = 0
13 continue
14 if 𝑏 = 1
15 (𝑐, 𝑘) $← Sim(𝑝𝑘𝑠 , 𝑝𝑘𝑟 , 𝑠𝑘𝑟) //DR-Den
16 (𝑐, 𝑘) $← Sim(𝑝𝑘𝑠 , 𝑝𝑘𝑟) //HR-Den
17 return (𝑐, 𝑘)

Oracle Rev(𝑖 ∈ [𝑛])
18 R ← R ∪ {𝑖 }
19 return 𝑠𝑘𝑖

Figure 4: Games defining DR-Den and HR-Den for an AKEM

AKEM and a simulator Sim for adversary A where A makes

at most 𝑄Chl queries to Chall.

4 GENERIC CONSTRUCTION

In this section, we present a generic construction for a deniable
AKEM combiner derived from two deniable AKEMs, AKEM1 and
AKEM2, as illustrated Figure 5. This construction builds upon the
natural approach proposed in [GHP18]. Regarding security, our
results are as follows: For confidentiality (see Theorem 2) and
authenticity (see Theorem 3) the combiner requires only one of the
underlying AKEMs to ensure confidentiality or authenticity,
aligning with the expected behaviour of a combiner. However, for
deniability, we prove that our generic black-box construction
requires that both schemes be deniable. Specifically, Theorem 4
shows that if both schemes are dishonest receiver deniable, then the
combiner inherits this property. Similarly, Theorem 11 establishes
that the combiner maintains deniability in the honest receiver
setting if both underlying schemes are honest receiver deniable.

Lemma 1 (Correctness). If AKEM1 has correctness error 𝛿1 and
AKEM2 correctness error 𝛿2, then 𝛿AKEM[AKEM1,AKEM2,H] ≤ 𝛿1 + 𝛿2.

Theorem 2 (Confidentiality). For any Ins-CCA adversary A
against AKEM[AKEM1,AKEM2,H], depicted in Figure 5, there
exists an Ins-CCA adversary B1 against AKEM1, an Ins-CCA

adversary B2 against AKEM2, and a mPRF adversary C against H

such that

Adv(n,QEncQDec,QChl)-Ins-CCA
AKEM[AKEM1,AKEM2,H],A ≤ min

{
Adv(n,QEncQDec,QChl)-Ins-CCA

AKEM1,B1 ,

Adv(n,QEncQDec,QChl)-Ins-CCA
AKEM2,B2

}
+ Adv(QChl,QDec+QChl)-mPRF

H,C +𝑄Chl · 𝛿AKEM[AKEM1,AKEM2,H] .

The proof can be found in Appendix B.

Theorem 3 (Authenticity). For any Out-Aut adversary A against
AKEM[AKEM1,AKEM2,H], as depicted in Figure 5, there exists an
Out-Aut adversary B1 against AKEM1, an Out-Aut adversary B2
against AKEM2, an Out-CCA adversary C1 against AKEM1, an
Out-CCA adversary C2 against AKEM2, and amPRF adversaryD
against H such that

Adv(n,QEnc,QChl)-Out-Aut
AKEM[AKEM1,AKEM2,H],A ≤

min
{
Adv(n,QEnc,QChl)-Out-Aut

AKEM1,B1 + Adv(n,QEnc,QChl)-Out-CCA
AKEM1,C1 ,

Adv(n,QEnc,QChl)-Out-Aut
AKEM2,B2 + Adv(n,QEnc,QChl)-Out-CCA

AKEM2,C2

}
+ Adv(QEnc+QChl,QEnc+QChl)-mPRF

H,D +𝑄Chl · 𝛿AKEM[AKEM1,AKEM2,H] .

The proof can be found in Appendix B.

Theorem 4 (Dishonest Deniability). For all PPT simulators
Sim1, Sim2 there exists a PPT simulator Sim[Sim1, Sim2] such that
for any DR-Den adversary A against AKEM[AKEM1,AKEM2,H],
as depicted in Figure 5, there exists a DR-Den adversary B1 against
AKEM1 and a DR-Den adversary B2 against AKEM2 such that

Adv(n,QChl)-DR-Den
AKEM[AKEM1,AKEM2,H],Sim,A

≤ Adv(n,QChl)-DR-Den
AKEM1,Sim1,B1 + Adv

(n,QChl)-DR-Den
AKEM2,Sim2,B2 .

The proof can be found in Appendix B.

5 CONCRETE CONSTRUCTION: SHADOWFAX

In this section, we present a concrete construction for a deniable
AKEM combiner based on a non-interactive key exchange NIKE, a
key encapsulation mechanism KEM, a ring signature scheme RSig,
a symmetric encryption scheme SE, and two (multi-)keyed
functions H1 and H2, as shown in Figure 6. This approach
leverages well-known cryptographic primitives that can be
instantiated from concrete schemes, providing a practical
construction. Our security results are as follows: For both
confidentiality (see Theorem 6) and authenticity (see Theorem 7),
the combiner requires only one of the underlying AKEMs to
ensure the respective property, consistent with the generic
combiner. Confidentiality is provided by the security of either the
ephemeral NIKE or the KEM. Authenticity comes from the static
NIKE (providing implicit authentication) or the ring signature. For
dishonest receiver deniability (see Theorem 8) we only rely on
security advantages that can be instantiated with statistical
security arguments, specifically the correctness property of the
NIKE and the anonymity property of the ring signature. Finally,
we achieve honest receiver deniability (see Theorem 9) by relying
on just one of the underlying computational assumptions –
specifically, the security of either the ephemeral NIKE or the KEM
– to ensure deniability for the combiner. The main challenge arises

2025-02-02 19:15. Page 7 of 1–37.

Gen

01 (𝑠𝑘1, 𝑝𝑘1) $← AKEM1 .Gen

02 (𝑠𝑘2, 𝑝𝑘2) $← AKEM2 .Gen
03 𝑠𝑘 B (𝑠𝑘1, 𝑠𝑘2)
04 𝑝𝑘 B (𝑝𝑘1, 𝑝𝑘2)
05 return (𝑠𝑘, 𝑝𝑘)

Enc(𝑠𝑘𝑠 , 𝑝𝑘𝑟)
06 parse 𝑠𝑘𝑠 → (𝑠𝑘1, 𝑠𝑘2)
07 parse 𝑝𝑘𝑟 → (𝑝𝑘1, 𝑝𝑘2)
08 (𝑐1, 𝑘1) $← AKEM1 .Enc(𝑠𝑘1, 𝑝𝑘1)
09 (𝑐2, 𝑘2) $← AKEM2 .Enc(𝑠𝑘2, 𝑝𝑘2)
10 𝑐 ≔ (𝑐1, 𝑐2)
11 𝑘 B H(𝑘1, 𝑘2, (𝜇 (𝑠𝑘1), 𝜇 (𝑠𝑘2)), (𝑝𝑘1, 𝑝𝑘2), 𝑐)
12 return (𝑐, 𝑘)

Dec(𝑝𝑘𝑠 , 𝑠𝑘𝑟 , 𝑐)
13 parse 𝑝𝑘𝑠 → (𝑝𝑘1, 𝑝𝑘2)
14 parse 𝑠𝑘𝑟 → (𝑠𝑘1, 𝑠𝑘2)
15 parse 𝑐 → (𝑐1, 𝑐2)
16 𝑘1 ← AKEM1 .Dec(𝑝𝑘1, 𝑠𝑘1, 𝑐1)
17 𝑘2 ← AKEM2 .Dec(𝑝𝑘2, 𝑠𝑘2, 𝑐2)
18 𝑘 B H(𝑘1, 𝑘2, (𝑝𝑘1, 𝑝𝑘2), (𝜇 (𝑠𝑘1), 𝜇 (𝑠𝑘2)), 𝑐)
19 return 𝑘

Figure 5: Generic Construction of a deniable authenticated key encapsulation mechanism AKEM[AKEM1,AKEM2,H]

from the public verifiability of the ring signature. [GJK24]
addresses this issue by symmetrically encrypting the ring
signature using the KEM key. We implement a similar solution but
derive the key material from both the NIKE and the KEM. This
design mirrors our approach for confidentiality, ensuring that an
adversary would need to compromise both the NIKE and KEM in
order to verify the signature. Additionally H1 is used twice in the
construction to simplify the instantiation and used with a tag
“auth” for domain separation in the proof. The setup of NIKE and
RSig are implicitly done; for RSig by inputting maximum ring size
2.

Lemma 5 (Correctness). If NIKE has correctness error 𝛿NIKE, KEM
correctness error 𝛿KEM, and RSig correctness error 𝛿RSig and SE is
(perfectly) correct, then

𝛿
AKEM[NIKE,KEM,RSig,SE,H1,H2] ≤ 𝛿NIKE + 𝛿KEM + 𝛿RSig .

Theorem 6 (Confidentiality). For any Ins-CCA adversary A
against AKEM[NIKE,KEM,RSig, SE,H1,H2], as depicted in
Figure 6, there exists an CKS adversary B against NIKE, a PRF

adversary C against H1, an mPRF adversary D against H2, and an
IND-CCA adversary E against KEM such that

Adv(n,QEncQDec,QChl)-Ins-CCA
AKEM[NIKE,KEM,RSig,SE,H1,H2],A ≤ 𝑛𝑄Chl

·
(
min

{
Adv(QEnc+2,2QEnc+2QDec,2QEnc+2QEnc+1)-CKS

NIKE,B

+ Adv(1,1)-PRF
H1,C ,Adv(1,QDec,1)-IND-CCA

KEM,E

}
+ Adv(1,QDec+1)-mPRF

H2,D + (𝑄Enc +𝑄Dec) · 𝜂NIKE · 𝛾KEM

+𝑄Chl · 𝛿AKEM[NIKE,KEM,RSig,SE,H1,H2]
)
.

The proof can be found in Appendix C.

Theorem 7 (Authenticity). For any Out-Aut adversary A against
AKEM[NIKE,KEM,RSig, SE,H1,H2], as depicted in Figure 6, there
exists anCKS adversaryB againstNIKE, a PRF adversary C against
H1, an mPRF adversary D against H2, a UF-CRA1 adversary E
against RSig, and an IND-CCA adversary F against KEM, such

that

Adv(n,QEnc,QChl)-Out-Aut
AKEM[NIKE,KEM,RSig,SE,H1,H2],A

≤ min
{
Adv(QEnc+2QChl,QEnc+2QChl)-CKS

NIKE,B + Adv(n
2,n2)-PRF

H1,C ,

Adv(n,2,QEnc)-UF-CRA1
RSig,E + Adv(n,QEnc,QChl)-IND-CCA

KEM,F

+ 𝑄2
Enc · 𝛾KEM

}
+ Adv(QEnc+QChl,QEnc+QChl)-mPRF

H2,D
+𝑄Chl · 𝛿AKEM[NIKE,KEM,RSig,SE,H1,H2]
+𝑄Enc · (𝑄Enc +𝑄Chl) · 𝜂NIKE · 𝛾KEM .

The proof can be found in Appendix C.

Theorem 8 (Dishonest Deniability). There exists a simulator Sim
such that for any DR-Den adversary A against
AKEM[NIKE,KEM,RSig, SE,H1,H2], as depicted in Figure 6, there
exists aMC-Ano adversary B against RSig, such that

Adv(n,QChl)-DR-Den
AKEM[NIKE,KEM,RSig,SE,H1,H2],Sim,A

≤ Adv(n,2,QChl)-MC-Ano

RSig,B +𝑄Chl · 𝛿NIKE .

The proof can be found in Appendix C.

Theorem 9 (Honest Deniability). There exists a simulator Sim
such that for any HR-Den adversary A against
AKEM[NIKE,KEM,RSig, SE,H1,H2], as depicted in Figure 6, there
exists a CKS adversary B against NIKE, an IND-CPA adversary C
against KEM,mPRF adversaries D and E against H1 and H2, and
a IND-CPA adversary F against SE such that

Adv(n,QChl)-HR-Den

AKEM[NIKE,KEM,RSig,SE,H1,H2],Sim,A

≤ 2n2 ·𝑄Chl ·
(
min

{
Adv(2,0,1)-CKS

NIKE,B ,Adv(1,1)-IND-CPA
KEM,C

}
+ Adv(1,1)-mPRF

H1,D + Adv(1,1)-mPRF

H2,E + AdvIND-CPA
SE,F

)
.

The proof can be found in Section 5.1.

5.1 Proof of Theorem 9

Proof. Consider the sequence of games depicted in Figure 7 as
well as the construction of a simulator Sim.

Game G0. We start with a simplified game for dishonest
receiver deniability for AKEM[NIKE,KEM,RSig, SE,H1,H2]
considering only one challenge query and two users. Hence, it

2025-02-02 19:15. Page 8 of 1–37.

Shadowfax: Combiners for Deniability

Gen

01 (𝑛𝑠𝑘,𝑛𝑝𝑘) $← NIKE.Gen

02 (𝑘𝑠𝑘, 𝑘𝑝𝑘) $← KEM.Gen

03 (𝑠𝑠𝑘, 𝑠𝑝𝑘) $← RSig.Gen

04 𝑠𝑘 B (𝑛𝑠𝑘, 𝑘𝑠𝑘, 𝑠𝑠𝑘)
05 𝑝𝑘 B (𝑛𝑝𝑘, 𝑘𝑝𝑘, 𝑠𝑝𝑘)
06 return (𝑠𝑘, 𝑝𝑘)

Enc(𝑠𝑘𝑠 , 𝑝𝑘𝑟)
07 parse 𝑠𝑘𝑠 → (𝑛𝑠𝑘𝑠 , 𝑘𝑠𝑘𝑠 , 𝑠𝑠𝑘𝑠)
08 parse 𝑝𝑘𝑟 → (𝑛𝑝𝑘𝑟 , 𝑘𝑝𝑘𝑟 , 𝑠𝑝𝑘𝑟)
09 (𝑛𝑠𝑘𝑒 , 𝑛𝑝𝑘𝑒) $← NIKE.Gen

10 𝑛𝑘 ′ ← NIKE.Sdk(𝑛𝑠𝑘𝑠 , 𝑛𝑝𝑘𝑟)
11 𝑛𝑘 B H1 (𝑛𝑘 ′, “auth”)
12 𝑛𝑘1 ∥𝑛𝑘2 ← NIKE.Sdk(𝑛𝑠𝑘𝑒 , 𝑛𝑝𝑘𝑟)
13 (𝑘𝑐𝑡, 𝑘𝑘1 ∥𝑘𝑘2) $← KEM.Enc(𝑘𝑝𝑘𝑟)
14 𝑚 ← (𝑘𝑐𝑡, 𝑘𝑝𝑘𝑟)
15 𝜎 ← RSig.Sgn(𝑠𝑠𝑘𝑠 , {𝜇 (𝑠𝑠𝑘𝑠), 𝑠𝑝𝑘𝑟 },𝑚)
16 𝑘 ′ B H1 (𝑛𝑘1, 𝑘𝑘1)
17 𝑠𝑐𝑡 B SE.Enc(𝑘 ′, 𝜎)
18 𝑐 ≔ (𝑛𝑝𝑘𝑒 , 𝑘𝑐𝑡, 𝑠𝑐𝑡)
19 𝑘 B H2 (𝑛𝑘,𝑛𝑘2, 𝑘𝑘2, 𝑐, 𝜇 (𝑠𝑘𝑠), 𝑝𝑘𝑟)
20 return (𝑐, 𝑘)

Dec(𝑝𝑘𝑠 , 𝑠𝑘𝑟 , 𝑐)
21 parse 𝑝𝑘𝑠 → (𝑛𝑝𝑘𝑠 , 𝑘𝑝𝑘𝑠 , 𝑠𝑝𝑘𝑠)
22 parse 𝑠𝑘𝑟 → (𝑛𝑠𝑘𝑟 , 𝑘𝑠𝑘𝑟 , 𝑠𝑠𝑘𝑟)
23 parse 𝑐 → (𝑛𝑝𝑘𝑒 , 𝑘𝑐𝑡, 𝑠𝑐𝑡)
24 𝑛𝑘 ′ ← NIKE.Sdk(𝑛𝑠𝑘𝑟 , 𝑛𝑝𝑘𝑠)
25 𝑛𝑘 B H1 (𝑛𝑘 ′, “auth”)
26 𝑛𝑘1 ∥𝑛𝑘2 ← NIKE.Sdk(𝑛𝑠𝑘𝑟 , 𝑛𝑝𝑘𝑒)
27 𝑘𝑘1 ∥𝑘𝑘2 ← KEM.Dec(𝑘𝑠𝑘𝑟 , 𝑘𝑐𝑡)
28 𝑘 ′ B H1 (𝑛𝑘1, 𝑘𝑘1)
29 𝜎 B SE.Dec(𝑘 ′, 𝑠𝑐𝑡)
30 𝑚 ← (𝑘𝑐𝑡, 𝜇 (𝑘𝑠𝑘𝑟))
31 if RSig.Ver(𝜎, 𝜌 = {𝑠𝑝𝑘𝑠 , 𝜇 (𝑠𝑠𝑘𝑟) },𝑚) ≠ 1
32 return ⊥
33 𝑘 B H2 (𝑛𝑘,𝑛𝑘2, 𝑘𝑘2, 𝑐, 𝑝𝑘𝑠 , 𝜇 (𝑠𝑘𝑟))
34 return 𝑘

Figure 6: Concrete construction of a deniable AKEM AKEM[NIKE,KEM,RSig, SE,H1,H2]. By “∥” we denote that an output is split

into two equal parts.

holds����Pr[GA0 ⇒ 1] − 1
2

���� = Adv(2,1)-HR-Den

AKEM[NIKE,KEM,RSig,SE,H1,H2],Sim,A .

G0 − G5

01 𝑖★
$← {0, 1} //G1 − G5

02 R, C ← ∅
03 for 𝑖 ∈ {0, 1}
04 (𝑛𝑠𝑘𝑖 , 𝑛𝑝𝑘𝑖) $← NIKE.Gen

05 (𝑘𝑠𝑘𝑖 , 𝑘𝑝𝑘𝑖) $← KEM.Gen

06 (𝑠𝑠𝑘𝑖 , 𝑠𝑝𝑘𝑖) $← RSig.Gen

07 𝑠𝑘𝑖 B (𝑛𝑠𝑘𝑖 , 𝑘𝑠𝑘𝑖 , 𝑠𝑠𝑘𝑖)
08 𝑝𝑘𝑖 B (𝑛𝑝𝑘𝑖 , 𝑘𝑝𝑘𝑖 , 𝑠𝑝𝑘𝑖)
09 𝑏

$← {0, 1}
10 𝑏′ ← ARev,Chall (𝑝𝑘0, 𝑝𝑘1)
11 if R ∩ C ≠ ∅
12 abort

13 return J𝑏 = 𝑏′K

Rev(𝑖 ∈ {0, 1})
14 if 𝑖 = 𝑖★ //G1 − G5
15 abort //G1 − G5
16 R ← R ∪ {𝑖 }
17 return 𝑠𝑘𝑖

Sim(𝑝𝑘𝑠 , 𝑝𝑘𝑟)
18 (𝑛𝑠𝑘𝑒 , 𝑛𝑝𝑘𝑒) $← NIKE.Gen

19 (𝑘𝑐𝑡, 𝑘𝑘) $← KEM.Enc(𝑘𝑝𝑘𝑟)
20 𝑘 ′ $← KH1
21 𝑠𝑐𝑡 B SE.Enc(𝑘 ′, 0)
22 𝑐 ≔ (𝑛𝑝𝑘𝑒 , 𝑘𝑐𝑡, 𝑠𝑐𝑡)
23 𝑘

$← KH2
24 return (𝑐, 𝑘)

Oracle Chall(𝑠 ∈ {0, 1}, 𝑟 ∈ {0, 1}) // one query
25 if 𝑠 = 𝑟 return ⊥
26 if 𝑟 ≠ 𝑖★ //G1 − G5
27 abort //G1 − G5
28 C ← C ∪ {𝑟 }
29 (𝑛𝑠𝑘𝑒 , 𝑛𝑝𝑘𝑒) $← NIKE.Gen

30 𝑛𝑘 ′ ← NIKE.Sdk(𝑛𝑠𝑘𝑠 , 𝑛𝑝𝑘𝑟)
31 𝑛𝑘 B H1 (𝑛𝑘 ′, “auth”)
32 𝑛𝑘1 ∥𝑛𝑘2 ← NIKE.Sdk(𝑛𝑠𝑘𝑒 , 𝑛𝑝𝑘𝑟)
33 𝑛𝑘1 ∥𝑛𝑘2 $← KNIKE //G2.1 − G5
34 (𝑘𝑐𝑡, 𝑘𝑘1 ∥𝑘𝑘2) $← KEM.Enc(𝑘𝑝𝑘𝑟)
35 𝑘𝑘1 ∥𝑘𝑘2 $← KKEM //G2.2 − G5
36 𝑚 ← (𝑘𝑐𝑡, 𝑘𝑝𝑘𝑟)
37 𝜎 ← RSig.Sgn(𝑠𝑠𝑘𝑠 , {𝑠𝑝𝑘𝑠 , 𝑠𝑝𝑘𝑟 },𝑚)
38 𝑘 ′ B H1 (𝑛𝑘1, 𝑘𝑘1)
39 𝑘 ′ $← KH1 //G3 − G5
40 𝜎 B 0 //G5
41 𝑠𝑐𝑡 B SE.Enc(𝑘 ′, 𝜎)
42 𝑐 ≔ (𝑛𝑝𝑘𝑒 , 𝑘𝑐𝑡, 𝑠𝑐𝑡)
43 𝑘 B H2 (𝑛𝑘,𝑛𝑘2, 𝑘𝑘2, 𝑐, 𝑝𝑘𝑠 , 𝑝𝑘𝑟)
44 𝑘

$← KH2 //G4 − G5
45 if 𝑏 = 1
46 (𝑐, 𝑘) $← Sim(𝑝𝑘𝑠 , 𝑝𝑘𝑟)
47 return (𝑐, 𝑘)

Figure 7: Games G0 − G5 for the proof of Theorem 9.

Game G1. This game is the same as G0 except that the
experiment chooses a random user in the beginning of the game
and aborts if the reveal oracle is queried for that user or the
challenge oracle is queried for that user as a receiver.

Claim 1:����Pr[GA0 ⇒ 1] − 1
2

���� ≤ 2 ·
����Pr[GA1 ⇒ 1] − 1

2

����.
Proof. An adversary with a non-zero advantage has to query

the challenge oracle because otherwise there is no strategy in
outputting the correct bit that is better than guessing. For querying
the challenge oracle and still fulfilling the winning condition
(R ∩ C ≠ ∅), the receiver’s key cannot be revealed. The probability
that the challenged receiver is guessed correctly is 1

2 . ■

Remark. We define the following two hybrids (G2.1 and G2.2) in
parallel which means that we fork the sequence and indicate the
parallel hybrids via a sub index. After the fork we can apply the
same proof to obtain a common hybrid again (G3). This allows us
to obtain a minimum when collecting the overall bound in the end
without presenting two separate proofs.

Game G2.1. This game is the same as G1 except that the second
NIKE shared key, 𝑛𝑘1∥𝑛𝑘2, is replaced by a uniformly random value
from the NIKE key space.

Claim 2: There exists an adversary B against CKS security of
NIKE such that���Pr [GA1 ⇒ 1

]
− Pr

[
G
A
2.1 ⇒ 1

] ��� ≤ Adv(2,0,1)-CKS
NIKE,B .

Proof. Adversary B is formally constructed in Figure 8. Note
that the shared key 𝑛𝑘′ in the challenge oracle can be computed by
the experiment itself since the sender key is known. Further, there
is no need for reveal corrupt queries which allows for a weaker
security requirement for the underlying NIKE, namely CKS security
with honest key registration or passive secure NIKE.

■

2025-02-02 19:15. Page 9 of 1–37.

BRevCor,Test (𝑛𝑝𝑘★1 , 𝑛𝑝𝑘
★
2)

01 𝑖★
$← {0, 1}

02 R, C ← ∅
03 𝑛𝑝𝑘𝑖★ B 𝑛𝑝𝑘★1
04 𝑛𝑠𝑘𝑖★ B ⊥
05 (𝑛𝑠𝑘1−𝑖★, 𝑛𝑝𝑘1−𝑖★)

$← NIKE.Gen

06 for 𝑖 ∈ {0, 1}
07 (𝑘𝑠𝑘𝑖 , 𝑘𝑝𝑘𝑖) $← KEM.Gen

08 (𝑠𝑠𝑘𝑖 , 𝑠𝑝𝑘𝑖) $← RSig.Gen

09 𝑠𝑘𝑖 B (𝑛𝑠𝑘𝑖 , 𝑘𝑠𝑘𝑖 , 𝑠𝑠𝑘𝑖)
10 𝑝𝑘𝑖 B (𝑛𝑝𝑘𝑖 , 𝑘𝑝𝑘𝑖 , 𝑠𝑝𝑘𝑖)
11 𝑏

$← {0, 1}
12 𝑏′ ← ARev,Chall (𝑝𝑘0, 𝑝𝑘1)
13 if R ∩ C ≠ ∅
14 abort

15 return J𝑏 = 𝑏′K

Rev(𝑖 ∈ {0, 1})
16 if 𝑖 = 𝑖★

17 abort

18 R ← R ∪ {𝑖 }
19 return 𝑠𝑘𝑖

Oracle Chall(𝑠 ∈ {0, 1}, 𝑟 ∈ {0, 1}) // one query
20 if 𝑟 ≠ 𝑖★

21 abort

22 C ← C ∪ {𝑟 }
23 𝑛𝑝𝑘𝑒 B 𝑛𝑝𝑘★2 // embed second honest key
24 𝑛𝑘 ′ ← NIKE.Sdk(𝑛𝑠𝑘1−𝑖★, 𝑛𝑝𝑘𝑖★) // simulateable due to abort
25 𝑛𝑘 B H1 (𝑛𝑘 ′, “auth”)
26 𝑛𝑘1 ∥𝑛𝑘2 $← Test(2, 1) // test query
27 (𝑘𝑐𝑡, 𝑘𝑘1 ∥𝑘𝑘2) $← KEM.Enc(𝑘𝑝𝑘𝑟)
28 𝑚 ← (𝑘𝑐𝑡, 𝑘𝑝𝑘𝑟)
29 𝜎 ← RSig.Sgn(𝑠𝑠𝑘𝑠 , {𝑠𝑝𝑘𝑠 , 𝑠𝑝𝑘𝑟 },𝑚)
30 𝑘 ′ B H1 (𝑛𝑘1, 𝑘𝑘1)
31 𝑠𝑐𝑡 B SE.Enc(𝑘 ′, 𝜎)
32 𝑐 ≔ (𝑛𝑝𝑘𝑒 , 𝑘𝑐𝑡, 𝑠𝑐𝑡)
33 𝑘 B H2 (𝑛𝑘,𝑛𝑘2, 𝑘𝑘2, 𝑐, 𝑝𝑘𝑠 , 𝑝𝑘𝑟)
34 if 𝑏 = 1
35 (𝑐, 𝑘) $← Sim(𝑝𝑘𝑠 , 𝑝𝑘𝑟)
36 return (𝑐, 𝑘)

Figure 8: Adversary B against CKS security of NIKE, having

access to oracles RevCor and Test, simulating Game G1/G2.1
for adversary A from the proof of Theorem 9.

Game G2.2. This game is the same as G1 except that the KEM
key, 𝑘𝑘1∥𝑘𝑘2, is replaced by a uniformly random value from the
KEM key space.

Claim 3: There exists an adversary C against IND-CPA security
of KEM such that���Pr [GA1 ⇒ 1

]
− Pr

[
G
A
2.2 ⇒ 1

] ��� ≤ Adv(1,1)-IND-CPA
KEM,C .

Proof. The claim can be proved straightforward by querying
the challenge oracle of the KEM for each call to the AKEM challenge
oracle Chall. ■

Game G3. This game is the same as G2.1/G2.2 except that the
output of H1 is replaced by a uniformly random value of the output
range KH1 .

Claim 4: There exists an adversary D against mPRF security of
H1 such that for 𝑖 ∈ {1, 2}���Pr [GA2.𝑖 ⇒ 1

]
− Pr

[
G
A
3 ⇒ 1

] ��� ≤ Adv(1,1)-mPRF

H1,D .

Proof. The proof can be done straightforward by first proving
the result for keying H1 on the first input and then with the same
strategy for the second input. Since we only allow for one challenge
query, we need one PRF key and one evaluation query. ■

Game G4. This game is the same as G3 (based on its possible
two predecessors) except that the output of H2 is replaced by a
uniformly random value of the output range K .

Claim 5: There exists an adversary E against mPRF security of
H2 such that���Pr [GA3 ⇒ 1

]
− Pr

[
G
A
4 ⇒ 1

] ��� ≤ Adv(1,1)-mPRF

H2,E .

Proof. The claim can be proved in the same way as for the
previous game. ■

Game G5. This game is the same as G4 except that the signature
𝜎 is replaced by 0.

Claim 6: There exists an adversary F against IND-CPA security
of SE such that���Pr [GA4 ⇒ 1

]
− Pr

[
G
A
5 ⇒ 1

] ��� ≤ AdvIND-CPA
SE,F .

Proof. Adversary F can simulate the whole game by
generating the secret keys themselves. Due to the changes in G3
the symmetric key is uniformly chosen and independent of the rest
of the game. Hence, the reduction can query their own IND-CPA

challenge oracle on the original 𝜎 and 0. In case 𝑏 = 0, F simulates
G4; otherwise they simulate G5. Since there is only one challenge
query, the claim follows. ■

Since the output distribution of the challenge oracle in case 𝑏 = 0
is the same as for the simulator the resulting game is independent
of the challenge bit and thus it holds

Pr[GA5 ⇒ 1] = 1
2
.

To obtain a security for the multi-user multi-challenge setting
we can apply a hybrid argument which yields the following upper
bound and thus the theorem statement.

Adv(n,QChl)-HR-Den

AKEM,Sim,A ≤ 𝑛2 ·𝑄Chl · Adv(2,1)-HR-Den

AKEM,Sim,A′ .

■

6 INSTANTIATION

In this paper, we first implement the Gandalf ring signature
scheme proposed by [GJK24] with some modifications to the
trapdoor generation procedure Mitaka [EFG+22] to ensure
functionality. For the post-quantum AKEM [GJK24, Fig. 10], the
authors chose the NTRU-A KEM by [DHK+23]. We replace their
choice by bat_257_512 [FKPY22] and integrate the
implementation provided by [FKPY22] to reduce the public key
and ciphertext sizes. As for the hybrid AKEM Shadowfax, we
integrate a Curve25519 implementation from [DT24] and the
bat_257_512 by [FKPY22] with our implementation of Gandalf.
Table 1 summarises the instantiations chosen for each of the
primitives of the PQ-AKEM by [GJK24] and the hybrid AKEM
Shadowfax. All our source code is publicly available on the
GitHub repository Shadowfax.

2025-02-02 19:15. Page 10 of 1–37.

https://github.com/vincentvbh/shadowfax

Shadowfax: Combiners for Deniability

Table 1: Sizes of different deniable AKEMs.

Scheme

Size (in bytes)

Implementation

𝑝𝑘 𝑐 𝜎

PQ-AKEM [GJK24]
Gandalf 896 — 1 276 ✓ (This work)
NTRU-A 768 768 — ✗

Total 1 664 2 044 ✗

PQ-AKEM [GJK24]
Gandalf 896 — 1 276 ✓ (This work)

bat_257_512 521 473 — ✓ [FKPY22]
Total 1 417 1 749 ✓ (This work)

Shadowfax [Figure 6]
Curve25519 32 32 — ✓ [DT24]
Gandalf 896 — 1 276 ✓ (This work)

bat_257_512 521 473 — ✓ [FKPY22]
Total 1 449 1 781 ✓ (This work)

The signature size of Gandalf is 40-byte larger than the original proposal
by [GJK24] due to the difference in compression techniques. The authors
of [GJK24] based their claims on the compression technique from [ETWY22,
EFG+22], while we deploy the compression technique from the round 3
submission package of Falcon.

Optimisation Goals. We aim for portability and the compactness
of public key and ciphertext sizes in our instantiations of
post-quantum and hybrid AKEMs. Since the rapid development of
Post-Quantum Cryptography Standardisation by the National
Institute of Standards and Technology, there are rich C reference
implementations for several post-quantum cryptosystems We
follow a similar paradigm and implement the AKEMs with the C
programming language. Since C is a high-level programming
language, our instantiations are portable. Platform-specific
optimisations on popular architectures like Armv8-A and x86-64
with AVX2/AVX512 are left as future work.

6.1 Basic Constructs

Hash. Our instantiations use four distinct hash functions. The first
is BLAKE2b [SA15] which is shipped with our choice of KEM. The
second is shake128 [KjCP16] used internally in our choice of ring
signature. Additionally, SHA3-512 is used in the Non-Interactive
Key Exchange (NIKE) construction, while SHA3-256 is used for the
hash functions H1 and H2 in the concrete construction
(see Figure 6). Specifically, H1 is implemented as the hmac
HMAC-SHA3-256 derived from SHA3-256. As for H2, we implement
it with three HMAC-SHA3-256 calls as follows:

H2 (𝑛𝑘, 𝑛𝑘2, 𝑘𝑘2, 𝑐, 𝜇 (𝑠𝑘𝑠), 𝑝𝑘𝑟) =
HMAC-SHA3-256

(
𝑛𝑘𝑛𝑘2, [rest]𝑘𝑘2

)
where 𝑛𝑘𝑛𝑘2 = HMAC-SHA3-256 (𝑛𝑘, 𝑛𝑘2),
[rest]𝑘𝑘2 = HMAC-SHA3-256 (𝑘𝑘2, [rest]), and [rest] is the
concatenation of the rest of the inputs. Note that our instantiations
of H1 and H2 align with what we actually proved in Theorem 6.
HMAC has been proven to be a dual-PRF [BBGS23] and the
consecutive calls as described above instantiate a multi-PRF.
Symmetric Encryption. We choose the CTR mode of AES-128 for
the symmetric encryption.
NTRU Solver. In our choices of KEM and ring signature, we have
to solve for polynomials 𝐹,𝐺 ∈ Z[𝑋]

/〈
𝑋𝑁 + 1

〉
satisfying the

following NTRU equation: 𝑔 · 𝐹 − 𝑓 · 𝐺 = 𝑞 mod
(
𝑋𝑁 + 1

)
for

a power-of-two 𝑁 , a positive integer 𝑞, and polynomials 𝑔, 𝑓 ∈
Z𝑞 [𝑋]

/〈
𝑋𝑁 + 1

〉
with small coefficients. We integrate the latest

NTRU solver by [Por23] to our KEM and ring signature.
NIKE. For the NIKE, we choose the Curve25519
Diffie-Hellman [Ber06] based on the ref10 implementation of
crypto_scalarmult/curve25519 from
supercop-20240716 [DT24] and SHA3-512. After computing the
raw Diffie-Hellman shared secret, we pass it through SHA3-512 to
derive the shared key for the NIKE.
KEM. We choose the bat_257_512 parameter set from
BAT [FKPY22] for the KEM. BAT is a CCA secure KEM based on
NTRU with a GGH-like [GGH97] internal encryption and achieves
the smallest ciphertext size among the post-quantum KEMs to the
best of our knowledge. We integrate the latest NTRU solver
by [Por23], enforce the uses of BLAKE2b in encapsulation and
decapsulation, and simplify the code base with the C preprocessor.
The rest of the KEM remains the same as the reference
implementation.

6.1.1 Ring Signature. We choose Gandalf [GJK24] for the ring
signature. According to [GJK24], Gandalf achieves the smallest
signature size for the ring of size 2, which suits well for constructing
our AKEM. For the key generation of Gandalf, we follow the
Antrag trapdoor generation [ENS+23] and integrate the latest
NTRU solver by [Por23]. For the signature generation, we choose
the Mitaka [EFG+22] with hybrid sampler [Pre15] and outline
below the necessary changes for achieving a compact signature
size.
Modifications of Mitaka implementation. In the reference
implementation of Mitaka released in [EFG+22], the signatures
are stored as double-precision floating-point numbers with
non-zero fractional parts, as opposed to integers. Therefore,
existing compression techniques, which are defined over integers,
cannot be straightforwardly deployed. Furthermore, there is no
implementation for the latest compression technique [ETWY22]
required by [EFG+22] and later used in [GJK24]. Instead, we pull
everything back to integers whenever the remaining computation
can be defined entirely over Z and plug in the signature
compression from the round 3 submission package of
Falcon [PFH+20]. This results in a 40-byte increase of signature
size compared to the original Gandalf by [GJK24]. In the
reference implementation of Mitaka, the program proceeds with
double-precision floating-point arithmetic entirely, verifies the
validity of signatures with double-precision floating-point
arithmetic, and skips the signature compression. Finally, we also
tweak the output of the sampler so it aligns with the definition of
the trapdoor sampler. In the description of theMitatka sampler,
the output of the trapdoor sampler is negated and cannot be used
directly in the ring signature scheme as samples are supposed to
be indistinguishable between parties. Therefore we negate the
output of the sampler.

6.2 AKEMs

There are three AKEMs implemented in this paper: the
pre-quantum one, the post-quantum one, and the hybrid one. For

2025-02-02 19:15. Page 11 of 1–37.

Table 2: Comparison of different AKEMs along with their security notions and whether they rely on pre-quantum (pre-Q) or

post-quantum (post-Q) assumptions.

Scheme (variant) Confidentiality Authenticity Deniability

Assumption Size (in bytes)

pre-Q post-Q 𝑐 𝑝𝑘

DH-AKEM (X25519) [ABH+21, Lst. 10] Ins-CCA Out-Aut DR-Den∗ ✓ ✗ 32 32
EtStH-AKEM (BAT + Antrag) [AJKL23, Lst. 18] Ins-CCA Out-Aut — ✗ ✓ 1 119 1 417
NIKE-AKEM (Swoosh) [AJKL23, Lst. 19] Ins-CCA Out-Aut DR-Den∗ ✗ ✓ > 221 184 > 221 184
FrodoKEX+ [CHN+24, Fig. 12] IND-1BatchCCA UNF-1KCA DR-Den ✗ ✓ 72 21 300
PQ-AKEM (NTRU-A + Gandalf) [GJK24, Fig. 10]

Ins-CCA Out-Aut HR-Den & DR-Den ✗ ✓
2 044 1 664

PQ-AKEM (BAT + Gandalf) [GJK24, Fig. 10] 1 749 1 417
Shadowfax (X25519 + BAT + DualRing) [This work, Fig. 6]

Ins-CCA Out-Aut HR-Den & DR-Den ✓ ✓
5 093 3 393

Shadowfax (X25519 + BAT + Gandalf) [This work, Fig. 6] 1 781 1 449
Deniability properties marked with a “∗” have not been formally proven in the respective works.
The Swoosh [GdKQ+24] size refers to a passively secure NIKE. For an active secure NIKE a NIZK is needed and the size of a proof must be added to the NIKE public key.
DualRing [YEL+21] is included in the table because the parameters of Gandalf would need to be slightly increased for stronger concrete anonymity (see [GJK24] for further details).

the pre-quantum AKEM, we implement the DH-AKEM
by [ABH+21]. For the post-quantum AKEM, we implement the
AKEM by [GJK24] with the CCA-secure KEM
bat_257_512 [FKPY22] and the ring signature Gandalf [GJK24].
Compared to the original proposal by [GJK24] with
CCA-NTRU-A [DHK+23], our post-quantum AKEM with
bat_257_512 achieves smaller public key and ciphertext sizes. For
the hybrid AKEM Shadowfax, we choose X25519 for the NIKE,
bat_257_512 for the KEM, and Gandalf for the ring signature.
We compare the security notions (confidentiality, authenticity, and
deniability), pre-/post-quantum assumption, public key size, and
ciphertext size to other AKEMs in Table 2.

7 PERFORMANCE

Table 3: Cycle counts (in thousands) of different

authenticated key encapsulation mechanisms AKEM

and ring signature schemes RSig run on a Firestorm core of

an Apple M1 Pro running at 3GHz.

AKEM Unit Gen Enc Dec

DH-AKEM kcc 227 679 457
[ABH+21, Lst. 10] ms 0.08 0.23 0.15
PQ-AKEM kcc 25 420 1 256 349
[GJK24, Fig. 10] ms 8.47 0.42 0.12
Shadowfax kcc 25 655 1 936 796
[Fig. 6] ms 8.55 0.65 0.27

RSig Unit Gen Sgn Ver

Gandalf kcc 13 423 1 113 100
[GJK24, Fig. 5] ms 4.47 0.37 0.03
Raptor kcc 71 420 7 980 505
[LAZ19, Zha20] ms 23.81 2.66 0.17
For the post-quantum AKEM (PQ-AKEM) from [GJK24], we
instantiate the underlying KEM with bat_257_512.

Benchmarking Environment. We benchmark our portable C
implementations on the Firestorm core of an Apple M1 Pro with
the operating system macOS Sonoma 14.6.1. Firestorm is the “big”
core of the “big.LITTLE” computing architecture prevalent in
Arm-based architecture aiming for application uses. It runs at the
frequency of 3GHz and comes with a dedicated cryptographic
extension. As we aim for portable C implementations, we do not

use the cryptographic extension. All programs are compiled with
GCC 13.3.0 with the optimisation flag -O3.

Cycle counts. Table 3 summarises the cycle counts of the C
implementations of DH-AKEM, PQ-AKEM, and Shadowfax, and
Table 4 profiles the dominating operations in Shadowfax. For the
key generations in PQ-AKEM and Shadowfax, the cycle count is
dominated by two calls to the NTRU solver by [Por23]. For the
encapsulation, the cycle count is dominated by the signing of
Gandalf. As for the decapsulation, the cycle count is dominated
by the NIKE in Shadowfax and by bat_257_512 in PQ-AKEM.
For completeness, we also give the cycle counts of our C
implementation of Gandalf and the C implementation of Raptor
by the authors of [LAZ19]. We stress that the C implementation of
Raptor by [LAZ19] is based on an earlier implementation of
Falcon, which had been significantly refactored after the
publication of [LAZ19].

Conclusion. The dominant cost in terms of ciphertext size arises
from the post-quantum ring signature, followed by the
post-quantum KEM ciphertext. Public key sizes are less of a
concern, and the overhead of the pre-quantum AKEM is minimal.
Notably, this implies that with a post-quantum deniable AKEM,
the cost of constructing a combiner with strong security properties
is virtually negligible. In conclusion, whenever a post-quantum
AKEM is needed (regardless of whether it needs to be deniable),
incorporating a combiner should always be considered.

2025-02-02 19:15. Page 12 of 1–37.

Shadowfax: Combiners for Deniability

Table 4: Cycle counts of our portable C implementation of

Shadowfax [Fig. 6].

AKEM.Gen

NIKE.Gen 227k 0.08 ms 0.88%
KEM.Gen 12 013k 4.00 ms 46.82%
RSig.Gen 13 334k 4.44 ms 51.97%
Hash, SE, and others — — —
Total 25 655k 8.55 ms 100%

AKEM.Enc

NIKE.Gen 227k 0.08 ms 11.71%
NIKE.Sdk(×2) 454k 0.15 ms 23.44%
KEM.Enc 57k 0.02 ms 2.94%
RSig.Sgn 1 103k 0.37 ms 56.98%
Hash, SE, and others — — 4.92%
Total 1 936k 0.65 ms 100%

AKEM.Dec

NIKE.Sdk(×2) 454k 0.15 ms 57.03%
KEM.Dec 230k 0.08 ms 28.97%
RSig.Ver 85k 0.03 ms 10.63%
Hash, SE, and others — — 3.37%
Total 796k 0.27 ms 100%
Cycle counts of hash functions (H1 andH2) and symmetric encryption
(SE) are omitted since they are not the dominating operations.

ACKNOWLEDGMENTS

We thank the anonymous USENIX reviewers and Daniel Collins
for their helpful feedback. Phillip Gajland was supported by the
Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy – EXC 2092
CASA - 390781972. Jonas Janneck was supported by the European
Union (ERC AdG REWORC - 101054911).

REFERENCES

[AAB+22] Carlos Aguilar-Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux,
Olivier Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Edoardo
Persichetti, Gilles Zémor, Jurjen Bos, Arnaud Dion, Jerome Lacan, Jean-
Marc Robert, and Pascal Veron. HQC. Technical report, National Institute
of Standards and Technology, 2022. available at https://csrc.nist.gov/
Projects/post-quantum-cryptography/round-4-submissions.

[ABH+21] Joël Alwen, Bruno Blanchet, Eduard Hauck, Eike Kiltz, Benjamin
Lipp, and Doreen Riepel. Analysing the HPKE standard. In Anne
Canteaut and François-Xavier Standaert, editors, Advances in Cryptology
– EUROCRYPT 2021, Part I, volume 12696 of Lecture Notes in Computer
Science, pages 87–116, Zagreb, Croatia, October 17–21, 2021. Springer,
Cham, Switzerland. doi:10.1007/978-3-030-77870-5_4.

[AJKL23] Joël Alwen, Jonas Janneck, Eike Kiltz, and Benjamin Lipp. The pre-shared
key modes of HPKE. In Jian Guo and Ron Steinfeld, editors, Advances in
Cryptology – ASIACRYPT 2023, Part VI, volume 14443 of Lecture Notes in
Computer Science, pages 329–360, Guangzhou, China, December 4–8, 2023.
Springer, Singapore, Singapore. doi:10.1007/978-981-99-8736-8_11.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended
abstract). In 28th Annual ACM Symposium on Theory of Computing,
pages 99–108, Philadephia, PA, USA, May 22–24, 1996. ACM Press. doi:
10.1145/237814.237838.

[ANS23] ANSSI. Anssi views on the post-quantum cryptography transition (2023
follow up), 2023. URL: https://cyber.gouv.fr/sites/default/files/document/
follow_up_position_paper_on_post_quantum_cryptography.pdf.

[App24] Apple. iMessage with PQ3: The new state of the art in quantum-secure
messaging at scale, February 2024. URL: https://security.apple.com/blog/
imessage-pq3/.

[BBC16] BBC. 18 revelations from wikileaks’ hacked clinton emails. BBC, 2016.
URL: https://www.bbc.com/news/world-us-canada-37639370.

[BBC+21] Gustavo Banegas, Daniel J. Bernstein, Fabio Campos, Tung Chou, Tanja
Lange, Michael Meyer, Benjamin Smith, and Jana Sotáková. CTIDH: faster
constant-time CSIDH. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2021(4):351–387, 2021. URL: https://tches.iacr.org/

index.php/TCHES/article/view/9069, doi:10.46586/tches.v2021.i4.
351-387.

[BBCT22] Daniel J. Bernstein, Billy Bob Brumley, Ming-Shing Chen, and Nicola
Tuveri. OpenSSLNTRU: Faster post-quantum TLS key exchange. In Kevin
R. B. Butler and Kurt Thomas, editors, USENIX Security 2022: 31st USENIX
Security Symposium, pages 845–862, Boston, MA, USA, August 10–12,
2022. USENIX Association.

[BBGS23] Matilda Backendal, Mihir Bellare, Felix Günther, and Matteo Scarlata.
When messages are keys: Is HMAC a dual-PRF? In Helena Handschuh
and Anna Lysyanskaya, editors, Advances in Cryptology – CRYPTO 2023,
Part III, volume 14083 of Lecture Notes in Computer Science, pages 661–
693, Santa Barbara, CA, USA, August 20–24, 2023. Springer, Cham,
Switzerland. doi:10.1007/978-3-031-38548-3_22.

[BBLW22] Richard Barnes, Karthikeyan Bhargavan, Benjamin Lipp, and
Christopher A. Wood. Hybrid Public Key Encryption. RFC 9180,
February 2022. URL: https://www.rfc-editor.org/info/rfc9180,
doi:10.17487/RFC9180.

[BBR+23] Richard Barnes, Benjamin Beurdouche, Raphael Robert, Jon Millican,
Emad Omara, and Katriel Cohn-Gordon. The Messaging Layer Security
(MLS) Protocol. RFC 9420, July 2023. URL: https://www.rfc-editor.org/
info/rfc9420, doi:10.17487/RFC9420.

[BCD+24] Manuel Barbosa, Deirdre Connolly, João Diogo Duarte, Aaron Kaiser,
Peter Schwabe, Karoline Varner, and Bas Westerbaan. X-wing. IACR
Communications in Cryptology (CiC), 1(1):21, 2024. doi:10.62056/
a3qj89n4e.

[BCNS15] Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. Post-
quantum key exchange for the TLS protocol from the ring learning with
errors problem. In 2015 IEEE Symposium on Security and Privacy, pages
553–570, San Jose, CA, USA, May 17–21, 2015. IEEE Computer Society
Press. doi:10.1109/SP.2015.40.

[Bel06] Mihir Bellare. New proofs for NMAC and HMAC: Security without
collision-resistance. In Cynthia Dwork, editor, Advances in Cryptology –
CRYPTO 2006, volume 4117 of Lecture Notes in Computer Science, pages
602–619, Santa Barbara, CA, USA, August 20–24, 2006. Springer Berlin
Heidelberg, Germany. doi:10.1007/11818175_36.

[Bel15] Mihir Bellare. New proofs for NMAC and HMAC: Security without
collision resistance. Journal of Cryptology, 28(4):844–878, October 2015.
doi:10.1007/s00145-014-9185-x.

[Ber06] Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed records. In
Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors,
PKC 2006: 9th International Conference on Theory and Practice of Public
Key Cryptography, volume 3958 of Lecture Notes in Computer Science,
pages 207–228, New York, NY, USA, April 24–26, 2006. Springer Berlin
Heidelberg, Germany. doi:10.1007/11745853_14.

[Beu22] Ward Beullens. Breaking rainbow takes a weekend on a laptop. In
Yevgeniy Dodis and Thomas Shrimpton, editors, Advances in Cryptology
– CRYPTO 2022, Part II, volume 13508 of Lecture Notes in Computer Science,
pages 464–479, Santa Barbara, CA, USA, August 15–18, 2022. Springer,
Cham, Switzerland. doi:10.1007/978-3-031-15979-4_16.

[BFG+20] Jacqueline Brendel, Marc Fischlin, Felix Günther, Christian Janson, and
Douglas Stebila. Towards post-quantum security for Signal’s X3DH
handshake. In Orr Dunkelman, Michael J. Jacobson, Jr., and Colin O’Flynn,
editors, SAC 2020: 27th Annual International Workshop on Selected Areas
in Cryptography, volume 12804 of Lecture Notes in Computer Science,
pages 404–430, Halifax, NS, Canada (Virtual Event), October 21-23, 2020.
Springer, Cham, Switzerland. doi:10.1007/978-3-030-81652-0_16.

[BFG+22] Jacqueline Brendel, Rune Fiedler, Felix Günther, Christian Janson, and
Douglas Stebila. Post-quantum asynchronous deniable key exchange
and the Signal handshake. In Goichiro Hanaoka, Junji Shikata, and Yohei
Watanabe, editors, PKC 2022: 25th International Conference on Theory
and Practice of Public Key Cryptography, Part II, volume 13178 of Lecture
Notes in Computer Science, pages 3–34, Virtual Event, March 8–11, 2022.
Springer, Cham, Switzerland. doi:10.1007/978-3-030-97131-1_1.

[BGB04] Nikita Borisov, Ian Goldberg, and Eric Brewer. Off-the-record
communication, or, why not to use pgp. In Proceedings of the 2004
ACM Workshop on Privacy in the Electronic Society, WPES ’04, page
77–84, New York, NY, USA, 2004. Association for Computing Machinery.
doi:10.1145/1029179.1029200.

[BHMS17] Nina Bindel, Udyani Herath, Matthew McKague, and Douglas Stebila.
Transitioning to a quantum-resistant public key infrastructure. In Tanja
Lange and Tsuyoshi Takagi, editors, Post-Quantum Cryptography - 8th
International Workshop, PQCrypto 2017, pages 384–405, Utrecht, The
Netherlands, June 26–28, 2017. Springer, Cham, Switzerland. doi:10.
1007/978-3-319-59879-6_22.

[BLL24] Giacomo Borin, Yi-Fu Lai, and Antonin Leroux. Erebor and durian: Full
anonymous ring signatures from quaternions and isogenies. Cryptology
ePrint Archive, Report 2024/1185, 2024. URL: https://eprint.iacr.org/2024/

2025-02-02 19:15. Page 13 of 1–37.

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://doi.org/10.1007/978-3-030-77870-5_4
https://doi.org/10.1007/978-981-99-8736-8_11
https://doi.org/10.1145/237814.237838
https://doi.org/10.1145/237814.237838
https://cyber.gouv.fr/sites/default/files/document/follow_up_position_paper_on_post_quantum_cryptography.pdf
https://cyber.gouv.fr/sites/default/files/document/follow_up_position_paper_on_post_quantum_cryptography.pdf
https://security.apple.com/blog/imessage-pq3/
https://security.apple.com/blog/imessage-pq3/
https://www.bbc.com/news/world-us-canada-37639370
https://tches.iacr.org/index.php/TCHES/article/view/9069
https://tches.iacr.org/index.php/TCHES/article/view/9069
https://doi.org/10.46586/tches.v2021.i4.351-387
https://doi.org/10.46586/tches.v2021.i4.351-387
https://doi.org/10.1007/978-3-031-38548-3_22
https://www.rfc-editor.org/info/rfc9180
https://doi.org/10.17487/RFC9180
https://www.rfc-editor.org/info/rfc9420
https://www.rfc-editor.org/info/rfc9420
https://doi.org/10.17487/RFC9420
https://doi.org/10.62056/a3qj89n4e
https://doi.org/10.62056/a3qj89n4e
https://doi.org/10.1109/SP.2015.40
https://doi.org/10.1007/11818175_36
https://doi.org/10.1007/s00145-014-9185-x
https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/978-3-031-15979-4_16
https://doi.org/10.1007/978-3-030-81652-0_16
https://doi.org/10.1007/978-3-030-97131-1_1
https://doi.org/10.1145/1029179.1029200
https://doi.org/10.1007/978-3-319-59879-6_22
https://doi.org/10.1007/978-3-319-59879-6_22
https://eprint.iacr.org/2024/1185
https://eprint.iacr.org/2024/1185

1185.
[BR04] Mihir Bellare and Phillip Rogaway. Code-based game-playing proofs

and the security of triple encryption. Cryptology ePrint Archive, Report
2004/331, 2004. URL: https://eprint.iacr.org/2004/331.

[BSI22] BSI. Quantum-safe cryptography – fundamentals, current developments
and recommendations, 2022. URL: https://www.bsi.bund.de/
SharedDocs/Downloads/EN/BSI/Publications/Brochure/quantum-
safe-cryptography.pdf.

[BSI24] BSI. Cryptographic mechanisms: Recommendations and key lengths - bsi
tr-02102-1, 2024. URL: https://www.bsi.bund.de/SharedDocs/Downloads/
EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf.

[Car16] Lauren Carroll. Are the clinton wikileaks emails doctored, or are they
authentic? PolitiFact, 2016. URL: https://www.politifact.com/article/2016/
oct/23/are-clinton-wikileaks-emails-doctored-or-are-they-/.

[CCH23] Daniel Collins, Simone Colombo, and Loïs Huguenin-Dumittan. Real
world deniability in messaging. Real World Crypto Symposium, 2023.
https://www.youtube.com/watch?v=sthXs4zJ5XU&t=5504s.

[CCH25] Daniel Collins, Simone Colombo, and Loïs Huguenin-Dumittan. Real
world deniability in messaging. Proceedings on Privacy Enhancing
Technologies, 2025. URL: https://eprint.iacr.org/2023/403.

[CD23] Wouter Castryck and Thomas Decru. An efficient key recovery attack on
SIDH. In Carmit Hazay and Martijn Stam, editors, Advances in Cryptology
– EUROCRYPT 2023, Part V, volume 14008 of Lecture Notes in Computer
Science, pages 423–447, Lyon, France, April 23–27, 2023. Springer, Cham,
Switzerland. doi:10.1007/978-3-031-30589-4_15.

[CHN+24] Daniel Collins, Loïs Huguenin-Dumittan, Ngoc Khanh Nguyen, Nicolas
Rolin, and Serge Vaudenay. K-waay: Fast and deniable post-quantum
X3DH without ring signatures. In Davide Balzarotti and Wenyuan
Xu, editors, USENIX Security 2024: 33rd USENIX Security Symposium,
Philadelphia, PA, USA, August 14–16, 2024. USENIX Association.

[CKS09] David Cash, Eike Kiltz, and Victor Shoup. The twin Diffie-Hellman
problem and applications. Journal of Cryptology, 22(4):470–504, October
2009. doi:10.1007/s00145-009-9041-6.

[CPS19] Eric Crockett, Christian Paquin, and Douglas Stebila. Prototyping post-
quantum and hybrid key exchange and authentication in TLS and SSH.
Cryptology ePrint Archive, Report 2019/858, 2019. URL: https://eprint.
iacr.org/2019/858.

[Dac16] Dana Dachman-Soled. Towards non-black-box separations of public
key encryption and one way function. In Martin Hirt and Adam D.
Smith, editors, TCC 2016-B: 14th Theory of Cryptography Conference,
Part II, volume 9986 of Lecture Notes in Computer Science, pages 169–
191, Beijing, China, October 31 – November 3, 2016. Springer Berlin
Heidelberg, Germany. doi:10.1007/978-3-662-53644-5_7.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, 22(6):644–654, 1976. doi:10.
1109/TIT.1976.1055638.

[DHK+23] Julien Duman, Kathrin Hövelmanns, Eike Kiltz, Vadim Lyubashevsky,
Gregor Seiler, and Dominique Unruh. A thorough treatment of highly-
efficient NTRU instantiations. In Alexandra Boldyreva and Vladimir
Kolesnikov, editors, PKC 2023: 26th International Conference on Theory
and Practice of Public Key Cryptography, Part I, volume 13940 of Lecture
Notes in Computer Science, pages 65–94, Atlanta, GA, USA,May 7–10, 2023.
Springer, Cham, Switzerland. doi:10.1007/978-3-031-31368-4_3.

[DT24] D.J.Bernstein and T.Lange. ebacs:ecrypt benchmarking of cryptographic
systems, 2024. accessed 16 July 2024. URL: https://bench.cr.yp.to.

[DZ10] Alexander W. Dent and Yuliang Zheng, editors. Practical Signcryption.
Springer Berlin Heidelberg, 2010. doi:10.1007/978-3-540-89411-7.

[EFG+22] Thomas Espitau, Pierre-Alain Fouque, François Gérard, Mélissa Rossi,
Akira Takahashi, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu.
Mitaka: A simpler, parallelizable, maskable variant of falcon. In Orr
Dunkelman and Stefan Dziembowski, editors, Advances in Cryptology –
EUROCRYPT 2022, Part III, volume 13277 of Lecture Notes in Computer
Science, pages 222–253, Trondheim, Norway, May 30 – June 3, 2022.
Springer, Cham, Switzerland. doi:10.1007/978-3-031-07082-2_9.

[ENS+23] Thomas Espitau, Thi Thu Quyen Nguyen, Chao Sun, Mehdi Tibouchi,
and Alexandre Wallet. Antrag: Annular NTRU trapdoor generation
- making mitaka as secure as falcon. In Jian Guo and Ron Steinfeld,
editors, Advances in Cryptology – ASIACRYPT 2023, Part VII, volume
14444 of Lecture Notes in Computer Science, pages 3–36, Guangzhou, China,
December 4–8, 2023. Springer, Singapore, Singapore. doi:10.1007/978-
981-99-8739-9_1.

[ETS20] ETSI. CYBER; quantum-safe cryptography (QSC); quantum-safe hybrid
key exchanges. Standard, European Telecommunications Standards
Institute (ETSI), December 2020. URL: https://www.etsi.org/deliver/etsi_
ts/103700_103799/103744/01.01.01_60/ts_103744v010101p.pdf.

[ETWY22] Thomas Espitau, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu.
Shorter Hash-and-Sign Lattice-Based Signatures. In Annual International

Cryptology Conference, pages 245–275. Springer, 2022.
[FHKP12] Eduarda S. V. Freire, Dennis Hofheinz, Eike Kiltz, and Kenneth G.

Paterson. Non-interactive key exchange. Cryptology ePrint Archive,
Paper 2012/732/20130101:143205, 2012. URL: https://eprint.iacr.org/
archive/2012/732/20130101:143205.

[FJ24] Rune Fiedler and Christian Janson. A deniability analysis of signal’s
initial handshake PQXDH. Proceedings on Privacy Enhancing Technologies,
2024(4):907–928, October 2024. doi:10.56553/popets-2024-0148.

[FKPY22] Pierre-Alain Fouque, Paul Kirchner, Thomas Pornin, and Yang Yu.
BAT: Small and fast KEM over NTRU lattices. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2022(2):240–265, 2022.
doi:10.46586/tches.v2022.i2.240-265.

[GdKQ+24] Phillip Gajland, Bor de Kock, Miguel Quaresma, Giulio Malavolta, and
Peter Schwabe. SWOOSH: Efficient lattice-based non-interactive key
exchange. In Davide Balzarotti andWenyuan Xu, editors,USENIX Security
2024: 33rd USENIX Security Symposium, Philadelphia, PA, USA, August 14–
16, 2024. USENIX Association.

[GGH97] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key
cryptosystems from lattice reduction problems. In Burton S. Kaliski,
Jr., editor, Advances in Cryptology – CRYPTO’97, volume 1294 of Lecture
Notes in Computer Science, pages 112–131, Santa Barbara, CA, USA,
August 17–21, 1997. Springer Berlin Heidelberg, Germany. doi:10.1007/
BFb0052231.

[GHH+24] Sharon Goldberg, Miro Haller, Nadia Heninger, Mike Milano, Dan
Shumow, Marc Stevens, and Adam Suhl. RADIUS/UDP considered
harmful. In Davide Balzarotti and Wenyuan Xu, editors, USENIX Security
2024: 33rd USENIX Security Symposium, Philadelphia, PA, USA, August 14–
16, 2024. USENIX Association.

[GHP18] Federico Giacon, Felix Heuer, and Bertram Poettering. KEM combiners. In
Michel Abdalla and Ricardo Dahab, editors, PKC 2018: 21st International
Conference on Theory and Practice of Public Key Cryptography, Part I,
volume 10769 of Lecture Notes in Computer Science, pages 190–218, Rio
de Janeiro, Brazil, March 25–29, 2018. Springer, Cham, Switzerland. doi:
10.1007/978-3-319-76578-5_7.

[GJK24] Phillip Gajland, Jonas Janneck, and Eike Kiltz. Ring signatures for deniable
AKEM: Gandalf’s fellowship. In Leonid Reyzin and Douglas Stebila,
editors, Advances in Cryptology – CRYPTO 2024, Part I, volume 14920 of
Lecture Notes in Computer Science, pages 305–338, Santa Barbara, CA, USA,
August 18–22, 2024. Springer, Cham, Switzerland. doi:10.1007/978-3-
031-68376-3_10.

[HV21] Loïs Huguenin-Dumittan and Serge Vaudenay. FO-like combiners and
hybrid post-quantum cryptography. In Mauro Conti, Marc Stevens,
and Stephan Krenn, editors, CANS 21: 20th International Conference
on Cryptology and Network Security, volume 13099 of Lecture Notes in
Computer Science, pages 225–244, Vienna, Austria, December 13–15, 2021.
Springer, Cham, Switzerland. doi:10.1007/978-3-030-92548-2_12.

[KjCP16] John Kelsey, Shu jen Change, and Ray Perlner. SHA-3 derived functions:
cSHAKE, KMAC, TupleHash and ParallelHash. Technical report, National
Institute of Standards and Technology, December 2016. doi:10.6028/
nist.sp.800-185.

[KS24] Ehren Kret and Rolfe Schmidt. The pqxdh key agreement protocol, 2024.
URL: https://signal.org/docs/specifications/pqxdh/pqxdh.pdf.

[KSL+19] Krzysztof Kwiatkowski, Nick Sullivan, Adam Langley, Dave Levin, and
Alan Mislove. Measuring tls key exchange with post-quantum kem,
2019. URL: https://csrc.nist.gov/CSRC/media/Events/Second-PQC-
Standardization-Conference/documents/accepted-papers/kwiatkowski-
measuring-tls.pdf.

[KV19] Kris Kwiatkowski and Luke Valenta. The TLS post-quantum experiment.
Post on the Cloudflare blog, 2019. https://blog.cloudflare.com/the-tls-
post-quantum-experiment/.

[KW16] Hugo Krawczyk and Hoeteck Wee. The OPTLS protocol and TLS 1.3.
In 2016 IEEE European Symposium on Security and Privacy, pages 81–96,
Saarbrücken, Germany, March 21–24, 2016. IEEE Computer Society Press.
doi:10.1109/EuroSP.2016.18.

[Lan16] Adam Langley. CECPQ1 results. Blog post, 2016. https://www.
imperialviolet.org/2016/11/28/cecpq1.html.

[Lan18] Adam Langley. CECPQ2. Blog post, 2018. https://www.imperialviolet.
org/2018/12/12/cecpq2.html.

[LAZ19] Xingye Lu, Man Ho Au, and Zhenfei Zhang. Raptor: A practical lattice-
based (linkable) ring signature. In Robert H. Deng, Valérie Gauthier-
Umaña,Martín Ochoa, andMoti Yung, editors,ACNS 19: 17th International
Conference on Applied Cryptography and Network Security, volume 11464
of Lecture Notes in Computer Science, pages 110–130, Bogota, Colombia,
June 5–7, 2019. Springer, Cham, Switzerland. doi:10.1007/978-3-030-
21568-2_6.

[LF07] Barry Leiba and Jim Fenton. Domainkeys identified mail (dkim): Using
digital signatures for domain verification. In International Conference

2025-02-02 19:15. Page 14 of 1–37.

https://eprint.iacr.org/2024/1185
https://eprint.iacr.org/2004/331
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Brochure/quantum-safe-cryptography.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Brochure/quantum-safe-cryptography.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Brochure/quantum-safe-cryptography.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf
https://www.politifact.com/article/2016/oct/23/are-clinton-wikileaks-emails-doctored-or-are-they-/
https://www.politifact.com/article/2016/oct/23/are-clinton-wikileaks-emails-doctored-or-are-they-/
https://www.youtube.com/watch?v=sthXs4zJ5XU&t=5504s
https://eprint.iacr.org/2023/403
https://doi.org/10.1007/978-3-031-30589-4_15
https://doi.org/10.1007/s00145-009-9041-6
https://eprint.iacr.org/2019/858
https://eprint.iacr.org/2019/858
https://doi.org/10.1007/978-3-662-53644-5_7
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1007/978-3-031-31368-4_3
https://bench.cr.yp.to
https://doi.org/10.1007/978-3-540-89411-7
https://doi.org/10.1007/978-3-031-07082-2_9
https://doi.org/10.1007/978-981-99-8739-9_1
https://doi.org/10.1007/978-981-99-8739-9_1
https://www.etsi.org/deliver/etsi_ts/103700_103799/103744/01.01.01_60/ts_103744v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/103700_103799/103744/01.01.01_60/ts_103744v010101p.pdf
https://eprint.iacr.org/archive/2012/732/20130101:143205
https://eprint.iacr.org/archive/2012/732/20130101:143205
https://doi.org/10.56553/popets-2024-0148
https://doi.org/10.46586/tches.v2022.i2.240-265
https://doi.org/10.1007/BFb0052231
https://doi.org/10.1007/BFb0052231
https://doi.org/10.1007/978-3-319-76578-5_7
https://doi.org/10.1007/978-3-319-76578-5_7
https://doi.org/10.1007/978-3-031-68376-3_10
https://doi.org/10.1007/978-3-031-68376-3_10
https://doi.org/10.1007/978-3-030-92548-2_12
https://doi.org/10.6028/nist.sp.800-185
https://doi.org/10.6028/nist.sp.800-185
https://signal.org/docs/specifications/pqxdh/pqxdh.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/kwiatkowski-measuring-tls.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/kwiatkowski-measuring-tls.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/kwiatkowski-measuring-tls.pdf
https://blog.cloudflare.com/the-tls-post-quantum-experiment/
https://blog.cloudflare.com/the-tls-post-quantum-experiment/
https://doi.org/10.1109/EuroSP.2016.18
https://www.imperialviolet.org/2016/11/28/cecpq1.html
https://www.imperialviolet.org/2016/11/28/cecpq1.html
https://www.imperialviolet.org/2018/12/12/cecpq2.html
https://www.imperialviolet.org/2018/12/12/cecpq2.html
https://doi.org/10.1007/978-3-030-21568-2_6
https://doi.org/10.1007/978-3-030-21568-2_6

Shadowfax: Combiners for Deniability

on Email and Anti-Spam, 2007. URL: https://api.semanticscholar.org/
CorpusID:28916525.

[LHT16] Adam Langley, Mike Hamburg, and Sean Turner. Elliptic Curves for
Security. RFC 7748, January 2016. URL: https://www.rfc-editor.org/info/
rfc7748, doi:10.17487/RFC7748.

[LLJ+19] Xianhui Lu, Yamin Liu, Dingding Jia, Haiyang Xue, Jingnan He, Zhenfei
Zhang, Zhe Liu, Hao Yang, Bao Li, and Kunpeng Wang. LAC.
Technical report, National Institute of Standards and Technology, 2019.
available at https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-2-submissions.

[LNS21] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. SMILE:
Set membership from ideal lattices with applications to ring signatures
and confidential transactions. In Tal Malkin and Chris Peikert, editors,
Advances in Cryptology – CRYPTO 2021, Part II, volume 12826 of Lecture
Notes in Computer Science, pages 611–640, Virtual Event, August 16–20,
2021. Springer, Cham, Switzerland. doi:10.1007/978-3-030-84245-
1_21.

[LSB24] Felix Linker, Ralf Sasse, and David Basin. A formal analysis of apple’s
iMessage PQ3 protocol. Cryptology ePrint Archive, Paper 2024/1395,
2024. URL: https://eprint.iacr.org/2024/1395.

[Mas16] Mike Masnick. The clinton campaign should stop denying that the
wikileaks emails are valid; they are and they’re real. Techdirt, 2016.
URL: https://www.techdirt.com/2016/10/25/clinton-campaign-should-
stop-denying-that-wikileaks-emails-are-valid-they-are-theyre-real/.

[Met23] Meta. Messenger End-to-End Encryption Overview, v.1, dec 2023. https:
//engineering.fb.com/wp-content/uploads/2023/12/MessengerEnd-to-
EndEncryptionOverview_12-6-2023.pdf.

[MLD24] Module-lattice-based digital signature standard. National Institute of
Standards and Technology NIST FIPS PUB 204, U.S. Department of
Commerce, August 2024. URL: http://dx.doi.org/10.6028/NIST.FIPS.204,
doi:10.6028/nist.fips.204.

[MLK24] Module-lattice-based key-encapsulation mechanism standard. National
Institute of Standards and Technology NIST FIPS PUB 203, U.S.
Department of Commerce, August 2024. URL: http://dx.doi.org/10.6028/
NIST.FIPS.203, doi:10.6028/nist.fips.203.

[MMP+23] Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope, and
Benjamin Wesolowski. A direct key recovery attack on SIDH. In
Carmit Hazay and Martijn Stam, editors, Advances in Cryptology –
EUROCRYPT 2023, Part V, volume 14008 of Lecture Notes in Computer
Science, pages 448–471, Lyon, France, April 23–27, 2023. Springer, Cham,
Switzerland. doi:10.1007/978-3-031-30589-4_16.

[MP16] Moxie Marlinspike and Trevor Perrin. The x3dh key agreement protocol,
2016. URL: https://signal.org/docs/specifications/x3dh/x3dh.pdf.

[NIS16] NIST. Submission requirements and evaluation criteria
for the post-quantum cryptography standardization process,
2016. https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-
Cryptography/documents/call-for-proposals-final-dec-2016.pdf.

[OGP+24] Mike Ounsworth, John Gray, Massimiliano Pala, Jan Klaußner, and Scott
Fluhrer. Composite ML-DSA for use in Internet PKI. Internet-Draft
draft-ietf-lamps-pq-composite-sigs-02, Internet Engineering Task Force,
July 2024. Work in Progress. URL: https://datatracker.ietf.org/doc/draft-
ietf-lamps-pq-composite-sigs/02/.

[OPowp19] David Ott, Christopher Peikert, and other workshop participants.
Identifying research challenges in post quantum cryptography migration
and cryptographic agility, 2019. URL: https://arxiv.org/abs/1909.07353,
arXiv:1909.07353.

[PFH+20] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner,
Vadim Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler,
William Whyte, and Zhenfei Zhang. FALCON. Technical report,
National Institute of Standards and Technology, 2020. available
at https://csrc.nist.gov/projects/post-quantum-cryptography/post-
quantum-cryptography-standardization/round-3-submissions.

[Por23] Thomas Pornin. Improved key pair generation for falcon, BAT and
hawk. Cryptology ePrint Archive, Report 2023/290, 2023. URL: https:
//eprint.iacr.org/2023/290.

[Pre15] Thomas Prest. Gaussian sampling in lattice-based cryptography. PhD
thesis, Ecole normale supérieure-ENS PARIS, 2015.

[PST20] Christian Paquin, Douglas Stebila, and Goutam Tamvada. Benchmarking
post-quantum cryptography in TLS. In Jintai Ding and Jean-Pierre Tillich,
editors, Post-Quantum Cryptography - 11th International Conference,
PQCrypto 2020, pages 72–91, Paris, France, April 15–17, 2020. Springer,
Cham, Switzerland. doi:10.1007/978-3-030-44223-1_5.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Harold N. Gabow and Ronald Fagin, editors, 37th Annual
ACM Symposium on Theory of Computing, pages 84–93, Baltimore, MA,
USA, May 22–24, 2005. ACM Press. doi:10.1145/1060590.1060603.

[Riv92] Ronald L. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. Internet
Activities Board, April 1992.

[RMA+23] Nathan Reitinger, Nathan Malkin, Omer Akgul, Michelle L. Mazurek, and
Ian Miers. Is cryptographic deniability sufficient? non-expert perceptions
of deniability in secure messaging. In 2023 IEEE Symposium on Security
and Privacy, pages 274–292, San Francisco, CA, USA, May 21–25, 2023.
IEEE Computer Society Press. doi:10.1109/SP46215.2023.10179361.

[Rob23] Damien Robert. Breaking SIDH in polynomial time. In Carmit Hazay
and Martijn Stam, editors, Advances in Cryptology – EUROCRYPT 2023,
Part V, volume 14008 of Lecture Notes in Computer Science, pages 472–
503, Lyon, France, April 23–27, 2023. Springer, Cham, Switzerland. doi:
10.1007/978-3-031-30589-4_17.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure
signatures. In 22nd Annual ACM Symposium on Theory of Computing,
pages 387–394, Baltimore, MD, USA, May 14–16, 1990. ACM Press. doi:
10.1145/100216.100269.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A
method for obtaining digital signatures and public-key cryptosystems.
Communications of the Association for Computing Machinery, 21(2):120–
126, February 1978. doi:10.1145/359340.359342.

[RST01] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In
Colin Boyd, editor, Advances in Cryptology – ASIACRYPT 2001, volume
2248 of Lecture Notes in Computer Science, pages 552–565, Gold Coast,
Australia, December 9–13, 2001. Springer Berlin Heidelberg, Germany.
doi:10.1007/3-540-45682-1_32.

[RYAJ+24] Anamika Rajendran, Tarun Kumar Yadav, Malek Al-Jbour,
Francisco Manuel Mares Solano, Kent Seamons, and Joshua
Reynolds. Deniable encrypted messaging: User understanding
after hands-on social experience. In Proceedings of the 2024
European Symposium on Usable Security, EuroUSEC ’24, page 155–171,
New York, NY, USA, 2024. Association for Computing Machinery.
doi:10.1145/3688459.3688479.

[SA15] Markku-Juhani O. Saarinen and Jean-Philippe Aumasson. The BLAKE2
Cryptographic Hash and Message Authentication Code (MAC). RFC
7693, November 2015. URL: https://www.rfc-editor.org/info/rfc7693,
doi:10.17487/RFC7693.

[SFG24] Douglas Stebila, Scott Fluhrer, and Shay Gueron. Hybrid key exchange
in TLS 1.3. Internet-Draft draft-ietf-tls-hybrid-design-10, Internet
Engineering Task Force, April 2024. Work in Progress. URL: https:
//datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/10/.

[Sha49] C. E. Shannon. Communication theory of secrecy systems. The Bell
System Technical Journal, 28(4):656–715, 1949. doi:10.1002/j.1538-
7305.1949.tb00928.x.

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. In 35th Annual Symposium on Foundations of Computer
Science, pages 124–134, Santa Fe, NM, USA, November 20–22, 1994. IEEE
Computer Society Press. doi:10.1109/SFCS.1994.365700.

[SLH24] Stateless hash-based digital signature standard. National Institute of
Standards and Technology NIST FIPS PUB 205, U.S. Department of
Commerce, August 2024. URL: http://dx.doi.org/10.6028/NIST.FIPS.205,
doi:10.6028/nist.fips.205.

[SSW20] Peter Schwabe, Douglas Stebila, and Thom Wiggers. Post-quantum TLS
without handshake signatures. In Jay Ligatti, Xinming Ou, Jonathan Katz,
and Giovanni Vigna, editors, ACM CCS 2020: 27th Conference on Computer
and Communications Security, pages 1461–1480, Virtual Event, USA,
November 9–13, 2020. ACM Press. doi:10.1145/3372297.3423350.

[Ste24] Douglas Stebila. Security analysis of the iMessage PQ3 protocol.
Cryptology ePrint Archive, Report 2024/357, 2024. URL: https://eprint.
iacr.org/2024/357.

[TTB+23] C. Tjhai, M. Tomlinson, G. Bartlett, Scott Fluhrer, Daniel Van Geest, Oscar
Garcia-Morchon, and Valery Smyslov. Multiple Key Exchanges in the
Internet Key Exchange Protocol Version 2 (IKEv2). RFC 9370, May 2023.
URL: https://www.rfc-editor.org/info/rfc9370, doi:10.17487/RFC9370.

[WFLY04] XiaoyunWang, Dengguo Feng, Xuejia Lai, and Hongbo Yu. Collisions for
hash functions MD4, MD5, HAVAL-128 and RIPEMD. Cryptology ePrint
Archive, Report 2004/199, 2004. URL: https://eprint.iacr.org/2004/199.

[Wha20] WhatsApp. WhatsApp Encryption Overview Technical white paper,
v.3, oct 2020. https://www.whatsapp.com/security/WhatsApp-Security-
Whitepaper.pdf.

[Wik16] WikiLeaks. The Podesta Emails. WikiLeaks, 2016. URL: https://wikileaks.
org/podesta-emails/.

[WR19] Bas Westerbaan and Cefan Daniel Rubin. Defending against future
threats: Cloudflare goes post-quantum. Post on the Cloudflare blog, 2019.
https://blog.cloudflare.com/post-quantum-for-all/.

[YEL+21] Tsz Hon Yuen, Muhammed F. Esgin, Joseph K. Liu, Man Ho Au, and
Zhimin Ding. DualRing: Generic construction of ring signatures with
efficient instantiations. In Tal Malkin and Chris Peikert, editors, Advances

2025-02-02 19:15. Page 15 of 1–37.

https://api.semanticscholar.org/CorpusID:28916525
https://api.semanticscholar.org/CorpusID:28916525
https://www.rfc-editor.org/info/rfc7748
https://www.rfc-editor.org/info/rfc7748
https://doi.org/10.17487/RFC7748
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://doi.org/10.1007/978-3-030-84245-1_21
https://doi.org/10.1007/978-3-030-84245-1_21
https://eprint.iacr.org/2024/1395
https://www.techdirt.com/2016/10/25/clinton-campaign-should-stop-denying-that-wikileaks-emails-are-valid-they-are-theyre-real/
https://www.techdirt.com/2016/10/25/clinton-campaign-should-stop-denying-that-wikileaks-emails-are-valid-they-are-theyre-real/
https://engineering.fb.com/wp-content/uploads/2023/12/MessengerEnd-to-EndEncryptionOverview_12-6-2023.pdf
https://engineering.fb.com/wp-content/uploads/2023/12/MessengerEnd-to-EndEncryptionOverview_12-6-2023.pdf
https://engineering.fb.com/wp-content/uploads/2023/12/MessengerEnd-to-EndEncryptionOverview_12-6-2023.pdf
http://dx.doi.org/10.6028/NIST.FIPS.204
https://doi.org/10.6028/nist.fips.204
http://dx.doi.org/10.6028/NIST.FIPS.203
http://dx.doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/nist.fips.203
https://doi.org/10.1007/978-3-031-30589-4_16
https://signal.org/docs/specifications/x3dh/x3dh.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://datatracker.ietf.org/doc/draft-ietf-lamps-pq-composite-sigs/02/
https://datatracker.ietf.org/doc/draft-ietf-lamps-pq-composite-sigs/02/
https://arxiv.org/abs/1909.07353
https://arxiv.org/abs/1909.07353
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://eprint.iacr.org/2023/290
https://eprint.iacr.org/2023/290
https://doi.org/10.1007/978-3-030-44223-1_5
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1109/SP46215.2023.10179361
https://doi.org/10.1007/978-3-031-30589-4_17
https://doi.org/10.1007/978-3-031-30589-4_17
https://doi.org/10.1145/100216.100269
https://doi.org/10.1145/100216.100269
https://doi.org/10.1145/359340.359342
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1145/3688459.3688479
https://www.rfc-editor.org/info/rfc7693
https://doi.org/10.17487/RFC7693
https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/10/
https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/10/
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1109/SFCS.1994.365700
http://dx.doi.org/10.6028/NIST.FIPS.205
https://doi.org/10.6028/nist.fips.205
https://doi.org/10.1145/3372297.3423350
https://eprint.iacr.org/2024/357
https://eprint.iacr.org/2024/357
https://www.rfc-editor.org/info/rfc9370
https://doi.org/10.17487/RFC9370
https://eprint.iacr.org/2004/199
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://wikileaks.org/podesta-emails/
https://wikileaks.org/podesta-emails/
https://blog.cloudflare.com/post-quantum-for-all/

in Cryptology – CRYPTO 2021, Part I, volume 12825 of Lecture Notes in
Computer Science, pages 251–281, Virtual Event, August 16–20, 2021.
Springer, Cham, Switzerland. doi:10.1007/978-3-030-84242-0_10.

[YGS23] Tarun Kumar Yadav, Devashish Gosain, and Kent E. Seamons.
Cryptographic deniability: A multi-perspective study of user perceptions
and expectations. In Joseph A. Calandrino and Carmela Troncoso, editors,
USENIX Security 2023: 32nd USENIX Security Symposium, pages 3637–3654,
Anaheim, CA, USA, August 9–11, 2023. USENIX Association.

[Zha20] Zhenfei Zhang. Raptor. https://github.com/zhenfeizhang/raptor, 2020.

2025-02-02 19:15. Page 16 of 1–37.

https://doi.org/10.1007/978-3-030-84242-0_10
https://github.com/zhenfeizhang/raptor

Shadowfax: Combiners for Deniability

A ADDITIONAL PRELIMINARIES

A.1 Non-Interactive Key Exchange (NIKE)

Definition 2 ((Simplified) Non-Interactive Key Exchange [FHKP12,
App. G]). A simplified non-interactive key exchange NIKE is defined
as a tuple NIKE B (Stp,Gen, Sdk) of the following algorithms.
𝑝𝑎𝑟

$← Stp: The probabilistic setup algorithm returns a set of
system parameters 𝑝𝑎𝑟 . We assume that 𝑝𝑎𝑟 implicitly
defines a shared key space KNIKE.

(𝑠𝑘, 𝑝𝑘) $← Gen: Given system parameters 𝑝𝑎𝑟 , the probabilistic
key generation algorithm Gen returns a secret/public key
pair (𝑠𝑘, 𝑝𝑘).

𝑘 ← Sdk(𝑠𝑘, 𝑝𝑘): Given a secret key 𝑠𝑘 and a public key 𝑝𝑘 , the
deterministic shared key establishment algorithm Sdk

returns a shared key 𝑘 ∈ KNIKE, or a failure symbol ⊥. We
assume that Sdk always returns ⊥ if 𝑠𝑘 is the secret key
corresponding to 𝑝𝑘 .

A NIKE is 𝛿NIKE correct if for all 𝑝𝑎𝑟 ∈ Stp

Pr
[
Sdk(𝑠𝑘1, 𝑝𝑘2) ≠ Sdk(𝑠𝑘2, 𝑝𝑘1)

���� (𝑠𝑘1, 𝑝𝑘1) $← Gen

(𝑠𝑘2, 𝑝𝑘2) $← Gen

]
≤ 𝛿NIKE .

We formalise the notion of key indistinguishability with active
security for a simplified non-interactive key exchange NIKE, with
respect to system parameters 𝑝𝑎𝑟 ∈ sup(Stp) via the game
(n, 𝑄RC, 𝑄T)-CKSNIKE,𝑝𝑎𝑟 (A) depicted in Figure 9 and define the
advantage of adversary A as

Adv(n,QRC,QT)-CKS
NIKE,𝑝𝑎𝑟

(A) B����Pr [(n, 𝑄RC, 𝑄T)-CKSNIKE,𝑝𝑎𝑟 (A) ⇒ 1
]
− 1
2

����.
Note that this is an abstraction of the model equivalent to the

original CKS [CKS09] notion for simplified NIKEs from [FHKP12,
App. G]. We reduce the number of oracles to a minimum. Instead
of the register honest oracles, we provide the adversary with 𝑛

honestly generated public keys in the beginning. Instead of
registering corrupted users and querying to a corrupt reveal oracle,
we directly provide the corrupt reveal oracle on an adversarially
chosen (corrupted) public key. This matches the interface of
notions for other primitives much better and eases the
presentation of the proofs.

Lemma 10. Definition CKS is equivalent to the original definition
(CKS-Orig). In particular for any adversary A against one of the
notions there exists an adversary B against the other notion such
that

Adv(n,QRC,QT)-CKS
NIKE,𝑝𝑎𝑟,A ≤ Adv(n,QRC,QRC,QT)-CKS-Orig

NIKE,𝑝𝑎𝑟,B ,

Adv(QRHU,QRCU,QRC,QT)-CKS-Orig
NIKE,𝑝𝑎𝑟,A ≤ Adv(QRHU,QRC,QT)-CKS

NIKE,𝑝𝑎𝑟,B .

Proof. The reduction for the first inequality is depicted in
Figure 10, the reduction for the second in Figure 11.

■

A.2 Key Encapsulation Mechanism

Definition 3 (Key Encapsulation Mechanism). A key encapsulation
mechanism KEM is defined as a tuple KEM B (Gen, Enc,Dec) of
the following algorithms.

Games (n, 𝑄RC, 𝑄T)-CKSNIKE,𝑝𝑎𝑟 (A)
01 for 𝑖 ∈ [𝑛]
02 (𝑠𝑘𝑖 , 𝑝𝑘𝑖) $← Gen

03 𝑏
$← {0, 1}

04 D B ∅
05 𝑏′ ← ARevCor,Test,Ext,RevHon (𝑝𝑘1, . . . , 𝑝𝑘𝑛)
06 return J𝑏 = 𝑏′K

Oracle RevCor(𝑖 ∈ [𝑛], 𝑝𝑘 ∉ {𝑝𝑘1, . . . , 𝑝𝑘𝑛})
07 𝑘 ← Sdk(𝑠𝑘𝑖 , 𝑝𝑘)
08 return 𝑘

Oracle Test(𝑖 ∈ [𝑛], 𝑗 ∈ [𝑛])
09 if 𝑖 = 𝑗 return ⊥
10 if 𝑏 = 0
11 𝑘 ← Sdk(𝑠𝑘𝑖 , 𝑝𝑘 𝑗)
12 if 𝑏 = 1
13 if ∃ 𝑘 ′ : ({𝑝𝑘𝑖 , 𝑝𝑘 𝑗 }, 𝑘 ′) ∈ D
14 𝑘 ← 𝑘 ′

15 else
16 𝑘

$← K
17 D ← D ∪ { ({𝑝𝑘𝑖 , 𝑝𝑘 𝑗 }, 𝑘) }
18 return 𝑘

Figure 9: Games definingCKS for a simplified non-interactive

key exchange NIKE with adversary A making at most 𝑄RC
queries to RevCor and at most 𝑄T queries to Test.

BRegHonUsrB ,RegCorUsrB ,RevCorB ,TestB

01 for 𝑖 ∈ [𝑛]
02 𝑝𝑘𝑖

$← RegHonUsrB ()
03 C B ∅
04 𝑏′ ← ARevCor,Test (𝑝𝑘1, . . . , 𝑝𝑘𝑛)
05 return 𝑏′

Oracle RevCor(𝑖 ∈ [𝑛], 𝑝𝑘 ∉ {𝑝𝑘1, . . . , 𝑝𝑘𝑛})
06 if 𝑝𝑘 ∉ C
07 RegCorUsrB (𝑝𝑘)
08 C B C ∪ {𝑝𝑘 }
09 𝑘

$← RevCorB (𝑝𝑘𝑖 , 𝑝𝑘)
10 return 𝑘

Oracle Test(𝑖 ∈ [𝑛], 𝑗 ∈ [𝑛])
11 if 𝑖 = 𝑗 return ⊥
12 𝑘

$← TestB (𝑝𝑘𝑖 , 𝑝𝑘 𝑗)
13 return 𝑘

Figure 10: Reduction for CKS-Orig⇒ CKS.

(𝑠𝑘, 𝑝𝑘) $← Gen: The probabilistic key generation algorithm Gen

returns a key pair (𝑠𝑘, 𝑝𝑘) implicitly defining a shared key
space KKEM.

(𝑐, 𝑘) $← Enc(𝑝𝑘): The probabilistic encapsulation algorithm Enc

takes as input a public key and returns a ciphertext 𝑐 and a
shared key 𝑘 ∈ KKEM.

𝑘 ← Dec(𝑠𝑘, 𝑐): The deterministic decapsulation algorithm Dec

takes as input a secret key 𝑠𝑘 and a ciphertext 𝑐 and returns
a shared key 𝑘 ∈ KKEM or a failure symbol ⊥.

2025-02-02 19:15. Page 17 of 1–37.

BRevCorB ,TestB (𝑝𝑘1, . . . , 𝑝𝑘𝑛)
01 C B ∅
02 𝑖 B 0
03 𝑏′ $← ARegHonUsr,RegCorUsr,RevCor,Test

04 return 𝑏′

Oracle RegHonUsr()
05 𝑖 B 𝑖 + 1
06 return 𝑝𝑘𝑖

Oracle RegCorUsr(𝑝𝑘)
07 C B C ∪ {𝑝𝑘 }

Oracle RevCor(𝑝𝑘, 𝑝𝑘′)
08 if ∃ 𝑗 : 𝑝𝑘 = 𝑝𝑘 𝑗 ∧ 𝑝𝑘 ′ ∈ C
09 𝑘

$← RevCorB (𝑗, 𝑝𝑘 ′)
10 return 𝑘

11 return ⊥
Oracle Test(𝑝𝑘, 𝑝𝑘′)
12 if ∃ 𝑗, 𝑗 ′ : 𝑝𝑘 = 𝑝𝑘 𝑗 ∧ 𝑝𝑘 ′ = 𝑝𝑘 𝑗 ′

13 𝑘
$← TestB (𝑗, 𝑗 ′)

14 return 𝑘

15 return ⊥

Figure 11: Reduction for CKS⇒ CKS-Orig.

The correctness error 𝛿KEM is defined as

𝛿KEM B Pr
[
Dec(𝑠𝑘, 𝑐) ≠ 𝑘

���� (𝑠𝑘, 𝑝𝑘) $← Gen

(𝑐, 𝑘) $← Enc(𝑝𝑘)

]
.

We also assume (without loss of generality) the existence of an
efficiently computable function 𝜇 such that for all (𝑠𝑘, 𝑝𝑘) ∈ Gen it
holds 𝜇 (𝑠𝑘) = 𝑝𝑘 .

The 𝛾-spreadness of a KEM is defined as

𝛾KEM B max
(𝑠𝑘,𝑝𝑘) ∈Gen

𝑐∈C

Pr [Enc(𝑝𝑘) = (𝑐, ·)] ,

where C denotes the ciphertext space.
We formalise the notion of ciphertext indistinguishability

(IND-CCA and IND-CPA) for a key encapsulation mechanism
KEM via the game (𝑛,𝑄Dec, 𝑄Chl)-IND-CCAKEM (A) depicted
in Figure 12 and define the advantage of adversary A as

Adv(n,QDec,QChl)-IND-CCA
KEM,A B����Pr [(𝑛,𝑄Dec, 𝑄Chl)-IND-CCAKEM (A) ⇒ 1] − 1

2

����,
Adv(n,QChl)-IND-CPA

KEM,A B Adv(n,0,QChl)-IND-CCA
KEM,A .

A.3 Ring Signatures

Syntax. We recall syntax and standard security notions of ring
signatures [RST01].

Definition 4 (Ring Signature). A ring signature scheme RSig is
defined as a tuple (Gen, Sgn,Ver) of the following algorithms.
𝑝𝑎𝑟

$← Stp(𝜅): Given an upper bound on the ring size 𝜌 , the
probabilistic setup algorithm Stp returns system
parameters 𝑝𝑎𝑟 , where 𝑝𝑎𝑟 defines a message space M.
We assume that all algorithms are implicitly given access
to the system parameters 𝑝𝑎𝑟 .

(𝑠𝑘, 𝑝𝑘) $← Gen: The probabilistic key generation algorithm
returns a secret key 𝑠𝑘 and a corresponding public key 𝑝𝑘 .

Game (𝑛,𝑄Dec, 𝑄Chl)-IND-CCAKEM (A)
01 for 𝑖 ∈ [𝑛]
02 (𝑠𝑘𝑖 , 𝑝𝑘𝑖) $← Gen

03 𝑏
$← {0, 1}

04 𝑏′ ← ADec,Chall (𝑝𝑘1, . . . , 𝑝𝑘𝑛)
05 return J𝑏 = 𝑏′K

Oracle Dec(𝑟 ∈ [𝑛], 𝑐)
06 if ∃ 𝑘 : (𝑝𝑘𝑟 , 𝑐, 𝑘) ∈ D
07 return 𝑘

08 𝑘 ← Dec(𝑠𝑘𝑟 , 𝑐)
09 return 𝑘

Oracle Chl(𝑟 ∈ [𝑛])
10 (𝑐, 𝑘) $← Enc(𝑝𝑘𝑟)
11 if 𝑏 = 0
12 continue
13 if 𝑏 = 1
14 𝑘

$← K
15 D ← D ∪ { (𝑝𝑘𝑟 , 𝑐, 𝑘) }
16 return (𝑐, 𝑘)

Figure 12: Game defining IND-CCA for a key encapsulation

mechanism KEM with adversary A making at most 𝑄Dec
queries to Dec and at most 𝑄Chl queries to Chl.

𝜎
$← Sgn(𝑠𝑘, 𝜌,𝑚): Given a secret key 𝑠𝑘 , a ring

𝜌 = {𝑝𝑘1, . . . , 𝑝𝑘𝑘 } such that the public key 𝑝𝑘

corresponding to 𝑠𝑘 satisfies 𝑝𝑘 ∈ 𝜌 and 𝑘 ≤ 𝜅, and a
message𝑚 ∈ M, the probabilistic signing algorithm Sgn

returns a signature 𝜎 from a signature space S.
𝑏 ← Ver(𝜎, 𝜌,𝑚): Given a signature 𝜎 , a ring 𝜌 , and a message𝑚,

the deterministic verification algorithm Ver returns a bit 𝑏,
such that 𝑏 = 1 if and only if 𝜎 is a valid signature on𝑚

and 𝑏 = 0 otherwise.

RSig is 𝛿 (𝜅)-correct or has correctness error 𝛿 (𝜅) if for all 𝜅 ∈ N,
𝑝𝑎𝑟

$← Stp(𝜅), and {(𝑠𝑘𝑖 , 𝑝𝑘𝑖)}𝑖∈[𝑘] ∈ sup (Gen), and for any
𝑖 ∈ [𝑘] with 𝑘 ≤ 𝜅,

Pr [Ver(Sgn(𝑠𝑘𝑖 , 𝜌,𝑚), 𝜌,𝑚) ≠ 1] ≤ 𝛿 (𝜅),

where 𝜌 B {𝑝𝑘1, . . . , 𝑝𝑘𝑘 }, and the probability is taken over the
random choices of Stp, Gen and Sgn.

We assume (w.l.o.g.) that there is a mapping 𝜇 from the space of
secret keys to the space of public keys such that for all (𝑠𝑘, 𝑝𝑘) ∈
sup(Gen) it holds 𝜇 (𝑠𝑘) = 𝑝𝑘 .

Unforgeability. We consider the notion of one-per-message
unforgeability under chosen ring attacks, where the adversary is
only allowed to make at most one signing query per message/ring
pair (𝑚𝑖 , 𝜌𝑖) from [GJK24]. The notion is formalised through the
game (n, 𝜅,𝑄Sgn)-UF-CRA1RSig (A) depicted in Figure 13, where
𝑛 is the number of users, 𝜅 the maximal ring size, and 𝑄Sgn is an
upper bound on the signing queries. We define the advantage
functions of adversary A as

Adv(n,𝜅,QSgn)-UF-CRA1
RSig,A B Pr[(n, 𝜅,𝑄Sgn)-UF-CRA1RSig (A) ⇒ 1] .

Anonymity. We consider multi-challenge anonymity under full
key exposures of a ring signature RSig from [BFG+22, GJK24]. It is
defined via the game (n, 𝜅,𝑄Chl)-MC-AnoRSig (A) for an

2025-02-02 19:15. Page 18 of 1–37.

Shadowfax: Combiners for Deniability

Game (n, 𝜅,𝑄Sgn)-UF-CRA1RSig (A)
01 Q ← ∅
02 𝑝𝑎𝑟

$← Stp(𝜅)
03 for 𝑖 ∈ [𝑛]
04 (𝑠𝑘𝑖 , 𝑝𝑘𝑖) $← Gen

05 (𝜎★, 𝜌★,𝑚★) $← ASgn (𝑝𝑎𝑟, 𝑝𝑘1, . . . , 𝑝𝑘𝑛)
06 return J𝜌★ ⊆ {𝑝𝑘𝑖 }𝑖∈ [𝑛] ∧ Ver(𝜎★, 𝜌★,𝑚★) = 1 ∧ (𝜌★,𝑚★) ∉ QK
Oracle Sgn(𝑖 ∈ [𝑛], 𝜌,𝑚)
07 if 𝑝𝑘𝑖 ∉ 𝜌 ∨ (𝜌,𝑚) ∈ Q
08 return ⊥
09 𝜎

$← Sgn(𝑠𝑘𝑖 , 𝜌,𝑚)
10 Q ← Q ∪ { (𝜌,𝑚) }
11 return 𝜎

Figure 13: Game UF-CRA1 for a ring signature scheme RSig

and adversary A.

Game (n, 𝜅,𝑄Chl)-MC-AnoRSig (A)

01 𝑝𝑎𝑟
$← Stp(𝜅)

02 for 𝑖 ∈ [𝑛]
03 (𝑠𝑘𝑖 , 𝑝𝑘𝑖) $← Gen

04 𝑏
$← {0, 1}

05 𝑏′ $← AChl (𝑝𝑎𝑟, (𝑠𝑘1, 𝑝𝑘1), . . . , (𝑠𝑘𝑛, 𝑝𝑘𝑛))
06 return J𝑏 = 𝑏′K
Oracle Chl(𝑖0 ∈ [𝑛], 𝑖1 ∈ [𝑛], 𝜌,𝑚)
07 if (𝜌 ⊆ {𝑝𝑘1, . . . , 𝑝𝑘𝑛 }) ∧ (𝑝𝑘𝑖0 ∈ 𝜌) ∧ (𝑝𝑘𝑖1 ∈ 𝜌)
08 𝜎

$← Sgn(𝑠𝑘𝑖𝑏 , 𝜌,𝑚)
09 return 𝜎

10 else
11 return ⊥

Figure 14: Game defining MC-Ano for a ring signature

scheme RSig with adversary A making at most 𝑄Chl queries

to Chl.

adversary A, depicted in Figure 14. We define the advantage as

Adv(n,𝜅,QChl)-MC-Ano

RSig,A ≔����Pr[(n, 𝜅,𝑄Chl)-MC-AnoRSig (A) ⇒ 1] − 1
2

����.
A.4 Pseudorandom Function

Definition 5 (Pseudorandom Function). A keyed function 𝐹 with
a finite key space K , and finite output range R is a function 𝐹 :
K×{0, 1}∗ → R. We formalise the notion of pseudorandomess for a
keyed function 𝐹 via the game (𝑛,𝑄Eval)-PRF depicted in Figure 15
and define the advantage of adversary A as

Adv(n,QEval)-PRF
𝐹,A B

����Pr [(𝑛,𝑄Eval)-PRF𝐹 (A) ⇒ 1] − 1
2

����.
Based on a PRF one can also define a dual-PRF [Bel06, Bel15]

which means that the function can be keyed on either the actual
key or the (fixed-length) input. We generalise this even further by
defining a multi-key PRF. The idea is that adversary A can first

Game (𝑛,𝑄Eval)-PRF𝐹 (A)
01 for 𝑖 ∈ [𝑛]
02 𝑘𝑖

$← K
03 𝑓𝑖

$← { 𝑓 | 𝑓 : {0, 1}∗ → R}
04 𝑏

$← {0, 1}
05 𝑏′ ← AEval

06 return J𝑏 = 𝑏′K
Oracle Eval(𝑖 ∈ [𝑛], 𝑥)
07 if 𝑏 = 0
08 return 𝐹 (𝑘𝑖 , 𝑥)
09 if 𝑏 = 1
10 return 𝑓𝑖 (𝑥)

Figure 15: Game defining PRF for a keyed function 𝐹 with

adversary A making at most 𝑄Eval queries to Eval.

choose the key that is attacked (position 𝑗) and is then playing
the normal PRF game where the remaining keys (for positions
ℓ ∈ [𝑚] \ { 𝑗}) that were not chosen as the attacked key act as
the input to the function. Note that a multi-PRF can be generically
instantiated by calling a dual-PRF multiple times sequentially.

Definition 6 (Multi-Key Pseudorandom Function). A multi-keyed
function with𝑚 ∈ N inputs, input spaceK1 × . . .×K𝑚 , and output
space R is a function 𝐹𝑚 : K1 × . . . × K𝑚 → R. We formalise the
notion of multi-key pseudorandomess for a multi-keyed function
𝐹𝑚 via the game (𝑛,𝑄Eval)-mPRF depicted in Figure 16 and define
the advantage of adversary A = (A1,A2) as

Adv(n,QEval)-mPRF

𝐹𝑚,A B

����Pr [(𝑛,𝑄Eval)-mPRF𝐹𝑚 (A) ⇒ 1
]
− 1
2

����.
Game (𝑛,𝑄Eval)-mPRF𝐹𝑚 (A)

01 𝑗
$← A1

02 K′ B ∏
ℓ ∈ [𝑚]\{ 𝑗 } Kℓ

03 for 𝑖 ∈ [𝑛]
04 𝑘𝑖

$← K𝑗

05 𝑓𝑖
$← { 𝑓 | 𝑓 : K′ → R}

06 𝑏
$← {0, 1}

07 𝑏′ ← AEval
2

08 return J𝑏 = 𝑏′K
Oracle Eval(𝑖 ∈ [𝑛], 𝑥)
09 if 𝑏 = 0
10 parse 𝑥 → (𝑥1, . . . , 𝑥 𝑗−1, 𝑥 𝑗+1, . . . , 𝑥𝑚)
11 return 𝐹 (𝑥1, . . . , 𝑥 𝑗−1, 𝑘𝑖 , 𝑥 𝑗+1, . . . , 𝑥𝑚)
12 if 𝑏 = 1
13 return 𝑓𝑖 (𝑥)

Figure 16: Game defining mPRF for a multi-keyed function

𝐹𝑚 with adversary A = (A1,A2) making at most 𝑄Eval
queries to Eval.

A.5 Symmetric Encryption

Definition 7 (Symmetric Encryption). A symmetric encryption SE

is defined as a tuple SE B (Enc,Dec) of the following algorithms.
2025-02-02 19:15. Page 19 of 1–37.

Game IND-CPASE (A)
01 𝑘

$← KSE

02 𝑏
$← {0, 1}

03 𝑏′ ← AChall

04 return J𝑏 = 𝑏′K

Oracle Chl(𝑚0,𝑚1) // one query
05 𝑐 B Enc(𝑘,𝑚𝑏)
06 return 𝑐

Figure 17: Game defining IND-CPA for a symmetric

encryption scheme SE with adversary A making at most

one query Chl.

𝑐 ← Enc(𝑘,𝑚): The determinsitic encryption algorithm Enc takes
as input a symmetric key 𝑘 and a message𝑚 and outputs a
ciphertext 𝑐 .

𝑚 ← SE.Dec(𝑘, 𝑐): The deterministic decryption algorithm Dec

takes as input a symmetric key 𝑘 and a ciphertext 𝑐 and
outputs a message𝑚.

We formalise the notion of ciphertext indistinguishability
(IND-CPA) for a symmetric encryption scheme SE via the game
IND-CPASE (A) depicted in Figure 17 and define the advantage of
adversary A as

AdvIND-CPA
KEM,A B

����Pr [IND-CPASE (A) ⇒ 1] − 1
2

����.

2025-02-02 19:15. Page 20 of 1–37.

Shadowfax: Combiners for Deniability

B PROOFS FOR SECTION 4 (GENERIC

CONSTRUCTION)

Theorem 2 (Confidentiality). For any Ins-CCA adversary A
against AKEM[AKEM1,AKEM2,H], depicted in Figure 5, there
exists an Ins-CCA adversary B1 against AKEM1, an Ins-CCA

adversary B2 against AKEM2, and a mPRF adversary C against H
such that

Adv(n,QEncQDec,QChl)-Ins-CCA
AKEM[AKEM1,AKEM2,H],A ≤ min

{
Adv(n,QEncQDec,QChl)-Ins-CCA

AKEM1,B1 ,

Adv(n,QEncQDec,QChl)-Ins-CCA
AKEM2,B2

}
+ Adv(QChl,QDec+QChl)-mPRF

H,C +𝑄Chl · 𝛿AKEM[AKEM1,AKEM2,H] .

Proof. Consider the sequence of games depicted in Figure 18.

Game G0. This is the Ins-CCAAKEM (A) game for
AKEM[AKEM1,AKEM2,H] so by definition����Pr[GA0 ⇒ 1] − 1

2

���� = Adv(n,QEncQDec,QChl)-Ins-CCA)-Ins-CCA
AKEM[AKEM1,AKEM2,H],A .

GameG1. GameG1 is the same asG0 except that in the challenge
oracle an element is added toD independent of challenge bit 𝑏. The
changes can only be distinguished if the decapsulation is incorrect.
For 𝑄Chl queries to the challenge oracle, we obtain���Pr [GA0 ⇒ 1

]
− Pr

[
G
A
1 ⇒ 1

] ��� ≤ 𝑄Chl · 𝛿AKEM[AKEM1,AKEM2,H] .

GameG2. GameG2 is the same asG1 except that in the challenge
oracle, the shared key of AKEM1 is replaced by a uniformly random
element of the key space K1 and stored together with ciphertext
𝑐1 in set E1. Additionally, the decapsulation oracle is changed to
check for a corresponding element in E1 and the actual KEM key
𝑘1 is replaced by the one stored in E1.

Claim 7: There exists an adversary B1 against the Ins-CCA

security of AKEM1, such that���Pr [GA1 ⇒ 1
]
− Pr

[
G
A
2 ⇒ 1

] ��� ≤ Adv(n,QEncQDec,QChl)-Ins-CCA
AKEM1,B1 .

Proof. Adversary B1 is formally constructed in Figure 19. If B1
is in the real case, i.e. challenge bit 𝑏 = 0, they perfectly simulateG1
for adversaryA. In case 𝑏 = 1 they simulate GameG2 for adversary
A. Hence, the advantage of distinguishing between G1 and G2 is
at most the advantage of B1.

■

Game G3. Game G3 is the same as G2 except that the output of
the hash function in the challenge oracle is replaced by a uniformly
random output of the output space K .

Claim 8: There exists an adversary C1 against the PRF security
of H1, i.e. keyed on the first input, such that���Pr [GA2 ⇒ 1

]
− Pr

[
G
A
3 ⇒ 1

] ��� ≤ Adv(QChl,QDec+QChl)-PRF
H1,C1 .

Proof. We formally construct adversary C1 in Figure 20. If C1
is in their own 𝑏 = 0 case of the PRF game, they simulate G2.
In the case 𝑏 = 1, they nearly simulate G3. Nearly refers to the
following distinction: the output of the evaluation oracle of the PRF
game is the output of a random function in case 𝑏 = 1 whereas in
G3 the output is randomly sampled from the output space. These

G0 − G5
01 D, E1, E2 B ∅
02 for 𝑖 ∈ [𝑛]
03 (𝑠𝑘 (1) , 𝑝𝑘 (1)) $← AKEM1 .Gen

04 (𝑠𝑘 (2) , 𝑝𝑘 (2)) $← AKEM2 .Gen

05 𝑠𝑘𝑖 B (𝑠𝑘 (1) , 𝑠𝑘 (2))
06 𝑝𝑘𝑖 B (𝑝𝑘 (1) , 𝑝𝑘 (2))
07 𝑏

$← {0, 1}
08 𝑏′ ← AEncps,Decps,Chall (𝑝𝑘1, . . . , 𝑝𝑘𝑛)
09 return J𝑏 = 𝑏′K
Oracle Decps(𝑝𝑘, 𝑟 ∈ [𝑛], 𝑐)
10 if ∃ 𝑘 : (𝑝𝑘, 𝑝𝑘𝑟 , 𝑐, 𝑘) ∈ D
11 return 𝑘

12 parse 𝑝𝑘 → (𝑝𝑘 (1) , 𝑝𝑘 (2))
13 parse 𝑠𝑘𝑟 → (𝑠𝑘 (1) , 𝑠𝑘 (2))
14 parse 𝑐 → (𝑐1, 𝑐2)
15 𝑘1 ← AKEM1 .Dec(𝑝𝑘 (1) , 𝑠𝑘 (1) , 𝑐1)
16 if ∃ 𝑘 ′1 : (𝑝𝑘 (1) , 𝜇 (𝑠𝑘 (1)), 𝑐1, 𝑘 ′1) ∈ E1 //G2,G3
17 𝑘1 B 𝑘 ′1 //G2,G3
18 𝑘2 ← AKEM2 .Dec(𝑝𝑘 (2) , 𝑠𝑘 (2) , 𝑐2)
19 if ∃ 𝑘 ′2 : (𝑝𝑘, 𝜇 (𝑠𝑘), 𝑐2, 𝑘 ′2) ∈ E2 //G4,G5
20 𝑘2 B 𝑘 ′2 //G4,G5
21 𝑘 B H(𝑘1, 𝑘2, 𝑝𝑘, 𝑝𝑘𝑟 , 𝑐)
22 return 𝑘

Oracle Encps(𝑠 ∈ [𝑛], 𝑝𝑘)
23 parse 𝑠𝑘𝑠 → (𝑠𝑘 (1) , 𝑠𝑘 (2))
24 parse 𝑝𝑘 → (𝑝𝑘 (1) , 𝑝𝑘 (2))
25 (𝑐1, 𝑘1) $← AKEM1 .Enc(𝑠𝑘 (1) , 𝑝𝑘 (1))
26 (𝑐2, 𝑘2) $← AKEM2 .Enc(𝑠𝑘 (2) , 𝑝𝑘 (2))
27 𝑐 ≔ (𝑐1, 𝑐2)
28 𝑘 B H(𝑘1, 𝑘2, 𝑝𝑘𝑠 , 𝑝𝑘, 𝑐)
29 return (𝑐, 𝑘)
Oracle Chall(𝑠𝑘, 𝑟 ∈ [𝑛])
30 parse 𝑠𝑘 → (𝑠𝑘 (1) , 𝑠𝑘 (2))
31 parse 𝑝𝑘𝑟 → (𝑝𝑘 (1) , 𝑝𝑘 (2))
32 (𝑐1, 𝑘1) $← AKEM1 .Enc(𝑠𝑘 (1) , 𝑝𝑘 (1))
33 𝑘1

$← K1 //G2,G3
34 E1 B E1 ∪ { (𝜇 (𝑠𝑘 (1)), 𝑝𝑘 (1) , 𝑐1, 𝑘1) } //G2,G3
35 (𝑐2, 𝑘2) $← AKEM2 .Enc(𝑠𝑘 (2) , 𝑝𝑘 (2))
36 𝑘2

$← K2 //G4,G5
37 E2 B E2 ∪ { (𝜇 (𝑠𝑘 (2)), 𝑝𝑘 (2) , 𝑐2, 𝑘2) } //G4,G5
38 𝑐 ≔ (𝑐1, 𝑐2)
39 𝑘 B H(𝑘1, 𝑘2, 𝜇 (𝑠𝑘), 𝑝𝑘𝑟 , 𝑐)
40 𝑘

$← K //G3,G5
41 if 𝑏 = 1
42 𝑘

$← K
43 D ← D ∪ { (𝜇 (𝑠𝑘), 𝑝𝑘𝑟 , 𝑐, 𝑘) }
44 D ← D ∪ { (𝜇 (𝑠𝑘), 𝑝𝑘𝑟 , 𝑐, 𝑘) } //G1 − G5
45 return (𝑐, 𝑘)

Figure 18: Games G0 − G5 for the proof of Theorem 2.

two cases are the same if the random function is never queried
on the same input as in the challenge oracle again. This is the
case in Game G3 because in the challenge oracle a new PRF key
is used and if there was a query to the same random function in
the decapsulation oracle, i.e. the same PRF key index ℓ , with the

2025-02-02 19:15. Page 21 of 1–37.

BEncpsB ,DecpsB ,ChallB
1 (𝑝𝑘1, . . . , ˆ𝑝𝑘𝑛)

01 D, E1 B ∅
02 for 𝑖 ∈ [𝑛]
03 (𝑠𝑘 (2) , 𝑝𝑘 (2)) $← AKEM2 .Gen

04 𝑠𝑘𝑖 B (⊥, 𝑠𝑘 (2))
05 𝑝𝑘𝑖 B (𝑝𝑘𝑖 , 𝑝𝑘 (2))
06 𝑏

$← {0, 1}
07 𝑏′ ← AEncps,Decps,Chall (𝑝𝑘1, . . . , 𝑝𝑘𝑛)
08 return J𝑏 = 𝑏′K
Oracle Decps(𝑝𝑘, 𝑟 ∈ [𝑛], 𝑐)
09 if ∃ 𝑘 : (𝑝𝑘, 𝑝𝑘𝑟 , 𝑐, 𝑘) ∈ D
10 return 𝑘

11 parse 𝑝𝑘 → (𝑝𝑘 (1) , 𝑝𝑘 (2))
12 parse 𝑠𝑘𝑟 → (⊥, 𝑠𝑘 (2))
13 parse 𝑐 → (𝑐1, 𝑐2)
14 𝑘1 ← DecpsB (𝑝𝑘 (1) , 𝑟 , 𝑐1) // decaps query
15 𝑘2 ← AKEM2 .Dec(𝑝𝑘 (2) , 𝑠𝑘 (2) , 𝑐2)
16 𝑘 B H(𝑘1, 𝑘2, 𝑝𝑘, 𝑝𝑘𝑟 , 𝑐)
17 return 𝑘

Oracle Encps(𝑠 ∈ [𝑛], 𝑝𝑘)
18 parse 𝑠𝑘𝑠 → (⊥, 𝑠𝑘 (2))
19 parse 𝑝𝑘 → (𝑝𝑘 (1) , 𝑝𝑘 (2))
20 (𝑐1, 𝑘1) $← EncpsB (𝑠, 𝑝𝑘 (1)) // encaps query
21 (𝑐2, 𝑘2) $← AKEM2 .Enc(𝑠𝑘 (2) , 𝑝𝑘 (2))
22 𝑐 ≔ (𝑐1, 𝑐2)
23 𝑘 B H(𝑘1, 𝑘2, 𝑝𝑘𝑠 , 𝑝𝑘, 𝑐)
24 return (𝑐, 𝑘)
Oracle Chall(𝑠𝑘, 𝑟 ∈ [𝑛])
25 parse 𝑠𝑘 → (𝑠𝑘 (1) , 𝑠𝑘 (2))
26 parse 𝑝𝑘𝑟 → (𝑝𝑘 (1) , 𝑝𝑘 (2))
27 (𝑐1, 𝑘1) $← ChallB (𝑠𝑘 (1) , 𝑟) // challenge query
28 (𝑐2, 𝑘2) $← AKEM2 .Enc(𝑠𝑘 (2) , 𝑝𝑘 (2))
29 𝑐 ≔ (𝑐1, 𝑐2)
30 𝑘 B H(𝑘1, 𝑘2, 𝜇 (𝑠𝑘), 𝑝𝑘𝑟 , 𝑐)
31 if 𝑏 = 1
32 𝑘

$← K
33 D ← D ∪ { (𝜇 (𝑠𝑘), 𝑝𝑘𝑟 , 𝑐, 𝑘) }
34 D ← D ∪ { (𝜇 (𝑠𝑘), 𝑝𝑘𝑟 , 𝑐, 𝑘) }
35 return (𝑐, 𝑘)

Figure 19: Adversary B1 against Ins-CCA security of AKEM1,
having access to oracles EncpsB , DecpsB , ChallB , and CorSKB ,
simulating Game G1/G2 for adversary A from the proof of

Theorem 2.

same input 𝑘2 | |𝑝𝑘 | |𝑝𝑘𝑟 | |𝑐 , the decapsulation would have returned
in Line 12 already and never queried the PRF evaluation oracle.
Further, we can see that adversary C1 needs at most𝑄Chl instances
and at most 𝑄Dec +𝑄Chl evaluation queries.

■

Game G4. Game G4 is the same as G1 (note that we are not
building on top of the last game) except that in the challenge
oracle, the shared key of AKEM2 is replaced by a uniformly
random element of the key space K2 and stored together with
ciphertext 𝑐2 in set E2. Additionally, the decapsulation oracle is

CEval1
01 D, E1 B ∅
02 ℓ B 0
03 for 𝑖 ∈ [𝑛]
04 (𝑠𝑘 (1) , 𝑝𝑘 (1)) $← AKEM1 .Gen

05 (𝑠𝑘 (2) , 𝑝𝑘 (2)) $← AKEM2 .Gen

06 𝑠𝑘𝑖 B (𝑠𝑘 (1) , 𝑠𝑘 (2))
07 𝑝𝑘𝑖 B (𝑝𝑘 (1) , 𝑝𝑘 (2))
08 𝑏

$← {0, 1}
09 𝑏′ ← AEncps,Decps,Chall (𝑝𝑘1, . . . , 𝑝𝑘𝑛)
10 return J𝑏 = 𝑏′K
Oracle Decps(𝑝𝑘, 𝑟 ∈ [𝑛], 𝑐)
11 if ∃ 𝑘 : (𝑝𝑘, 𝑝𝑘𝑟 , 𝑐, 𝑘) ∈ D
12 return 𝑘

13 parse 𝑝𝑘 → (𝑝𝑘 (1) , 𝑝𝑘 (2))
14 parse 𝑠𝑘𝑟 → (𝑠𝑘 (1) , 𝑠𝑘 (2))
15 parse 𝑐 → (𝑐1, 𝑐2)
16 𝑘1 ← AKEM1 .Dec(𝑝𝑘 (1) , 𝑠𝑘 (1) , 𝑐1)
17 𝑘2 ← AKEM2 .Dec(𝑝𝑘 (2) , 𝑠𝑘 (2) , 𝑐2)
18 𝑘 B H(𝑘1, 𝑘2, 𝑝𝑘, 𝑝𝑘𝑟 , 𝑐)
19 if ∃ ℓ ′ : (𝑝𝑘 (1) , 𝜇 (𝑠𝑘 (1)), 𝑐1, ℓ ′) ∈ E1
20 𝑘

$← Eval(ℓ ′, 𝑘2 | |𝑝𝑘 | |𝑝𝑘𝑟 | |𝑐) // call on previous key
21 return 𝑘

Oracle Encps(𝑠 ∈ [𝑛], 𝑝𝑘)
22 return G2 .Encps(𝑠, 𝑝𝑘)
Oracle Chall(𝑠𝑘, 𝑟 ∈ [𝑛])
23 parse 𝑠𝑘 → (𝑠𝑘 (1) , 𝑠𝑘 (2))
24 parse 𝑝𝑘𝑟 → (𝑝𝑘 (1) , 𝑝𝑘 (2))
25 (𝑐1, 𝑘1) $← AKEM1 .Enc(𝑠𝑘 (1) , 𝑝𝑘 (1))
26 𝑘1

$← K1
27 (𝑐2, 𝑘2) $← AKEM2 .Enc(𝑠𝑘 (2) , 𝑝𝑘 (2))
28 𝑐 ≔ (𝑐1, 𝑐2)
29 ℓ B ℓ + 1 // new PRF key
30 𝑘

$← Eval(ℓ, 𝑘2 | |𝑝𝑘𝑠 | |𝑝𝑘𝑟 | |𝑐) // call Eval query
31 E1 B E1 ∪ { (𝜇 (𝑠𝑘 (1)), 𝑝𝑘 (1) , 𝑐1, ℓ) }
32 if 𝑏 = 1
33 𝑘

$← K
34 D ← D ∪ { (𝜇 (𝑠𝑘), 𝑝𝑘𝑟 , 𝑐, 𝑘) }
35 D ← D ∪ { (𝜇 (𝑠𝑘), 𝑝𝑘𝑟 , 𝑐, 𝑘) }
36 return (𝑐, 𝑘)

Figure 20: Adversary C1 against PRF security of H1, having
access to oracle Eval, simulating Game G2/G3 for adversary
A from the proof of Theorem 2.

changed to check for a corresponding element in E2 and the actual
KEM key 𝑘2 is replaced by the one stored in E2. Claim 9: There
exists an adversary B2 against the Ins-CCA security of AKEM2,
such that���Pr [GA1 ⇒ 1

]
− Pr

[
G
A
4 ⇒ 1

] ��� ≤ Adv(n,QEncQDec,QChl)-Ins-CCA
AKEM2,B2 .

Proof. The proof is analogue to the one betweenG1 andG2 ■

Game G5. Game G5 is the same as G4 except that the output of
the hash function in the challenge oracle is replaced by a uniformly
random output of the output space K .

2025-02-02 19:15. Page 22 of 1–37.

Shadowfax: Combiners for Deniability

Claim 10: There exists an adversary C2 against the PRF security
of H2, i.e. keyed on the first input, such that���Pr [GA4 ⇒ 1

]
− Pr

[
G
A
5 ⇒ 1

] ��� ≤ Adv(QChl,QDec+QChl)-PRF
H2,C2 .

Proof. The proof is analogue to the one betweenG2 andG3. ■

Game G3 as well as Game G5 are independent of the challenge
bit 𝑏. Hence, we obtain

Pr[GA3 ⇒ 1] = Pr[GA5 ⇒ 1] = 1
2
.

■

Theorem 3 (Authenticity). For any Out-Aut adversary A against
AKEM[AKEM1,AKEM2,H], as depicted in Figure 5, there exists an
Out-Aut adversary B1 against AKEM1, an Out-Aut adversary B2
against AKEM2, an Out-CCA adversary C1 against AKEM1, an
Out-CCA adversary C2 against AKEM2, and amPRF adversaryD
against H such that

Adv(n,QEnc,QChl)-Out-Aut
AKEM[AKEM1,AKEM2,H],A ≤

min
{
Adv(n,QEnc,QChl)-Out-Aut

AKEM1,B1 + Adv(n,QEnc,QChl)-Out-CCA
AKEM1,C1 ,

Adv(n,QEnc,QChl)-Out-Aut
AKEM2,B2 + Adv(n,QEnc,QChl)-Out-CCA

AKEM2,C2

}
+ Adv(QEnc+QChl,QEnc+QChl)-mPRF

H,D +𝑄Chl · 𝛿AKEM[AKEM1,AKEM2,H] .

Proof. Consider the sequence of games depicted in Figure 21.

Game G0. This is the Out-Aut game for
AKEM[AKEM1,AKEM2,H] so by definition����Pr[GA0 ⇒ 1] − 1

2

���� = Adv(n,QEnc,QChl)-Out-Aut
AKEM[AKEM1,AKEM2,H],A .

GameG1. GameG1 is the same asG0 except that in the challenge
oracle setD is filled in case 𝑏 = 0 as well. If the scheme is perfectly
correct, the change cannot be distinguished since the difference
is that D stores either tuples from encapsulations or from correct
decapsulations. Hence, the difference is at most the correctness
error per query to the challenge oracle:���Pr [GA0 ⇒ 1

]
− Pr

[
G
A
1 ⇒ 1

] ��� ≤ 𝑄Chl · 𝛿AKEM[AKEM1,AKEM2,H] .

Game G2. Game G2 is the same as G1 except that the output of
the AKEM1 decapsulation, 𝑘1, is replaced by a uniformly random
sample from the key space K1 if the first receiver public key, 𝑝𝑘 (1) ,
is honest and the shared key is not ⊥ (Line 33) and the result is
stored together with the sender’s and receiver’s public key for
AKEM1 as well as the first ciphertext 𝑐1 in set E1 (Line 34). For
consistent outputs, an element of this form is also added to E1 in an
encapsulation query (Line 15) and if there already exists a matching
element in E1 the decapsulation output is replaced by this element
instead of randomly choosing a new one (Line 31).

Claim 11: There exists an adversary B1 against the Out-Aut

security of AKEM1, such that���Pr [GA1 ⇒ 1
]
− Pr

[
G
A
2 ⇒ 1

] ��� ≤ Adv(n,QEnc,QChl)-Out-Aut
AKEM1,B1 .

G0 − G4
01 D, E1, E2 B ∅
02 for 𝑖 ∈ [𝑛]
03 (𝑠𝑘 (1) , 𝑝𝑘 (1)) $← AKEM1 .Gen

04 (𝑠𝑘 (2) , 𝑝𝑘 (2)) $← AKEM2 .Gen

05 𝑠𝑘𝑖 B (𝑠𝑘 (1) , 𝑠𝑘 (2))
06 𝑝𝑘𝑖 B (𝑝𝑘 (1) , 𝑝𝑘 (2))
07 𝑏

$← {0, 1}
08 𝑏′ $← AEncps,Chall (𝑝𝑘1, . . . , 𝑝𝑘𝑛)
09 return J𝑏 = 𝑏′K
Oracle Encps(𝑠 ∈ [𝑛], 𝑝𝑘)
10 parse 𝑠𝑘𝑠 → (𝑠𝑘 (1) , 𝑠𝑘 (2))
11 parse 𝑝𝑘 → (𝑝𝑘 (1) , 𝑝𝑘 (2))
12 (𝑐1, 𝑘1) $← AKEM1 .Enc(𝑠𝑘 (1) , 𝑝𝑘 (1))
13 if 𝑝𝑘 (1) ∈ {𝑝𝑘 (1)1 , . . . , 𝑝𝑘

(1)
𝑛 } //G3 − G4

14 𝑘1
$← K1 //G3 − G4

15 E1 B E1 ∪ { (𝜇 (𝑠𝑘 (1)), 𝑝𝑘 (1) , 𝑐1, 𝑘1) } //G2 − G4
16 (𝑐2, 𝑘2) $← AKEM2 .Enc(𝑠𝑘 (2) , 𝑝𝑘 (2))
17 𝑐 ≔ (𝑐1, 𝑐2)
18 𝑘 B H(𝑘1, 𝑘2, 𝑝𝑘𝑠 , 𝑝𝑘, 𝑐)
19 if 𝑝𝑘 (1) ∈ {𝑝𝑘 (1)1 , . . . , 𝑝𝑘

(1)
𝑛 } //G4

20 𝑘
$← K //G4

21 D ← D ∪ { (𝑝𝑘𝑠 , 𝑝𝑘, 𝑐, 𝑘) }
22 return (𝑐, 𝑘)
Oracle Chall(𝑝𝑘, 𝑟 ∈ [𝑛], 𝑐)
23 if ∃ 𝑘 : (𝑝𝑘, 𝑝𝑘𝑟 , 𝑐, 𝑘) ∈ D
24 return 𝑘

25 parse 𝑝𝑘 → (𝑝𝑘 (1) , 𝑝𝑘 (2))
26 parse 𝑠𝑘𝑟 → (𝑠𝑘 (1) , 𝑠𝑘 (2))
27 parse 𝑐 → (𝑐1, 𝑐2)
28 𝑘1 ← AKEM1 .Dec(𝑝𝑘 (1) , 𝑠𝑘 (1) , 𝑐1)
29 𝑘2 ← AKEM2 .Dec(𝑝𝑘 (2) , 𝑠𝑘 (2) , 𝑐2)
30 if ∃ 𝑘 ′1 : (𝑝𝑘 (1) , 𝜇 (𝑠𝑘 (1)), 𝑐1, 𝑘 ′1) ∈ E1
31 𝑘1 B 𝑘 ′1
32 elseif (𝑝𝑘 (1) , ·) ∈ {𝑝𝑘1, . . . , 𝑝𝑘𝑛 } ∧ 𝑘1 ≠ ⊥ //G2 − G4
33 𝑘1

$← K1 //G2 − G4
34 E1 B E1 ∪ { (𝑝𝑘 (1) , 𝜇 (𝑠𝑘 (1)), 𝑐1, 𝑘1) } //G2 − G4
35 𝑘 B H(𝑘1, 𝑘2, 𝑝𝑘, 𝑝𝑘𝑟 , 𝑐)
36 if (𝑝𝑘 (1) , ·) ∈ {𝑝𝑘1, . . . , 𝑝𝑘𝑛 } ∧ 𝑘1 ≠ ⊥ //G4
37 𝑘

$← K //G4
38 if 𝑏 = 1 ∧ 𝑝𝑘 ∈ {𝑝𝑘1, . . . , 𝑝𝑘𝑛 } ∧ 𝑘 ≠ ⊥
39 𝑘

$← K
40 D ← D ∪ { (𝑝𝑘, 𝑝𝑘𝑟 , 𝑐, 𝑘) }
41 D ← D ∪ { (𝑝𝑘, 𝑝𝑘𝑟 , 𝑐, 𝑘) } //G1 − G4
42 return 𝑘

Figure 21: Games for the proof of Theorem 3.

Proof. Adversary B1 is formally constructed in Figure 22. If
they are in case 𝑏 = 0, they simulate Game G1. In case 𝑏 = 1, they
simulateG2. Further, the number of queries to EncpsB and ChallB
is the same as for adversary A.

■

Game G3. Game G3 is the same as G2 except that the KEM key
of AKEM1 in Encps is replaced by a uniformly random value of the
key space K1.

2025-02-02 19:15. Page 23 of 1–37.

BEncpsB ,ChallB
1 (𝑝𝑘 (1)1 , . . . , 𝑝𝑘

(1)
𝑛)

01 D B ∅
02 for 𝑖 ∈ [𝑛]
03 (𝑠𝑘 (2) , 𝑝𝑘 (2)) $← AKEM2 .Gen

04 𝑠𝑘𝑖 B (⊥, 𝑠𝑘 (2))
05 𝑝𝑘𝑖 B (𝑝𝑘 (1)𝑖

, 𝑝𝑘 (2))
06 𝑏

$← {0, 1}
07 𝑏′ $← AEncps,Chall (𝑝𝑘1, . . . , 𝑝𝑘𝑛)
08 return J𝑏 = 𝑏′K
Oracle Encps(𝑠 ∈ [𝑛], 𝑝𝑘)
09 parse 𝑠𝑘𝑠 → (⊥, 𝑠𝑘 (2))
10 parse 𝑝𝑘 → (𝑝𝑘 (1) , 𝑝𝑘 (2))
11 (𝑐1, 𝑘1) $← EncpsB (𝑠, 𝑝𝑘 (1)) // encaps query
12 (𝑐2, 𝑘2) $← AKEM2 .Enc(𝑠𝑘 (2) , 𝑝𝑘 (2))
13 𝑐 ≔ (𝑐1, 𝑐2)
14 𝑘 B H(𝑘1, 𝑘2, 𝑝𝑘𝑠 , 𝑝𝑘, 𝑐)
15 D ← D ∪ { (𝑝𝑘𝑠 , 𝑝𝑘, 𝑐, 𝑘) }
16 return (𝑐, 𝑘)
Oracle Chall(𝑝𝑘, 𝑟 ∈ [𝑛], 𝑐)
17 if ∃ 𝑘 : (𝑝𝑘, 𝑝𝑘𝑟 , 𝑐, 𝑘) ∈ D
18 return 𝑘

19 parse 𝑝𝑘 → (𝑝𝑘 (1) , 𝑝𝑘 (2))
20 parse 𝑠𝑘𝑟 → (⊥, 𝑠𝑘 (2))
21 parse 𝑐 → (𝑐1, 𝑐2)
22 𝑘1 ← ChallB (𝑝𝑘 (1) , 𝑟 , 𝑐1) // challenge query
23 𝑘2 ← AKEM2 .Dec(𝑝𝑘 (2) , 𝑠𝑘 (2) , 𝑐2)
24 𝑘 B H(𝑘1, 𝑘2, 𝑝𝑘, 𝑝𝑘𝑟 , 𝑐)
25 if 𝑏 = 1 ∧ 𝑝𝑘 ∈ {𝑝𝑘1, . . . , 𝑝𝑘𝑛 } ∧ 𝑘 ≠ ⊥
26 𝑘

$← K
27 D ← D ∪ { (𝑝𝑘, 𝑝𝑘𝑟 , 𝑐, 𝑘) }
28 D ← D ∪ { (𝑝𝑘, 𝑝𝑘𝑟 , 𝑐, 𝑘) }
29 return 𝑘

Figure 22: Adversary B1 against Out-Aut security of AKEM2,
having access to oracles EncpsB and ChallB , simulating

Game G1/G2 for adversary A from the proof of Theorem 3.

Claim 12: There exists an adversary C1 against the Out-CCA
security of AKEM1, such that���Pr [GA2 ⇒ 1

]
− Pr

[
G
A
3 ⇒ 1

] ��� ≤ Adv(n,QEnc,QChl)-Out-CCA
AKEM1,C1 .

Proof. Adversary C1 is constructed in Figure 23. In G2, the
encapsulation is the real encapsulation of AKEM1, thus querying
the oracle EncpsC simulates Game G2 for adversary A. In the
Out-CCA case 𝑏 = 1, the encapsulation oracle EncpsC returns a
uniformly random key of the key space K1 which perfectly
simulates G3. Note that in Game G3, the key is randomly chosen
for honest receivers only. The number of encapsulation and
decapsulation queries of C equals exactly the ones of A.

■

Game G4. Game G4 is the same as G2 except that the output of
hash function H in the challenge oracle is replaced by a uniformly
random output in case the first public key, 𝑝𝑘 (1) , is honest and
the KEM key 𝑘1 is not ⊥. Further, the output of hash function H is

CEncpsC ,DecpsC (𝑝𝑘 (1)1 , . . . , 𝑝𝑘
(1)
𝑛)

01 D, E1, E2 B ∅
02 for 𝑖 ∈ [𝑛]
03 (𝑠𝑘 (2) , 𝑝𝑘 (2)) $← AKEM2 .Gen

04 𝑠𝑘𝑖 B (⊥, 𝑠𝑘 (2))
05 𝑝𝑘𝑖 B (𝑝𝑘 (1)𝑖

, 𝑝𝑘 (2))
06 𝑏

$← {0, 1}
07 𝑏′ $← AEncps,Chall (𝑝𝑘1, . . . , 𝑝𝑘𝑛)
08 return J𝑏 = 𝑏′K
Oracle Encps(𝑠 ∈ [𝑛], 𝑝𝑘)
09 parse 𝑠𝑘𝑠 → (⊥, 𝑠𝑘 (2))
10 parse 𝑝𝑘 → (𝑝𝑘 (1) , 𝑝𝑘 (2))
11 (𝑐1, 𝑘1) $← EncpsC (𝑠, 𝑝𝑘 (1)) // encaps query
12 E1 B E1 ∪ {𝑝𝑘 (1)𝑠 , 𝑝𝑘 (1) , 𝑐1, 𝑘1) }
13 (𝑐2, 𝑘2) $← AKEM2 .Enc(𝑠𝑘 (2) , 𝑝𝑘 (2))
14 𝑐 ≔ (𝑐1, 𝑐2)
15 𝑘 B H(𝑘1, 𝑘2, 𝑝𝑘𝑠 , 𝑝𝑘, 𝑐)
16 D ← D ∪ { (𝑝𝑘𝑠 , 𝑝𝑘, 𝑐, 𝑘) }
17 return (𝑐, 𝑘)
Oracle Chall(𝑝𝑘, 𝑟 ∈ [𝑛], 𝑐)
18 if ∃ 𝑘 : (𝑝𝑘, 𝑝𝑘𝑟 , 𝑐, 𝑘) ∈ D
19 return 𝑘

20 parse 𝑝𝑘 → (𝑝𝑘 (1) , 𝑝𝑘 (2))
21 parse 𝑠𝑘𝑟 → (⊥, 𝑠𝑘 (2))
22 parse 𝑐 → (𝑐1, 𝑐2)
23 𝑘1 ← DecpsC (𝑝𝑘 (1) , 𝑟 , 𝑐1) // decaps query
24 𝑘2 ← AKEM2 .Dec(𝑝𝑘 (2) , 𝑠𝑘 (2) , 𝑐2)
25 if ∃ 𝑘 ′1 : (𝑝𝑘 (1) , 𝑝𝑘

(1)
𝑟 , 𝑐1, 𝑘

′
1) ∈ E1

26 𝑘1 B 𝑘 ′1
27 elseif (𝑝𝑘 (1) , ·) ∈ {𝑝𝑘1, . . . , 𝑝𝑘𝑛 } ∧ 𝑘1 ≠ ⊥
28 𝑘1

$← K1
29 E1 B E1 ∪ { (𝑝𝑘 (1) , 𝑝𝑘 (1)𝑟 , 𝑐1, 𝑘1) }
30 𝑘 B H(𝑘1, 𝑘2, 𝑝𝑘, 𝑝𝑘𝑟 , 𝑐)
31 if 𝑏 = 1 ∧ 𝑝𝑘 ∈ {𝑝𝑘1, . . . , 𝑝𝑘𝑛 } ∧ 𝑘 ≠ ⊥
32 𝑘

$← K
33 D ← D ∪ { (𝑝𝑘, 𝑝𝑘𝑟 , 𝑐, 𝑘) }
34 return 𝑘

Figure 23: Adversary C1 against Out-CCA security of AKEM2,
having access to oracles EncpsB and DecpsB , simulating

Game G2/G3 for adversary A from the proof of Theorem 3.

also replaced by a random value in the encapsulation oracle if the
receiver is honest.

Claim 13: There exists an adversaryD1 against the PRF security
of H1, such that���Pr [GA3 ⇒ 1

]
− Pr

[
G
A
4 ⇒ 1

] ��� ≤ Adv(QEnc+QChl,QEnc+QChl)-PRF
H1,D1

.

Proof. Adversary D1 is formally constructed in Figure 24.
If D1 is in their own 𝑏 = 0 case of the PRF game, they simulate

G3. In the case 𝑏 = 1, they nearly simulate G4. Nearly refers to the
following distinction: the output of the evaluation oracle of the PRF
game is the output of a random function in case 𝑏 = 1 whereas in
G4 the output is randomly sampled from the output space. With
the same argument as in Game 3 of the proof of Theorem 2, we
obtain a perfect simulation. The maximal number of different PRF

2025-02-02 19:15. Page 24 of 1–37.

Shadowfax: Combiners for Deniability

keys is the same as maximal evaluation queries and amounts to
𝑄Enc +𝑄Chl.

DEval
1

01 ℓ B 0
02 D, E1, E2 B ∅
03 for 𝑖 ∈ [𝑛]
04 (𝑠𝑘 (1) , 𝑝𝑘 (1)) $← AKEM1 .Gen

05 (𝑠𝑘 (2) , 𝑝𝑘 (2)) $← AKEM2 .Gen

06 𝑠𝑘𝑖 B (𝑠𝑘 (1) , 𝑠𝑘 (2))
07 𝑝𝑘𝑖 B (𝑝𝑘 (1) , 𝑝𝑘 (2))
08 𝑏

$← {0, 1}
09 𝑏′ $← AEncps,Chall (𝑝𝑘1, . . . , 𝑝𝑘𝑛)
10 return J𝑏 = 𝑏′K
Oracle Encps(𝑠 ∈ [𝑛], 𝑝𝑘)
11 parse 𝑠𝑘𝑠 → (𝑠𝑘 (1) , 𝑠𝑘 (2))
12 parse 𝑝𝑘 → (𝑝𝑘 (1) , 𝑝𝑘 (2))
13 (𝑐1, 𝑘1) $← AKEM1 .Enc(𝑠𝑘 (1) , 𝑝𝑘 (1))
14 if 𝑝𝑘 (1) ∈ {𝑝𝑘 (1)1 , . . . , 𝑝𝑘

(1)
𝑛 }

15 ℓ B ℓ + 1 // new key
16 E1 B E1 ∪ { (𝜇 (𝑠𝑘 (1)), 𝑝𝑘 (1) , 𝑐1, ℓ) } // store key
17 (𝑐2, 𝑘2) $← AKEM2 .Enc(𝑠𝑘 (2) , 𝑝𝑘 (2))
18 𝑐 ≔ (𝑐1, 𝑐2)
19 𝑘 B H(𝑘1, 𝑘2, 𝑝𝑘𝑠 , 𝑝𝑘, 𝑐)
20 if 𝑝𝑘 (1) ∈ {𝑝𝑘 (1)1 , . . . , 𝑝𝑘

(1)
𝑛 }

21 𝑘1
$← Eval(ℓ, 𝑘2 ∥𝑝𝑘𝑠 ∥𝑝𝑘 ∥𝑐) // eval query

22 D ← D ∪ { (𝑝𝑘𝑠 , 𝑝𝑘, 𝑐, 𝑘) }
23 return (𝑐, 𝑘)
Oracle Chall(𝑝𝑘, 𝑟 ∈ [𝑛], 𝑐)
24 if ∃ 𝑘 : (𝑝𝑘, 𝑝𝑘𝑟 , 𝑐, 𝑘) ∈ D
25 return 𝑘

26 parse 𝑝𝑘 → (𝑝𝑘 (1) , 𝑝𝑘 (2))
27 parse 𝑠𝑘𝑟 → (𝑠𝑘 (1) , 𝑠𝑘 (2))
28 parse 𝑐 → (𝑐1, 𝑐2)
29 𝑘1 ← AKEM1 .Dec(𝑝𝑘 (1) , 𝑠𝑘 (1) , 𝑐1)
30 𝑘2 ← AKEM2 .Dec(𝑝𝑘 (2) , 𝑠𝑘 (2) , 𝑐2)
31 if ∃ ℓ ′ : (𝑝𝑘 (1) , 𝜇 (𝑠𝑘 (1)), 𝑐1, ℓ ′) ∈ E1
32 𝑘

$← Eval(ℓ ′, 𝑘2 ∥𝑝𝑘 ∥𝑝𝑘𝑟 ∥𝑐) // eval query
33 elseif (𝑝𝑘 (1) , ·) ∈ {𝑝𝑘1, . . . , 𝑝𝑘𝑛 } ∧ 𝑘1 ≠ ⊥
34 ℓ B ℓ + 1 // new key
35 E1 B E1 ∪ { (𝑝𝑘 (1) , 𝜇 (𝑠𝑘 (1)), 𝑐1, ℓ) } // store key
36 𝑘

$← Eval(ℓ, 𝑘2 ∥𝑝𝑘 ∥𝑝𝑘𝑟 ∥𝑐) // eval query
37 else
38 𝑘 B H(𝑘1, 𝑘2, 𝑝𝑘, 𝑝𝑘𝑟 , 𝑐)
39 if 𝑏 = 1 ∧ 𝑝𝑘 ∈ {𝑝𝑘1, . . . , 𝑝𝑘𝑛 } ∧ 𝑘 ≠ ⊥
40 𝑘

$← K
41 D ← D ∪ { (𝑝𝑘, 𝑝𝑘𝑟 , 𝑐, 𝑘) }
42 return 𝑘

Figure 24: Adversary D1 against PRF security of H1, having
access to oracle Eval, simulating Game G3/G4 for adversary
A from the proof of Theorem 3.

■

We can see that G4 is independent of the challenge bit 𝑏 since
the shared key in case 𝑏 = 0 is uniformly random under condition

𝑝𝑘 ∈ {𝑝𝑘1, . . . , 𝑝𝑘𝑛} ∧ 𝑘 ≠ ⊥ which is the same output as in case
𝑏 = 1. Thus, we obtain

Pr[GA4 ⇒ 1] = 1
2
.

Game G5. Game G5 is the same as G1 (not the previous game)
except that the same changes from G2 − G4 are applied to AKEM2
instead of AKEM1. Note that we did not show these games
in Figure 21 to sustain readability.

Claim 14: There exist an adversaries B2 against the Out-Aut

security of AKEM2, C2 against the Out-CCA security of AKEM2,
and D2 against the PRF security of H2, such that���Pr [GA1 ⇒ 1

]
− Pr

[
G
A
5 ⇒ 1

] ��� ≤ Adv(n,QEnc,QChl)-Out-Aut
AKEM2,B2

+ Adv(n,QEnc,QChl)-Out-CCA
AKEM2,C2 + Adv(QEnc+QChl,QEnc+QChl)-PRF

H2,D2
.

The claim can be proved analogously to hybridsG2−G4. Further,
it also holds

Pr[GA5 ⇒ 1] = 1
2
.

Combining the differences, we obtain the theorem statement.
■

Theorem 4 (Dishonest Deniability). For all PPT simulators
Sim1, Sim2 there exists a PPT simulator Sim[Sim1, Sim2] such that
for any DR-Den adversary A against AKEM[AKEM1,AKEM2,H],
as depicted in Figure 5, there exists a DR-Den adversary B1 against
AKEM1 and a DR-Den adversary B2 against AKEM2 such that

Adv(n,QChl)-DR-Den
AKEM[AKEM1,AKEM2,H],Sim,A

≤ Adv(n,QChl)-DR-Den
AKEM1,Sim1,B1 + Adv

(n,QChl)-DR-Den
AKEM2,Sim2,B2 .

Proof. Consider the sequence of games depicted in Figure 25.

Game G0. This is the DR-Den game for
AKEM[AKEM1,AKEM2,H] and simulator Sim = Sim[Sim1, Sim2]
as defined in Figure 25. By definition, it holds����Pr[GA0 ⇒ 1] − 1

2

���� = Adv(n,QChl)-DR-Den
AKEM[AKEM1,AKEM2,H],Sim,A .

Unlike the definition, the adversary is given all the secret keys in
the beginning. However, since there is no restriction on the reveal
oracle calls in the dishonest deniability setting, G0 is equivalent
to the original definition. Let Sim1 and Sim2 be the simulators
for AKEM1 and AKEM2, respectively. The simulator Sim is then
defined in terms of Sim1 and Sim2.

Game G1. This is the same as G0 except that the output of the
encapsulation of AKEM1 is replaced by the output of simulator
Sim1.

Claim 15: There exists an adversary B1 and a simulator Sim1
such that���Pr [GA0 ⇒ 1

]
− Pr

[
G
A
1 ⇒ 1

] ��� ≤ Adv(n,QChl)-DR-Den
AKEM1,Sim1,B1 .

Proof. Adversary B1 can be constructed by simulating the
game for A and querying their own challenge oracle to get
(𝑐1, 𝑘1). If they are in the real game 𝑏 = 0, they are simulating G0,
otherwise they are simulating G1. ■

2025-02-02 19:15. Page 25 of 1–37.

G0 − G2
01 for 𝑖 ∈ [𝑛]
02 (𝑠𝑘𝑖 , 𝑝𝑘𝑖) $← Gen

03 𝑏
$← {0, 1}

04 𝑏′ ← AChall ((𝑠𝑘1, 𝑝𝑘1), . . . , (𝑠𝑘𝑛, 𝑝𝑘𝑛))
05 return J𝑏 = 𝑏′K
Sim(𝑝𝑘𝑠 , 𝑝𝑘𝑟 , 𝑠𝑘𝑟)

06 parse 𝑝𝑘𝑠 → (𝑝𝑘 (1)𝑠 , 𝑝𝑘
(2)
𝑠)

07 parse 𝑝𝑘𝑟 → (𝑝𝑘 (1)𝑟 , 𝑝𝑘
(2)
𝑟)

08 parse 𝑠𝑘𝑟 → (𝑠𝑘 (1)𝑟 , 𝑠𝑘
(2)
𝑟)

09 (𝑐1, 𝑘1) $← Sim1 (𝑝𝑘 (1)𝑠 , 𝑝𝑘
(1)
𝑟 , 𝑠𝑘

(1)
𝑟)

10 (𝑐2, 𝑘2) $← Sim2 (𝑝𝑘 (2)𝑠 , 𝑝𝑘
(2)
𝑟 , 𝑠𝑘

(2)
𝑟)

11 𝑐 B (𝑐1, 𝑐2)
12 𝑘 B H(𝑘1, 𝑘2, 𝑝𝑘𝑠 , 𝑝𝑘𝑟 , 𝑐)
13 return (𝑐, 𝑘)
Oracle Chall(𝑠 ∈ [𝑛], 𝑟 ∈ [𝑛])
14 if 𝑠 = 𝑟 return ⊥
15 parse 𝑠𝑘𝑠 → (𝑠𝑘 (1) , 𝑠𝑘 (2))
16 parse 𝑝𝑘𝑟 → (𝑝𝑘 (1) , 𝑝𝑘 (2))
17 parse 𝑝𝑘𝑠 → (𝑝𝑘 (1)𝑠 , 𝑝𝑘

(2)
𝑠)

18 parse 𝑠𝑘𝑟 → (𝑠𝑘 (1)𝑟 , 𝑠𝑘
(2)
𝑟)

19 (𝑐1, 𝑘1) $← AKEM1 .Enc(𝑠𝑘 (1) , 𝑝𝑘 (1))
20 (𝑐1, 𝑘1) $← Sim1 (𝑝𝑘 (1)𝑠 , 𝑝𝑘 (1) , 𝑠𝑘 (1)𝑟) //G0 − G1
21 (𝑐2, 𝑘2) $← AKEM2 .Enc(𝑠𝑘 (2) , 𝑝𝑘 (2))
22 (𝑐2, 𝑘2) $← Sim2 (𝑝𝑘 (2)𝑠 , 𝑝𝑘 (2) , 𝑠𝑘 (2)𝑟) //G0 − G2
23 𝑐 ≔ (𝑐1, 𝑐2)
24 𝑘 B H(𝑘1, 𝑘2, (𝜇 (𝑠𝑘 (1)), 𝜇 (𝑠𝑘 (2))), 𝑝𝑘𝑟 , 𝑐)
25 if 𝑏 = 1
26 (𝑐, 𝑘) $← Sim(𝑝𝑘𝑠 , 𝑝𝑘𝑟 , 𝑠𝑘𝑟)
27 return (𝑐, 𝑘)

Figure 25: Games for the proof of Theorem 4 and definition

of simulator Sim = Sim[Sim1, Sim2].

Game G2. This is the same as G1 except that the output of the
encapsulation of AKEM1 is replaced by the output of simulator
Sim2.

Claim 16: There exists an adversary B2 and a simulator Sim2
such that���Pr [GA1 ⇒ 1

]
− Pr

[
G
A
2 ⇒ 1

] ��� ≤ Adv(n,QChl)-DR-Den
AKEM2,Sim2,B2 .

Proof. The proof can be done analogously to the one of the
previous game. ■

The resulting game behaves exactly the same in case 𝑏 = 0 and
𝑏 = 1, thus we have

Pr[GA2 ⇒ 1] = 1
2
.

■

Theorem 11 (Honest Deniability). For all PPT simulators
Sim1, Sim2 there exists a PPT simulator Sim[Sim1, Sim2] such that
for any HR-Den adversary A against AKEM[AKEM1,AKEM2,H],
as depicted in Figure 5, there exists a HR-Den adversary B1 against

AKEM1 and a HR-Den adversary B2 against AKEM2 such that

Adv(n,QChl)-HR-Den

AKEM[AKEM1,AKEM2,H],Sim,A

≤ Adv(n,QChl)-HR-Den

AKEM1,Sim1,B1 + Adv
(n,QChl)-HR-Den

AKEM2,Sim2,B2 .

Proof. The theorem can be proved analogously to Theorem 4.
■

2025-02-02 19:15. Page 26 of 1–37.

Shadowfax: Combiners for Deniability

C PROOFS FOR SECTION 5 (CONCRETE

CONSTRUCTION)

Theorem 6 (Confidentiality). For any Ins-CCA adversary A
against AKEM[NIKE,KEM,RSig, SE,H1,H2], as depicted in
Figure 6, there exists an CKS adversary B against NIKE, a PRF

adversary C against H1, an mPRF adversary D against H2, and an
IND-CCA adversary E against KEM such that

Adv(n,QEncQDec,QChl)-Ins-CCA
AKEM[NIKE,KEM,RSig,SE,H1,H2],A ≤ 𝑛𝑄Chl

·
(
min

{
Adv(QEnc+2,2QEnc+2QDec,2QEnc+2QEnc+1)-CKS

NIKE,B

+ Adv(1,1)-PRF
H1,C ,Adv(1,QDec,1)-IND-CCA

KEM,E

}
+ Adv(1,QDec+1)-mPRF

H2,D + (𝑄Enc +𝑄Dec) · 𝜂NIKE · 𝛾KEM

+𝑄Chl · 𝛿AKEM[NIKE,KEM,RSig,SE,H1,H2]
)
.

Proof. Consider the sequence of games depicted in Figure 26.

Game G0. We start with the Ins-CCAAKEM (A) game for
AKEM[NIKE,KEM,RSig, SE,H1,H2] for one user where the
adversary is restricted to one challenge query. Another change
which does not influence the winning probability is that we
sample all the NIKE keys needed for the game in advance and
assign them when needed. More specifically, we need 𝑄Enc + 2
keys: one for the challenge user key, 𝑛𝑝𝑘★, one for the ephemeral
key in the challenge, 𝑛𝑝𝑘★𝑒 , and 𝑄Enc many ephemeral keys to
answer the encapsulation queries. By definition it holds����Pr[GA0 ⇒ 1] − 1

2

���� = Adv(1,QEncQDec,1)-Ins-CCA)
AKEM[NIKE,KEM,RSig,SE,H1,H2],A .

GameG1. GameG1 is the same asG0 except that in the challenge
oracle an element is added to D independent of challenge bit 𝑏.
Additionally, all inputs to hash functionH2 are stored together with
their output in setH . If the scheme is correct, these changes are
indistinguishable���Pr [GA0 ⇒ 1

]
− Pr

[
G
A
1 ⇒ 1

] ���
≤ 𝑄Chl · 𝛿AKEM[NIKE,KEM,RSig,SE,H1,H2] .

Game G2. This game is the same as G1 except that the game
aborts in the challenge oracle if there already exists an element in
hash setH with the same inputs.

Claim 17:���Pr [GA1 ⇒ 1
]
− Pr

[
G
A
2 ⇒ 1

] ��� ≤ (𝑄Enc +𝑄Dec) · 𝜂NIKE · 𝛾KEM .

Proof. If there was a previous query to H2 on the same inputs,
this includes ciphertext 𝑐 . Part of the ciphertext is the ephemeral
NIKE key 𝑝𝑘★𝑒 chosen in the challenge and the KEM ciphertext
𝑘𝑐𝑡★. For one element inH , the probability that these two values
are the same is at most 𝜂NIKE ·𝛾NIKE. Since for each query to Encps
and Decps an element is added toH , we obtain the bound in the
claim. ■

Game G3. Game G3 is the same as G2 except that several NIKE
shared keys are replaced by a uniformly random value from the
NIKE key space KNIKE. In the challenge oracle, the second NIKE
shared key, 𝑛𝑘1∥𝑛𝑘2, is replaced (Line 82). In the encapsulation
oracle, both shared keys, 𝑛𝑘′ and 𝑛𝑘1∥𝑛𝑘2, are replaced if the input
NIKE key 𝑛𝑝𝑘 is a public key which was originally created in the
beginning of the game. In the decapsulation oracle, the first shared
key, 𝑛𝑘′, is replaced if the input public 𝑛𝑝𝑘 is a public key which
was originally created in the beginning of the game and the second
shared key, 𝑛𝑘1∥𝑛𝑘2, if this holds for the ephemeral key 𝑘𝑒 being
part of the input ciphertext. If the sameNIKE key is queried again (or
in reverse order of the input keys), the previous result is used to keep
consistency. To simplify the depiction of consistent assignments,
all possible key combinations are sampled in the beginning of the
game (Line 07 - Line 11) and the keys are assigned accordingly
when the events trigger.

Claim 18: There exists an adversary B against the CKS security
of NIKE such that���Pr [GA2 ⇒ 1

]
− Pr

[
G
A
3 ⇒ 1

] ���
≤ Adv(QEnc+2,2QEnc+2QDec,2QEnc+2QEnc+1)-CKS

NIKE,B .

Proof. Adversary B is formally constructed in Figure 27. They
obtain public keys 𝑛𝑝𝑘1, . . . , 𝑛𝑝𝑘𝑄Enc+2 of honest users of the CKS
game. The first key is given to adversary A as part of the AKEM
public key. The second key is assigned to the ephemeral key in the
challenge query. Encapsulation and decapsulation queries can be
simulated by using the test or the reveal corrupt oracle depending
on the input to the oracle being one of the honest keys or an
adversarially chosen (corrupted) one. The challenge oracle is
simulated with a test query to the first and second honest public
keys. In case 𝑏 = 0 of the CKS game, reduction B is simulating
Game G2, in case 𝑏 = 1 it is exactly Game G3. Counting the
queries yields the stated bound.

■

Game G4. Game G4 is the same as G3 except that the output of
H1 is replaced in the encapsulation or decapsulation oracle by a
uniformly random value of the output space KH1 if the input NIKE
public key, 𝑛𝑝𝑘 equals the ephemeral challenge key 𝑛𝑝𝑘★𝑒 .

Claim 19: There exists an adversary C against the PRF security
of H1 such that���Pr [GA3 ⇒ 1

]
− Pr

[
G
A
4 ⇒ 1

] ��� ≤ Adv(1,1)-PRF
H1,C .

Proof. In case condition 𝑛𝑝𝑘 = 𝑛𝑝𝑘★𝑒 holds, the first shared key,
𝑛𝑘′, always equals 𝑘★. Since this is a uniformly random value, we
can reduce to the PRF security ofH1 with only one PRF key. Hence,
adversary C can simulate the whole game and querying their own
Eval oracle once on “auth”. This value can then be used to answer
encapsulation and decapsulation queries for which the condition
holds. Note that this only requires one evaluation query because
the input to the query, “auth”, is fixed. ■

2025-02-02 19:15. Page 27 of 1–37.

G0 − G7
01 D,H B ∅
02 𝑘𝑐𝑡★, 𝑘𝑘★ B ⊥
03 for ℓ ∈ [𝑄Enc + 2]
04 (𝑛𝑠𝑘ℓ , 𝑛𝑝𝑘ℓ) $← NIKE.Gen

05 (𝑛𝑠𝑘★, 𝑛𝑝𝑘★) B (𝑛𝑠𝑘1, 𝑛𝑝𝑘1)
06 (𝑛𝑠𝑘★𝑒 , 𝑛𝑝𝑘★𝑒) B (𝑛𝑠𝑘2, 𝑛𝑝𝑘2)
07 for 𝑖 ∈ [𝑄Enc + 2] //G3 − G5
08 𝑘𝑖𝑖 B ⊥ //G3 − G5
09 for 𝑗 ∈ [𝑖 + 1,𝑄Enc + 2] //G3 − G5
10 𝑘𝑖 𝑗 B 𝑘 𝑗𝑖

$← KNIKE //G3 − G5
11 𝑘★ B 𝑘12 //G3 − G5
12 𝑘H1

$← KH1 //G4 − G5
13 ℓ B 2
14 (𝑘𝑠𝑘★, 𝑘𝑝𝑘★) $← KEM.Gen

15 (𝑠𝑠𝑘★, 𝑠𝑝𝑘★) $← RSig.Gen

16 (𝑠𝑘★, 𝑝𝑘★) B ((𝑛𝑠𝑘★, 𝑘𝑠𝑘★, 𝑠𝑠𝑘★), (𝑛𝑝𝑘★, 𝑘𝑝𝑘★, 𝑠𝑝𝑘★))
17 𝑏

$← {0, 1}
18 𝑏′ ← AEncps,Decps,Chall (𝑝𝑘★)
19 return J𝑏 = 𝑏′K
Oracle Decps(𝑝𝑘, 𝑐)
20 if ∃ 𝑘 : (𝑝𝑘, 𝑐, 𝑘) ∈ D
21 return 𝑘

22 parse 𝑝𝑘 → (𝑛𝑝𝑘, 𝑘𝑝𝑘, 𝑠𝑝𝑘)
23 parse 𝑐 → (𝑛𝑝𝑘𝑒 , 𝑘𝑐𝑡, 𝑠𝑐𝑡)
24 𝑛𝑘 ′ ← NIKE.Sdk(𝑛𝑠𝑘★, 𝑛𝑝𝑘)
25 if 𝑛𝑝𝑘 = 𝑛𝑝𝑘★𝑒 //G3 − G5
26 𝑛𝑘 ′ B 𝑘★ //G3 − G5
27 elseif ∃ 𝑖 : 𝑛𝑝𝑘 = 𝑛𝑝𝑘𝑖 //G3 − G5
28 𝑛𝑘 ′ B 𝑘1𝑖 //G3 − G5
29 𝑛𝑘 B H1 (𝑘 ′1, “auth”)
30 if 𝑛𝑝𝑘 = 𝑛𝑝𝑘★𝑒 //G4 − G5
31 𝑛𝑘 B 𝑘H1 //G4 − G5
32 𝑛𝑘1 ∥𝑛𝑘2 ← NIKE.Sdk(𝑛𝑠𝑘★, 𝑛𝑝𝑘𝑒)
33 if 𝑛𝑝𝑘𝑒 = 𝑛𝑝𝑘★𝑒 //G3 − G5
34 𝑛𝑘1 ∥𝑛𝑘2 B 𝑘★ //G3 − G5
35 elseif ∃ 𝑖 : 𝑛𝑝𝑘𝑒 = 𝑛𝑝𝑘𝑖 //G3 − G5
36 𝑛𝑘1 ∥𝑛𝑘2 B 𝑘1𝑖 //G3 − G5
37 𝑘𝑘1 ∥𝑘𝑘2 ← KEM.Dec(𝑘𝑠𝑘★, 𝑘𝑐𝑡)
38 if 𝑘𝑐𝑡 = 𝑘𝑐𝑡★ //G6 − G7
39 𝑘𝑘1 ∥𝑘𝑘2 B 𝑘𝑘★ //G6 − G7
40 𝑘 ′ B H1 (𝑛𝑘1, 𝑘𝑘1)
41 𝜎 B SE.Dec(𝑘 ′, 𝑠𝑐𝑡)
42 𝑚 ← (𝑘𝑐𝑡, 𝑘𝑝𝑘★)
43 if RSig.Ver(𝜎, 𝜌 = {𝑠𝑝𝑘, 𝑠𝑝𝑘★},𝑚) ≠ 1
44 return ⊥
45 𝑘 B H2 (𝑛𝑘,𝑛𝑘2, 𝑘𝑘2, 𝑐, 𝑝𝑘, 𝑝𝑘★)
46 if ∃ 𝑘 ′ : (𝑘 ′, 𝑛𝑘,𝑛𝑘2, 𝑘𝑘2, 𝑐, 𝑝𝑘, 𝑝𝑘★) ∈ H //G5,G7
47 𝑘 B 𝑘 ′ //G5,G7
48 elseif 𝑛𝑝𝑘𝑒 = 𝑛𝑝𝑘★𝑒 //G5
49 𝑘

$← K //G5
50 elseif 𝑘𝑐𝑡 = 𝑘𝑐𝑡★ //G7
51 𝑘

$← K //G7
52 H B H ∪ { (𝑘,𝑛𝑘,𝑛𝑘2, 𝑘𝑘2, 𝑐, 𝑝𝑘, 𝑝𝑘★) } //G1 − G7
53 return 𝑘

Oracle Encps(𝑝𝑘)
54 ℓ B ℓ + 1
55 parse 𝑝𝑘 → (𝑛𝑝𝑘, 𝑘𝑝𝑘, 𝑠𝑝𝑘)
56 (𝑛𝑠𝑘𝑒 , 𝑛𝑝𝑘𝑒) B (𝑛𝑠𝑘ℓ , 𝑛𝑝𝑘ℓ)
57 𝑛𝑘 ′ ← NIKE.Sdk(𝑛𝑠𝑘★, 𝑛𝑝𝑘)
58 𝑛𝑘1 ∥𝑛𝑘2 ← NIKE.Sdk(𝑛𝑠𝑘𝑒 , 𝑛𝑝𝑘)
59 if 𝑛𝑝𝑘 = 𝑛𝑝𝑘★𝑒 //G3 − G5
60 𝑛𝑘 ′ B 𝑘★ //G3 − G5
61 𝑛𝑘1 ∥𝑛𝑘2 B 𝑘ℓ2 //G3 − G5
62 elseif ∃ 𝑖 : 𝑛𝑝𝑘 = 𝑛𝑝𝑘𝑖 //G3 − G5
63 𝑛𝑘 ′ B 𝑘1𝑖 //G3 − G5
64 𝑛𝑘1 ∥𝑛𝑘2 B 𝑘ℓ𝑖 //G3 − G5
65 𝑛𝑘 B H1 (𝑘 ′1, “auth”)
66 if 𝑛𝑝𝑘 = 𝑛𝑝𝑘★𝑒 //G4 − G5
67 𝑛𝑘 B 𝑘H1 //G4 − G5

68 (𝑘𝑐𝑡, 𝑘𝑘1 ∥𝑘𝑘2) $← KEM.Enc(𝑘𝑝𝑘)
69 𝑚 ← (𝑘𝑐𝑡, 𝑘𝑝𝑘)
70 𝜎 ← RSig.Sgn(𝑠𝑠𝑘★, {𝑠𝑝𝑘★, 𝑠𝑝𝑘 },𝑚)
71 𝑘 ′ B H1 (𝑛𝑘1, 𝑘𝑘1)
72 𝑠𝑐𝑡 B SE.Enc(𝑘 ′, 𝜎)
73 𝑐 ≔ (𝑛𝑝𝑘𝑒 , 𝑘𝑐𝑡, 𝑠𝑐𝑡)
74 𝑘 B H2 (𝑛𝑘,𝑛𝑘2, 𝑘𝑘2, 𝑐, 𝑝𝑘★, 𝑝𝑘)
75 H B H ∪ { (𝑘,𝑛𝑘,𝑛𝑘2, 𝑘𝑘2, 𝑐, 𝑝𝑘★, 𝑝𝑘) } //G1 − G7
76 return (𝑐, 𝑘)
Oracle Chall(𝑠𝑘) // one query
77 parse 𝑠𝑘 → (𝑛𝑠𝑘, 𝑘𝑠𝑘, 𝑠𝑠𝑘)
78 (𝑛𝑠𝑘𝑒 , 𝑛𝑝𝑘𝑒) B (𝑛𝑠𝑘★𝑒 , 𝑛𝑝𝑘★𝑒)
79 𝑛𝑘 ′ ← NIKE.Sdk(𝑛𝑠𝑘,𝑛𝑝𝑘★)
80 𝑛𝑘 B H1 (𝑘 ′1, “auth”)
81 𝑛𝑘1 ∥𝑛𝑘2 ← NIKE.Sdk(𝑛𝑠𝑘𝑒 , 𝑛𝑝𝑘★)
82 𝑛𝑘1 ∥𝑛𝑘2 B 𝑘★ //G3 − G5
83 (𝑘𝑐𝑡, 𝑘𝑘1 ∥𝑘𝑘2) $← KEM.Enc(𝑘𝑝𝑘★)
84 𝑘𝑘1 ∥𝑘𝑘2 $← KKEM //G6 − G7
85 (𝑘𝑐𝑡★, 𝑘𝑘★) B (𝑘𝑐𝑡, 𝑘𝑘1 ∥𝑘𝑘2)
86 𝑚 ← (𝑘𝑐𝑡, 𝑘𝑝𝑘★)
87 𝜎 ← RSig.Sgn(𝑠𝑠𝑘, {𝜇 (𝑠𝑠𝑘), 𝑠𝑝𝑘★},𝑚)
88 𝑘 ′ B H1 (𝑛𝑘1, 𝑘𝑘2)
89 𝑠𝑐𝑡 B SE.Enc(𝑘 ′, 𝜎)
90 𝑐 ≔ (𝑛𝑝𝑘𝑒 , 𝑘𝑐𝑡, 𝑠𝑐𝑡)
91 if ∃ 𝑘 ′ : (𝑘 ′, 𝑛𝑘,𝑛𝑘2, 𝑘𝑘2, 𝑐, 𝜇 (𝑠𝑘), 𝑝𝑘★) ∈ H //G2 − G7
92 abort //G2 − G7
93 𝑘 B H2 (𝑛𝑘,𝑛𝑘2, 𝑘𝑘2, 𝑐, 𝜇 (𝑠𝑘), 𝑝𝑘★)
94 𝑘

$← K //G5,G7
95 H B H ∪ { (𝑘,𝑛𝑘,𝑛𝑘2, 𝑘𝑘2, 𝑐, 𝜇 (𝑠𝑘), 𝑝𝑘★) } //G1 − G7
96 if 𝑏 = 1
97 𝑘

$← K
98 D ← D ∪ { (𝜇 (𝑠𝑘), 𝑐, 𝑘) }
99 D ← D ∪ { (𝜇 (𝑠𝑘), 𝑐, 𝑘) } //G1 − G7

100 return (𝑐, 𝑘)

Figure 26: Games G0 − G7 for the proof of Theorem 6.

Game G5. Game G5 is the same as G4 except that the output of
hash function H2 in the challenge oracle is replaced by a uniformly

sampled element of the output space. The same holds for the output
of H2 in the decapsulation oracle in case 𝑛𝑝𝑘𝑒 = 𝑛𝑝𝑘★𝑒 .

2025-02-02 19:15. Page 28 of 1–37.

Shadowfax: Combiners for Deniability

BRevCor,Test (𝑛𝑝𝑘1, . . . , 𝑛𝑝𝑘𝑄Enc+2)
01 D B ∅
02 (𝑘𝑠𝑘★, 𝑘𝑝𝑘★) $← KEM.Gen

03 (𝑠𝑠𝑘★, 𝑠𝑝𝑘★) $← RSig.Gen

04 𝑠𝑘★ B (⊥, 𝑘𝑠𝑘★, 𝑠𝑠𝑘★)
05 𝑝𝑘★ B (𝑛𝑝𝑘1, 𝑘𝑝𝑘★, 𝑠𝑝𝑘★) // use first key for user key
06 𝑛𝑝𝑘★ B 𝑛𝑝𝑘1
07 𝑛𝑝𝑘★𝑒 B 𝑛𝑝𝑘2 // use second key for ephemeral challenge key
08 ℓ B 2
09 𝑏

$← {0, 1}
10 𝑏′ ← AEncps,Decps,Chall (𝑝𝑘★)
11 return J𝑏 = 𝑏′K
Oracle Encps(𝑝𝑘)
12 ℓ B ℓ + 1
13 parse 𝑝𝑘 → (𝑛𝑝𝑘, 𝑘𝑝𝑘, 𝑠𝑝𝑘)
14 𝑛𝑝𝑘𝑒 B 𝑛𝑝𝑘ℓ // use next honest key
15 if 𝑛𝑝𝑘 = 𝑛𝑝𝑘★𝑒
16 𝑛𝑘 ′ ← Test(1, 2) // Test query
17 𝑛𝑘1 ∥𝑛𝑘2 ← Test(ℓ, 2) // Test query
18 elseif ∃ 𝑖 : 𝑛𝑝𝑘 = 𝑛𝑝𝑘𝑖

19 𝑛𝑘 ′ ← Test(1, 𝑖)
20 𝑛𝑘1 ∥𝑛𝑘2 ← Test(ℓ, 𝑖)
21 else
22 𝑛𝑘 ′ $← RevCor(1, 𝑛𝑝𝑘) // RevCor query
23 𝑛𝑘1 ∥𝑛𝑘2 $← RevCor(ℓ, 𝑛𝑝𝑘) // RevCor query
24 𝑛𝑘 B H1 (𝑛𝑘 ′, “auth”)
25 (𝑘𝑐𝑡, 𝑘𝑘1 ∥𝑘𝑘2) $← KEM.Enc(𝑘𝑝𝑘)
26 𝑚 ← (𝑘𝑐𝑡, 𝑘𝑝𝑘)
27 𝜎 ← RSig.Sgn(𝑠𝑠𝑘★, {𝑠𝑝𝑘★, 𝑠𝑝𝑘 },𝑚)
28 𝑘 ′ B H1 (𝑛𝑘1, 𝑘𝑘1)
29 𝑠𝑐𝑡 B SE.Enc(𝑘 ′, 𝜎)
30 𝑐 ≔ (𝑛𝑝𝑘𝑒 , 𝑘𝑐𝑡, 𝑠𝑐𝑡)
31 𝑘 B H2 (𝑛𝑘,𝑛𝑘2, 𝑘𝑘2, 𝑐, 𝑝𝑘★, 𝑝𝑘)
32 return (𝑐, 𝑘)

Oracle Decps(𝑝𝑘, 𝑐)
33 if ∃ 𝑘 : (𝑝𝑘, 𝑐, 𝑘) ∈ D
34 return 𝑘

35 parse 𝑝𝑘 → (𝑛𝑝𝑘, 𝑘𝑝𝑘, 𝑠𝑝𝑘)
36 parse 𝑐 → (𝑛𝑝𝑘𝑒 , 𝑘𝑐𝑡, 𝑠𝑐𝑡)
37 if 𝑛𝑝𝑘 = 𝑛𝑝𝑘★𝑒
38 𝑛𝑘 ′ ← Test(1, 2) // Test query
39 elseif ∃ 𝑖 : 𝑛𝑝𝑘 = 𝑛𝑝𝑘𝑖

40 𝑛𝑘 ′ ← Test(1, 𝑖) // Test query
41 else
42 𝑛𝑘 ′ ← RevCor(1, 𝑛𝑝𝑘) // RevCor query
43 𝑛𝑘 B H1 (𝑘 ′1, “auth”)
44 if 𝑛𝑝𝑘𝑒 = 𝑛𝑝𝑘★𝑒
45 𝑛𝑘1 ∥𝑛𝑘2 ← Test(1, 2) // Test query
46 elseif ∃ 𝑖 : 𝑛𝑝𝑘𝑒 = 𝑛𝑝𝑘𝑖

47 𝑛𝑘1 ∥𝑛𝑘2 ← Test(1, 𝑖) // Test query
48 else
49 𝑛𝑘1 ∥𝑛𝑘2 ← RevCor(1, 𝑛𝑝𝑘𝑒) // RevCor query
50 𝑘𝑘1 ∥𝑘𝑘2 ← KEM.Dec(𝑘𝑠𝑘★, 𝑘𝑐𝑡)
51 𝑘 ′ B H1 (𝑛𝑘1, 𝑘𝑘1)
52 𝜎 B SE.Dec(𝑘 ′, 𝑠𝑐𝑡)
53 𝑚 ← (𝑘𝑐𝑡, 𝑘𝑝𝑘★)
54 if RSig.Ver(𝜎, 𝜌 = {𝑠𝑝𝑘, 𝑠𝑝𝑘★},𝑚) ≠ 1
55 return ⊥
56 𝑘 B H2 (𝑛𝑘,𝑛𝑘2, 𝑘𝑘2, 𝑐, 𝑝𝑘, 𝑝𝑘★)
57 return 𝑘

Oracle Chall(𝑠𝑘) // one query
58 parse 𝑠𝑘 → (𝑛𝑠𝑘, 𝑘𝑠𝑘, 𝑠𝑠𝑘)
59 𝑛𝑝𝑘𝑒 B 𝑛𝑝𝑘★𝑒 // use second honest key
60 𝑛𝑘 ′ ← NIKE.Sdk(𝑛𝑠𝑘,𝑛𝑝𝑘★)
61 𝑛𝑘 B H1 (𝑛𝑘 ′, “auth”)
62 𝑛𝑘1 ∥𝑛𝑘2 $← Test(2, 1) // Test query for (𝑛𝑝𝑘★𝑒 , 𝑛𝑝𝑘★)
63 (𝑘𝑐𝑡, 𝑘𝑘1 ∥𝑘𝑘2) $← KEM.Enc(𝑘𝑝𝑘★)
64 𝑚 ← (𝑘𝑐𝑡, 𝑘𝑝𝑘★)
65 𝜎 ← RSig.Sgn(𝑠𝑠𝑘, {𝜇 (𝑠𝑠𝑘), 𝑠𝑝𝑘★},𝑚)
66 𝑘 ′ B H1 (𝑛𝑘1, 𝑘𝑘1)
67 𝑠𝑐𝑡 B SE.Enc(𝑘 ′, 𝜎)
68 𝑐 ≔ (𝑛𝑝𝑘𝑒 , 𝑘𝑐𝑡, 𝑠𝑐𝑡)
69 𝑘 B H2 (𝑛𝑘,𝑛𝑘2, 𝑘𝑘2, 𝑐, 𝜇 (𝑠𝑘), 𝑝𝑘★)
70 if 𝑏 = 1
71 𝑘

$← K
72 D ← D ∪ { (𝜇 (𝑠𝑘), 𝑐, 𝑘) }
73 return (𝑐, 𝑘)

Figure 27: Adversary B against CKS security of NIKE, having access to oracles RevCor and Test, simulating Game G2/G3 for
adversary A from the proof of Theorem 6.

Claim 20: There exists an adversary D1 against the mPRF

security of H2 such that���Pr [GA4 ⇒ 1
]
− Pr

[
G
A
5 ⇒ 1

] ��� ≤ Adv(1,QDec+1)-PRF
H2,D1

.

Proof. Adversary D1 is constructed in Figure 28 and keys
function H2 on 𝑛𝑘2. They need one PRF key for the challenge
query which is 𝑘★2 . Note that even though 𝑘★2 is used possibly
several times during the experiment, the game can still be
simulated due to the changes in the previous game. There might be
the need of multiple evaluation queries since the same key can be
queried again in the decapsulation oracle. Note that the queries

always need the same PRF key which is also guaranteed by
condition 𝑛𝑝𝑘𝑒 = 𝑛𝑝𝑘★𝑒 in the decapsulation oracle. In case 𝑏 = 0
of the PRF game, adversary D1 obviously simulates Game G4 for
adversary A. The simulation of Game G5 in case 𝑏 = 1 is sound if
the evaluation oracle is not queried twice on the same input. For
two queries from the decapsulation oracle this is not a problem
because G5 checks if there already was such a query and assigns
the previous input and this case. The case that a query from the
challenge and one from the decapsulation oracle have the same
inputs cannot happen as well because a decapsulation query
would not reach the PRF evaluation query for the same input again

2025-02-02 19:15. Page 29 of 1–37.

because it would return in Line 23 due to the fact that same inputs
to H2 implies the existence of an element in set D.

■

Game G6. Game G6 is the same as G2 (note that this is not build
upon the previous game) except that the output of the KEM
encapsulation in the challenge oracle is replaced by a uniformly
random KEM key of the key space KKEM. Further, if the
decapsulation oracle is queried on a ciphertext for which the KEM
component, 𝑘𝑐𝑡 , is the same as the one output by the challenge
oracle, the same KEM key 𝑘𝑘★ is assigned.

Claim 21: There exists an adversary E against the IND-CCA

security of KEM such that���Pr [GA2 ⇒ 1
]
− Pr

[
G
A
6 ⇒ 1

] ��� ≤ Adv(1,QDec,1)-IND-CCA
KEM,E .

Proof. The reduction queries their own challenge oracle to
simulate the AKEM challenge oracle. To answer decapsulation
queries, they can use their own KEM decapsulation oracle. Thus, E
simulates G2 if they are in their own real game, i.e. 𝑏 = 0, because
they output the real encapsulation in the challenge oracle. In their
case 𝑏 = 1, they simulate Game G6 because their own challenge is
a uniformly random sample.

■

Game G7. Game G7 is the same as G6 except that the output of
hash function H2 in the challenge oracle is replaced by a uniformly
sampled element of the output space.

Claim 22: There exists an adversary D2 against the mPRF

security of H2 such that���Pr [GA6 ⇒ 1
]
− Pr

[
G
A
7 ⇒ 1

] ��� ≤ Adv(1,QDec+1)-mPRF

H2,D2
.

Proof. The claim can be proved analogously to the one for G5
but choosing 𝑘𝑘2 as the PRF key instead. ■

We can see that the output distribution of the challenge oracle
in Game G5 and Game G7 is the same for 𝑏 = 0 and 𝑏 = 1, thus we
obtain

Pr[GA5 ⇒ 1] = Pr[GA7 ⇒ 1] = 1
2
.

Collecting the bounds for Games G0 − G5 and Games
G0 − G2,G6 − G7 gives an upper bound on the
single-user-single-challenge Ins-CCA game. Using a generic
result from [ABH+21], we obtain the stated bound for the
multi-user-multi-challenge setting.

■

Theorem 7 (Authenticity). For any Out-Aut adversary A against
AKEM[NIKE,KEM,RSig, SE,H1,H2], as depicted in Figure 6, there
exists anCKS adversaryB againstNIKE, a PRF adversary C against
H1, an mPRF adversary D against H2, a UF-CRA1 adversary E
against RSig, and an IND-CCA adversary F against KEM, such

that

Adv(n,QEnc,QChl)-Out-Aut
AKEM[NIKE,KEM,RSig,SE,H1,H2],A

≤ min
{
Adv(QEnc+2QChl,QEnc+2QChl)-CKS

NIKE,B + Adv(n
2,n2)-PRF

H1,C ,

Adv(n,2,QEnc)-UF-CRA1
RSig,E + Adv(n,QEnc,QChl)-IND-CCA

KEM,F

+ 𝑄2
Enc · 𝛾KEM

}
+ Adv(QEnc+QChl,QEnc+QChl)-mPRF

H2,D
+𝑄Chl · 𝛿AKEM[NIKE,KEM,RSig,SE,H1,H2]
+𝑄Enc · (𝑄Enc +𝑄Chl) · 𝜂NIKE · 𝛾KEM .

Proof. Consider the sequence of games depicted in Figure 29
and Figure 30.

Game G0. We start with the Out-Aut game for
AKEM[NIKE,KEM,RSig, SE,H1,H2].����Pr[GA0 ⇒ 1] − 1

2

���� = Adv(n,QEnc,QChl)-Out-Aut
AKEM[NIKE,KEM,RSig,SE,H1,H2],A .

Game G1. This is the same as G0 except that in the challenge
oracle an element is added to D independent of challenge bit 𝑏.
Further, we introduce a setH to store the output as well as all the
inputs for every query on H2. If the scheme is perfectly correct, the
changes cannot be distinguished since the difference is thatD stores
either tuples from encapsulations or from correct decapsulations.
Hence, the difference is at most the correctness error per query to
the challenge oracle:���Pr [GA0 ⇒ 1

]
− Pr

[
G
A
1 ⇒ 1

] ���
≤ 𝑄Chl · 𝛿AKEM[NIKE,KEM,RSig,SE,H1,H2] .

Game G2. This game is the same as G1 except that the game
aborts in the encapsulation oracle if there already exists an element
in hash setH with the same inputs.

Claim 23:���Pr [GA1 ⇒ 1
]
− Pr

[
G
A
2 ⇒ 1

] ���
≤ 𝑄Enc · (𝑄Enc +𝑄Chl) · 𝜂NIKE · 𝛾KEM .

Proof. If there was a previous query to H2 on the same inputs,
this includes ciphertext 𝑐 . Part of the ciphertext is the ephemeral
NIKE key 𝑛𝑝𝑘𝑒 and the KEM ciphertext 𝑘𝑐𝑡 . For one element in
H , the probability that these two values are the same is at most
𝜂NIKE ·𝛾KEM. Since for each query to Encps and Chall at most one
element is added toH , we obtain the claimed bound. ■

Game G3. This game is the same as G2 except that the game
aborts in the challenge oracle if there already exists an element in
hash setH with the same inputs.

Claim 24:
Pr[GA2 ⇒ 1] = Pr[GA3 ⇒ 1] .

Proof. If there was a previous query to H2 on the same inputs,
this includes ciphertext 𝑐 and the public keys 𝑝𝑘 and 𝑝𝑘𝑟 which
must be the same in the previous query. However, this implies that

2025-02-02 19:15. Page 30 of 1–37.

Shadowfax: Combiners for Deniability

DEval

01 D,H B ∅
02 𝑘𝑐𝑡★, 𝑘𝑘★ B ⊥
03 for ℓ ∈ [𝑄Enc + 2]
04 (𝑛𝑠𝑘ℓ , 𝑛𝑝𝑘ℓ) $← NIKE.Gen

05 (𝑛𝑠𝑘★, 𝑛𝑝𝑘★) B (𝑛𝑠𝑘1, 𝑛𝑝𝑘1)
06 (𝑛𝑠𝑘★𝑒 , 𝑛𝑝𝑘★𝑒) B (𝑛𝑠𝑘2, 𝑛𝑝𝑘2)
07 for 𝑖 ∈ [𝑄Enc + 2]
08 𝑘𝑖𝑖 B ⊥
09 for 𝑗 ∈ [𝑖 + 1,𝑄Enc + 2]
10 𝑘𝑖 𝑗 B 𝑘 𝑗𝑖

$← KNIKE

11 𝑘★ B 𝑘12
12 𝑘H1

$← KH1
13 ℓ B 2
14 (𝑘𝑠𝑘★, 𝑘𝑝𝑘★) $← KEM.Gen

15 (𝑠𝑠𝑘★, 𝑠𝑝𝑘★) $← RSig.Gen

16 𝑠𝑘★ B (𝑛𝑠𝑘★, 𝑘𝑠𝑘★, 𝑠𝑠𝑘★)
17 𝑝𝑘★ B (𝑛𝑝𝑘★, 𝑘𝑝𝑘★, 𝑠𝑝𝑘★)
18 𝑏

$← {0, 1}
19 𝑏′ ← AEncps,Decps,Chall (𝑝𝑘★)
20 return J𝑏 = 𝑏′K
Oracle Encps(𝑝𝑘)
21 return G4 .Encps(𝑝𝑘)

Oracle Decps(𝑝𝑘, 𝑐)
22 if ∃ 𝑘 : (𝑝𝑘, 𝑐, 𝑘) ∈ D
23 return 𝑘

24 parse 𝑝𝑘 → (𝑛𝑝𝑘, 𝑘𝑝𝑘, 𝑠𝑝𝑘)
25 parse 𝑐 → (𝑛𝑝𝑘𝑒 , 𝑘𝑐𝑡, 𝑠𝑐𝑡)
26 𝑛𝑘 ′ ← NIKE.Sdk(𝑛𝑠𝑘★, 𝑛𝑝𝑘)
27 if 𝑛𝑝𝑘 = 𝑛𝑝𝑘★𝑒
28 𝑛𝑘 ′ B ⊥ // key unknown
29 elseif ∃ 𝑖 : 𝑛𝑝𝑘 = 𝑛𝑝𝑘𝑖

30 𝑛𝑘 ′ B 𝑘1𝑖
31 𝑛𝑘 B H1 (𝑛𝑘 ′, “auth”)
32 if 𝑛𝑝𝑘 = 𝑛𝑝𝑘★𝑒
33 𝑛𝑘 B 𝑘H1 // key can be simulated
34 𝑛𝑘1 ∥𝑛𝑘2 ← NIKE.Sdk(𝑛𝑠𝑘★, 𝑛𝑝𝑘𝑒)
35 if 𝑛𝑝𝑘𝑒 = 𝑛𝑝𝑘★𝑒
36 𝑛𝑘2 B ★ // key unknown
37 elseif ∃ 𝑖 : 𝑛𝑝𝑘𝑒 = 𝑛𝑝𝑘𝑖

38 𝑛𝑘1 ∥𝑛𝑘2 B 𝑘1𝑖
39 𝑘𝑘1 ∥𝑘𝑘2 ← KEM.Dec(𝑘𝑠𝑘★, 𝑘𝑐𝑡)
40 𝑘 ′ B H1 (𝑛𝑘1, 𝑘𝑘1)
41 𝜎 B SE.Dec(𝑘 ′, 𝑠𝑐𝑡)
42 𝑚 ← (𝑘𝑐𝑡, 𝑘𝑝𝑘★)
43 if RSig.Ver(𝜎, 𝜌 = {𝑠𝑝𝑘, 𝑠𝑝𝑘★},𝑚) ≠ 1
44 return ⊥
45 𝑘 B H2 (𝑛𝑘,𝑛𝑘2, 𝑘𝑘2, 𝑐, 𝑝𝑘, 𝑝𝑘★)
46 if 𝑛𝑝𝑘𝑒 = 𝑛𝑝𝑘★𝑒

47 𝑘
$← Eval(1, 𝑛𝑘 ∥𝑘𝑘2 ∥𝑐 ∥𝑝𝑘 ∥𝑝𝑘★) // eval

query
48 H B H ∪ { (𝑘,𝑛𝑘,𝑛𝑘2, 𝑘𝑘2, 𝑐, 𝑝𝑘, 𝑝𝑘★) }
49 return 𝑘

Oracle Chall(𝑠𝑘) // one query
50 parse 𝑠𝑘 → (𝑛𝑠𝑘, 𝑘𝑠𝑘, 𝑠𝑠𝑘)
51 (𝑛𝑠𝑘𝑒 , 𝑛𝑝𝑘𝑒) B (𝑛𝑠𝑘★𝑒 , 𝑛𝑝𝑘★𝑒)
52 𝑛𝑘 ′ ← NIKE.Sdk(𝑛𝑠𝑘,𝑛𝑝𝑘★)
53 𝑛𝑘 B H1 (𝑛𝑘 ′, “auth”)
54 𝑛𝑘1 ∥𝑛𝑘2 ← NIKE.Sdk(𝑛𝑠𝑘𝑒 , 𝑛𝑝𝑘★)
55 𝑛𝑘2 B ★ // key unknown
56 (𝑘𝑐𝑡, 𝑘𝑘1 ∥𝑘𝑘2) $← KEM.Enc(𝑘𝑝𝑘★)
57 (𝑘𝑐𝑡★, 𝑘𝑘★) B (𝑘𝑐𝑡, 𝑘𝑘1 ∥𝑘𝑘2)
58 𝑚 ← (𝑘𝑐𝑡, 𝑘𝑝𝑘★)
59 𝜎 ← RSig.Sgn(𝑠𝑠𝑘, {𝜇 (𝑠𝑠𝑘), 𝑠𝑝𝑘★},𝑚)
60 𝑘 ′ B H1 (𝑛𝑘1, 𝑘𝑘1)
61 𝑠𝑐𝑡 B SE.Enc(𝑘 ′, 𝜎)
62 𝑐 ≔ (𝑛𝑝𝑘𝑒 , 𝑘𝑐𝑡, 𝑠𝑐𝑡)
63 if ∃ 𝑘 ′ : (𝑘 ′, 𝑛𝑘,𝑛𝑘2, 𝑘𝑘2, 𝑐, 𝜇 (𝑠𝑘), 𝑝𝑘★) ∈ H
64 abort

65 𝑘
$← Eval(1, 𝑛𝑘 ∥𝑘𝑘2 ∥𝑐 ∥𝜇 (𝑠𝑘) ∥𝑝𝑘★) // eval query

66 H B H ∪ { (𝑘,𝑛𝑘,𝑛𝑘2, 𝑘𝑘2, 𝑐, 𝜇 (𝑠𝑘), 𝑝𝑘★) }
67 if 𝑏 = 1
68 𝑘

$← K
69 D ← D ∪ { (𝜇 (𝑠𝑘), 𝑐, 𝑘) }
70 D ← D ∪ { (𝜇 (𝑠𝑘), 𝑐, 𝑘) }
71 return (𝑐, 𝑘)

Figure 28: Adversary C1 against PRF security of H2 queried on the second input, having access to oracle Eval, simulating Game

G4/G5 for adversary A from the proof of Theorem 6.

there is also a corresponding element inD and the challenge oracle
would have aborted in Line 38. ■

Game G4. This is the same as G3 except that NIKE shared key
𝑛𝑘′ is replaced by a uniformly random value of the key spaceKNIKE

and stored together with the two corresponding public keys in set
D1. For an encapsulation query this is only done in the case of an
honest receiver. In case the shared key between two parties was
already computed before, it is taken from set D1.

Claim 25: There exists an adversary B against the CKS security
of NIKE such that���Pr [GA3 ⇒ 1

]
− Pr

[
G
A
4 ⇒ 1

] ���
≤ Adv(QEnc+2QChl,QEnc+2QChl)-CKS

NIKE,B .

Proof. Adversary B is formally constructed in Figure 31. The
encapsulation oracle can be simulated by either making a test or a
corrupt reveal query depending on the receiver key 𝑝𝑘 being honest
(test query) or dishonest (corrupt reveal query). The same needs
to be done in the challenge oracle but we need an additional test
or reveal corrupt query for the second NIKE key, 𝑛𝑘1∥𝑛𝑘2, since
the adversary can input honest NIKE keys as part of the ciphertext.
Depending on the challenge bit of the NIKE adversary B, they

simulate either Game G3 or Game G4. There is at most one test or
corrupt reveal per query to Encps and at most two test or reveal
corrupt queries per query to 𝑄Chl.

■

Game G5. This game is the same as G4 except that the output of
hash functionH1 in the encapsulation oracle (challenge oracle resp.)
is replaced by a uniformly sampled value from the domain KH1 if
the NIKE public of the receiver (sender resp.) is honest (Line 31,
Line 31 resp.). If there was a query on the same inputs before, this
value is taken instead.

Claim 26: There exists an adversary C against the PRF security
of H1 such that���Pr [GA4 ⇒ 1

]
− Pr

[
G
A
5 ⇒ 1

] ��� ≤ Adv(n
2,n2)-PRF

H1,C .

Proof. Due to the changes in the previous game, the first NIKE
shared key, 𝑛𝑘′, is uniformly random for honest public keys. Note
that in the case where we take a stored shared key, we also have an
element inH ′ and also take a previously stored hash output because
the parameters are matching. This ensures that PRF evaluation
queries to the same PRF key and input correctly simulate the games.
There are up to 𝑄Enc + 𝑄Chl many keys and evaluation queries.
However, there is at most one query per key since the input is

2025-02-02 19:15. Page 31 of 1–37.

Games G0 − G6
01 D,D1,H,H′ B ∅
02 BAD1 B false

03 for 𝑖 ∈ [𝑛]
04 (𝑛𝑠𝑘𝑖 , 𝑛𝑝𝑘𝑖) $← NIKE.Gen

05 (𝑘𝑠𝑘𝑖 , 𝑘𝑝𝑘𝑖) $← KEM.Gen

06 (𝑠𝑠𝑘𝑖 , 𝑠𝑝𝑘𝑖) $← RSig.Gen

07 𝑠𝑘𝑖 B (𝑛𝑠𝑘𝑖 , 𝑘𝑠𝑘𝑖 , 𝑠𝑠𝑘𝑖)
08 𝑝𝑘𝑖 B (𝑛𝑝𝑘𝑖 , 𝑘𝑝𝑘𝑖 , 𝑠𝑝𝑘𝑖)
09 𝑏

$← {0, 1}
10 𝑏′ $← AEncps,Chall (𝑝𝑘1, . . . , 𝑝𝑘𝑛)
11 return J𝑏 = 𝑏′K
Oracle Encps(𝑠 ∈ [𝑛], 𝑝𝑘)
12 parse 𝑝𝑘 → (𝑛𝑝𝑘, 𝑘𝑝𝑘, 𝑠𝑝𝑘)
13 (𝑛𝑠𝑘𝑒 , 𝑛𝑝𝑘𝑒) $← NIKE.Gen

14 𝑛𝑘 ′ ← NIKE.Sdk(𝑛𝑠𝑘𝑠 , 𝑛𝑝𝑘)
15 𝑛𝑘1 ∥𝑛𝑘2 ← NIKE.Sdk(𝑛𝑠𝑘𝑒 , 𝑛𝑝𝑘)
16 (𝑘𝑐𝑡, 𝑘𝑘1 ∥𝑘𝑘2) $← KEM.Enc(𝑘𝑝𝑘)
17 𝑚 ← (𝑘𝑐𝑡, 𝑘𝑝𝑘)
18 𝜎 ← RSig.Sgn(𝑠𝑠𝑘𝑠 , {𝑠𝑝𝑘𝑠 , 𝑠𝑝𝑘 },𝑚)
19 𝑘 ′ B H1 (𝑛𝑘1, 𝑘𝑘1)
20 𝑠𝑐𝑡 B SE.Enc(𝑘 ′, 𝜎)
21 𝑐 ≔ (𝑛𝑝𝑘𝑒 , 𝑘𝑐𝑡, 𝑠𝑐𝑡)
22 if ∃ 𝑛𝑘 : (𝑛𝑘, {𝑛𝑝𝑘𝑠 , 𝑛𝑝𝑘 }) ∈ D1 //G4 − G6
23 𝑛𝑘 ′ B 𝑛𝑘 //G4 − G6
24 elseif 𝑛𝑝𝑘 ∈ {𝑛𝑝𝑘1, . . . , 𝑛𝑝𝑘𝑛 } //G4 − G6
25 𝑛𝑘 ′ $← KNIKE //G4 − G6
26 D1 B D1 ∪ { (𝑛𝑘 ′, {𝑛𝑝𝑘𝑠 , 𝑛𝑝𝑘 }) } //G4 − G6
27 𝑛𝑘 B H1 (𝑛𝑘 ′, “auth”)
28 if ∃ 𝑛𝑘 : (𝑛𝑘, {𝑛𝑝𝑘𝑠 , 𝑛𝑝𝑘 }) ∈ H′ //G5 − G6
29 𝑛𝑘 B 𝑛𝑘 //G5 − G6
30 elseif 𝑛𝑝𝑘 ∈ {𝑛𝑝𝑘1, . . . , 𝑛𝑝𝑘𝑛 } //G5 − G6
31 𝑛𝑘

$← KH1 //G5 − G6
32 H′ B H′ ∪ { (𝑛𝑘, {𝑛𝑝𝑘𝑠 , 𝑛𝑝𝑘 }) } //G5 − G6
33 if ∃ 𝑘 : (𝑘, ·, ·, ·, 𝑐, 𝑝𝑘𝑠 , 𝑝𝑘) ∈ H //G2 − G6
34 BAD1; abort //G2 − G6
35 𝑘 B H2 (𝑛𝑘,𝑛𝑘2, 𝑘𝑘2, 𝑐, 𝑝𝑘𝑠 , 𝑝𝑘)
36 if 𝑛𝑝𝑘 ∈ {𝑛𝑝𝑘1, . . . , 𝑛𝑝𝑘𝑛 }
37 𝑘

$← K //G6
38 H B H ∪ { (𝑘,𝑛𝑘,𝑛𝑘2, 𝑘𝑘2, 𝑐, 𝑝𝑘𝑠 , 𝑝𝑘) } //G1 − G6
39 D ← D ∪ { (𝑝𝑘𝑠 , 𝑝𝑘, 𝑐, 𝑘) }
40 return (𝑐, 𝑘)

Oracle Chall(𝑝𝑘, 𝑟 ∈ [𝑛], 𝑐)
41 if ∃ 𝑘 : (𝑝𝑘, 𝑝𝑘𝑟 , 𝑐, 𝑘) ∈ D
42 return 𝑘

43 parse 𝑝𝑘 → (𝑛𝑝𝑘, 𝑘𝑝𝑘, 𝑠𝑝𝑘)
44 parse 𝑐 → (𝑛𝑝𝑘𝑒 , 𝑘𝑐𝑡, 𝑠𝑐𝑡)
45 𝑛𝑘 ′ ← NIKE.Sdk(𝑛𝑠𝑘𝑟 , 𝑛𝑝𝑘)
46 𝑛𝑘 B H1 (𝑘 ′1, “auth”)
47 𝑛𝑘1 ∥𝑛𝑘2 ← NIKE.Sdk(𝑛𝑠𝑘𝑟 , 𝑛𝑝𝑘𝑒)
48 if ∃ 𝑛𝑘 : (𝑛𝑘, {𝑛𝑝𝑘𝑟 , 𝑛𝑝𝑘𝑒 }) ∈ D1 //G4 − G6
49 𝑛𝑘1 ∥𝑛𝑘2 B 𝑛𝑘 //G4 − G6
50 elseif 𝑛𝑝𝑘𝑒 ∈ {𝑛𝑝𝑘1, . . . , 𝑛𝑝𝑘𝑛 } //G4 − G6
51 𝑛𝑘1 ∥𝑛𝑘2 $← KNIKE //G4 − G6
52 𝑘𝑘1 ∥𝑘𝑘2 ← KEM.Dec(𝑘𝑠𝑘𝑟 , 𝑘𝑐𝑡)
53 𝑘 ′ B H1 (𝑛𝑘1, 𝑘𝑘1)
54 𝜎 B SE.Dec(𝑘 ′, 𝑠𝑐𝑡)
55 𝑚 ← (𝑘𝑐𝑡, 𝑘𝑝𝑘𝑟)
56 if RSig.Ver(𝜎, {𝑠𝑝𝑘, 𝑠𝑝𝑘𝑟 },𝑚) ≠ 1
57 return ⊥
58 if ∃ 𝑛𝑘 : (𝑛𝑘, {𝑛𝑝𝑘𝑠 , 𝑛𝑝𝑘 }) ∈ D1 //G4 − G6
59 𝑛𝑘 ′ B 𝑛𝑘 //G4 − G6
60 elseif 𝑛𝑝𝑘 ∈ {𝑛𝑝𝑘1, . . . , 𝑛𝑝𝑘𝑛 } //G4 − G6
61 𝑛𝑘 ′ $← KNIKE //G4 − G6
62 D1 B D1 ∪ { (𝑛𝑘 ′, {𝑛𝑝𝑘,𝑛𝑝𝑘𝑟 }) } //G4 − G6
63 𝑛𝑘 B H1 (𝑛𝑘 ′, “auth”)
64 if ∃ 𝑛𝑘 : (𝑛𝑘, {𝑛𝑝𝑘,𝑛𝑝𝑘𝑟 }) ∈ H′ //G5 − G6
65 𝑛𝑘 B 𝑛𝑘 //G5 − G6
66 elseif 𝑛𝑝𝑘 ∈ {𝑛𝑝𝑘1, . . . , 𝑛𝑝𝑘𝑛 } //G5 − G6
67 𝑛𝑘

$← KH1 //G5 − G6
68 H′ B H′ ∪ { (𝑛𝑘, {𝑛𝑝𝑘,𝑛𝑝𝑘𝑟 }) } //G5 − G6
69 if ∃ 𝑘 : (𝑘, ·, ·, ·, 𝑐, 𝑝𝑘, 𝑝𝑘𝑟) ∈ H //G3 − G6
70 abort //G3 − G6
71 𝑘 B H2 (𝑛𝑘,𝑛𝑘2, 𝑘𝑘2, 𝑐, 𝑝𝑘, 𝑝𝑘𝑟)
72 if 𝑛𝑝𝑘 ∈ {𝑛𝑝𝑘1, . . . , 𝑛𝑝𝑘𝑛 }
73 𝑘

$← K //G6
74 H B H ∪ { (𝑘,𝑛𝑘,𝑛𝑘2, 𝑘𝑘2, 𝑐, 𝑝𝑘, 𝑝𝑘𝑟) } //G1 − G6
75 if 𝑏 = 1 ∧ 𝑝𝑘 ∈ {𝑝𝑘1, . . . , 𝑝𝑘𝑛 } ∧ 𝑘 ≠ ⊥
76 𝑘

$← K
77 D ← D ∪ { (𝑝𝑘, 𝑝𝑘𝑟 , 𝑐, 𝑘) }
78 D ← D ∪ { (𝑝𝑘, 𝑝𝑘𝑟 , 𝑐, 𝑘) } //G1 − G6
79 return 𝑘

Figure 29: Games G0 − G6 for the proof of Theorem 7.

always the same and there at most
(𝑛
2
)
≤ n2 many keys since the

derivation of a shared NIKE key is deterministic. ■

Game G6. This game is the same as G5 except that the output
of hash function H2 in the encapsulation oracle (challenge oracle
resp.) is replaced by a uniformly sampled value from the domainK
if the NIKE public of the receiver (sender resp.) is honest (Line 37,
Line 73 resp.).

Claim 27: There exists an adversary D1 against the mPRF

security of H2 such that���Pr [GA5 ⇒ 1
]
− Pr

[
G
A
6 ⇒ 1

] ��� ≤ Adv(QEnc+QChl,QEnc+QChl)-mPRF

H2,D1
.

Proof. Adversary D1 is formally constructed in Figure 32
choosing the first component as their PRF key. The reduction
needs at most one PRF key per encapsulation and challenge query.
The same holds for the evaluation queries. In case 𝑏 = 0 of the PRF
game, adversary D1 simulates Game G5 for adversary A. In case
𝑏 = 1 of the PRF game, they simulate Game G6. Since the
evaluation oracle is never queried on the same input twice (since
the game aborts otherwise), the simulation of Game G6
(outputting uniformly random values in each query) is sound.

■

Game G7. This is the same as G3 (note that this does not build
upon the previous game) except that flag BAD2 is set to true and

2025-02-02 19:15. Page 32 of 1–37.

Shadowfax: Combiners for Deniability

Games G3,G7 − G10
01 D,D2H, Q B ∅
02 BAD2, BAD3 B false

03 for 𝑖 ∈ [𝑛]
04 (𝑛𝑠𝑘𝑖 , 𝑛𝑝𝑘𝑖) $← NIKE.Gen

05 (𝑘𝑠𝑘𝑖 , 𝑘𝑝𝑘𝑖) $← KEM.Gen

06 (𝑠𝑠𝑘𝑖 , 𝑠𝑝𝑘𝑖) $← RSig.Gen

07 𝑠𝑘𝑖 B (𝑛𝑠𝑘𝑖 , 𝑘𝑠𝑘𝑖 , 𝑠𝑠𝑘𝑖)
08 𝑝𝑘𝑖 B (𝑛𝑝𝑘𝑖 , 𝑘𝑝𝑘𝑖 , 𝑠𝑝𝑘𝑖)
09 𝑏

$← {0, 1}
10 𝑏′ $← AEncps,Chall (𝑝𝑘1, . . . , 𝑝𝑘𝑛)
11 return J𝑏 = 𝑏′K
Oracle Encps(𝑠 ∈ [𝑛], 𝑝𝑘)
12 parse 𝑝𝑘 → (𝑛𝑝𝑘, 𝑘𝑝𝑘, 𝑠𝑝𝑘)
13 (𝑛𝑠𝑘𝑒 , 𝑛𝑝𝑘𝑒) $← NIKE.Gen

14 𝑘 ′1 ← NIKE.Sdk(𝑛𝑠𝑘𝑠 , 𝑛𝑝𝑘)
15 𝑘1 B H1 (𝑘 ′1, “auth”)
16 𝑘 ′2 ← NIKE.Sdk(𝑛𝑠𝑘𝑒 , 𝑛𝑝𝑘)
17 (𝑘𝑐𝑡, 𝑘𝑘) $← KEM.Enc(𝑘𝑝𝑘)
18 if 𝑘𝑝𝑘 ∈ {𝑘𝑝𝑘1, . . . , 𝑘𝑝𝑘𝑛 } //G9 − G10
19 𝑘𝑘

$← KKEM //G9 − G10
20 D2 B D2 ∪ { (𝑘𝑝𝑘, 𝑘𝑐𝑡, 𝑘𝑘) } //G9 − G10
21 𝑚 ← (𝑘𝑐𝑡, 𝑘𝑝𝑘)
22 if ({𝑠𝑝𝑘𝑠 , 𝑠𝑝𝑘 },𝑚, ·) ∈ Q //G7 − G10
23 BAD2 B true; abort //G7 − G10
24 𝜎 ← RSig.Sgn(𝑠𝑠𝑘𝑠 , {𝜇 (𝑠𝑠𝑘𝑠), 𝑠𝑝𝑘 },𝑚)
25 Q B Q ∪ { ({𝑠𝑝𝑘𝑠 , 𝑠𝑝𝑘 },𝑚, 𝜎) } //G7 − G10
26 𝑘 ′ B H1 (𝑘2, 𝑘𝑘)
27 𝑠𝑐𝑡 B SE.Enc(𝑘 ′, 𝜎)
28 𝑐 ≔ (𝑛𝑝𝑘𝑒 , 𝑘𝑐𝑡, 𝑠𝑐𝑡)
29 if ∃ 𝑘 : (𝑘, ·, ·, ·, 𝑐, 𝑝𝑘, 𝑝𝑘𝑟) ∈ H
30 abort

31 𝑘 B H2 (𝑘1, 𝑘2, 𝑘𝑘, 𝑐, 𝑝𝑘𝑠 , 𝑝𝑘)
32 if 𝑘𝑝𝑘 ∈ {𝑘𝑝𝑘1, . . . , 𝑘𝑝𝑘𝑛 } //G10
33 𝑘

$← K //G10
34 H B H ∪ { (𝑘, 𝑘1, 𝑘2, 𝑘𝑘, 𝑐, 𝑝𝑘𝑠 , 𝑝𝑘) }
35 D ← D ∪ { (𝑝𝑘𝑠 , 𝑝𝑘, 𝑐, 𝑘) }
36 return (𝑐, 𝑘)

Oracle Chall(𝑝𝑘, 𝑟 ∈ [𝑛], 𝑐)
37 if ∃ 𝑘 : (𝑝𝑘, 𝑝𝑘𝑟 , 𝑐, 𝑘) ∈ D
38 return 𝑘

39 parse 𝑝𝑘 → (𝑛𝑝𝑘, 𝑘𝑝𝑘, 𝑠𝑝𝑘)
40 parse 𝑐 → (𝑛𝑝𝑘𝑒 , 𝑘𝑐𝑡, 𝑠𝑐𝑡)
41 𝑘 ′1 ← NIKE.Sdk(𝑛𝑠𝑘𝑟 , 𝑛𝑝𝑘)
42 𝑘1 B H1 (𝑘 ′1, “auth”)
43 𝑘 ′2 ← NIKE.Sdk(𝑛𝑠𝑘𝑟 , 𝑛𝑝𝑘𝑒)
44 𝑘𝑘 ← KEM.Dec(𝑘𝑠𝑘𝑟 , 𝑘𝑐𝑡)
45 if ∃ 𝑘𝑘 ′ : (𝑘𝑝𝑘𝑟 , 𝑘𝑐𝑡, 𝑘𝑘 ′) ∈ D2 //G9 − G10
46 𝑘𝑘 B 𝑘𝑘 ′ //G9 − G10
47 𝑘 ′ B H1 (𝑘2, 𝑘𝑘)
48 𝜎 B SE.Dec(𝑘 ′, 𝑠𝑐𝑡)
49 𝑚 ← (𝑘𝑐𝑡, 𝑘𝑝𝑘𝑟)
50 𝑘 B H2 (𝑘1, 𝑘2, 𝑘𝑘, 𝑐, 𝑝𝑘, 𝑝𝑘𝑟)
51 if RSig.Ver(𝜎, {𝑠𝑝𝑘, 𝑠𝑝𝑘𝑟 },𝑚) ≠ 1
52 return ⊥
53 elseif ∃ 𝑖 : 𝑠𝑝𝑘 = 𝑠𝑝𝑘𝑖 ∧ ({𝑠𝑝𝑘, 𝑠𝑝𝑘𝑟 },𝑚, ·) ∉ Q //G8 − G10
54 BAD3 B true; abort //G8 − G10
55 if ∃ 𝑘 : (𝑘, ·, ·, ·, 𝑐, 𝑝𝑘, 𝑝𝑘𝑟) ∈ H
56 abort

57 if 𝑠𝑝𝑘 ∈ {𝑠𝑝𝑘1, . . . , 𝑠𝑝𝑘𝑛 } ∧ 𝑘 ≠ ⊥ //G10
58 𝑘

$← K //G10
59 H B H ∪ { (𝑘, 𝑘1, 𝑘2, 𝑘𝑘, 𝑐, 𝑝𝑘, 𝑝𝑘𝑟) }
60 if 𝑏 = 1 ∧ 𝑝𝑘 ∈ {𝑝𝑘1, . . . , 𝑝𝑘𝑛 } ∧ 𝑘 ≠ ⊥
61 𝑘

$← K
62 D ← D ∪ { (𝑝𝑘, 𝑝𝑘𝑟 , 𝑐, 𝑘) }
63 return 𝑘

Figure 30: Games G3,G7 − G10 for the proof of Theorem 7.

the game aborts if the same message𝑚 is signed twice. To keep
track of the signing queries, we introduce set Q storing the ring,
the message, and the output signature.

Claim 28:���Pr [GA3 ⇒ 1
]
− Pr

[
G
A
7 ⇒ 1

] ��� ≤ 𝑄2
Enc · 𝛾KEM .

Proof. The message being signed in the encapsulation oracle
consists of several components where one of them is the KEM
ciphertext 𝑘𝑐𝑡 . Hence, BAD2 is only set to true if there is a collision
in KEM ciphertexts. For one query and one element in set Q the
probability is at most 𝛾KEM. Since there are at most𝑄Enc queries to
the encapsulation oracle and at most the same number of elements
in set Q, it holds

Pr[BAD2 = true] ≤ 𝑄2
Enc · 𝛾KEM .

■

Game G8. This game is the same as G7 except that flag BAD3 is
set to true and the game aborts if the signature in the challenge
oracle verifies, the sender signature public key is honest, and the
ring/message was not input to a signing query before.

Claim 29: There exists an adversary E against the UF-CRA1

security of RSig such that���Pr [GA7 ⇒ 1
]
− Pr

[
G
A
8 ⇒ 1

] ��� ≤ Adv(n,2,QEnc)-UF-CRA1
RSig,E .

Proof. Adversary E is formally constructed in Figure 33. The
encapsulation oracle can be completely simulated since the game
aborts if there was a signing query on the same message again and
one of the public keys in the ring is honest, namely 𝑠𝑝𝑘𝑠 . Further,
adversary E wins the game if they return (𝜎, {𝑠𝑝𝑘𝑖 , 𝑠𝑝𝑘𝑟 },𝑚) in
the challenge oracle: the output is valid (check in Line 42), was
not subject to a signing query before (check in Line 44), and the
challenge ring contains only honest users.

2025-02-02 19:15. Page 33 of 1–37.

BRevCor,Test (𝑛𝑝𝑘1, . . . , 𝑛𝑝𝑘𝑛)
01 D,D1,H B ∅
02 for 𝑖 ∈ [𝑛]
03 (𝑘𝑠𝑘𝑖 , 𝑘𝑝𝑘𝑖) $← KEM.Gen

04 (𝑠𝑠𝑘𝑖 , 𝑠𝑝𝑘𝑖) $← RSig.Gen

05 𝑠𝑘𝑖 B (⊥, 𝑘𝑠𝑘𝑖 , 𝑠𝑠𝑘𝑖)
06 𝑝𝑘𝑖 B (𝑛𝑝𝑘𝑖 , 𝑘𝑝𝑘𝑖 , 𝑠𝑝𝑘𝑖)
07 𝑏

$← {0, 1}
08 𝑏′ $← AEncps,Chall (𝑝𝑘1, . . . , 𝑝𝑘𝑛)
09 return J𝑏 = 𝑏′K

Oracle Encps(𝑠 ∈ [𝑛], 𝑝𝑘)
10 parse 𝑝𝑘 → (𝑛𝑝𝑘, 𝑘𝑝𝑘, 𝑠𝑝𝑘)
11 (𝑛𝑠𝑘𝑒 , 𝑛𝑝𝑘𝑒) $← NIKE.Gen

12 𝑛𝑘1 ∥𝑛𝑘2 ← NIKE.Sdk(𝑛𝑠𝑘𝑒 , 𝑛𝑝𝑘)
13 (𝑘𝑐𝑡, 𝑘𝑘1 ∥𝑘𝑘2) $← KEM.Enc(𝑘𝑝𝑘)
14 𝑚 ← (𝑘𝑐𝑡, 𝑘𝑝𝑘)
15 𝜎 ← RSig.Sgn(𝑠𝑠𝑘𝑠 , {𝜇 (𝑠𝑠𝑘𝑠), 𝑠𝑝𝑘 },𝑚)
16 𝑘 ′ B H1 (𝑛𝑘1, 𝑘𝑘1)
17 𝑠𝑐𝑡 B SE.Enc(𝑘 ′, 𝜎)
18 𝑐 ≔ (𝑛𝑝𝑘𝑒 , 𝑘𝑐𝑡, 𝑠𝑐𝑡)
19 if ∃ 𝑛𝑘 : (𝑛𝑘, {𝑛𝑝𝑘𝑠 , 𝑛𝑝𝑘 }) ∈ D1
20 𝑛𝑘 ′ B 𝑛𝑘

21 elseif ∃ 𝑟 : 𝑛𝑝𝑘 = 𝑛𝑝𝑘𝑟

22 𝑛𝑘 ′ $← Test(𝑠, 𝑟) // test query
23 D1 B D1 ∪ { (𝑛𝑘 ′, {𝑛𝑝𝑘𝑠 , 𝑛𝑝𝑘 }) }
24 else
25 𝑛𝑘 ′ $← RevCor(𝑠, 𝑛𝑝𝑘) // corrupt reveal
query
26 𝑛𝑘 B H1 (𝑛𝑘 ′, “auth”)
27 𝑘 B H2 (𝑛𝑘,𝑛𝑘2, 𝑘𝑘2, 𝑐, 𝑝𝑘𝑠 , 𝑝𝑘)
28 H B H ∪ { (𝑘,𝑛𝑘,𝑛𝑘2, 𝑘𝑘2, 𝑐, 𝑝𝑘𝑠 , 𝑝𝑘) }
29 D ← D ∪ { (𝑝𝑘𝑠 , 𝑝𝑘, 𝑐, 𝑘) }
30 return (𝑐, 𝑘)

Oracle Chall(𝑝𝑘, 𝑟 ∈ [𝑛], 𝑐)
31 if ∃ 𝑘 : (𝑝𝑘, 𝑝𝑘𝑟 , 𝑐, 𝑘) ∈ D
32 return 𝑘

33 parse 𝑝𝑘 → (𝑛𝑝𝑘, 𝑘𝑝𝑘, 𝑠𝑝𝑘)
34 parse 𝑐 → (𝑛𝑝𝑘𝑒 , 𝑘𝑐𝑡, 𝑠𝑐𝑡)
35 if ∃ 𝑖 : 𝑛𝑝𝑘𝑒 = 𝑛𝑝𝑘𝑖

36 𝑛𝑘1 ∥𝑛𝑘2 $← Test(𝑟, 𝑖) // test query
37 else
38 𝑛𝑘1 ∥𝑛𝑘2 $← RevCor(𝑟, 𝑛𝑝𝑘𝑒) // corrupt reveal
query
39 𝑘𝑘1 ∥𝑘𝑘2 ← KEM.Dec(𝑘𝑠𝑘𝑟 , 𝑘𝑐𝑡)
40 𝑘 ′ B H1 (𝑛𝑘1, 𝑘𝑘1)
41 𝜎 B SE.Dec(𝑘 ′, 𝑠𝑐𝑡)
42 𝑚 ← (𝑘𝑐𝑡, 𝑘𝑝𝑘𝑟)
43 if RSig.Ver(𝜎, {𝑠𝑝𝑘, 𝑠𝑝𝑘𝑟 },𝑚) ≠ 1
44 return ⊥
45 if ∃ 𝑛𝑘 : (𝑛𝑘, {𝑛𝑝𝑘,𝑛𝑝𝑘𝑟 }) ∈ D1
46 𝑛𝑘 ′ B 𝑛𝑘

47 elseif ∃ 𝑠 : 𝑛𝑝𝑘 = 𝑛𝑝𝑘𝑠

48 𝑛𝑘 ′ $← Test(𝑟, 𝑠) // test query
49 else
50 𝑛𝑘 ′ $← RevCor(𝑟, 𝑝𝑘) // corrupt reveal query
51 𝑛𝑘 B H1 (𝑛𝑘 ′, “auth”)
52 𝑘 B H2 (𝑛𝑘,𝑛𝑘2, 𝑘𝑘2, 𝑐, 𝑝𝑘, 𝑝𝑘𝑟)
53 H B H ∪ { (𝑘,𝑛𝑘,𝑛𝑘2, 𝑘𝑘2, 𝑐, 𝑝𝑘, 𝑝𝑘𝑟) }
54 if 𝑏 = 1 ∧ 𝑝𝑘 ∈ {𝑝𝑘1, . . . , 𝑝𝑘𝑛 } ∧ 𝑘 ≠ ⊥
55 𝑘

$← K
56 D ← D ∪ { (𝑝𝑘, 𝑝𝑘𝑟 , 𝑐, 𝑘) }
57 return 𝑘

Figure 31: Adversary B against CKS security of NIKE, having access to oracles RevCor and Test, simulating Game G3/G4 for
adversary A from the proof of Theorem 7.

■

Game G9. This is the same as G8 except that KEM key in the
encapsulation oracle is replaced by a uniformly random output for
honest receivers. The result is stored together with public key and
ciphertext in set D1 to answer decapsulation calls in the challenge
oracle consistently.

Claim 30: There exists an adversary F against the IND-CCA
security of KEM such that���Pr [GA8 ⇒ 1

]
− Pr

[
G
A
9 ⇒ 1

] ��� ≤ Adv(n,QEnc,QChl)-IND-CCA
KEM,F .

Proof. Adversary F can simulate the encapsulation oracle
oracle by querying their own challenge oracle for honest receiver
keys. The challenge oracle can be simulated by a query to their
own decapsulation oracle. Thus, F simulates G8 if they are in their
own real game, i.e. 𝑏 = 0, because they output the real
encapsulation in the Encps oracle. In their case 𝑏 = 1, they
simulate Game G9 because their own challenge is a uniformly
random sample.

■

Game G10. This game is the same as G9 except that the output
of hash function H2 in the encapsulation and challenge oracle is
replaced by a uniformly sampled value from the domainK . For the

encapsulation oracle this is only done if the KEM key of the receiver
is honest and in the challenge oracle if the signature verification
key of the sender, 𝑠𝑝𝑘 , is honest and the shared key 𝑘 is not ⊥.

Claim 31: There exists an adversary D2 against the mPRF

security of H2 such that���Pr [GA9 ⇒ 1
]
− Pr

[
G
A
10 ⇒ 1

] ��� ≤ Adv(QEnc+QChl,QEnc+QChl)-PRF
H2,D2

.

Proof. The claim can be proved analogously to the one fromG6
except that the reduction chooses the third element, 𝑘𝑘2, to be the
PRF key. For the encapsulation oracle, the reduction is sound since
a new KEM key is sampled uniformly for each query. It functions
as the PRF key for the reduction and an index for that key can be
stored in setD2. For the challenge oracle, this key can be reused and
the PRF can be queried on the stored index. Note that the condition
𝑠𝑝𝑘 ∈ {𝑠𝑝𝑘1, . . . , 𝑠𝑝𝑘𝑛} implies that a random key from setD2 was
taken: if Line 57 is reached, the game did not set flag BAD3 to true

and abort. This means that the sender verification is dishonest or
there existing a matching element in Q, i.e. the message/public keys
pair was signed before. Checking for honest sender verification
key, leaves us with the second possibility. However, if there is a
matching element inQ there must have been a corresponding query
to Encps because Q is only filed there. Further, this query must
have added an element to D2 because the receiver KEM key of
such a query was honest because the challenge oracle can only be

2025-02-02 19:15. Page 34 of 1–37.

Shadowfax: Combiners for Deniability

DEval
1

01 ℓ B 0
02 D,D1,H,H′ B ∅
03 for 𝑖 ∈ [𝑛]
04 (𝑛𝑠𝑘𝑖 , 𝑛𝑝𝑘𝑖) $← NIKE.Gen

05 (𝑘𝑠𝑘𝑖 , 𝑘𝑝𝑘𝑖) $← KEM.Gen

06 (𝑠𝑠𝑘𝑖 , 𝑠𝑝𝑘𝑖) $← RSig.Gen

07 𝑠𝑘𝑖 B (𝑛𝑠𝑘𝑖 , 𝑘𝑠𝑘𝑖 , 𝑠𝑠𝑘𝑖)
08 𝑝𝑘𝑖 B (𝑛𝑝𝑘𝑖 , 𝑘𝑝𝑘𝑖 , 𝑠𝑝𝑘𝑖)
09 𝑏

$← {0, 1}
10 𝑏′ $← AEncps,Chall (𝑝𝑘1, . . . , 𝑝𝑘𝑛)
11 return J𝑏 = 𝑏′K
Oracle Encps(𝑠 ∈ [𝑛], 𝑝𝑘)
12 ℓ ′ B 0
13 parse 𝑝𝑘 → (𝑛𝑝𝑘, 𝑘𝑝𝑘, 𝑠𝑝𝑘)
14 (𝑛𝑠𝑘𝑒 , 𝑛𝑝𝑘𝑒) $← NIKE.Gen

15 𝑛𝑘 ′ ← NIKE.Sdk(𝑛𝑠𝑘𝑠 , 𝑛𝑝𝑘)
16 𝑛𝑘1 ∥𝑛𝑘2 ← NIKE.Sdk(𝑛𝑠𝑘𝑒 , 𝑛𝑝𝑘)
17 (𝑘𝑐𝑡, 𝑘𝑘1 ∥𝑘𝑘2) $← KEM.Enc(𝑘𝑝𝑘)
18 𝑚 ← (𝑘𝑐𝑡, 𝑘𝑝𝑘)
19 𝜎 ← RSig.Sgn(𝑠𝑠𝑘𝑠 , {𝑠𝑝𝑘𝑠 , 𝑠𝑝𝑘 },𝑚)
20 𝑘 ′ B H1 (𝑛𝑘1, 𝑘𝑘1)
21 𝑠𝑐𝑡 B SE.Enc(𝑘 ′, 𝜎)
22 𝑐 ≔ (𝑛𝑝𝑘𝑒 , 𝑘𝑐𝑡, 𝑠𝑐𝑡)
23 if ∃ 𝑛𝑘 : (𝑛𝑘, {𝑛𝑝𝑘𝑠 , 𝑛𝑝𝑘 }) ∈ D1
24 𝑛𝑘 ′ B 𝑛𝑘

25 elseif 𝑛𝑝𝑘 ∈ {𝑛𝑝𝑘1, . . . , 𝑛𝑝𝑘𝑛 }
26 𝑛𝑘 ′ $← KNIKE

27 D1 B D1 ∪ { (𝑛𝑘 ′, {𝑛𝑝𝑘𝑠 , 𝑛𝑝𝑘 }) }
28 𝑛𝑘 B H1 (𝑛𝑘 ′, “auth”)
29 if ∃ ℓ̂ : (ℓ̂, {𝑛𝑝𝑘𝑠 , 𝑛𝑝𝑘 }) ∈ H′
30 ℓ B ℓ̂ // previous key
31 elseif 𝑛𝑝𝑘 ∈ {𝑛𝑝𝑘1, . . . , 𝑛𝑝𝑘𝑛 }
32 ℓ B ℓ + 1 // new key
33 ℓ ′ B ℓ

34 H′ B H′ ∪ { (ℓ, {𝑛𝑝𝑘𝑠 , 𝑛𝑝𝑘 }) }
35 if ∃ 𝑘 : (𝑘, ·, ·, ·, 𝑐, 𝑝𝑘𝑠 , 𝑝𝑘) ∈ H
36 BAD1; abort
37 𝑘 B H2 (𝑛𝑘,𝑛𝑘2, 𝑘𝑘2, 𝑐, 𝑝𝑘𝑠 , 𝑝𝑘)
38 if 𝑛𝑝𝑘 ∈ {𝑛𝑝𝑘1, . . . , 𝑛𝑝𝑘𝑛 }
39 𝑘

$← Eval(ℓ ′, 𝑛𝑘2 ∥𝑘𝑘2 ∥𝑐 ∥𝑝𝑘𝑠 ∥𝑝𝑘) // eval query
40 H B H ∪ { (𝑘,𝑛𝑘,𝑛𝑘2, 𝑘𝑘2, 𝑐, 𝑝𝑘𝑠 , 𝑝𝑘) }
41 D ← D ∪ { (𝑝𝑘𝑠 , 𝑝𝑘, 𝑐, 𝑘) }
42 return (𝑐, 𝑘)

Oracle Chall(𝑝𝑘, 𝑟 ∈ [𝑛], 𝑐)
43 ℓ ′ B 0
44 if ∃ 𝑘 : (𝑝𝑘, 𝑝𝑘𝑟 , 𝑐, 𝑘) ∈ D
45 return 𝑘

46 parse 𝑝𝑘 → (𝑛𝑝𝑘, 𝑘𝑝𝑘, 𝑠𝑝𝑘)
47 parse 𝑐 → (𝑛𝑝𝑘𝑒 , 𝑘𝑐𝑡, 𝑠𝑐𝑡)
48 𝑛𝑘 ′ ← NIKE.Sdk(𝑛𝑠𝑘𝑟 , 𝑛𝑝𝑘)
49 𝑛𝑘 B H1 (𝑛𝑘 ′, “auth”)
50 𝑛𝑘1 ∥𝑛𝑘2 ← NIKE.Sdk(𝑛𝑠𝑘𝑟 , 𝑛𝑝𝑘𝑒)
51 if ∃ 𝑛𝑘 : (𝑛𝑘, {𝑛𝑝𝑘𝑟 , 𝑛𝑝𝑘𝑒 }) ∈ D1
52 𝑛𝑘1 ∥𝑛𝑘2 B 𝑛𝑘

53 elseif 𝑛𝑝𝑘𝑒 ∈ {𝑛𝑝𝑘1, . . . , 𝑛𝑝𝑘𝑛 }
54 𝑛𝑘1 ∥𝑛𝑘2 $← KNIKE

55 𝑘𝑘1 ∥𝑘𝑘2 ← KEM.Dec(𝑘𝑠𝑘𝑟 , 𝑘𝑐𝑡)
56 𝑘 ′ B H1 (𝑛𝑘1, 𝑘𝑘1)
57 𝜎 B SE.Dec(𝑘 ′, 𝑠𝑐𝑡)
58 𝑚 ← (𝑘𝑐𝑡, 𝑘𝑝𝑘𝑟)
59 if RSig.Ver(𝜎, {𝑠𝑝𝑘, 𝑠𝑝𝑘𝑟 },𝑚) ≠ 1
60 return ⊥
61 if ∃ 𝑛𝑘 : (𝑛𝑘, {𝑛𝑝𝑘𝑠 , 𝑛𝑝𝑘 }) ∈ D1
62 𝑛𝑘 ′ B 𝑛𝑘

63 elseif 𝑛𝑝𝑘 ∈ {𝑛𝑝𝑘1, . . . , 𝑛𝑝𝑘𝑛 }
64 𝑛𝑘 ′ $← KNIKE

65 D1 B D1 ∪ { (𝑛𝑘 ′, {𝑛𝑝𝑘,𝑛𝑝𝑘𝑟 }) }
66 𝑛𝑘 B H1 (𝑛𝑘 ′, “auth”)
67 if ∃ ℓ̂ : (ℓ̂, {𝑛𝑝𝑘,𝑛𝑝𝑘𝑟 }) ∈ H′
68 ℓ ′ B ℓ̂ // previous key
69 elseif 𝑛𝑝𝑘 ∈ {𝑛𝑝𝑘1, . . . , 𝑛𝑝𝑘𝑛 }
70 ℓ B ℓ + 1 // new key
71 ℓ ′ B ℓ

72 H′ B H′ ∪ { (ℓ, {𝑛𝑝𝑘,𝑛𝑝𝑘𝑟 }) }
73 if ∃ 𝑘 : (𝑘, ·, ·, ·, 𝑐, 𝑝𝑘, 𝑝𝑘𝑟) ∈ H
74 abort

75 𝑘 B H2 (𝑛𝑘,𝑛𝑘2, 𝑘𝑘2, 𝑐, 𝑝𝑘, 𝑝𝑘𝑟)
76 if 𝑛𝑝𝑘 ∈ {𝑛𝑝𝑘1, . . . , 𝑛𝑝𝑘𝑛 }
77 𝑘

$← Eval(ℓ ′, 𝑛𝑘2 ∥𝑘𝑘2 ∥𝑐 ∥𝑝𝑘 ∥𝑝𝑘𝑟) // eval query
78 H B H ∪ { (𝑘,𝑛𝑘,𝑛𝑘2, 𝑘𝑘2, 𝑐, 𝑝𝑘, 𝑝𝑘𝑟) }
79 if 𝑏 = 1 ∧ 𝑝𝑘 ∈ {𝑝𝑘1, . . . , 𝑝𝑘𝑛 } ∧ 𝑘 ≠ ⊥
80 𝑘

$← K
81 D ← D ∪ { (𝑝𝑘, 𝑝𝑘𝑟 , 𝑐, 𝑘) }
82 return 𝑘

Figure 32: Adversary D1 against mPRF security of H2, having access to oracle Eval, simulating Game G5/G6 for adversary A
from the proof of Theorem 7.

queried on honest receivers. It is also not possible to change the
order of sender and receiver (which would yield at least the same
ring) since the message being signed contains the KEM key of the
receiver 𝑘𝑝𝑘/𝑘𝑝𝑘𝑟 . ■

We now analyse the winning probability of Games G6 and G10:
Claim 32:

Pr[GA6 ⇒ 1] = Pr[GA10 ⇒ 1] = 1
2
.

Proof. For Game G6, the shared key output by the challenge
oracle is uniformly random in the case 𝑏 = 0 if the sender NIKE
key is honest. Case 𝑏 = 1 only triggers for honest sender keys (and
decapsulations ≠ ⊥). Since honest sender keys imply an honest
sender NIKE key, the output distribution is the same for case 𝑏 = 0
and 𝑏 = 1 and thus independent of the challenge bit.

For Game G10 and 𝑏 = 0, there are two things that can happen
in the challenge oracle. First, the signature is not valid then the
oracle returns ⊥ in Line 52 which happens independent of the
challenge bit. Second, for a valid signature the game either aborts

2025-02-02 19:15. Page 35 of 1–37.

ESgn (𝑝𝑎𝑟, 𝑠𝑝𝑘1, . . . , 𝑠𝑝𝑘𝑛)
01 D,H, Q B ∅
02 for 𝑖 ∈ [𝑛]
03 (𝑛𝑠𝑘𝑖 , 𝑛𝑝𝑘𝑖) $← NIKE.Gen

04 (𝑘𝑠𝑘𝑖 , 𝑘𝑝𝑘𝑖) $← KEM.Gen

05 𝑠𝑘𝑖 B (𝑛𝑠𝑘𝑖 , 𝑘𝑠𝑘𝑖 ,⊥)
06 𝑝𝑘𝑖 B (𝑛𝑝𝑘𝑖 , 𝑘𝑝𝑘𝑖 , 𝑠𝑝𝑘𝑖)
07 𝑏

$← {0, 1}
08 𝑏′ $← AEncps,Chall (𝑝𝑘1, . . . , 𝑝𝑘𝑛)
09 return J𝑏 = 𝑏′K

Oracle Encps(𝑠 ∈ [𝑛], 𝑝𝑘)
10 parse 𝑝𝑘 → (𝑛𝑝𝑘, 𝑘𝑝𝑘, 𝑠𝑝𝑘)
11 (𝑛𝑠𝑘𝑒 , 𝑛𝑝𝑘𝑒) $← NIKE.Gen

12 𝑛𝑘 ′ ← NIKE.Sdk(𝑛𝑠𝑘𝑠 , 𝑛𝑝𝑘)
13 𝑛𝑘 B H1 (𝑛𝑘 ′, “auth”)
14 𝑛𝑘1 ∥𝑛𝑘2 ← NIKE.Sdk(𝑛𝑠𝑘𝑒 , 𝑛𝑝𝑘)
15 (𝑘𝑐𝑡, 𝑘𝑘1 ∥𝑘𝑘2) $← KEM.Enc(𝑘𝑝𝑘)
16 𝑚 ← (𝑘𝑐𝑡, 𝑘𝑝𝑘)
17 if ({𝑠𝑝𝑘𝑠 , 𝑠𝑝𝑘 },𝑚, ·) ∈ Q
18 abort

19 𝜎 ← Sgn(𝑠, {𝑠𝑝𝑘𝑠 , 𝑠𝑝𝑘 },𝑚) // signing query
20 Q B Q ∪ { ({𝑠𝑝𝑘𝑠 , 𝑠𝑝𝑘 },𝑚, 𝜎) }
21 𝑘 ′ B H1 (𝑛𝑘1, 𝑘𝑘1)
22 𝑠𝑐𝑡 B SE.Enc(𝑘 ′, 𝜎)
23 𝑐 ≔ (𝑛𝑝𝑘𝑒 , 𝑘𝑐𝑡, 𝑠𝑐𝑡)
24 if ∃ 𝑘 : (𝑘, ·, ·, ·, 𝑐, 𝑝𝑘𝑠 , 𝑝𝑘) ∈ H
25 abort

26 𝑘 B H2 (𝑛𝑘,𝑛𝑘2, 𝑘𝑘2, 𝑐, 𝑝𝑘𝑠 , 𝑝𝑘)
27 H B H ∪ { (𝑘,𝑛𝑘,𝑛𝑘2, 𝑘𝑘2, 𝑐, 𝑝𝑘𝑠 , 𝑝𝑘) }
28 D ← D ∪ { (𝑝𝑘𝑠 , 𝑝𝑘, 𝑐, 𝑘) }
29 return (𝑐, 𝑘)

Oracle Chall(𝑝𝑘, 𝑟 ∈ [𝑛], 𝑐)
30 if ∃ 𝑘 : (𝑝𝑘, 𝑝𝑘𝑟 , 𝑐, 𝑘) ∈ D
31 return 𝑘

32 parse 𝑝𝑘 → (𝑛𝑝𝑘, 𝑘𝑝𝑘, 𝑠𝑝𝑘)
33 parse 𝑐 → (𝑛𝑝𝑘𝑒 , 𝑘𝑐𝑡, 𝑠𝑐𝑡)
34 𝑛𝑘 ′ ← NIKE.Sdk(𝑛𝑠𝑘𝑟 , 𝑛𝑝𝑘)
35 𝑛𝑘 B H1 (𝑛𝑘 ′, “auth”)
36 𝑛𝑘1 ∥𝑛𝑘2 ← NIKE.Sdk(𝑛𝑠𝑘𝑟 , 𝑛𝑝𝑘𝑒)
37 𝑘𝑘1 ∥𝑘𝑘2 ← KEM.Dec(𝑘𝑠𝑘𝑟 , 𝑘𝑐𝑡)
38 𝑘 ′ B H1 (𝑛𝑘1, 𝑘𝑘1)
39 𝜎 B SE.Dec(𝑘 ′, 𝑠𝑐𝑡)
40 𝑚 ← (𝑘𝑐𝑡, 𝑘𝑝𝑘𝑟)
41 𝑘 B H2 (𝑛𝑘,𝑛𝑘2, 𝑘𝑘2, 𝑐, 𝑝𝑘, 𝑝𝑘𝑟)
42 if RSig.Ver(𝜎, {𝑠𝑝𝑘, 𝑠𝑝𝑘𝑟 },𝑚) ≠ 1
43 return ⊥
44 elseif ∃ 𝑖 : 𝑠𝑝𝑘 = 𝑠𝑝𝑘𝑖 ∧ ({𝑠𝑝𝑘, 𝑠𝑝𝑘𝑟 },𝑚, ·) ∉ Q
45 return (𝜎, {𝑠𝑝𝑘𝑖 , 𝑠𝑝𝑘𝑟 },𝑚) // return forgery
46 if ∃ 𝑘 : (𝑘, ·, ·, ·, 𝑐, 𝑝𝑘, 𝑝𝑘𝑟) ∈ H
47 abort

48 H B H ∪ { (𝑘,𝑛𝑘,𝑛𝑘2, 𝑘𝑘2, 𝑐, 𝑝𝑘, 𝑝𝑘𝑟) }
49 if 𝑏 = 1 ∧ 𝑝𝑘 ∈ {𝑝𝑘1, . . . , 𝑝𝑘𝑛 } ∧ 𝑘 ≠ ⊥
50 𝑘

$← K
51 D ← D ∪ { (𝑝𝑘, 𝑝𝑘𝑟 , 𝑐, 𝑘) }
52 return 𝑘

Figure 33: Adversary E against UF-CRA1 security of RSig, having access to oracle Sgn, simulating Game G7/G8 for adversary A
from the proof of Theorem 7.

or the oracle outputs a uniformly random key if 𝑠𝑝𝑘 is honest and
𝑘 ≠ ⊥ (Line 57). These conditions are implied by the conditions
which are necessary to trigger case 𝑏 = 1 and are therefore true
whenever case 𝑏 = 1 could occur. Hence, the output distribution for
case 𝑏 = 0 and 𝑏 = 1 does not differ and the game is independent of
the challenge bit. ■

We conclude the proof by combining the bounds.
■

Theorem 8 (Dishonest Deniability). There exists a simulator Sim
such that for any DR-Den adversary A against
AKEM[NIKE,KEM,RSig, SE,H1,H2], as depicted in Figure 6, there
exists aMC-Ano adversary B against RSig, such that

Adv(n,QChl)-DR-Den
AKEM[NIKE,KEM,RSig,SE,H1,H2],Sim,A

≤ Adv(n,2,QChl)-MC-Ano

RSig,B +𝑄Chl · 𝛿NIKE .

Proof. Consider the sequence of games depicted in Figure 34
as well as the construction of a simulator Sim.

Game G0. We start with the dishonest receiver deniability game
for AKEM[NIKE,KEM,RSig, SE,H1,H2]. Compared to the original
definition in Figure 4, we remove the reveal oracle and directly
provide the adversary with all the secret keys of the game since
there is no restriction on revealing secret keys and thus these games
are equivalent. Hence, it holds����Pr[GA0 ⇒ 1] − 1

2

���� = Adv(n,QChl)-DR-Den
AKEM[NIKE,KEM,RSig,SE,H1,H2],Sim,A .

Game G1. Game G1 is the same as G0 except that the first NIKE
shared key in the challenge oracle, 𝑛𝑘′, is computed between
receiver and sender instead of sender and receiver.

Claim 33:���Pr [GA0 ⇒ 1
]
− Pr

[
G
A
1 ⇒ 1

] ��� ≤ 𝑄Chl · 𝛿NIKE .

Proof. Since both the sender and receiver keys are honestly
generated, the change in one query is exactly the definition of the
correctness error. Applying the change for every query to Chall
proves the claim. ■

Game G2. Game G2 is the same as G1 except that the ring
signature is computed with the receiver’s signing key instead of
the sender’s signing key.

Claim 34: There exists an adversary B againstMC-Ano security
of RSig such that���Pr [GA1 ⇒ 1

]
− Pr

[
G
A
2 ⇒ 1

] ��� ≤ Adv(n,2,QChl)-MC-Ano

RSig,B .

Proof. Adversary B is formally constructed in Figure 34. To
compute the signature in the challenge oracle, B can query their
own challenge oracle. In case 𝑏 = 0, they simulate Game G1,
otherwise they simulate G2. The number of challenge queries for
the anonymity game equals the number for the deniability game of
adversary A.

■

Game G2 is independent of challenge bit 𝑏 since syntactically
the same operations are executed in case 𝑏 = 0 and 𝑏 = 1:

Pr[GA2 ⇒ 1] = 1
2
.

2025-02-02 19:15. Page 36 of 1–37.

Shadowfax: Combiners for Deniability

BChlRSig (𝑝𝑎𝑟, (𝑠𝑠𝑘1, 𝑠𝑝𝑘1), . . . , (𝑠𝑠𝑘𝑛, 𝑠𝑝𝑘𝑛))
01 for 𝑖 ∈ [𝑛]
02 (𝑛𝑠𝑘𝑖 , 𝑛𝑝𝑘𝑖) $← NIKE.Gen

03 (𝑘𝑠𝑘𝑖 , 𝑘𝑝𝑘𝑖) $← KEM.Gen

04 𝑠𝑘𝑖 B (𝑛𝑠𝑘𝑖 , 𝑘𝑠𝑘𝑖 , 𝑠𝑠𝑘𝑖)
05 𝑝𝑘𝑖 B (𝑛𝑝𝑘𝑖 , 𝑘𝑝𝑘𝑖 , 𝑠𝑝𝑘𝑖)
06 𝑏

$← {0, 1}
07 𝑏′ ← AChall ((𝑠𝑘1, 𝑝𝑘1), . . . , (𝑠𝑘𝑛, 𝑝𝑘𝑛))
08 return J𝑏 = 𝑏′K
Oracle Chall(𝑠 ∈ [𝑛], 𝑟 ∈ [𝑛])
09 (𝑛𝑠𝑘𝑒 , 𝑛𝑝𝑘𝑒) $← NIKE.Gen

10 𝑛𝑘 ′ ← NIKE.Sdk(𝑛𝑠𝑘𝑟 , 𝑛𝑝𝑘𝑠)
11 𝑛𝑘 B H1 (𝑛𝑘 ′, “auth”)
12 𝑛𝑘1 ∥𝑛𝑘2 ← NIKE.Sdk(𝑛𝑠𝑘𝑒 , 𝑛𝑝𝑘𝑟)
13 (𝑘𝑐𝑡, 𝑘𝑘1 ∥𝑘𝑘2) $← KEM.Enc(𝑘𝑝𝑘𝑟)
14 𝑚 ← (𝑘𝑐𝑡, 𝑘𝑝𝑘𝑟)
15 𝜎

$← ChlRSig (𝑠, 𝑟, {𝑠𝑝𝑘𝑠 , 𝑠𝑝𝑘𝑟 },𝑚) // challenge query
16 𝑘 ′ B H1 (𝑛𝑘1, 𝑘𝑘1)
17 𝑠𝑐𝑡 B SE.Enc(𝑘 ′, 𝜎)
18 𝑐 ≔ (𝑛𝑝𝑘𝑒 , 𝑘𝑐𝑡, 𝑠𝑐𝑡)
19 𝑘 B H2 (𝑛𝑘,𝑛𝑘2, 𝑘𝑘2, 𝑐, 𝑝𝑘𝑠 , 𝑝𝑘𝑟)
20 if 𝑏 = 1
21 (𝑐, 𝑘) $← Sim(𝑝𝑘𝑠 , 𝑝𝑘𝑟 , 𝑠𝑘𝑟)
22 return (𝑐, 𝑘)

Figure 35: Adversary B against MC-Ano security of RSig,

having access to oracle ChlRSig, simulating Game G1/G2 for
adversary A from the proof of Theorem 8.

G0 − G2
01 for 𝑖 ∈ [𝑛]
02 (𝑛𝑠𝑘𝑖 , 𝑛𝑝𝑘𝑖) $← NIKE.Gen

03 (𝑘𝑠𝑘𝑖 , 𝑘𝑝𝑘𝑖) $← KEM.Gen

04 (𝑠𝑠𝑘𝑖 , 𝑠𝑝𝑘𝑖) $← RSig.Gen

05 𝑠𝑘𝑖 B (𝑛𝑠𝑘𝑖 , 𝑘𝑠𝑘𝑖 , 𝑠𝑠𝑘𝑖)
06 𝑝𝑘𝑖 B (𝑛𝑝𝑘𝑖 , 𝑘𝑝𝑘𝑖 , 𝑠𝑝𝑘𝑖)
07 𝑏

$← {0, 1}
08 𝑏′ ← AChall ((𝑠𝑘1, 𝑝𝑘1), . . . , (𝑠𝑘𝑛, 𝑝𝑘𝑛))
09 return J𝑏 = 𝑏′K
Oracle Chall(𝑠 ∈ [𝑛], 𝑟 ∈ [𝑛])
10 if 𝑠 = 𝑟 return ⊥
11 (𝑛𝑠𝑘𝑒 , 𝑛𝑝𝑘𝑒) $← NIKE.Gen

12 𝑛𝑘 ′ ← NIKE.Sdk(𝑛𝑠𝑘𝑠 , 𝑛𝑝𝑘𝑟)
13 𝑛𝑘 ′ ← NIKE.Sdk(𝑛𝑠𝑘𝑟 , 𝑛𝑝𝑘𝑠) //G1 − G2
14 𝑛𝑘 B H1 (𝑛𝑘 ′, “auth”)
15 𝑛𝑘1 ∥𝑛𝑘2 ← NIKE.Sdk(𝑛𝑠𝑘𝑒 , 𝑛𝑝𝑘𝑟)
16 (𝑘𝑐𝑡, 𝑘𝑘1 ∥𝑘𝑘2) $← KEM.Enc(𝑘𝑝𝑘𝑟)
17 𝑚 ← (𝑘𝑐𝑡, 𝑘𝑝𝑘𝑟)
18 𝜎 ← RSig.Sgn(𝑠𝑠𝑘𝑠 , {𝑠𝑝𝑘𝑠 , 𝑠𝑝𝑘𝑟 },𝑚)
19 𝜎 ← RSig.Sgn(𝑠𝑠𝑘𝑟 , {𝑠𝑝𝑘𝑠 , 𝑠𝑝𝑘𝑟 },𝑚) //G2
20 𝑘 ′ B H1 (𝑛𝑘1, 𝑘𝑘1)
21 𝑠𝑐𝑡 B SE.Enc(𝑘 ′, 𝜎)
22 𝑐 ≔ (𝑛𝑝𝑘𝑒 , 𝑘𝑐𝑡, 𝑠𝑐𝑡)
23 𝑘 B H2 (𝑛𝑘,𝑛𝑘2, 𝑘𝑘2, 𝑐, 𝑝𝑘𝑠 , 𝑝𝑘𝑟)
24 if 𝑏 = 1
25 (𝑐, 𝑘) $← Sim(𝑝𝑘𝑠 , 𝑝𝑘𝑟 , 𝑠𝑘𝑟)
26 return (𝑐, 𝑘)
Sim(𝑝𝑘𝑠 , 𝑝𝑘𝑟 , 𝑠𝑘𝑟)
27 parse 𝑝𝑘𝑠 → (𝑛𝑝𝑘𝑠 , 𝑘𝑝𝑘𝑠 , 𝑠𝑝𝑘𝑠)
28 parse 𝑝𝑘𝑟 → (𝑛𝑝𝑘𝑟 , 𝑘𝑝𝑘𝑟 , 𝑠𝑝𝑘𝑟)
29 parse 𝑠𝑘𝑟 → (𝑛𝑠𝑘𝑟 , 𝑘𝑠𝑘𝑟 , 𝑠𝑠𝑘𝑟)
30 (𝑛𝑠𝑘𝑒 , 𝑛𝑝𝑘𝑒) $← NIKE.Gen

31 𝑛𝑘 ′ ← NIKE.Sdk(𝑛𝑠𝑘𝑟 , 𝑛𝑝𝑘𝑠)
32 𝑛𝑘 B H1 (𝑛𝑘 ′, “auth”)
33 𝑛𝑘1 ∥𝑛𝑘2 ← NIKE.Sdk(𝑛𝑠𝑘𝑒 , 𝑛𝑝𝑘𝑟)
34 (𝑘𝑐𝑡, 𝑘𝑘1 ∥𝑘𝑘2) $← KEM.Enc(𝑘𝑝𝑘𝑟)
35 𝑚 ← (𝑘𝑐𝑡, 𝑘𝑝𝑘𝑟)
36 𝜎 ← RSig.Sgn(𝑠𝑠𝑘𝑟 , {𝑠𝑝𝑘𝑠 , 𝑠𝑝𝑘𝑟 },𝑚)
37 𝑘 ′ B H1 (𝑛𝑘1, 𝑘𝑘1)
38 𝑠𝑐𝑡 B SE.Enc(𝑘 ′, 𝜎)
39 𝑐 ≔ (𝑛𝑝𝑘𝑒 , 𝑘𝑐𝑡, 𝑠𝑐𝑡)
40 𝑘 B H2 (𝑛𝑘,𝑛𝑘2, 𝑘𝑘2, 𝑐, 𝑝𝑘𝑠 , 𝑝𝑘𝑟)
41 return (𝑐, 𝑘)

Figure 34: Games G0 − G2 for the proof of Theorem 8.

■

2025-02-02 19:15. Page 37 of 1–37.

	Abstract
	1 Introduction
	1.1 Combiners
	1.2 Deniability
	1.3 Deniability for PQC

	2 AKEM: A Case Study
	2.1 Deniable AKEM Combiners
	2.2 Contributions

	3 Preliminaries
	3.1 Notations
	3.2 AKEM

	4 Generic Construction
	5 Concrete Construction: Shadowfax
	5.1 Proof of .

	6 Instantiation
	6.1 Basic Constructs
	6.2 AKEMs

	7 Performance
	Acknowledgments
	References
	A Additional Preliminaries
	A.1 Non-Interactive Key Exchange (NIKE)
	A.2 Key Encapsulation Mechanism
	A.3 Ring Signatures
	A.4 Pseudorandom Function
	A.5 Symmetric Encryption

	B Proofs for Section 4 (Generic Construction)
	C Proofs for Section 5 (Concrete Construction)

