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Abstract. Quasi-cyclic moderate-density parity check (QC-MDPC) code-based encryp-
tion schemes under iterative decoders offer highly-competitive performance in the quantum-
resistant space of cryptography, but the decoding-failure rate (DFR) of these algorithms
are not well-understood. The DFR decreases extremely rapidly as the ratio of code-length
to error-bits increases, then decreases much more slowly in regimes known as the waterfall
and error-floor, respectively.

This work establishes three, successively more detailed probabilistic models of the DFR
for iterative decoders for QC-MDPC codes: the simplified model, the refined model for
perfect keys, and the refined model for all keys. The models are built upon a Markov
model introduced by Sendrier and Vasseur [SV19b] that closely predicts decoding behavior
in the waterfall region but does not capture the error floor behavior. The simplified model
introduces a modification which captures the dominant contributor to error floor behavior
which is convergence to near codewords introduced by [Vas21a]. The refined models give
more accurate predictions taking into account certain structural features of specific keys.

Our models are based on the step-by-step decoder, also used in [SV19b], which is
highly simplified and experimentally displays worse decoding performance than parallel
decoders used in practice. Despite the use of the simplified decoder, we obtain an accurate
prediction of the DFR in the error floor and demonstrate that the error floor behavior
is dominated by convergence to a near codeword during a failed decoding instance. Fur-
thermore, we have run this model for a simplified version of the QC-MDPC code-based
cryptosystem BIKE to better ascertain whether the DFR is low enough to achieve IND-
CCA2 security. Our model for a modified version of BIKE 1 gives a DFR which is below
2−129.5, using a block length r = 13477 instead of the BIKE 1 parameter r = 12323.

1. Introduction

1.1. Motivation.

The NIST PQC standardization process. The U.S. National Institute of Standards and
Technology (NIST) Post-Quantum Cryptography (PQC) standardization process, which
began with 82 submissions, has selected four algorithms for standardization while three
algorithms remain under consideration in the fourth round. One of the remaining candidates
is BIKE, a cryptosystem based on quasi-cyclic moderate density parity check (QC-MDPC)
codes which are decoded by an iterative Black-Grey-Flip (BGF) decoder [ABB+21, DGK20].
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The BIKE cryptosystem offers competitive performance but lacks a formal security claim
in the static-key setting, unlike its code-based competitors.

Estimating the DFR of BIKE. Cryptosystems with a non-zero probability of decryption
failures require careful analysis when proving IND-CCA2 security. In particular, the stan-
dard security proof [HHK17] requires the average failure probability to be below 2−λ where
λ is the security parameter. BIKE is one such cryptosystem so meeting IND-CCA2 secu-
rity requires that the average Decoding Failure Rate (DFR) of the QC-MDPC code used
to be below 2−λ. A low DFR for BIKE is not just a theoretical concern, since a DFR
sufficiently higher than 2−λ enables the GJS key-recovery attack [GJS16], which exploits
decoding failures in an IND-CCA security model.

The target DFR of 2−λ is too small to compute directly, so another approach is needed
to prove that the DFR of BIKE is below 2−λ for the given parameter sets. Previous work
[SV19b, SV19a, DGK20] approximates the DFR by (i) directly computing the average
DFR for smaller code sizes by running the decoder (which is doable since the DFR is high
enough so that decoding failures can be observed) then (ii) extrapolating the behavior to
estimate the DFR for larger parameters which are out of reach of experiments. However,
the DFR falls into two regimes, making such extrapolations unreliable. The first regime
is called the waterfall region, where the DFR decays more than exponentially in the block
size n of the scheme (with other parameters fixed). The second regime is called the error
floor which kicks in when the block size is sufficiently large and where the decay is much
slower (Figure 1). The issue is that the experiments are done in the waterfall region and
extrapolation is made under the hypothesis that for the BIKE parameters we are still in
the waterfall region. This could lead to underestimation of the DFR and consequently, an
underestimation of the block size needed to achieve a particular security parameter λ.

It remains an open problem to predict for which value of n the error floor begins in
the case of BIKE. It is really a problem of being able to predict the iterative decoding
performance of a QC-MDPC code. For LDPC codes, which have an even sparser parity-
check matrix (rows and columns of weight O(1) instead of O(

√
n) as for MDPC codes)

and when using the same kind of iterative decoder, the error floor phenomenon is better
understood. For LDPC codes, the error floor is either due to the existence of low-weight
codewords which would fool any decoder (and not only the suboptimal iterative decoders),
or of small near codewords. The latter are also called trapping sets and are errors of small
weight that also have a syndrome of small weight [Ric03, HB18, VCN14]. Error vectors
which have a large enough intersection with those codewords or near codewords are known
to cause the error floor behavior in LDPC codes.

On the other hand, MDPC codes typically have no low-weight codewords or near code-
words. However, BIKE is based on Quasi-Cyclic MDPC (QC-MDPC) codes, and this gives
BIKE more structure than a random MDPC code. BIKE admits a parity-check matrix
H formed by two circulant blocks. Such codes have codewords of weight equal to the row
weight w of H (which is of order O(

√
n)) [SV19a, Vas21b, BBC+21]. Moreover, there are

near codewords of half the row weight [Vas21b] which, due to the block-circulant structure,
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is also equal to the column weight d of H. The lower bound1 on the DFR based on those
moderate-weight codewords is too low to be of concern for the BIKE parameters [BBC+21].
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Figure 1. Waterfall and error floor
regions for decoding failure rate.

However, a clear explanation of the error floor for
QC-MDPC has not been found to date. The effect
of the near codewords put forward in [Vas21b] could
be a factor since it has been shown in [Vas21b] that
if the error vector has a large intersection with one
of the near codewords, then the DFR conditioned on
this event is non-negligible and can be observed ex-
perimentally for the BIKE parameters. However, the
probability that the error has a large enough inter-
section with those near codewords so that the DFR
conditioned on this event can be measured experi-
mentally is too small to be of concern for the BIKE
parameters, even if it is bigger than the contribu-
tion to the DFR coming from the moderate-weight
codewords. The experimental study conducted in
[ABH+22] shows that for scaled-down BIKE param-
eters where the error floor can be observed experi-
mentally, the errors that contribute to the DFR do
not have large intersection with the near codewords of [Vas21b].

Remarkably, the waterfall region is much better understood. Sendrier and Vasseur
showed that an iterative decoder which works step by step can be analyzed by a Markov
chain approach [SV19b, Vas21b]. Decoding step by step means that bits are flipped one at
a time: at each step of the decoder a random position is considered and flipped according
to whether the number of unsatisfied parity-checks involving this position (which is called
the counter of the position) is greater than some threshold. The rationale behind this rule
is as follows: Consider a bit which is not in error and denote by π0 the probability that a
parity-check involving this bit is not satisfied. Similarly we denote by π1 the probability
that a parity-check involving a bit in error is not satisfied. The crucial observation is that

(1) π0 < π1.

Recall that due to the regular structure of H all positions are involved in the same number
d of parity-checks. We therefore expect that the counter of a position which is not in error
behaves as a binomial random variable Bin(d, π0) for parameters d and π0

2 whereas the
counter of a position which is in error behaves as a binomial random variable Bin(d, π1).
Therefore a bit in error tends to be involved in more unsatisfied parity-checks than a bit
which is correct. For the standard iterative decoder, all positions are considered at once
and flipped or not according to the same rule. The fact that the decoder is step by step
makes it much more amenable to a Markov chain modeling where the states are the pairs

1It corresponds to the probability that the error covers at least half one of those codewords.
2The notation Bin(n, p) denotes a binomial random variable of parameters n and p; i.e. the sum of n

i.i.d. Bernoulli variables Xi of parameter p, that is P(Xi = 1) = p for all i in {1, · · · , n}.
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(s, t), t being the number of positions which are in error and s the syndrome weight of
the error. This Markov chain model closely predicts the DFR in the waterfall region but
does not capture the error floor region. Roughly speaking, the DFR is predicted here by
computing the resulting probability distributions of the pairs (s, t). The predicted DFR is
the probability to attain a state where t is not zero at the end.

1.2. Intuition behind our approach.

Convergence to near codewords in the error floor regime. Our work started with a fun-
damental observation, namely that in the toy examples for which we could observe ex-
perimentally the error floor phenomenon, the remaining error at the end of the iterative
decoding process when decoding failed covered in many cases one of the near codeword put
forward in [Vas21b]. Interestingly enough, [ABH+22, Fig 3,4 and 5] shows that in the error
floor regime, errors which result in a decoding failure tend to have a bigger intersection
with at least one of those near codewords than a random error of the same size. It was
also experimentally shown in [ABH+24] that the majority of decoding failures in the error
floor of a scaled-down version of BIKE were due to these near codewords. Moreover, when
we increase the block size resulting in the fact that we move away even further from the
waterfall region, this phenomenon becomes even more prominent.

There is a good justification for this behavior as explained in §2.6. The point is that
we actually do not have two kinds of behaviors for the counters depending on if the bit is
in error or not as explained before, but rather four different behaviors of the counters. At
each iteration of the iterative decoder, consider the near codeword that is the closest to the
actual error (which incidentally as explained before, all near codewords are of size d, the
column weight of H) and denote by u the size of its intersection with the actual error. As
we will explain in §2.6, we expect the following four kinds of behavior:

(1) The counters of the u bits that are at the same time in error and belong to the closest
near codeword are distributed as the sum of two independent binomial variables
Bin(u− 1, π0) + Bin(d− u+ 1, π1)

(2) The counters of the d−u bits that belong to the closest near codeword but are not in
error are distributed as the sum of two binomial variables Bin(u, π1)+Bin(d−u, π0).

(3) The counters of the rest of the t − u bits in error behave “as usual” as a binomial
variable Bin(d, π1).

(4) The counters of the rest of the n− d− t+ u bits that are not in error also behave
as expected, namely as a binomial variable Bin(d, π0).

In other words, since π0 < π1, we expect an abnormal behavior from the d bits which
belong to the closest near codeword. Indeed, those that are in error are less likely to be
corrected by the iterative decoding process than the others which are in error: their counter
is somewhat in between a counter of a bit which is in error and a counter of a bit which
is not in error. Similarly, the d − u bits of the near codeword that are not in error have a
greater chance to be wrongly flipped by the iterative decoding process than the other bits
in error. This is even worse, because the more bits are in error in the near codeword, the
more the bits involved in this near codeword behave as their opposite: those that are still
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not in error tend to look even more like bits which are in error. We experience in this case
a snowball effect. As soon as enough bits are in error in the near codeword, there is a non
negligible chance to end up at the end of the iterative decoding process with the whole
near codeword being in error. It turns out that due to the peculiar structure of the near
codeword, the iterative decoding process gets stuck there.

All this discussion suggests that errors which give rise to a decoding failure in the error
floor region should be somewhat closer to one of those near codewords at the beginning and
the intersection size only increases during the decoding process. This is the rationale of
why we adapted the Markov model of [SV19b, Vas21b] to also keep track of this parameter
u which is the biggest intersection of a near codeword with the residual error vector in the
decoding process.

1.3. Our approach.

A new Markov model. We have followed two different but related approaches for keeping
track of the size of the intersection of the error vector with the near codewords in a Markov
model. A general Markov Model assumes there are N possible states for a given system.
At each step, it is possible to move from one state to another with prescribed probabilities.
These probabilities are assumed to be Markovian, i.e. it is assumed that transitioning to
any state only depends on the current state and not on any additional information. .

• The first approach keeps track of the size u of the intersection of the error with a
single, randomly selected near codeword ν. This allows to estimate the contribution
to the DFR coming from ν. The difficulty here is to combine this contribution
properly with the contributions coming from the other near codewords. We work
with this approach in Section 4.
• The second approach keeps track of the size u of the intersection of the error with

the closest near codeword. This alleviates the previous difficulty but introduces a
new one, which is that during the decoding process we may switch to another near
codeword. This is not easy to model by the Markov model. However, by making
the assumption that in the error floor regime the decoding failure is dominated by
errors which are close to a single near codeword, and that this does not change
during the whole decoding process, we capture the DFR in the error floor regime
with high accuracy. We work with this approach in Sections 5 and 6.

A Markov model taking into account the structure of the key. The first approach has been
tested with scaled-down BIKE parameters and by taking a random key H. To simplify
the computation of π0 and π1 we made the heuristic assumption that the columns of H
are drawn uniformly at random up to fixed column weight d. This new Markov model
captures the error floor region and provides a much more conservative estimate than the
DFR estimate based on the Markov model of [SV19b, Vas21b] which is too optimistic in the
error floor regime. It turns out that the new DFR estimate is larger than the true estimate
in both the waterfall and error floor regions (and not only in the waterfall regime as was
the case for the Markov model of [SV19b, Vas21b]). This is quite encouraging since even
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with this simple model there is a tool for choosing the parameters of BIKE in a conservative
manner.

However, one of the drawback of this simple Markov model is that it does not take
into account the structure of the key. It is indeed well known that there are weak keys
[DGK20, Vas21b, NSP+23, WWW23] for which the decoding process behaves really badly.
Moreover, there is a non-negligible difference between the best and worst key of the DFR
in the few thousand of instances we took in the toy example we considered. This led us to
refine the Markov model. We have tested Approach 1.3 and improved it in two ways : we
took into account the structure of the key and we computed the transition probabilities in
a more sophisticated way.

There is one case, where the structure of the key is much more amenable to a refined
model - the case of perfect keys. Roughly speaking, this corresponds to a key where the near
codewords have a very regular structure: the number of parity-check equations involving
the positions in the support S of a given near codeword is maximal in this case. There
are exactly

(
d+1
2

)
such equations. They can be partitioned in a set of d equations each of

them involving a different position in S and
(
d
2

)
other equations each of them involving a

different pair of the near codeword positions of S. This structure is really helpful to set
up a more accurate, but more involved, Markov model. The improvement we got with the
new model is quite significant. We checked the model on a bigger toy example and it turns
out that the model predicts rather accurately the error floor and this even when we chose
different threshold rules for the step-by-step decoder.

One of the difficulties of having a Markov model working for all sorts of keys is that
the near codewords split into two classes, those that have their support in the first half of
the code positions and those having their support in the second half. When the keys are
not perfect these two classes of near codewords might affect the DFR in a very different
way . To circumvent this problem, we added a bit to the Markov state, i.e. getting a state
(s, t, u, b) where b = 0 indicates that the closest near codeword has all its support in the
first half of the positions and 1 otherwise. At the expense of increasing the state space size
and adding more involved transition probability formulas, we get a Markov model which
captures now all possible keys. Remarkably enough, in the toy examples we tried, this
model is still accurate for predicting the error floor for the step-by-step decoder and other
variants: the majority decoder (the threshold for flipping being half the total number of
equations involving a bit), the BGF decoder, or a decoder with a new custom threshold
rule which improves the DFR by a significant amount.

This Markov model can be run on the BIKE parameters and the new threshold rule
displays remarkable performance despite the fact that it is based on the step by step decoder
which is known to have worse performance than the standard decoder [Vas21b]. This
improvement in the DFR can be traced back to the slight change in the decoding strategy
put forward in [Sen24]. Rather than a fixed rule for the threshold, it is better to have a
conservative threshold at the beginning of the decoding process and then gradually increase
the threshold as the process continues. This lowers the chance of flipping bits which are
not in error but in the near codeword at the begninning of the decoding procedure, thus
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alleviating the phenomenon of convergence to a near codeword. We also verified what
causes the error floor in the toy experiments: the experiments indicated a convergence to a
near codeword, and so did the Markov model. This is also confirmed in the Markov model
for the BIKE parameters. In this work, we conclude that the dominant contribution in
the error floor for QC-MDPC codes under iterative decoders is due to convergence to a
near codeword. We also verified what causes the error floor in the toy experiments: the
experiments indicated a convergence to a near codeword, and so did the Markov model.

1.4. Our contribution. We present three Markovian models for the decoding behavior of
QC-MDPC codes under iterative, hard-decision decoders:

(1) The Simplified Model which considers the distance of the error vector at each round
of decoding from one fixed, randomly selected near codeword. This model captures
the error floor regime and gives a more conservative estimate than experimental
data and the [SV19b] model. It is discussed in Section 4.

(2) The Refined Model for Perfect Keys which considers the distance of the error vector
at each round of decoding from the closest near codeword and applies only to perfect
keys (Definition 4). This model is discussed in Section 5. It:
• captures the error floor regime better than the first model
• is studied with two different threshold rules
• is helpful in understanding the final, generalized model.

(3) The Refined Model for All Keys which considers the distance of the error vector
at each round of decoding from the closest near codeword and applies to all keys.
This model computes degrees in a certain graph associated with the key to derive
the model. This model is discussed in Section 6. We use this model to
• give an extremely close approximation of the experimental data in both the

waterfall and error floor regimes, further improving upon first two models and
the work of [SV19b]
• to estimate for the BIKE 1 parameters and with the previous BIKE 1 decoder

using a single threshold function a DFR of about 2−91

• to show that for this decoding rule, there is an error floor behavior which
appears already for slightly larger values of the block length than the one
which was chosen and depending on the gap parameter δ of the decoder gives
a contribution to the DFR which is between 2−100 and 2−120

• to improve this decoding rule by simply raising the minimum allowed threshold
from 36 to 38 to show that for a slightly larger block length (r = 13477 instead
of r = 12323) for obtaining a DFR which is below 2−129.5 for a typical key.

These models predict and experiments confirm that the dominating cause of failures in the
error floor regime in a wide range of parameters is due to convergence to near codewords.
All models use the step-by-step decoder which is experimentally shown to produce more
decoding failures than parallel decoders. The most impactful model is the Refined Model
for All Keys which matches the experimental data, also run using a step-by-step decoder,
remarkably well throughout both the error floor and waterfall regimes. This model is applied
to the BIKE cryptosystem parameter sets to give a DFR approximation; it is expected that
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the DFR for the same parameter sets using a parallel bit-flipping decoder as specified in
[ABB+21] and decoding rule based on iteration dependent threshold functions would result
in a lower DFR than what is approximated by the model. This work is a strong indication
that using only slightly larger BIKE parameters than those proposed, raising a little bit
the minimum threshold, and filtering out atypical keys during key generation, should be
enough to satisfy IND-CCA2 security.

2. Background

2.1. Notation. All codes considered are over F2.

Basic notation. Vectors and matrices are respectively denoted in bold letters and bold
capital letters such as a and A. Vectors are assumed to be row vectors and x⊺ denotes the
column vector which is the transpose of the row vector x. The entry at index i of the vector
x is denoted by xi or x(i). The Schur (componentwise) product (xiyi)1⩽i⩽n of two vectors
x = (xi)1⩽i⩽n and y = (yi)1⩽i⩽n of the same length is denoted by x ⋆ y. The hamming
weight |x| of a vector x is the number of nonzero entries.

Probabilistic notation. B(n, p) denotes the binomial distribution of parameters n and p,
that is the probability of the sum

∑n
i=1Xi of n independent identically distributed Bernoulli

variables of parameter p. Bin(n, p) denotes a random variable distributed as B(n, p). Ex-
pressions like Bin(n1, p1) + Bin(n2, p2) stand for the sum of the two independent binomial
random variables Bin(n1, p1) and Bin(n2, p2). By abuse of notation we write X ∼ Y when
two random variables X and Y have the same distribution.

2.2. Iterative Decoders.

Problem 1 (syndrome decoding problem (SDP)). Given an r × n parity check matrix
H ∈ Fr×n

2 , syndrome s = He⊺, and target weight t, find an error vector e′ that satisfies
He′⊺ = s⊺ and |e′| = t.

Iterative, bit-flipping syndrome decoders generally solve the SDP by guessing that columns
of H with many bits in common with s are likely affected by errors. Let H i denote the ith
column of matrix H, and define σi(H, s) = |H i ⋆s|, the number of unsatisfied parity check
equations involving column H i of H. The bit-flipping decoders initialize e′ = 0, compute
σj(H, s) for all or some j ∈ {0, . . . , n − 1}, then flip the jth bit e′j whenever σj ≥ T ,
where T is a given threshold function. We say a decoding failure has occurred whenever
the output e′ satisfies: He′⊺ ̸= s⊺ or e′ ̸= e.

The accuracy of bit-flipping decoders greatly depends on the threshold function. If the
threshold is set too high, the decoder will cease to flip bits before arriving at the correct
vector e′. If the threshold is too low, more bits will be flipped than should be, again
resulting in an incorrect vector e′.

It is most common for iterative decoders to consider each column of H in comparison
with s during each round of decoding. This can result in multiple bits in the guess e′ being
flipped in one round of decoding. The BIKE cryptosystem round 4 specification uses the
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Black-Grey-Flip (BGF) iterative decoder [DGK20]. A closed form analysis of the DFR of
the BGF decoder remains an open problem.

In this work we analyze the step-by-step decoder - an iterative decoder which randomly
selects one column of H for comparison with s during each decoding round: At most one
bit is flipped per round. This simplifies the computation of the Markov chain transition
probabilities by restricting the number of possible states in the next step.

The step-by-step decoder is studied in detail and experimental evidence [Vas21b, Chap 7,
Fig. 7.1] shows that for the classical bit flipping strategy, the step-by-step decoder performs
significantly worse than the parallel version.

2.3. QC-MDPC polynomial notation. We assume that we have a quasi-cyclic moderate
density parity check (QC-MDPC) code C := C(n, r) with column weight d and n = 2r. Let
H ∈ Mr×n(F2) a parity-check matrix which describes the code C. The ring of circulant
matrices of prime dimension r over F2 is isomorphic to the polynomial ring F2[x]/(x

r − 1).
Below, we show how to encode the information of H as two polynomials in F2[x]/(x

r − 1).

Notation 1. We denote the parity-check matrix H := (h0,h1) and overload the notation
by introducing the polynomials

hi(x) =

r−1∑
j=0

hj,ix
j ∈ F2[x]/(x

r − 1),

with i ∈ {0, 1}, j ∈ {0, · · · , r − 1}. The polynomial hi(x) encodes the first column of the
block hi of the parity check matrix H. The polynomial xhi(x) encodes the second column
of the block hi, and so on. We will also write

h0(x) =
d∑

j=1

xlj and h1(x) =
d∑

j=1

xrj ,

where lj and rj run over the nonzero entries in the first column of h0 and h1, respectively.
We likewise represent error vectors as polynomials:

e ∈ Fn
2 = (e0, e1, ...er−1,er, en−1)⇝

e(x) = e0(x)⊕ e1(x) =

r−1∑
j=0

ejx
j ⊕

r−1∑
j=0

er+jx
j ∈ (F2[x]/(x

r − 1))2.

We use “⊕" to denote a formal sum, and “+" to denote addition in the ring F2[x]/(x
r−1).

The syndrome of an error e = (e0, ..., en−1) can be computed directly from the polynomials
e0(x), e1(x), h0(x), and h1(x) as follows: Let H i denote the columns of H for i = 0, ..., n−1
and recall that the polynomial xi−rjhj(x) represents this column. In vector form, we have:

HeT =
n−1∑
i=0

eiH i.
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Using the polynomial representation:

e0(x)h0(x) + e1(x)h1(x) =
r−1∑
i=0

eix
ih0(x) +

n−1∑
j=r

ejx
j−rh1(x).

For i ∈ {0, ..., r− 1}, xih0(x) is the polynomial representation for column H i of H and for
j ∈ {r, ..., n− 1}, xj−rh1(x) is the polynomial representation for column Hj of H.

2.4. Near codewords. Near codewords were introduced in the literature of iterative de-
coding as a way to formalize a collection of error vectors with lower than expected syndrome
weight, which are therefor difficult to decode. They are also known under the name “pseudo-
codewords” or “trapping sets”.

Definition 1 (near codeword of type (s, t)). An error vector e ∈ Fn
2 is a near codeword of

type (s, t) if t = |e| and s = |HeT |.
MDPC codes are known to have minimum distance which is typically linear in the code-

length and are unlikely to have small near codewords. The situation is not the same for
QC-MDPC codes. Here the minimum distance is of order O(

√
n) where n is the codelength.

This is due to the fact that the word h1(x) ⊕ h0(x) is clearly a codeword of the code of
parity-check matrix H = (h0,h1). This leads one to suspect that such codes also have
small-weight near codewords. This is indeed the case and that this is most likely the main
issue for decoding has been identified in V. Vasseur PhD thesis [Vas21b]. To define them,
fix a parity check matrix H = (h0,h1).

Definition 2 (The set N of near codewords). The set N of near codewords is the union of
all n-bit vectors with polynomial representations of the form xih0(x) ⊕ 0 and 0 ⊕ xih1(x),
for all i ∈ {0, ..., r − 1}.

In this work, when we refer to a near codeword, we will mean an element of N .
In addition to errors in N being difficult to decode, also errors which have a large

overlap with vectors in N are likely to cause decoding failures. The elements of N are
vectors in Fn

2 which are (d, d)-near codewords in the sense of Definition 1. This can be
read off directly from the polynomial representation of the syndrome: the near codeword
e(x) = xih0(x)⊕ 0 ∈ N , for example, has syndrome

s(x) = (xih0(x))h0(x) = xih20(x)

which is of weight d as h0(x) has precisely d nonzero coefficients, and in F2[x]/(x
r − 1)

squaring and multiplication by x preserve the number of nonzero coefficients.
Let ν ∈ N denote a fixed near codeword. For any vector e ∈ Fn

2 we let u := |e ⋆ ν|, the
number of overlapping 1’s in e and ν. Our Markov model simulates the decoding behavior
of the step by step decoder on input H, s = HeTin. Each iteration of the decoder updates
a guess eout which should satisfy s = HeTout, and uses the value

HeTin −HeTout = H(ein − eout)
T .

By abuse of notation, we denote this value by s as well. When the decoder successfully
decodes, it achieves HeTin = HeTout and s = 0.
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During the decoding process, we let e := ein − eout, s := HeT , s = |s|, and t := |e|.
Define σj = |Hj ⋆s|, where Hj denotes the jth column of H. The σj ’s are counters which
keep track of which bits would be good to flip at a particular stage of the decoding process:
the larger the value of σj , the more likely the bit j is a good bit to be flipped.

2.5. Forced Cancellations. Represent H = (h0,h1) = (h0(x) =
∑r−1

j=0 hj,0x
j , h1(x) =∑r−1

j=0 hj,1x
j). Fix an error e with polynomial representation e(x) = e0(x) ⊕ e1(x). The

syndrome is s(x) = h0(x) · e0(x)+h1(x) · e1(x) ∈ F2[x]/(x
r−1). As in Section 2.4, we let ν

denote an element of N . Without loss of generality, we assume the nonzero entries of ν are
in the first block, so the polynomial representation of ν is ν(x) = xkh0(x). Let u denote
|ν ⋆ e|, the number of nonzero entries shared by e and ν. The larger the value of u, the
lower the expected syndrome weight: This is due to an effect we call forced cancellations.

The forced cancellations are terms with 0 coefficients in the products involved in the
syndrome computation, caused overlaps between e(x) and ν(x). Since e has u overlaps
with ν, we can decompose e0(x) into the parts which overlap with ν(x) and the parts
which do not overlap with ν:

e0(x) = (xkh0 ∩ e0(x)) + e0,∼ν(x), where |(xkh0 ∩ e0(x))| = u and |e0,∼ν(x)| = t− u.

When we compute the syndrome of e, we find
(
u
2

)
canceling pairs of terms coming from the

product h0(x) · (xkh0 ∩ e0(x)):

s(x) = e0(x)h0(x) + h1(x)e1(x)

= h0(x) · ((xkh0 ∩ e0(x)) + e0,∼ν(x)) + h1(x) · e1(x).
(2)

The non-diagonal terms in the product h0(x) · (xkh0∩e0(x)) have coefficients of 2, meaning
the terms cancel. This is a property of the finite field F2 : (a + b)2 = a2 + b2. There are(
u
2

)
such non-diagonal terms in the product (2), leading to the forced cancellations. Other

cancellations may occur by chance, but we call the cancellations described here forced
cancellations. When u > 1, there are

(
u
2

)
forced cancellations, yielding a syndrome weight

of at most |e0(x)| · |h0(x)|+ |e1(x)| · |h1(x)| − 2 ·
(
u
2

)
. This is a smaller maximum syndrome

weight than one would expect for a generic weight-|e| error vector, which makes it difficult
for the iterative decoder to recognize and flip these bits.

Definition 3. Given a fixed error vector e and a fixed near codeword ν, we classify the n
error vector bits into the four categories:

• u bad bits: the u bits belonging to the supports of both e and ν;
• d− u suspicious bits: the other d− u bits of ν (not in the support of e);
• t− u normal bits in error: the other t− u bits of e (not in the support of ν);
• n− d− t+ u good bits: neither in ν nor e.

2.6. Tanner graphs. A Tanner graph is a very handy tool for analyzing iterative decoding
of LDPC or MDPC codes. For LDPC codes, this notion dates back to Gallager who
explained and studied his iterative decoding algorithms [Gal63] by using them. In a more
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general form, they have been defined in [Tan81]. It is a graph which represents the parity-
check matrix of a code. For an r× n parity-check matrix H = (Hi,j)0⩽i<r

0⩽j<n
it is a bipartite

graph with two types of vertices, the variable nodes which are in bijection with the code
positions {0, · · · , n− 1}, and the check nodes which are in bijection with the parity-checks,
i.e. the rows of H. There is an edge between a variable node associated to the code position
j and the parity-check associated to the i-th row of H if and only if Hi,j = 1.

In our case, where n = 2r and the parity-check matrix is formed by two circulant blocks,
we can connect the polynomial notation established in Section 2.3 to Tanner graphs. More
specifically, the variable node associated to the i-th code position is indexed by xi ⊕ 0 if
i < r and by 0 ⊕ xi−r if i ⩾ r. The polynomial expression λ(x) ⊕ ρ(x) represents the set
of code positions {i1, · · · , iℓ} where λ(x) =

∑
iℓ<r x

iℓ and ρ(x) =
∑

iℓ⩾r
xiℓ−r. Polynomial

notation is also used to index the check nodes. The check node associated to the i-th row of
H will be indexed by xi. If h0(x), h1(x) are the polynomials representing H = (h0,h1), the
set of check nodes adjacent to the variable node xi ⊕ 0 is the set of monomials in xih0(x)
and the set of check nodes adjacent to the variable node 0 ⊕ xi is the set of monomials
appearing in xih1(x).

The subgraph G of the Tanner graph induced by a near codeword in N has a very
special structure. For example, let ν = h0(x)⊕ 0. The syndrome of ν is h20(x) =

∑d
i=1 x

2li

where h0(x) =
∑d

i=1 x
li . The subgraph of the Tanner graph induced by ν is formed by d

variable nodes labeled xli ⊕ 0 for i ∈ {1, · · · , d}, d parity check nodes labeled x2l1 , · · · , x2ld
where the variable node xli ⊕ 0 is adjacent to the parity-check node x2li . These parity
nodes are necessarily of odd degree (often 1 for “typical” keys) where equalities of the form
2li = lj + lk with j and k different from i, give rise to two additional edges linking the
parity-check labeled x2li to the variable nodes labeled xlj ⊕ 0 and xlk ⊕ 0 respectively. We
have other parity-check nodes that are of even degree which are labeled by xlj+lk with j ̸= k
and lj + lk ̸= 2li for any i ∈ {1, · · · , d}. There are at most

(
d
2

)
parity-checks of this kind.

The peculiarity of this near codeword is that it is at the same time remarkably small and of
very small syndrome (formed by the d parity-checks of the first group). This is due to the
forced cancellations (Section 2.5) which explain that the check nodes xli+lj (with li ̸= lj)
do not contribute to the syndrome of the near codeword. This can be seen on the subgraph
G because these nodes have even degree. Figure 2 illustrates this discussion.

An error which is equal to the support of a near codeword in N cannot be corrected by
standard iterative decoders taking hard decisions: it is readily verified that no bit flipping
could reduce the syndrome weight. But even errors which cover a non-negligible part of
such a near codeword are problematic. Say that u positions among such a near codeword
are in error. Let π1 be the probability that a parity check of a position in error is not
satisfied. Let π0 denote the probability that a parity check of a position not in error is not
satisfied. In essence, (hard decision) iterative decoding of LDPC/MDPC codes relies on the
fact that π1 > π0. The counters of positions in error are generally higher than the counters
of positions which are not in error. We expect that the counter of a position which is in error
to be about dπ1 whereas the counter of a position which is not in error is expected to be
about dπ0. Now let us look at the u positions which are in error in the near codeword: Their
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d

d

P1

⩽
(d
2

)
P2

Figure 2. Illustration of the subgraph G induced by the near codeword ν.

counter is expected to be about π1+(u−1)π0+(d−u)π1 = (u−1)π0+(d−u+1)π1 which
is typically much less than dπ1. This is due to the fact that there are (u− 1) parity-checks
adjacent to such a bit which are adjacent to another position which is in error, canceling
the contribution of the error to this position (and these parity-checks behave roughly as
a parity-check adjacent to a position which is not in error). These positions are therefore
less likely to be corrected by the iterative decoding process than the other positions which
are in error. But the situation is even worse for the d − u positions which belong to the
support of the near codeword, but which are not in error (i.e., the suspicious bits). For
those positions a similar reasoning now conduces to model such a counter by the sum of
d − u Bernoulli random variables of parameter π0 and u Bernoulli variables of parameter
π1. We therefore expect that the counter of such positions to be about (d − u)π0 + uπ1.
Those positions are therefore more likely to be wrongly flipped than the other positions
which are not in error. This is a big problem, since flipping such positions will only worsen
what happens in the next iteration. This is typically what is observed in a failed decoding
in the error floor region. The first iteration has a few positions of a near codeword in error
and bad decisions in subsequent iterations end up with the whole near-codeword in error.

3. Convergence to a codeword in N in the error floor region

To verify the convergence to a near codeword in the error floor region we have tested pa-
rameters for which we can experimentally observe the error floor behavior. We have chosen
a random QC-MDPC code with r = 1723, d = 17 and tested two decoding algorithms:

(1) The majority step by step decoder. The threshold is d+1
2 = 9. It corresponds to

flipping a bit every time this decreases the syndrome weight. For this decoder,
we expect to hit the error floor faster than for other decoders because it has the
most chance to flip suspicious bits, thus getting the snowball effect described in
Section 2.6.

(2) An improved step by step decoder which uses a better (more conservative) decoding
threshold. It starts with a high threshold value T0 which favors to flip bits which
are more likely to be in error. It is only when no bit can be flipped that a threshold
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T1 ⩽ T0 is used. The values are given below.

T0 =


α · s+ β for α · s+ β ∈

[
d+1
2 , d

]
d+1
2 for α · s+ β < d+1

2

d otherwise,

where α
def
= 0.006016213884791455

β
def
= 8.797325112097532.

T1 =
d+ 1

2
.

(3)

Figure 3 shows the experimental results obtained for both decoders. It is a striking
illustration of the phenomenon of convergence to a near codeword in the error floor regime
for both decoders. The curves corresponding to the “better threshold” decoder correspond
to a threshold pair (T0, T1) given in (3). Each point corresponds to at least 200 decoding
failures. Together with the experimental curve we have drawn two other curves: “Contrib.
of ncw” is the contribution to the DFR coming solely from the convergence to a near
codeword. This contribution dominates in the error floor regime since the DFR is almost
identical to this curve in this region. This can also be seen by removing from the DFR
the contribution from the near codewords. These are the curves referred to as “Contr. of
other”. These curves display both a waterfall phenomenon and this shows that as we move
further in the error floor region, the DFR contribution coming from convergence to a near
codeword dominates the DFR. Both decoders display this phenomenon.

30 35 40 45 50 55 60 65 70 75 80
2−30

2−24

2−18

2−12

2−6

20

Error weight

D
F
R

Contr. of ncw, better thresh. Contr. of other, better thresh. DFR, better thresh.
Contr. of ncw, majority Contr. of other, majority DFR, majority

Figure 3. DFR vs. error weight (r = 1723, d = 17), experimental curves.



ERROR FLOOR PREDICTION WITH MARKOV MODELS FOR QC-MDPC CODES 15

4. A Simple Markovian Model

4.1. The simple model. The aforementioned convergence to a near codeword in the de-
coding process in the error floor regime strongly suggests to track this phenomenon in the
definition of the Markov state. We define the Markov state as the triple (s, t, u), where s
is the syndrome weight, t is the error weight, and u is the size of the intersection of the
support of the error with a fixed, random near codeword ν. To amplify this effect by the
size of the set of near codewords, we post-process the DFR obtained by this model together
with a DFR obtained from a variant model which does not take into account the effect of
near codewords. The equations used to combine these DFRs are discussed in Section 4.5.
This process is in contrast to the models used in subsequent sections (Sections 5 and 6),
where only the effect of the closest near codeword is taken into account, and this remains
the only near codeword which is assumed to have an effect on the iterative decoding process.

Model 1 (M1). Let e be an error of weight t with syndrome of weight s, and let ν be a
fixed random near codeword. Let u := |e ⋆ν|. This model follows the values (s, t, u) through
the decoding process using a step by step decoder.

Model 2 (M0). Let e be an error of weight t with syndrome of weight s. This model follows
the same values as Model 1, but the value u is set to 0 in the initial vector, so this model
does not take into account the effect of a near codeword.

Our model, which combines Models 1 and 2 according to the formulae given in Section 4.5,
is bound to see an error floor behavior: when the number of overlaps between an error vector
and the near codeword becomes as large as possible (i.e., as u approaches d), decoding fails,
and the probability that u = d at the beginning of decoding is lower bounded by td

nd where t
is the initial error weight. In the waterfall region, the DFR decays more than exponentially
in n when the other parameters are fixed and therefore this td

nd term is going to dominate
and provoke an error floor phenomenon.

The discussion given in Subsection 2.6 strongly suggests the following model for comput-
ing the transition probabilities of the Markov chain:

(1) We distinguish four kind of bits: bad, suspicious, normal, and good (Definition 3).
(2) We then use the approach brought forward to estimate the probabilities π0 and π1

to take into account all three of s, the syndrome weight, t the error weight and u
the size of the intersection of the error with the near codeword. Here π0 is as above,
the probability that a parity-check adjacent to a given bit which is a good bit is not
satisfied. π1 is the probability that a parity-check adjacent to a given bit which is
a normal bit in error is not satisfied.

(3) The transition probabilities are obtained by Counter Model 1 for the counters used
in Markov Models 1 and 2.

Counter Model 1.

• the counter of a bad bit is modeled by the sum of two independent binomial random
variables Bin(u− 1, π0) + Bin(d− u+ 1, π1)
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1

1

0

0

0 0 1 1

n− t t

S

r − S

A B

C D

Figure 4. H′ matrix, obtained by permuting rows and columns of H. Be-
low, we have e′ from rearranging the entries of e, and likewise s′ to the
right, computed from H′e′⊺.

• the counter of a suspicious bit is the sum of two independent random variables
Bin(d− u, π0) + Bin(u, π1)
• the counter of a normal bit in error is modeled by the binomial random variable
Bin(d, π1);
• the counter of a good bit is modeled by the binomial random variable Bin(d, π0).

To compute the relevant probabilities we will use the following probabilistic model for
the parity-check matrix H.

Assumption 1. The columns of H are drawn uniformly at random with fixed column
weight d.

4.2. Permutations of the parity check matrix. For the purpose of the discussion of
this model, we present the following permutations of the parity check matrix H. Fix a
parity check matrix H ∈ Fr×n

2 Apply permutations P ∈ Fr×r
2 ,Q ∈ Fn×n

2 to H, e and s so
that H ′ = PHQ−1, e′ = eQ⊺, and s′⊺ = Ps⊺ corresponding to Figure 4. Let S := |s|.
When |B| = S, there is exactly one error per unsatisfied parity-check equation. This is the
ideal case for error correction as flipping a bit in e from 1 → 0 will not affect the other
counters.

Let X =
∑

j∈e |hj
⊺ ⋆ s| − S. Note that X = 0 corresponds to the ideal case above.

Construct the matrix H′
eff by permuting columns of H ′ according to the support of ν as

pictured in Figure 5. Since H ′ has been permuted, we likewise have permuted ν and e′,
which have u nonzero overlaps in the B and D sections of H′. In particular, there will be u
columns in the B,D sections of H′. In the rows of these columns, we will find the pairs of
1’s which are forced to cancel by the algebraic structure of the circulant blocks described
in Section 2.5. We flip these pairs from 1’s to 0’s. A total of

(
u
2

)
pairs of 1’s will be flipped:



ERROR FLOOR PREDICTION WITH MARKOV MODELS FOR QC-MDPC CODES 17

1

1

0

0

0 0 1 1

n− t t

S

r − S

A0 A1 B0 B1

C0 C1 D0 D1

0 0 1 1

good bits (t− u) nor. bits (d− u) sus. bits u bad bits

0 0 1 1

Figure 5. Heff matrix, obtained by permuting rows and columns of H
according to the intersection of e and ν.

Together, blocks B and D of H′ have weight d · t. After the cancellations, H′
eff will have

blocks Beff and Deff which will be weight Smax := d · t− 2
(
u
2

)
.

4.3. Assumptions. The forced cancellations are a result of the quasi-cyclic structure of
H. For the remainder of this work, we make the heuristic assumption that the columns of
H are drawn uniformly at random up to fixed column weight d.

Removing the forced cancellations from H ′, resulting in H′
eff, allows us to use random

variables to describe each column of H′
eff.

Proposition 1. Assuming that the random variables that indicate the number of errors
|hi
⊺ ⋆ e| for a given equation i are independent and if e ∈ Et, the expectation of Xeff

knowing S, t = |e|, and u = |e ∩ ν| is

E[Xeff|S, t, u] = S ·
∑

l 2lρ2l+1∑
l ρ2l+1

(4)

where

ρl =

l∑
j=0

(
t− u

j

)(
u

l − j

)(
d

r

)j (r − d

r

)t−u−j (d+ 1− u

r

)l−j (r − d− 1 + u

r

)u−l+j

(5)
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denotes the probability that any row in H′
eff restricted to the support of e has weight l.

Proof. For any row i ∈ {0, . . . , r − 1} in H′
eff, consider the t columns corresponding to

the support of e. There are t − u columns corresponding to supp(e) \ supp(ν) and u
corresponding to supp(e) ∩ supp(ν) (which correspond to blocks B0 ∪D0 and B1 ∪D1 of
Figure 5, respectively).

All columns in supp(e) \ supp(ν) have weight d and all columns in supp(e) ∩ supp(ν)
have weight d+1− u due to forced cancellations. Any entry in row i on supp(e) \ supp(ν)
thus has probability d

r of being nonzero and probability r−d
r of being zero. Any entry in row

i on supp(e)∩ supp(ν) has probability d+1−u
r of being nonzero and probability r−d−1+u

r of
being zero.

Thus the probability that any row in H′
eff has weight l is given by Equation (5). □

Note that Xeff is equivalent to |B0| + |B1| − |s|. By using the probabilistic notation of
Section 2 we will assume that

Assumption 2. The counters σj follow binomial distributions according to Counter Model 1:

(6) σj ∼


Bin(d, π0) if j is a good bit
Bin(d, π1) if j is a normal bit
Bin(d− u, π0) + Bin(u, π1) if j is a suspicious bit
Bin(d− u+ 1, π1) + Bin(u− 1, π0) if j is a bad bit

where

π0 =
S

r
, π1 =

S + ξE[Xeff|S, t, u]
Smax

, Smax = d · t− 2

(
u

2

)
for some constant ξ.

Remark 1. We note that the probability estimate π0 in Assumption 2 is particularly pes-
simistic. Indeed, it is the probability that a random parity check is not satisfied, which is
certainly an upper bound for the probability that a parity check corresponding to a bit which
is not in error is unsatisfied. Models in Sections 5 and 6 use a more refined estimate of the
probability π0 that a parity check corresponding to a bit which is not in error is unsatisfied.

Remark 2. The constant ξ in Assumption 2 is inherited from a refinement given in [Vas21a]
of the previous Markov model [SV19b]. Reducing the value of ξ from 1 was intended to
compensate for Non-Markovian effects relative to the state information (S, t) used in that
model, which would otherwise produce an overly optimistic DFR. The experimental data in
Figure 7 assumes the same value ξ = 0.955 used by [Vas21a], which further contributes to
the pessimism of Assumption 2 as reflected in our experimental data. There is no analogous
factor to ξ used in the models in Sections 5 and 6.

Assumption 3. We assume that the step by step bit flipping decoder is a time homogeneous
Markov chain, i.e., for all i ⩾ 1, we have:
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Si, ti, ui

Li, Si, ti, ui

¬Li, Si, ti, ui

Si + d− 2σ, ti − 1, ui − 1

Si + d− 2σ, ti − 1, ui

Si + d− 2σ, ti + 1, ui + 1

Si + d− 2σ, ti + 1, ui

1

p

pL

1− pL

p−,−
σ

p−,·
σ

p+,+
σ

p+,·
σ

Figure 6. Transition diagram at the i-th step, starting with syndrome
weight Si, error weight ti, and intersection ui with a (d, d)-near codeword
ν. Edges are transition probabilities calculated in Section 4.4.

Pr[(Si+1, ti+1, ui+1) = (ai+1, bi+1, ci+1)
∣∣¬Li, (Si, ti, ui) = (ai, bi, ci), . . . ,¬L0, (S0, t0, u0))

= Pr[(Si+1, ti+1, ui+1) = (ai+1, bi+1, ci+1)
∣∣¬Li, (Si, ti, ui) = (ai, bi, ci)],

where Li := {σ(i)
j < T ∀j} corresponds to the blocked state at the i-th iteration.

Markov end states. There are two possible Markov end states that dominate the ex-
periment findings: (0, 0, 0) when we have successful decoding or (d, d, d) when the state
converges to a (d, d)-near codeword.

4.4. Transition probabilities. Consider the transition probabilities as presented in Fig-
ure 6. At the i-th iteration, suppose we have the state (Si, ti, ui) and threshold T .

(1) For all positions j ∈ {0, 1, . . . , 2r − 1}, we have σj < T . The decoder is in a
blocked state (see Assumption 3) and will not flip any more bits. This happens
with probability pL.

(2) If there exists j ∈ {0, 1, . . . , 2r−1} such that σj ⩾ T , this happens with probability
1− pL. Randomly sample position j. There are five possible outcomes:
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(a) if σj < T , then (S, t, u)→ (S, t, u) with probability p,
(b) if σj ⩾ T, j ∈ e, j ∈ ν, then (S, t, u)→ (S+d−2σ, t−1, u−1) with probability

p−,−
σ ,

(c) if σj ⩾ T, j ∈ e, j ̸∈ ν, then (S, t, u) → (S + d − 2σ, t − 1, u) with probability
p−,·
σ ,

(d) if σj ⩾ T, j ̸∈ e, j ∈ ν, then (S, t, u)→ (S+d−2σ, t+1, u+1) with probability
p+,+
σ ,

(e) if σj ⩾ T, j ̸∈ e, j ̸∈ ν, then (S, t, u) → (S + d − 2σ, t + 1, u) with probability
p+,·
σ .

The superscript in the notation for the probabilities p−,−
σ , p−,·

σ , p+,+
σ , p+,·

σ indicates the
change to the values of t and u, respectively.
Counter probabilities. For σ ∈ {0, . . . , d}, we write:

f11
S,t = Pr[|hj ∗ s| = σ

∣∣|e| = t, |s| = S, j ∈ e, j ∈ ν]

=
σ∑

i=0

(
d+ 1− u

i

)
πi
1(1− π1)

(d+1−u)−i

(
u− 1

σ − i

)
πσ−i
0 (1− π0)

(u−1)−(σ−i),

f10
S,t = Pr[|hj ∗ s| = σ

∣∣|e| = t, |s| = S, j ∈ e, j ̸∈ ν]

=

(
d

σ

)
πσ
1 (1− π1)

d−σ,

f01
S,t = Pr[|hj ∗ s| = σ

∣∣|e| = t, |s| = S, j ̸∈ e, j ∈ ν]

=
σ∑

i=0

(
d− u

i

)
πi
0(1− π0)

(d−u)−i

(
u

σ − i

)
πσ−i
1 (1− π1)

u−(σ−i),

f00
S,t = Pr[|hj ∗ s| = σ

∣∣|e| = t, |s| = S, j ̸∈ e, j ̸∈ ν]

=

(
d

σ

)
πσ
0 (1− π0)

d−σ.

To give an indication on how one might obtain such formulas, recall that if X ∼
Bin(n, p), Y ∼ Bin(m, q) and 0 ⩽ k ⩽ n+m, we have:

Pr(X + Y = k) =

k∑
i=0

Pr(X = i) Pr(Y = k − i)

Using the probability mass function for sum of binomial distributions in Model 1, we
obtain the formulae above.
Blocked state. The blocked state Li happens when all the counters are below the threshold
σj < T . This is given by the probability:
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pL = Pr[(S, t, u)→ (L, S, t, u)]

= Pr[σj < T ∀j
∣∣S, t, u]

=
( ∑

σ<T

f10
S,t(σ)

)t−u( ∑
σ<T

f11
S,t(σ)

)u( ∑
σ<T

f01
S,t(σ)

)d−u( ∑
σ<T

f00
S,t(σ)

)(n−t)−(d−u)
.

The formula is divided into two parts: one when we consider j ∈ e and the other j ̸∈ e.
The arguments for both parts are identical. In the first part, |e| = t and there are two
subcases j ∈ ν or j ̸∈ ν. The individual counter probabilities f10

S,t(σ) and f11
S,t(σ) computes

the probability that the j-th counter is equal to σ with j ∈ ν and j ̸∈ ν respectively. We
sum all the individual probabilities up to the threshold T and take products in order to
calculate the probability the blocked state.
Transition probabilities. Write j $←− {0, . . . 2r−1} as random sampling j from {0, . . . 2r−
1} with uniform probability. Then we have the following transition probabilities:

p−,−
σ = Pr[j

$←− {0, . . . , 2r − 1}, j ∈ e, j ∈ ν, |hj ∗ s| = σ]

=
u

2r
f11
S,t(σ),

p−,·
σ = Pr[j

$←− {0, . . . , 2r − 1}, j ∈ e, j ̸∈ ν, |hj ∗ s| = σ]

=
t− u

2r
f10
S,t(σ),

p+,+
σ = Pr[j

$←− {0, . . . , 2r − 1}, j ̸∈ e, j ∈ ν, |hj ∗ s| = σ]

=
d− u

2r
f01
S,t(σ),

p+,·
σ = Pr[j

$←− {0, . . . , 2r − 1}, j ̸∈ e, j ̸∈ ν, |hj ∗ s| = σ]

=
(2r − t)− (d− u)

2r
f00
S,t(σ),

p =
∑
σ<T

(
p−,−
σ + p−,·

σ + p+,+
σ + p+,·

σ

)
.

The last expression is obtained by calculating the probability of j not being flipped in a
non-blocked state as a sum of probabilities when the counter is below the threshold.

4.5. Markov Model Estimation of the DFR. Our simple Markov model experiments
yield the decoding failure rate under the assumptions of models M0 and M1, see Section 4.1.
Model M0 (Model 2) assumes no effect of the near codewords N on the decoding failure
rate and model M1(Model 1) records the effect of a single near codeword on the decoding
failure rate. We modeled M0 using the same code by setting the value of u to 0 in the
initial vector.
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Let DFR(M0) and DFR(M1) denote the respective decoding failure rates. From these
two values, we wish to estimate the true decoding failure rate, which we denote DFR, taking
into account the existence of |N | = r near codewords.

We remark that there are (at least) two potential philosophies for taking into account
the impact of N on the DFR:

(1) The difference DFR(M1)−DFR(M0) accounts for the number of decoding failures
due to the existence of one near codeword, so |N |(DFR(M1) −DFR(M0)) gives
the increase in DFR due to the existence of |N | near codewords. This philosophy
yields the formula:

(7) DFR = DFR(M0) + |N |(DFR(M1)−DFR(M0)).

This assumes an additive effect of the elements of N on DFR, and we refer to
Equation (7) as the linear model. See Figure 7.

(2) The proportion of M0-model successes which are still M1-successes will be amplified
by each near codeword in N . This philosophy yields the formula:

(8) DFR = 1− (1−DFR(M0))

(
1−DFR(M1)

1−DFR(M0)

)|N |
.

This assumes a multiplicative effect of the elements of N on the decoding success
rate (1 − DFR), and we refer to Equation (8) as the multiplicative model. See
Figure 7.

We compare our data with experimental data obtained using [Vas24], as well as a previous
Markov model [SV19b] which does not take into account the effect of the error having a large
number of overlaps with a near codeword. Our Markov model gives a more conservative
estimate for the DFR, in instances where models not taking into account the effect of near
codewords underestimate the DFR.

5. A Refined Markovian Model for Perfect Keys

5.1. Perfect keys. The simple model in Section 4 has an advantage over the Markov model
[SV19b, Vas21b] because it predicts a (conservative) error floor. However, the simplified
model of the parity-check matrix 1 to compute the relevant probabilities is too crude and the
whole computation does not take into account the key structure. In a further simplifying
assumption, we let ν denote not just any fixed near codeword, but the fixed codeword which
maximizes |e ⋆ ν| at the start of the decoding process. We assume that this ν is the only
near codeword that it is necessary to consider in the decoding process. The DFR may vary
depending on the key structure (i.e. the particular form of H). In this section, we give a
more accurate computation of the transition probabilities of the Markov chain in the case
where the key is as simple as possible, by assuming that the subgraph G of the Tanner
graph induced by a near codeword is the simplest in some sense. More precisely, we focus
on secret keys (h0(x), h1(x)) which are perfect keys:
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Figure 7. Plot of experimental DFR data, M0 M1 linear and multiplicative
Markov model DFRs, and the DFR of the Markov model in described in
[SV19b].

Definition 4 (perfect key). The secret key (h0(x), h1(x)) is perfect if and only if all sums
li + lj for i and j in {1, · · · , d} and i ⩽ j are different and so are the sums ri + rj where
h0(x) =

∑d
i=1 x

li and h1(x) =
∑d

i=1 x
ri .

This condition is equivalent to any of the following conditions which should be met for
all Tanner graphs induced by any of the near codewords of N

i.) The number of parity-checks in G is exactly d(d+1)
2 .

ii.) The number of parity-checks in G is maximal.
iii.) All parity-checks in G have either degree 1 or 2.
iv.) There are d parity-checks in G which have degree 1 and d(d−1)

2 parity-checks in G
of degree 2.

This structure is helpful in mitigating the effect of the near codewords. The associated
secret keys can probably be considered strong keys although the interplay between the left
and the right part has also to be taken into account. In particular, it is very bad to choose
h0 = h1 or take h0 and h1 which have a big intersection. This structure also helps in
setting a Markov model which is slightly different from the previous one: the Markov states
are now (s, t, u) where s and t are as before the syndrome and error weights, but u is now
the maximal size of the intersection of the error with the near codewords in N .

5.2. A useful decomposition of the parity-checks and the syndrome.
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The Chaulet approach for taking into account the syndrome weight. We first review the
Chaulet approach [Cha17, Chap. 7] to take into account the syndrome weight s in modeling
the counters which themselves will be instrumental to compute the transition probabilities
of the Markov chain. Intuitively we expect these counters to behave roughly as a linear
function of s. Sendrier-Vasseur [SV19a] quantifies this intuition. They distinguish the
counter of a bit in error σerr

i from the counter of a bit which is correct σgood
i . The first bit

is involved in d parity-checks which we know contain an error in a given position, whereas
the second one is involved in d parity-checks which we know involve a bit which is error-free
in a given position. This biases the respective probabilities π1 (in the error case) and π0
(when the bit is correct) that the parity-check is unsatisfied. We will give here a discussion
which simplifies [Cha17, Chap. 7] and [Vas21b, §12.3]. We color an edge of the Tanner
graph in red if it is adjacent to a parity check which is unsatisfied. Let N err be the number
of red edges leaving the bits in error and let ei be the number of bits that are in error in the
parity-check labeled by i. We denote by si the syndrome of the parity-check labeled by i.
By counting the number of edges leaving the bits in errors and counting the same number
of red edges arriving at the unsatisfied parity-checks, we get

(9) N err =
∑
i:si=1

ei.

We have on one hand

(10) E(N err|s, t) = dt · π1.

On the other hand, from (9) we have

(11) E(N err|s, t) = sE(e1|s1 = 1).

Putting these equations together we relate π1 to the expected number of errors in a parity-
check equation given that this parity-check is violated.

Lemma 1 (double counting lemma).

(12) π1 =
s

dt
E(e1|s1 = 1).

Note that the double counting argument (9) is at the heart of this fundamental equation.
This will be the rationale of the more complicated computations we perform later in this

section. Let ρℓ
def
=

(wℓ)(
n−w
t−ℓ )

(nt)
be the probability that a parity-check involves l bits in error.

E(e1|s1 = 1) =

∑
ℓ(2ℓ+ 1)ρ2ℓ+1∑

ℓ ρ2ℓ+1
.

By substituting for E(e1|s1 = 1) in (12) we finally get

(13) π1 =
s

dt
·
∑

ℓ(2ℓ+ 1)ρ2ℓ+1∑
ℓ ρ2ℓ+1

.
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To compute π0 we perform a similar reasoning by bringing in N cor the number of red edges
leaving the bits which are correct. We have

N cor = w · s−N err.

By writing E(N cor|s, t) = d(n− t) · π1 and performing a similar reasoning we obtain

π0 =
s
(
w −

∑
ℓ(2ℓ+1)ρ2ℓ+1∑

ℓ ρ2ℓ+1

)
d(n− t)

All these computation are rigorous, what is not rigorous is the assumption that the parity-
check equations behave independently from each other. This forms what we call Chaulet’s
model [Cha17, Chap. 7] for the counters.

Model 3 (Chaulet’s model).

(correct bit) σi ∼ Bin(d, π0)

(bit in error) σi ∼ Bin(d, π1)

where

π0
def
=

s
(
w −

∑
ℓ(2ℓ+1)ρ2ℓ+1∑

ℓ ρ2ℓ+1

)
d(n− t)

π1
def
=

s

dt
·
∑

ℓ(2ℓ+ 1)ρ2ℓ+1∑
ℓ ρ2ℓ+1

ρℓ
def
=

(
w
ℓ

)(
n−w
t−ℓ

)(
n
t

) .

A useful partition of the parity-checks. The definition of a good/bad/normal/suspicious bit
is basically the same as in the previous section with ν being replaced by the closest near
codeword to the error. If there are several near codewords which are as close, we just choose
one of them. In order to obtain a probabilistic model for the counters it will be helpful to
partition the parity-checks in 6 groups.

P1 : The set of parity-checks which are of degree 1 in the subgraph G induced by the
closest near-codeword and which are adjacent to a bad bit.

P2 : The set of parity-checks in G of degree 2 and are adjacent to two bad bits.
P3 : The set of parity-checks in G of degree 2 and are adjacent to one bad bit and one

suspicious bit.
P4 : The set of parity-checks in G of degree 2 and are adjacent to two suspicious bits.
P5 : The set of parity-checks which are of degree 1 in the subgraph G and which are

induced by the dominant near codeword and which are adjacent to a suspicious bit.
P6 : The rest of the parity-checks (namely those that do not belong to G ).

In the case of a perfect key:
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Fact 1.

|P1| = u, |P2| =
(
u

2

)
, |P3| = u(d− u), |P4| =

(
d− u

2

)
, |P5| = d− u.

We define a red edge in the Tanner graph as an edge connecting a bit to a syndrome
bit which is equal to 1. A syndrome bit equal to 1 in the Tanner is represented by a red
parity-check equation. Figure 8 depicts this partition of bits and parity-checks.

u
V bad

d− u

V sus

t− u

V err

n− t− d+ u
V good

u

(w − 1, 1)

P1

(u
2

)
(w − 2, 0)

P2

u(d− u)

(w − 2, 1)

P3

(d−u
2

)
(w − 2, 0)

P4

d− u

(w − 1, 0)

P5

r −
(d+1

2

)
(w, 0)

P6

Figure 8. Illustration of the different groups. The size of the group is given
just below the group and just below the size of the group, there is a pair (a, b)
which gives the type of the parity-bit. a gives the number of additional edges
arriving at this group coming from the set of bits which do not belong to the
Tanner graph G induced by the closest near codeword, namely V err∪V good. b
indicates the contribution to the parity-check belonging to the group coming
solely from the bits in G . For instance for the first group P1, the size is u
and the corresponding pair is (w − 1, 1).

The reason why we decompose the parity-checks in several groups comes from the fact
that they behave differently during decoding depending on their type. What we call type of
a parity-check is the pair (a, b) where a is the number of edges arriving at this parity-check
from bits not belonging to G . b is a bit which indicates the contribution to the syndrome
of parity-check coming from bits in the subgraph G of the Tanner graph induced by the
closest near codeword. All groups of parity-checks have different types, with the exception
of P2 and P4 which both have type (w−2, 0). P2 has type (w−2, 0) because a parity-check
belonging to it is adjacent to exactly 2 bits in G and the contribution to the syndrome is 0
because it is adjacent to 2 bits in error in G . P4 has the same type because it is adjacent
to 2 bits which are correct in G and their contribution to the syndrome is also 0. We could
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have merged P2 with P4 but prefer to keep them separate for the ease and clarity of the
explanation.

5.2.1. Decomposing the syndrome. si denotes in all cases the number of unsatisfied parity-
checks in group Pi. The syndrome weight s is therefore given by

s = s1 + · · ·+ s6.

We also define for i in {1, · · · , 6} s̄i = E(si|s, t, u). To compute the relevant probabilistic
model for our Markov model we will need to estimate the s̄i’s. For this purpose, we will
make the following assumption

Assumption 4. For all i in {1, · · · , 6} we have

s̄i = s
E(si|t, u)
E(s|t, u)

.

Those expectations are readily computed

Proposition 2. We have

E(s1|t, u) = u
∑
ℓ

ρ
(1)
2ℓ+1, E(s2|t, u) =

(
u

2

)∑
ℓ

ρ
(2)
2ℓ+1

E(s3|t, u) = u(d− u)
∑
ℓ

ρ
(3)
2ℓ+1, E(s4|t, u) =

(
d− u

2

)∑
ℓ

ρ
(4)
2ℓ+1

E(s5|t, u) = (d− u)
∑
ℓ

ρ
(5)
2ℓ+1, E(s6|t, u) =

(
r −

(
d+ 1

2

))∑
ℓ

ρ
(6)
2ℓ+1,

where

ρ
(1)
ℓ =

(
w−1
ℓ−1

)(
n−d−w+1
t−u−ℓ+1

)(
n−d
t−u

) , ρ
(2)
ℓ =

(
w−2
ℓ−2

)(
n−d−w+2
t−u−ℓ+2

)(
n−d
t−u

)
ρ(3) =

(
w−2
ℓ−1

)(
n−d−w+2
t−u−ℓ+1

)(
n−d
t−u

) , ρ
(4)
ℓ =

(
w−2
ℓ

)(
n−d−w+2
t−u−ℓ

)(
n−d
t−u

)
ρ
(5)
ℓ =

(
w−1
ℓ

)(
n−d−w+1
t−u−ℓ

)(
n−d
t−u

) , ρ
(6)
ℓ =

(
w
ℓ

)(
n−d−w
t−u−ℓ

)(
n−d
t−u

) .

5.3. The counter models. We are ready now to give the counter models for the 4 groups
of bits

Counter Model 2.

bad bit : σi ∼ Bin(1, π1) + Bin(u− 1, π2) + Bin(d− u, π3)

suspicious bit : σi ∼ Bin(1, π5) + Bin(d− u− 1, π4) + Bin(u, π3)

normal bit in error : σi ∼ Bin(d, πerr)

good bit : σi ∼ Bin(d, πgood)
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πi =
s̄i
|Pi|

for all i ∈ {1, · · · , 5}

πerr def
=

1

d(t− u)

 ∑
i∈{1,3}

s̄i

∑
ℓ 2ℓρ

(i)
2ℓ+1∑

ℓ ρ
(i)
2ℓ+1

+ s̄2

∑
ℓ(2ℓ− 1)ρ

(2)
2ℓ+1∑

ℓ ρ
(2)
2ℓ+1

+
∑

i∈{4,5,6}

s̄i

∑
ℓ(2ℓ+ 1)ρ

(i)
2ℓ+1∑

ℓ ρ
(i)
2ℓ+1


πgood =

1

d(n− d− t+ u)
N good where

N good def
= w · s− s̄1 − s̄5 − 2s̄2 − 2s̄3 − 2s̄4

−
∑

i∈{1,3}

s̄i

∑
ℓ 2ℓρ

(i)
2ℓ+1∑

ℓ ρ
(i)
2ℓ+1

− s̄2

∑
ℓ(2ℓ− 1)ρ

(2)
2ℓ+1∑

ℓ ρ
(2)
2ℓ+1

−
∑

i∈{4,5,6}

s̄i

∑
ℓ(2ℓ+ 1)ρ

(i)
2ℓ+1∑

ℓ ρ
(i)
2ℓ+1

These formulas come from a double counting argument similar to the one leading to
Chaulet’s model. Let us start by explaining the formula for the πi’s.
The formula for the πi’s. As an illustration of the reasoning, we are going to explain the
formula for π2. Let e2 be the number of edges leaving the group of bad bits and going to
parity-check equations in P2 that are not satisfied. Notice that the subgraph of the Tanner
graph restricted to the set of bad bits and P2 is bipartite and bi-regular. All bad bits have
degree u − 1 and all parity-checks have degree 2. Denote by s2 the number of unsatisfied
parity-checks in P2 and by E2 the total number of edges in this subgraph. Because all
parity-checks have degree 2 in this graph we have the following equality

(14) E2 = 2|P2|

The subgraph of this graph induced by all unsatisfied parity-checks has exactly e2 edges by
definition and is also 2-regular on the parity-check side. Therefore we also have

e2 = 2|s2|.

This implies that

(15)
s2
|P2|

=
e2
E2

.

It is natural to define now π2 as E
[
e2
E2
|s, t, u

]
, which leads to

π2 =
s̄2
|P2|

.

This kind of reasoning applies to all other cases, the corresponding subgraph being of
constant degree 2 or 1 on the check node side. This leads to the aforementioned formulas
for the πi’s.
The formula for πerr. This is obtained by a refinement of the double counting method of
Julia Chaulet. Let us count in another way the number N err of red edges leaving the normal
bits in error. Recall that a red edge is an edge in the Tanner graph which is incident to a
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check node which is unsatisfied. Let n
(i)
ℓ be the number of check nodes which have ℓ bits

in error in Pi. We clearly have by counting the red edges from the check node perspective

(16) N err =
∑

i∈{1,3}

∑
ℓ

2ℓ · n(i)
2ℓ+1 +

∑
ℓ

(2ℓ− 1)n
(2)
2ℓ+1 +

∑
i∈{4,5,6}

∑
ℓ

(2ℓ+ 1)n
(i)
2ℓ+1.

We have on one hand

(17) E [N err|s, t, u] = d.(t− u)πerr,

whereas on the other hand, because of (16), we approximate this expected value by
(18)
E(N err|s, t, u) ≈

∑
i∈{1,3}

s̄iE(e(i)−1|s(i) = 1, t, u)+s̄2E(e(2)−2|s(2) = 1, t, u)+
∑

i∈{4,5,6}

s̄iE(e(i)|s(i) = 1, t, u).

where si is the contribution to the syndrome of the check nodes which are in Pi, s(i) is the
syndrome bit of any check node belonging to the group Pi, and e(i) is the number of bits
in error adjacent to an arbitrary check node in Pi. The right-hand term is clearly equal to∑

i∈{1,3}

s̄i

∑
ℓ 2ℓρ

(i)
2ℓ+1∑

ℓ ρ
(i)
2ℓ+1

+ s̄2

∑
ℓ(2ℓ− 1)ρ

(2)
2ℓ+1∑

ℓ ρ
(2)
2ℓ+1

+
∑

i∈{4,5,6}

s̄i

∑
ℓ(2ℓ+ 1)ρ

(i)
2ℓ+1∑

ℓ ρ
(i)
2ℓ+1

.

Here we used that for any i ∈ {1, · · · , 6}, ρ(i)ℓ is exactly the probability that a parity-check
belonging to group Pi contains ℓ errors. Substituting for this expression of E(N err|s, t, u)
in (17) gives the formula for πerr above. The formula for πgood follows a similar reasoning.

Once we have the models of the counters we set up the Markov chain model as explained
in Appendix A. We also need to compute the initial distribution of states (s, t, u). This is
explained in a slightly more general setting applying to general keys in Section B of the
appendix.

5.4. Results. We have tested the model with a perfect key which is small enough so that
we could observe the error-floor experimentally (see Figure 9). We checked two decoders,
the step by step with a BGF style decoder and the step by step majority decoder (where the
threshold is set at d+1

2 ). The model is in general conservative. In the waterfall region, we
experience the same kind of pessimistic estimation of the DFR as in the original Sendrier
and Vasseur Markov model [SV19b]. Interestingly enough, the model becomes significantly
better in the error floor region where it follows amazingly well the experimental curve.

6. A Refined Markovian Model Applying to All Keys and Taking their
Shape into Account

Even if the previous Markov model is impressively accurate in the error floor region,
it has the big drawback to apply solely to perfect keys. If the density of perfect keys
was for instance constant among the set of BIKE keys, this would not be a major issue.
However, such keys tend to be extremely rare. We have never found one by looking for it at
random but used instead algebraic constructions of planar difference sets, namely subsets
S of Zr such that all non zero elements v of Zr can be expressed in a unique way as a
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Figure 9. DFR vs. error weight (r = 1723, d = 17), perfect keys, exper-
iments vs. model, step by step with majority threshold and step by step
with threshold obtained by saturating the linear function α · s + β to stay
between (d+ 1)/2 and d for α

def
= 0.0060162, β def

= 8.7973.

difference of two elements x and y in S : v = x − y. When we have such a difference set
we choose two random subsets S0 and S1 of S and set hi(x)

def
=

∑
j∈Si

xj . Experimental
evidence shows that perfect keys behave better than random keys with respect to iterative
decoding. More generally the behavior of iterative decoding is definitely key dependent,
there are in particular weak keys which behave significantly worse than typical keys. It is
therefore desirable to have a way to predict the iterative decoding performance which is
key dependent. This is what we are going to do here.

6.1. Derivation of the Markov chain model. The structure of the subgraph G of
the Tanner graph associated to a near codeword depends in this case if it is of the form
xah0(x) ⊕ 0 (which we call a left near codeword) or 0 ⊕ xbh1(x) (which we call a right
near codeword). It may have parity-check nodes of degree greater than 2. The following
proposition which is straightforward to prove explains how parity-check nodes of a certain
degree arise in G .

Proposition 3. The parity-checks of even degree 2m in the subgraph G corresponding to a
left near codeword are associated to sets of m different pairs {la1 , lb1}, · · · , {lam , lbm} such
that

la1 + lb1 = · · · = lam + lbm ,

where the ai’s and the bi’s all belong to {0, · · · , d − 1} and ai ̸= bi for all i ∈ {1, · · · ,m}.
The parity-checks of odd degree 2m+1 in this graph are associated to an a ∈ {0, · · · , d− 1}
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and sets of m different pairs {la1 , lb1}, · · · , {lam , lbm} such that

2la = la1 + lb1 = · · · = lam + lbm ,

where the ai’s and the bi’s all belong to {0, · · · , d− 1} and ai ̸= bi for all i ∈ {1, · · · ,m}.

A similar proposition holds for right near codewords where the ri’s replace the li’s. As in
the case of perfect keys we can partition the set of code positions in four sets, the bad bits,
the suspicious bits, the normal bits in error and the good bits. We will simplify notation in
what follows and label a parity-check xa simply by a in what follows. We assume from now
on that the closest near-codeword n to the error intersects it in exactly t positions and that
the error is weight t. We also assume that n = h0(x)⊕ 0. The case when n = 0⊕ h1(x) is
treated similarly.

The case of bad bits. Again, we have three kinds of parity-checks adjacent to a bad bit. If
the label of the bad bit is say a1, the labels of the other bad bits a2, · · · , au and the labels
of the suspicious bits is au+1, · · · , ad, then we can group the parity-check nodes adjacent
to a1 as

• the first group is formed by a single parity-check labeled 2a1. Note that it is
necessarily of odd degree in G ;
• the second group is formed by u−1 parity-check parity nodes labeled a1+a2, · · · , a1+
au;
• the third group is formed by d−u parity-check parity nodes labeled a1+au+1, · · · , a1+
ad.

We do not know the label a1, · · · , au, and we model the probability that the corresponding
parity-checks are unsatisfied by using the following lemma

Lemma 2. Let a be a bad bit and let

• ρb,1∆,ℓ be the probability that the parity-check labeled 2a is adjacent to ℓ bits in error in
total given that it is of degree ∆ in G (this parity-check belongs to the first group);
• ρb,2∆,ℓ be the probability that a parity-check labeled a+ b of degree ∆ in G is adjacent

to ℓ bits in error in total given that it b is another bad bit (this parity-check belongs
to the second group);
• ρb,3∆,ℓ be the probability that a parity-check labeled a+ b is adjacent to ℓ bits in error

in total given that it is of degree ∆ in G , that b is a suspicious bit (this parity-check
belongs to the third group).
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Then

ρb,1∆,ℓ =

∑min(∆,ℓ)
j=1

(
∆−1
j−1

)(
d−∆
u−j

)(
w−∆
ℓ−j

)(
n−d−w+∆
t−u−ℓ+j

)(
d−1
u−1

)(
n−d
t−u

)
ρb,2∆,ℓ =

∑min(∆,ℓ)
j=2

(
∆−2
j−2

)(
d−∆
u−j

)(
w−∆
ℓ−j

)(
n−d−w+∆
t−u−ℓ+j

)(
d−2
u−2

)(
n−d
t−u

)
ρb,3∆,ℓ =

∑min(∆,ℓ)
j=1

(
∆−2
j−1

)(
d−∆
u−j

)(
w−∆
ℓ−j

)(
n−d−w+∆
t−u−ℓ+j

)(
d−2
u−1

)(
n−d
t−u

)
Proof.

The formula for ρb,1∆,ℓ. We have to compute in this case the probability that an error
of weight t which has weight u on the d bits of the near-codeword n and t − u on the
complement of the support of n intersects a given parity-check of weight w in exactly ℓ
positions. Furthermore, we know that the parity-check 2a involves the bad bit a we are
interested in, plus ∆ − 1 other bits of n. If we denote by ρb,1∆,ℓ,j the probability that this
error is also of weight j on the ∆ bits which belong at the same time to the support of the
parity-check labeled 2a and the support of n, then we have

ρb,1∆,ℓ,j =

(
∆−1
j−1

)(
d−∆
u−j

)(
w−∆
ℓ−j

)(
n−d−w+∆
t−u−ℓ+j

)(
d−1
u−1

)(
n−d
t−u

)
This can be verified by counting the number of ways the

(
d−1
u−1

)(
n−d
t−u

)
configurations of t− 1

errors where there are u − 1 errors among the d − 1 bits of n other than the bad bit a
we are interested in satisfy all the needed constraints. Figure 10 gives a picture of the
configuration we are interested in. This yields the formula for ρb,1∆,ℓ by summing over all
possible values of j.
The formula for ρb,2∆,ℓ. The reasoning is similar. We introduce ρb,2∆,ℓ,j which is the probability
that the error is also of weight j on the ∆ bits which belong at the same time to the support
of the parity-check labeled a+ b and the support of n, then we have

ρb,2∆,ℓ,j =

(
∆−2
j−2

)(
d−∆
u−j

)(
w−∆
ℓ−j

)(
n−d−w+∆
t−u−ℓ+j

)(
d−2
u−2

)(
n−d
t−u

)
Figure 11 displays the corresponding configuration. The difference with the previous case
is that now the parity-check labeled a+ b contains two bits which are in error by definition,
namely a and b.
The formula for ρb,2∆,ℓ. This uses a similar reasoning, with the only difference that the
parity-check labeled a+ b contains by definition a bit which is in error, namely a and a bit
which is not in error, namely b. □ □

In the case of a perfect key:
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Figure 10. This figure shows the configuration of the error and the parity-
check. The positions in black and pink represent all the positions of the
parity-check. The numbers on the top give the size of each block. The
numbers on the bottom indicate the number of errors in each block. There
is a first block of size 1 which is the bad bit a we are interested in. It is
by definition a bit which is in error. The second block is of size ∆ − 1. It
consists in the ∆− 1 other positions involved in the parity-check which are
also in the support of the near codeword n. This block contains exactly
j − 1 errors by assumption. The third block is of size d − ∆. It consists
in the d − ∆ positions in the support of n which are not involved in the
parity-check equation. It contains u − j errors. The fourth block consists
in the w −∆ positions of the parity-check which are not in the support of
n. It contains ℓ − j errors since the whole parity-check contains ℓ errors
and j errors are already in the first two blocks of positions. The last block
contains the remaining positions which belong neither to the parity-check
equation nor to the support of n. It contains the part of the t errors that
remain, that is t− u− l + j.

1 ∆− 1 d−∆ w −∆ n− d− w +∆

1 j − 1 u− j ℓ− j t− u− ℓ+ j

d

a

Lemma 3.

ρb,1,ℓ =

(
w−1
ℓ−1

)(
n−d−w+1
t−u−ℓ+1

)(
n−d
t−u

)
ρb,2,ℓ =

(
w−2
ℓ−2

)(
n−d−w+2
t−u−ℓ+2

)(
n−d
t−u

)
ρb,3,ℓ =

(
w−2
ℓ−1

)(
n−d−w+2
t−u−ℓ+1

)(
n−d
t−u

)
This coincides with the formula of the previous section.
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Figure 11. This figure shows the configuration of the error and the parity-
check. The positions in black and pink represent all the positions of the
parity-check. The numbers on the top give the size of each block. The
numbers on the bottom indicate the number of errors in each block. There
is a first block of size 2 corresponding to bad bits a and b. By definition
both bits are in error. The second block is of size ∆ − 2. It consists in
the ∆− 2 other positions involved in the parity-check which are also in the
support of the near codeword n. This block contains exactly j− 2 errors by
assumption. The third block is of size d−∆. It consists in the d−∆ positions
in the support of n which are not involved in the parity-check equation. It
contains u − j errors. The fourth block consists in the w − ∆ positions of
the parity-check which are not in the support of n. It contains ℓ− j errors
since the whole parity-check contains ℓ errors and j errors are already in the
first two blocks of positions. The last block contains the remaining positions
which belong neither to the parity-check equation nor to the support of n.
It contains the part of the t errors that remain, that is t− u− l + j.

2 ∆− 2 d−∆ w −∆ n− d− w +∆

2 j − 2 u− j ℓ− j t− u− ℓ+ j

d

a b

Proposition 4. For g ∈ {1, 2, 3}, let ¯πb,g be the average probability that a parity-check of
group g associated to a bad bit is unsatisfied. Then

πb,1 =
1

d

∑
a∈n

∑
ℓ

ρb,1deg(2a),2ℓ+1

πb,g =
1

d(d− 1)

∑
a∈n

b∈n, b ̸=a

∑
ℓ

ρb,gdeg(a+b),2ℓ+1, for g ⩾ 2.

Here deg(c) refers to the degree of the parity-check node c in G .

Proof. The probability that the parity-check labeled 2a associated to a bad bit a is unsatis-
fied is given by

∑
ℓ ρ

b,1
deg(2a),2ℓ+1. The average is then taken over all possible bits of the near

codeword n. The reasoning is the same for πb,g, the only difference being that we take the
average over all possible edges leaving a variable node labeled a to a check node labeled
a+ b for all possible b’s different from a. □ □

In the case of a perfect key, this reduces to
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Proposition 5. For g ∈ {1, 2, 3}, let ¯πb,g be the average probability that a parity-check of
group g associated to a bad bit is unsatisfied. Then

πb,g =
∑
ℓ

ρb,g,2ℓ+1.

Again, we recover the formula of th previous section.

The case of suspicious bits. The case of a suspicious bit is similar to the case of a bad bit
and we also partition the parity-checks associated to it in three groups in exactly the same
way as we did for a bad bit. There is a single parity-check in the first group associated to a
suspicious bit a, namely the parity-check labeled 2a. The second group contains d− u− 1
other parity-checks labeled a+ b where b is another suspicious bit. The last group contains
u parity-check bits labeled a+ b where b is a bad bit. Similarly to bad bits we have

Lemma 4. Let a be a suspicious bit and let
• ρs,1∆,ℓ be the probability that the parity-check labeled 2a in G is adjacent to ℓ bits in

error in total given that it is of degree ∆ in G (this parity-check belongs to the first
group);
• ρs,2∆,ℓ be the probability that a parity-check labeled a+ b is adjacent to ℓ bits in error

in total given that it is of degree ∆ in G and b is another suspicious bit (this parity-
check belongs to the second group);
• ρs,3∆,ℓ be the probability that a parity-check labeled a+ b is adjacent to ℓ bits in error

in total given that it is of degree ∆ in G , that b is a bad bit (this parity-check belongs
to the third group).

Then

ρs,1∆,ℓ =

∑min(∆,ℓ)
j=0

(
∆−1
j

)(
d−∆
u−j

)(
w−∆
ℓ−j

)(
n−d−w+∆
t−u−ℓ+j

)(
d−1
u

)(
n−d
t−u

)
ρs,2∆,ℓ =

∑min(∆,ℓ)
j=0

(
∆−2
j

)(
d−∆
u−j

)(
w−∆
ℓ−j

)(
n−d−w+∆
t−u−ℓ+j

)(
d−2
u

)(
n−d
t−u

)
ρs,3∆,ℓ =

∑min(∆,ℓ)
j=1

(
∆−2
j−1

)(
d−∆
u−j

)(
w−∆
ℓ−j

)(
n−d−w+∆
t−u−ℓ+j

)(
d−2
u−1

)(
n−d
t−u

)
In the case of a perfect key:

Lemma 5. Let a be a suspicious bit and let
• ρs,1,ℓ be the probability that the parity-check labeled 2a in G is adjacent to ℓ bits in

error in total (this parity-check belongs to the first group);
• ρs,2,ℓ be the probability that a parity-check labeled a+ b is adjacent to ℓ bits in error

in total (this parity-check belongs to the second group);
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• ρs,3∆,ℓ be the probability that a parity-check labeled a+ b is adjacent to ℓ bits in error
in total given that b is a bad bit (this parity-check belongs to the third group).

Then

ρs,1,ℓ =

(
w−1
ℓ

)(
n−d−w+1
t−u−ℓ

)(
n−d
t−u

)
ρs,2,ℓ =

(
w−2
ℓ

)(
n−d−w+2
t−u−ℓ

)(
n−d
t−u

)
ρs,3∆,ℓ =

(
w−2
ℓ−1

)(
n−d−w+2
t−u−ℓ+1

)(
n−d
t−u

)
Again, this coincides with the formula of the previous section. From lemma 4, we deduce

Proposition 6. For g ∈ {1, 2, 3}, let ¯πs,g be the average probability that a parity-check of
group g associated to a suspicious bit is unsatisfied. Then

πs,1 =
1

d

∑
a∈n

∑
ℓ

ρs,1deg(2a),2ℓ+1

πs,g =
1

d(d− 1)

∑
a∈n

b∈n, b ̸=a

∑
ℓ

ρs,gdeg(a+b),2ℓ+1, for g ⩾ 2.

Here deg(c) refers to the degree of the parity-check node c in G .

In the case of a perfect key:

Proposition 7. For g ∈ {1, 2, 3}, let ¯πs,g be the average probability that a parity-check of
group g associated to a suspicious bit is unsatisfied. Then

πs,g =
∑
ℓ

ρs,g,2ℓ+1.

The case of normal bits is simpler, since it is not needed that we distinguish several
groups of parity-checks.

The case of normal bits in error.

Proposition 8. Let ρe∆,ℓ be the probability that a parity-check node of degree ∆ in the
subgraph G of the Tanner graph induced by n and adjacent to a normal bit in error contains
exactly ℓ erroneous bits. A parity-check which does not belong to G is considered to be of
degree 0. We also let πe be the average of these probabilities over all edges of the Tanner
graph leaving the bits which are not in n.
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We have

ρe∆,ℓ =

∑min(∆,ℓ−1)
j=0

(
∆
j

)(
d−∆
u−j

)(
w−∆−1
ℓ−j−1

)(
n−d−w+∆
t−u−ℓ+j

)(
d
u

)(
n−d−1
t−u−1

)(19)

πe =
1

d(n− d)

∑
∆

(w −∆)n∆

∑
ℓ

ρe∆,2ℓ+1,(20)

where n∆ is the number of check nodes in the subgraph G of the Tanner graph induced by
n which are of degree ∆.

Proof. The reasoning behind the formula (19) is similar to what is done for Lemma 3 and
is omitted. For computing the average of (19) we first count the edges in the Tanner graph
leaving the n− d positions which are not in n. There are n− d variable nodes of this kind
and therefore d(n− d) edges of this kind. ρe∆,ℓ is nothing but the average probability over
all edges that such an edge is adjacent to a check node which is not satisfied. If such a
check node is of degree ∆ in G , the subgraph of the Tanner graph induced by n, then the
probability that it is in error is exactly

∑
ℓ ρ

e
∆,2ℓ+1. There are exactly (w −∆)n∆ edges of

this kind that are adjacent to a check node of degree ∆ in G . This explains (20).
□

In the case of a perfect key:

Proposition 9. Let ρe∆,ℓ be the probability that a parity-check node of degree ∆ in the
subgraph G of the Tanner graph induced by n and adjacent to a normal bit in error contains
exactly ℓ erroneous bits. A parity-check which does not belong to G is considered to be of
degree 0. We also let πe be the average of these probabilities over all edges of the Tanner
graph leaving the bits which are not in n. We have

ρe∆,ℓ =

∑min(∆,ℓ−1)
j=0

(
∆
j

)(
d−∆
u−j

)(
w−∆−1
ℓ−j−1

)(
n−d−w+∆
t−u−ℓ+j

)(
d
u

)(
n−d−1
t−u−1

)
πe =

1

d(n− d)

{
w

[
r − d(d+ 1)

2

]∑
ℓ

ρe0,2ℓ+1 + (w − 1)d
∑
ℓ

ρe1,2ℓ+1 + (w − 2)
d(d− 1)

2

∑
ℓ

ρe2,2ℓ+1

}
where n∆ is the number of check nodes in the subgraph G of the Tanner graph induced by
n which are of degree ∆.

It is here that the formula differs from the previous section. Experiments have shown
that this new formula yields an improvement of the modeling predictions.

The case of good bits. The case of good bits is similar to the case of normal bits in error:

Proposition 10. Let ρg∆,ℓ be the probability that a parity-check node of G of degree ∆

adjacent to a good bit contains exactly ℓ erroneous bits. We also let πg be the average of
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these probabilities over all edges of the Tanner graph leaving the bits which are not in n.
We have

ρg∆,ℓ =

∑min(∆,ℓ)
j=0

(
∆
j

)(
d−∆
u−j

)(
w−∆−1

ℓ−j

)(
n−d−w+∆
t−u−ℓ+j

)(
d
u

)(
n−d−1
t−u

)(21)

πg =
1

d(n− d)

∑
∆

(w −∆)n∆

∑
ℓ

ρg∆,2ℓ+1,(22)

In the case of a perfect key:

Proposition 11. Let ρg∆,ℓ be the probability that a parity-check node of G of degree ∆

adjacent to a good bit contains exactly ℓ erroneous bits. We also let πg be the average of
these probabilities over all edges of the Tanner graph leaving the bits which are not in n.
We have

ρg∆,ℓ =

∑min(∆,ℓ)
j=0

(
∆
j

)(
d−∆
u−j

)(
w−∆−1

ℓ−j

)(
n−d−w+∆
t−u−ℓ+j

)(
d
u

)(
n−d−1
t−u

)
πg =

1

d(n− d)

{
w

[
r − d(d+ 1)

2

]∑
ℓ

ρg0,2ℓ+1 + (w − 1)d
∑
ℓ

ρg1,2ℓ+1 + (w − 2)
d(d− 1)

2

∑
ℓ

ρg2,2ℓ+1

}
.

This formula also differs from the formula given for perfect keys in the previous section.
Together with the new formula of normal bits in error, they yield better predictions than
using those of the previous section.

We will now analyze the structure of the subgraph G of the Tanner graph associated to
the “first” near codeword n = (h0(x),0). It is readily seen that the structure of this graph
is given by

Notation 2. Let n∆ be the number of parity-check equations in G which are of degree ∆.
For variable nodes of the form 2la, there are n∆ edges for each odd ∆ connecting to check
nodes of degree ∆. For all other nodes of the form la + lb, there are ∆n∆ − (∆ mod 2)n∆

edges for each ∆ ⩾ 1 connecting to check nodes of degree ∆. The remaining edges in the
parity check equations amount to (w −∆)n∆ for each ∆.

We observe that:

• The sum over all odd ∆ of edges of the first kind equals d
• The sum over all ∆ ⩾ 1 of edges of the second kind equals d(d− 1)
• The sum over all ∆ of edges of the third kind equals d(n− d)

Together these account for all dn edges in the Tanner graph.

We finally deduce the following model with a similar reasoning as what has been done
in the case of perfect keys
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Model 4.

bad bit: σi ∼ Bin(1,
sπb,1

E(s|t, u)
) + Bin(u− 1,

sπb,2

E(s|t, u)
) + Bin(d− u,

sπb,3

E(s|t, u)
)

suspicious bit: σi ∼ Bin(1,
sπs,1

E(s|t, u)
) + Bin(d− u− 1,

sπs,2

E(s|t, u)
) + Bin(u,

sπs,3

E(s|t, u)
)

normal bit in error: σi ∼ Bin(d,
sπe

E(s|t, u)
)

good bit: σi ∼ Bin(d,
sπg

E(s|t, u)
)

where where E(s|t, u) is given by:

E(s|t, u) = 1

w

(
uπb,1 + u(u− 1)πb,2 + u(d− u)πb,3 + (d− u)πs,1

+ (d− u)(d− u− 1)πs,2 + (d− u)uπs,3 + (t− u)dπe + (n+ u− t− d)dπg
)

6.2. Results. We have first checked this more general model on the same toy example of
the previous section with a random key (see Figure 12). Note that the new model is not
really a generalization of the one given in the previous section. The πi’s are estimated in
this model applying to any key in a direct fashion by scaling the expected syndrome on
each set of parity-checks according to the whole syndrome weight. It gives clearly a better
behavior in the waterfall region than the previous model based on Chaulet’s approach for
estimating the πi’s. We have decomposed the DFR both in experiments and in the model
in two parts, the one coming from the contribution from decodings that failed because they
converged to a near codeword (this is called “Contr. of ncw”) and another one which is
the rest of the contribution to the DFR (called “Contr. of other”). The models and the
experiments agree remarkably well. We have also tested two different step by step decoders
on the same code. There is one which uses the majority rule for the threshold, and another
one which uses the decoder with two thresholds T0 and T1 which is detailed in Figure 3.
There is a first conservative threshold which serves to flip initially the bits and a second
threshold (actually the majority rule here) which serves to flip the bits when there are no
more bit flips to perform with the first rule. This decoder is much better than the majority
decoder as can be expected.

In [Vas21b] which compared parallel decoders to similar step by step decoders, the per-
formance of the parallel decoders were much better than those of the step by step decoders.
However, the step by step decoder with two thresholds used to draw the previous graph
is now rather competitive with the parallel BGF decoder of BIKE as shown in Figure 13.
This seems to confirm that there is a significant gain in choosing conservative thresholds in
the early iterations as already observed in [Sen24]. The comparison between both decoders
show that the BGF decoder is slightly superior to the step by step decoder with a somewhat
steeper waterfall and a better error floor.
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Figure 12. DFR vs. error weight (r = 1723, d = 17), experiments vs.
model.
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Figure 13. DFR vs. error weight (r = 1723, d = 17), BGF vs. step by
step.

Finally after all this experimental evidence, we have run the model of this section on a
key chosen at random for the step by step decoder by choosing several different thresholds
for various block sizes for d = 71 and t = 134. The results are given in Figure 14.
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Figure 14. DFR vs. block size (d = 71, t = 134).

We have checked the influence of the gap parameter δ used for decoding. Here the
threshold T for flipping a bit depends only on the syndrome weight s, the block length r,
the error weight t and the gap parameter δ as follows

(23) T = min

(
d,max

(
Ar,t(s) + δ,

d+ 1

2

))
,

where Ar,t(s) is an affine function α · s + β of s depending on r and t which is computed
with the same method as for BIKE. We have obtained for t = 134 and various values of r
the coefficients given in Subsection C.1 Table 1.

We observe several different interesting points:

• Using the same gap parameter δ = 3 as the one used in the latest BIKE decoder
seems to be optimal for the actual BIKE 1 parameter which is r = 12323. It results
in a DFR of about 2−91.7 which is unfortunately above 2−λ.
• Moreover, even if we increase the block length r we do not improve by much the

DFR, because the error floor kicks in right after this value of r. We attain a DFR
of 2−114.1 with this gap for r = 13109 but need then to go to r = 18427 to go below
2−λ. It is 2−130.6 in this case.
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• Using a gap δ equal to 4 allows to an error floor which appears a little bit later and
allows to obtain a DFR which is about 2−119.6 for r = 13477. This is less than 10
percent more than the actual BIKE parameter.

A closer inspection of the actual choice for the affine function Ar,t shows that for a
large set of values of s (roughly between 0 and more than 70 per cent of the typical initial
syndrome value) the threshold takes the value d+1

2 . A typical example is given in Figure
15 where d = 71 and (d+ 1)/2 = 36.

Figure 15. An example for the BIKE 1 block length r = 12323 and the
affine function given in Subsection C.1 Table 1.

This seems to be a bad choice. Indeed, the majority threshold rule is the one which
maximizes the probability of flipping a suspicious bit and thus provoking the avalanche effect
leading to the convergence to a near-codeword and thus to the error floor phenomenon. It is
tempting to conjecture that using instead of (23) the following modified threshold function
might be better

(24) T = min (d,max (Ar,t(s) + δ, Tmin)) ,

with a value Tmin which is above d+1
2 . In the case of the BIKE 1 parameter, d is equal

to 71 and d+1
2 = 36. Choosing larger values for Tmin has a significant effect on the error

floor and does not deteriorate the waterfall behavior too much. This is illustrated by the
following table which shows the improvement we may expect. We have studied this point
in detail for a gap δ = 3 and for r = 13109. Moreover to see the effect on the DFR we have
decomposed the DFR as

DFR = DFRe + DFRw.

DFRe is the contribution of the DFR coming solely from the near-convergence to a near
codeword. Experimental evidence shows that this term is very good for predicting the error
floor. DFRw is defined as DFR − DFRe and is also very good for predicting the waterfall
behavior. For δ = 3 we have the following table
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Tmin DFRe DFRw
36 -113.046457928823 -123.378559395570
37 -118,243581226345 -123,378559395558
38 -123,405489448735 -123,378559389356
39 -128,809000162163 -123,378537439281
40 -134,809143919309 -123,310820300205

These results were obtained for the following choice of the affine function Ar,t(s) =
0.0061804625681607 · s + 12.8998430883248. We see that we gain roughly 5 or 6 bits on
DFRe by increasing Tmin by 1. It seems that by choosing in a better way the threshold
function should allow to reach a DFR which is below 2−λ. This is indeed easy to achieve
for r = 13477 with the following threshold function

• s ∈]0, 3800], T (s) = 38
• s ∈]3800, 4300], T (s) = 39
• s ∈]4300, 4550], T (s) = 40
• s > 4550, T (s) = 0.005917328871862742 · s+ 13.57245637.

We obtain in this case

DFRe ≈ 2−129.565, DFRw ≈ 2−137.316, DFR ≈ 2−129.55.

7. Concluding Remarks

A new, accurate Markov model. This work highlights the central role that the near code-
words put forward in [Vas21b] play in the error floor regime. We enrich the Markov model
of [SV19b, Vas21b] with the size of the intersection of the error with a near codeword and
obtaining a model which is key dependent, we obtain an accurate prediction of the DFR in
the error floor regime, matching experimental data for various decoders and keys.
Attaining a DFR which is below 2−λ. If we run this Markov model on the BIKE level 1
parameter with the former threshold function, we fall short of reaching a DFR which is
below 2−λ. We get a DFR of about 2−91 in this case. Moreover this problem cannot simply
be addressed by taking slightly larger parameters as one could expect since the error floor
kicks in just after the block size r = 12323 chosen for BIKE 1. However, this error floor
seems to be due to the fact that the threshold function is equal to its minimum possible
value d+1

2 for a very large range of values of the syndrome weight s. This can be addressed
adequately by increasing this minimum threshold value from 36 to 38 in the case of BIKE
1. In this case, a simple threshold function leads to a DFR for a step by step decoder which
is below 2−129.5 for a block size r = 13477. This is slightly less than a 10% overhead over
the current BIKE 1 parameter.
Analyzing a parallel decoder. There are reasons to believe [Vas21b] that the parallel decoders
used in the actual BIKE implementation produce an even lower DFR. Whereas up to now,
only the beginning of the waterfall region could be explored for cryptographic parameters,
this work opens a new road for exploring the ability of various decoders to attain even more
efficiently the needed 2−λ DFR and for understanding the effect of various weak keys on
the DFR. Concerning the first point, it would be interesting to use the slightly modified
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Markov chain approach followed in [ABP24a] (for the full version see [ABP24b]) to analyze
parallel decoders for instance.
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Appendix A. Computing the stationary probability distribution

The aim of this section is to show how to compute efficiently the stationary probability
distribution P∞(blocked|s, t, u) which is the probability that, after an infinite number of
iterations, we end up in the blocked state (where decoding fails) given that we started with
a syndrome of weight s, an error of weight t and maximal intersection with a near-codeword
of size u. There is a first step to simplify the Markov chain and to remove loops. It consists
of two steps.

I. For each state (s, t, u) we compute the probability that we attain the blocked state
after performing n loops around the state. This emulates the fact that we verified
that all n bits would not get flipped because their counters is below the threshold
chosen for flipping the bit. The probability P∞(blocked) to attain the blocked
state is given by

(25)

P∞(blocked) =

[∑
σ<T

Pgood(σ)

]ngood

·

[∑
σ<T

Pnorm(σ)

]nnorm

·

[∑
σ<T

Psus(σ)

]nsus

·

[∑
σ<T

Pbad(σ)

]nbad

,

where :
- T is the threshold which is chosen to flip a bit,
- Pgood(σ), Pnorm(σ), Psus(σ) and Pbad(σ) are respectively the probability that a
good/normal/suspicious/bad bit has a counter equal to σ,
- ngood

def
= n−d−t−u, nnorm

def
= t−u, nsus

def
= d−u and nbad

def
= u are respectively the

number of good bits, the number of normal bits in error, the normal of suspicious
bits (which are therefore not in error) and the number of bad bits.
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II. We remove the loops around each state (s, t, u) by first computing the probability
that there is no flip in one iteration of the sequential decoder, that we compute as

(26) P(noflip) =
∑
σ<T

Pgood(σ)
ngood

n
+Pnorm(σ)

nnorm

n
+Psus(σ)

nsus

n
+Pbad(σ)

nbad

n
.

Then according to the kind of transition from the state (s, t, u) to a state (s′, t′, u′)
we are considering, say the counter of the bit we are considering is equal to σ, which
entails that s′ = s+ d− 2σ

– Case of a good bit : here necessarily t′ = t+ 1, u′ = u. We set

P(s′, t′, u′|s, t, u) = Pgood(σ)
ngood

n

1

1−P(noflip)
.

– Case of a normal bit in error : t′ = t− 1, u′ = u. We set

P(s′, t′, u′|s, t, u) = Pnorm(σ)
nnorm

n

1

1−P(noflip)
.

– Case of a suspicious bit : t′ = t+ 1, u′ = u+ 1. We set

P(s′, t′, u′|s, t, u) = Psus(σ)
nsus

n

1

1−P(noflip)
.

– Case of a bad bit : t′ = t− 1, u′ = u− 1. We set

P(s′, t′, u′|s, t, u) = Pbad(σ)
nbad

n

1

1−P(noflip)
.

We also restrict the range of values that s′ can take (and renormalize accordingly all the
transition probabilities). In the case of a perfect key we set for instance P(σ) = 0 in the
case where

s′ < 0

s′ < d(2u′ − t′)− u′(u′ − 1)

s′ > dt′ − u′(u′ − 1).

Once the Markov chain has been simplified by using these rules, we now observe that on
one hand
(27)
P∞(blocked|s, t, u) = P(blocked|s, t, u) +

∑
s′,t′,u′

P∞(blocked|s′, t′, u′) ·P(s′, t′, u′|s, t, u)

and on the other hand, the only transition probabilities P(s′, t′, u′|s, t, u) which are non zero
are now such that s′ < s. This suggests to compute the probabilities P∞(blocked|s, t, u)
by starting from s = 0 and increasing s by 1 each time and the recursion formula (27) to
compute the remaining ones. For s = 0 we use the following rule

P∞(blocked|0, t, u) = 0 if t < 2d

P∞(blocked|0, t, u) = 1 otherwise.
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The first rule accounts for the fact that there should be no codeword of weight less than
w = 2d. We also set

(28) P∞(blocked|s, t, u) = 0 if s < t(d− t+ 1) and t ⩽ d

which basically accounts for the fact that we make the assumption that there is no near-
codeword of size t < d which has a smaller syndrome than a subset of size t of a near
codeword of N . This leads finally to the following algorithm

Algorithm 1 Algorithm for computing the DFR
for all t, u do ▷ initialization

if t < 2d then
P∞(blocked|0, t, u)← 0

else
P∞(blocked|0, t, u)← 1

for all s, t, u s.t. s < t(d− t+ 1) and t ⩽ d do
P∞(blocked|0, t, u)← 0

for s = 1 to smax do ▷ main loop
for all t, u do

P∞(blocked|s, t, u) ←
∑

s′<s,t′,u′ P∞(blocked|s′, t′, u′) · P(s′, t′, u′|s, t, u) +

P(blocked|s, t, u)
DFR←

∑
s,t,uP∞(blocked|s, t, u)P(s, t, u).

Appendix B. Computing the initial state distribution

Let random variables:
• S denote the syndrome weight
• T denote the total error weight
• U denote the maximal intersection size between the error vector and any near

codeword
• B denote the index of the block (0 or 1) containing the near codeword with maximal

intersection
For a QC-MDPC code of row weight d where the degree distributions n∆ are known for
both blocks.

Additionally define auxiliary random variables:
• T0 and T1 denote the error weights in blocks 0 and 1 respectively, satisfying T0+T1 =
T
• U0 and U1 denote the maximum intersection sizes between the error vector and any

near codeword in blocks 0 and 1 respectively
In this section, we compute P(S = s, U = u,B = b|T = t). We will use the formula

P(S = s, U = u,B = b|T = t) = P(U = u,B = b|T = t)P(S = s|U = u,B = b, T = t).
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B.1. Distribution P(U = u,B = b|T = t). For a realization T0 = t0, T1 = t1 summing
to t, where ti is the weight in block i, the probability of this partition occurring is given by
the hypergeometric distribution (

r
t0

)(
r
t1

)(
n
t

) .

For each ti, the distribution of intersections with any particular near codeword in block
i follows a hypergeometric distribution with probability mass function

fi(k) =

(
d
k

)(
r−d
ti−k

)(
r
ti

)
for intersection size k. Let Fi(k) denote the corresponding CDF:

Fi(k) =
k∑

j=0

fi(j)

Since we take the maximum of r independent such random variables, the CDF of the
maximum Fi is:

F r
i (k) = (Fi(k))

r

And the PMF of the maximum is:

P(Ui = k|Ti = ti) = F r
i (k)− F r

i (k − 1)

Then there are three cases to consider:
• Block 0 contains a unique maximum intersection of size u:

P(U0 = u|T0 = t0)P(U1 < u|T1 = t1)P(T0 = t0, T1 = t1)

• Block 1 contains a unique maximum intersection of size u:

P(U1 = u|T1 = t1)P(U0 < u|T0 = t0)P(T0 = t0, T1 = t1)

• Both blocks have maximum intersection of size u:

P(U0 = u|T0 = t0)P(U1 = u|T1 = t1)P(T0 = t0, T1 = t1)

Cases 1 and 2 determine b = 0/1 respectively, and case 3 split evenly between them.

B.2. Distribution P(S = s|U = u,B = b, T = t). To compute this probability, we need
to track both:

(1) The number of check nodes involved in an odd number of errors
(2) The total number of errors connected to each check node

The total number of edges connected to errors in the Tanner graph must equal dt.
We partition the check nodes based on their degree ∆ in G , with counts given by n∆.

For each degree ∆, we use ρ∆,ℓ for the distribution of the errors in a parity check equation.
Here, ρ∆,ℓ gives the probability that a check node of degree ∆ in G involves exactly ℓ errors,
where these errors are distributed between: the u bits common to both the error vector
and nearest near codeword and the remaining t− u error bits not in the near codeword.
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Let Ri be the random variable for the number of errors connected to check node i:

P(Ri = ℓ|deg(i) = ∆) = ρ∆,ℓ

where deg(i) is the node’s degree in G .
Our goal is to compute, for all values of s:

P
(∑

i

Ri = dt, exactly s values of Ri are odd and r − s are even
∣∣∣T = t, U = u

)
given the known distribution of degrees. Then we can easily deduce

P
(
exactly s values of Ri are odd and r − s are even

∣∣∣∑
i

Ri = dt, T = t, U = u
)

Which is what we will set for P(S = s|U = u,B = b, T = t).
We decompose s into components by degree, where s∆ represents the number of degree-

∆ parity check equations in G with an odd number of errors, for ∆ = 0, 1, . . . ,∆max.
This gives us s = s0 + s1 + · · · + s∆max . The number of possible configurations with this
decomposition is given by the multinomial coefficient:(

r

s0, n0 − s0, s1, n1 − s1, . . . , s∆max , n∆max − s∆max

)
For each individual degree ∆, we compute:

P
( ∑

i has degree ∆

Ri = ℓ, exactly s∆ values of Ri are odd and n∆ − s∆ are even
∣∣∣T = t, U = u

)
using convolutions. We then convolve these distributions and multiply by the multinomial
coefficient. Finally, we retain only the values where the sum equals d · t and normalize the
distribution to obtain our desired probability.

The actual computational procedure consists of several steps. First, for each degree
∆, we create vectors mapping ℓ to ρ∆,ℓ. These vectors are then split into their odd and
even components without normalization. Next, for each s∆ in {0, . . . , n∆}, we compute s∆
convolutions of the odd vector and n∆ − s∆ convolutions of the even vector, dividing the
results by s∆! and (n∆ − s∆)! respectively. We then perform a series of convolutions, first
within each fixed ∆ group we obtain for each possible value s∆ the distribution of the sum
of Ri. We then convolve across different ∆ groups thus obtaining the sum of s∆ together
with the corresponding distributions of the sum of Ri. The final result is multiplied by r!
to account for the multinomial coefficient. Finally, we retain only the values where the sum
equals d · t and normalize the distribution to obtain our desired probability.

Appendix C. Additional Information on the Experiments

C.1. Affine part of the threshold function for the curves of Figure 14.
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Table 1. Table giving the affine part Ar,t of the threshold function corre-
sponding to Figure 14. The threshold Tr(s) is given for a block length r and
a syndrome weight s by the formula Tr(s) = min

(
d,max

(
Ar,t(s),

d+1
2

))
.

r α β
9283 0.007835394510038963 13.297180113728302
9661 0.007393105300920274 13.567391558872282
10037 0.007061848501098616 13.594659657463222
10427 0.006798500986468654 13.456553521076303
10789 0.006606617361836905 13.228860262727327
11171 0.006444309408601018 12.921143566520255
11549 0.0063141209528076135 12.572979649160397
11933 0.006205362314938619 12.192085979992001
12323 0.0061135837435673315 11.789323238365313
12739 0.00603182965107241 11.351398154970589
13109 0.005970219758260547 10.96007467501192
13477 0.005917328871862742 10.572456366568613
13859 0.0058697311301313835 10.173985156386603
15373 0.005733664525418103 8.655332501782194
16901 0.00565184187736275 7.233670336326141
18427 0.005604464463216208 5.915303733756538
19949 0.005580554453148446 4.683511294611625
21467 0.0055736761566337325 3.521321141011274
23003 0.005579882422098863 2.399420709618189
24533 0.005596416334069782 1.32559949672806
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