
KZH-Fold:
Accountable Voting from Sublinear Accumulation

George Kadianakis1, Arantxa Zapico2, Hossein Hafezi3, and Benedikt Bünz4

1,2Ethereum Foundation
3,4New York University

Abstract

Accumulation schemes are powerful primitives that enable distributed and incre-
mental verifiable computation with less overhead than recursive SNARKs. However,
existing schemes with constant-size accumulation verifiers, suffer from linear-sized accu-
mulators and deciders, leading to linear-sized proofs that are unsuitable in distributed
settings. Motivated by the need for bandwidth efficient accountable voting protocols,
(I) We introduce KZH, a novel polynomial commitment scheme, and (II) KZH-fold, the
first sublinear accumulation scheme where the verifier only does 3 group scalar mul-
tiplications and O(n1/2) accumulator size and decider time. Our scheme generalizes
to achieve accumulator and decider complexity of k · n1/k with verifier complexity k.
Using the BCLMS compiler, (III) we build an IVC/PCD scheme with sublinear proof
and decider. (IV) Next, we propose a new approach to non-uniform IVC, where the
cost of proving a step is proportional only to the size of the step instruction circuit, and
unlike previous approaches, the witness size is not linear in the number of instructions.
(V) Leveraging these advancements, we demonstrate the power of KZH-fold by im-
plementing an accountable voting scheme using a novel signature aggregation protocol
supporting millions of participants, significantly reducing communication overhead and
verifier time compared to BLS-based aggregation. We implemented and benchmarked
our protocols and KZH-fold achieves a 2000x reduction in communication and a 50x
improvement in decider time over Nova when proving 2000 Poseidon hashes, at the
cost of 3x the prover time.

{asn, arantxa}@ethereum.org, {h.hafezi, bb}@nyu.edu
The order of author is arbitrary.

1

Contents

1 Introduction 4
1.1 KZH polynomial commitment scheme . 5
1.2 Sublinear accumulation schemes . 6
1.3 Signature aggregation in consensus . 7
1.4 Contributions . 9
1.5 Additional related work . 10

2 Technical Overview 11

3 Preliminaries 13
3.1 Notation . 13
3.2 Polynomial commitment schemes . 14
3.3 Accumulators . 15
3.4 Incrementally verifiable computation . 16
3.5 IVC from accumulators . 17

4 KZH: An efficiently aggregatable polynomial commitment 18
4.1 Accumulator . 20
4.2 An IVC scheme from KZH . 23
4.3 Non-uniform IVC . 24

5 PIOP for signature aggregation protocol 25

6 Implementation and efficiency 29
6.1 Efficiency of KZH . 29
6.2 Comparison with Halo Infinite . 30
6.3 Comparison with Nova . 30
6.4 Comparison with BLS aggregation . 31

A Deferred definitions 38
A.1 Signature schemes . 38

B Deferred proofs 39
B.1 Proof of theorem 3 . 39
B.2 Proof of theorem 4 . 42

C Higher dimension PCS for smaller deciders 46
C.1 KZH-k . 46
C.2 KZH-k accumulation . 51

2

D Simple accumulatable R1CS PIOP 56

E Non-Uniform IVC 58

3

1 Introduction

Distributed verifiable computation (also known as proof-carrying-data or PCD) [CT10] is a
powerful primitive that allows a distributed set of parties to jointly perform a computation
such that each intermediate step and the result can be efficiently verified. This is useful for
computations that are performed by distributed and distrusting parties. Each party can
perform a step of the computation and then forward their output, along with a PCD proof
that asserts the correctness of the computation up to this point. Examples of these compu-
tations are map-reduce systems [CTV15], where nodes jointly compute on large data sets,
distributed rollups [Her24; KB23] where nodes compute joined transaction blocks, and dis-
tributed voting, where participants jointly compute a quorum certificate on a set of nodes.
PCD can be built from recursive SNARKs; however, this approach has high overhead, re-
quiring implementing the SNARK verifier inside of the proof circuit [Ben+14]. A promising
recent line of work [KST22; Bün+21; KS24; BC23] showed how to construct PCD from so-
called accumulation schemes. An accumulation scheme iteratively accumulates proofs into
an accumulator. The accumulator is valid if and only if the input proofs are all valid. Im-
portantly, checking the validity of the accumulation is much simpler than checking all the
original proofs. PCD built from the most efficient accumulation schemes [KST22; Bün+21;
KS24; BC23] only requires proving a constant number of group operations as overhead.

Unfortunately, these accumulation schemes have significant limitations. The accumu-
lator, which must be communicated among distributed provers, is linear in the size of a
computation step and takes linear time to decide. Each computation step is lower-bounded
by the so-called recursive overhead, i.e., the cost of verifying the accumulation step. Even
for the most efficient schemes, this is in the tens of thousands of gates, which results in
accumulators that are at least 1 MB in size, and the decider scales linearly in the under-
lying computation. While this overhead may be acceptable if a single prover performs the
computation, this is a significant bottleneck to applying PCD to distributed and peer-to-
peer settings. In these settings, every node needs to receive and fully decide, i.e., check the
accumulator when it wants to take over a computation.

In this work, we present KZH, a polynomial commitment scheme. KZH, like the famous
KZG polynomial commitment [KZG10], is secure in a pairing-friendly group, leverages
a universal, upgradable structured reference string, and is secure in the algebraic group
model. We also design KZH-fold, an efficient accumulation scheme for KZH. Unlike prior
accumulation schemes, KZH-fold has a sublinear-sized accumulator that can be efficiently
verified, while retaining the constant size and concretely efficient accumulation verifier
of prior works, like Nova or Protostar. Concretely, we present an accumulation scheme
where the accumulator for computations of size n is O(n

1
2), compared to O(n) for Nova,

and the accumulation verifier performs 3 group scalar multiplications to add a proof to
the accumulator (compared to 2 for Nova, 3 for Protostar and 1 for HyperNova). The
decider runtime is dominated by a pairing product of size n

1
2 . We also generalize the

scheme to KZH-k such that the accumulator and decider are only O(k · n
1
k), with an O(k)

4

accumulation verifier for an arbitrary constant k. Using the compilers from [Bün+20;
Bün+21; BC23], we construct an accumulation scheme for KZH which, if combined with
a variant of Spartan [Set20], yields an accumulation scheme for R1CS. We then show that
our scheme has significant benefits in an important application: accountable voting for
large-scale consensus.

1.1 KZH polynomial commitment scheme

Extending ideas from Hyrax, we design a similar multilinear polynomial commitment
scheme named KZH with following appealing features: Given a polynomial of degree n,
KZH has a linear-time commitment phase, primarily dominated by an MSM of size n. The
commitment is a single G1 element. The opening and verification times are both O(n

1
2),

and the proof size is also O(n
1
2). The core idea of KZH is to represent polynomial evaluation

as a matrix operation, reducing it to matrix-vector multiplication. We extend this concept
to tensors, where a matrix is a tensor of dimension 2, and introduce KZH-k. KZH-k has
linear commitment time, and the opening time remains O(n

1
2) through preprocessing, but

the verifier time and proof size are both changed to O(k · n
1
k).

KZH-log(n) is of independent interest as a standalone commitment scheme. Like the
multivariate commitment scheme from [PST13], it has O(log(n)) group elements proof size,
and verifier time. Its key advantage is that computing an opening proof can be done
using only n

1
2 group operations (not including polynomial evaluation). KZH-log(n) unlike

similar schemes like Dory [Lee21], the proof does not consist of target group elements and
subsequently the verifier does not do target group operations which limits its application to
smart contracts not supporting such operations. In Table 1 we compare various polynomial
commitment schemes with KZH-log(n).

Scheme Supports Opening time Proof size Verifier time
KZH-log(n) Multilinear n

1
2 G1 2 log(n)G1 2 log(n) P

[PST13] Multivariate MSM(n) log(n)G1 log(n) P
[KZG10] Univariate MSM(n) 1G1 2 P
[Lee21] Multilinear n

1
2 P 3 log(n)GT log(n)GT , P

Table 1: Comparison for KZH-log(n), KZG, PST and Dory. For the multivariate scheme
log(n) is the number of variables, for KZG n is the degree. P stands for pairing operations
G1 and GT for base and target group operations respectively. Commitment time for all
schemes is dominated by an MSM of size n.

5

1.2 Sublinear accumulation schemes

As our core technical contribution, we design the first accumulation schemea with a sub-
linear accumulator and decider (including the accumulator witness) and a constant-sized
accumulation verifier. Concretely, the accumulation verifier performs only 3 group scalar
multiplications and has an accumulator consisting of O(n

1
2) elements. We generalize the

scheme to KZH-k, a scheme with an accumulator of size k ·n
1
k and an accumulation verifier

of size O(k). Through the compilers of [Bün+21; KS23a], we get a PCD scheme with min-
imal overhead and significantly smaller and faster to verify PCD proofs compared to any
prior accumulation-based PCD.

Our new accumulation scheme KZH-fold is based on our polynomial commitment scheme
KZH. We construct KZH-fold, a highly efficient accumulation scheme for KZH in which the
accumulation verifier only performs 3 G1 operations. The accumulator witness consists of
n

1
2 group elements and 5 × n

1
2 field elements and is thus significantly smaller than the

original polynomial, and subsequently the decider runs in time O(n
1
2), dominated by a

pairing-product of that size. We combine KZH-fold with a polynomial interactive oracle
proof (PIOP) [BFS20; Set20], to get an accumulation scheme for R1CS (an encoding of
arithmetic circuits). This R1CS accumulation scheme yields a PCD scheme through the
BCLMS [Bün+21] and Cyclefold [KS22a] compilers. The accumulator size directly corre-
sponds to the PCD proof size and the decider to the PCD verifier time. KZH-fold-based
PCD is, therefore, the first accumulation-based PCD scheme with constant recursive over-
head and a sublinear proof size and verification time.

The sublinear proof is advantageous in distributed applications of PCD, such as prover
networks or accountable voting, as proofs must be passed from node to node. For this
reason, prior applications of accumulation-based PCD were mainly limited to single-prover
scenarios. Nova [KST22], previously proposed compressing the proof via outsourcing the de-
cider. However, computing this proof has a 24x prover overhead and a 2x decider overhead,
compared to the accumulation step without compression. Even in the compressed setting,
the decider remains linear and inefficient. Using KZH-fold, this additional compression step
is unnecessary, as the decider is already efficient. Concurrent work, MicroNova [ZSC24],
modifies Nova’s compression phase to achieve sublinear decider time. However, this im-
provement comes at an even higher prover cost than Nova’s compression phase. Note
that the compressed proofs in Nova and MicroNova are no longer incrementally update-
able with an accumulation scheme. While this may be acceptable in a single-prover setting
for applications like rollups, it is problematic in distributed settings or applications with
an ongoing computation such as building light clients from IVC [Che+20], constant-sized
blockchains [Bon+20] or verifiable virtual machines (e.g. zkVM).

KZH-fold retains many of the benefits of previous accumulation schemes, shown in
Table 2. It only requires a single commitment to the witness and can take advantage of

aTechnically, any SNARK yields an accumulation scheme. However, no SNARK exists where the verifi-
cation only requires basic group operations.

6

sparse and small-weight witnesses. The accumulation verifier only performs a small (3)
number of group scalar multiplications in group one of a pairing-friendly group. Finally,
we generalize KZH-fold to variants called KZH-k fold. For any constant k ∈ {2, log2(n)},
KZH-k fold yields an O(k ·n

1
k) accumulator and decider with an O(k) accumulation verifier.

Unlike prior accumulation constructions, KZH-fold requires a trusted setup, but that setup
is universal and updatable. It is possible to reuse a powers-of-τ [Gro+18] setup, commonly
used for the KZG polynomial commitment. We implement KZH2-fold and KZH3-fold, and
show that even our unoptimized implementation has a 200-2000x times smaller accumulator
than Nova for reasonable computations.

Scheme Recursive Overhead Decider |acc|
Nova 2 group ops MSM(n) O(n)

KZH2-fold 3 group ops n
1
2 P O(n

1
2)

KZH-k fold k + 1 group ops k · n
1
k P O(k · n

1
k)

Halo O(log n) group ops MSM(n) O(log n)

Table 2: Comparison for Nova, KZH-fold, and Halo, MSM(n) is a multi-scalar multiplication
of size n, and P is a pairing operation.

1.3 Signature aggregation in consensus

Voting protocols, especially accountable open-ballot systems, require robust yet efficient
methods to aggregate and verify votes from a large participant base. These protocols de-
pend on mechanisms that ensure each participant’s vote is accurately recorded and that
the overall results remain transparent and verifiable. A prominent application of account-
able voting principles can be found in blockchain consensus protocols. In decentralized
networks like Ethereum, over 1 million validators must attest to each block by signing it,
collectively establishing consensus on network state changesb. With such a high volume of
participants, bandwidth efficiency becomes critical, not only due to the redundancy and
overhead inherent in decentralized P2P networking but also to support the participation of
low-end machines as validators.

In consensus protocols, a block is considered finalized when a supermajority of validators
vote for it, ensuring it cannot be reverted. Currently, Ethereum limits itself to aggregating
32,768 signatures per slot [Resb], which delays finality to 15 minutes. Reducing the cost
of signature aggregation could simultaneously improve finality time to just a few seconds,
which refers to the speed at which transactions become irreversible [Sin], while also enhanc-
ing Ethereum’s decentralization by enabling a higher validator count [But]. Furthermore,
efficient aggregation could facilitate the adoption of advanced consensus protocols, designed

bhttps://beaconcha.in/charts/validators

7

https://beaconcha.in/charts/validators

explicitly for Ethereum [D’A+24b; DZ23; D’A+24a], which aim to provide faster finality,
strengthen protocol security [D’A+22], and improve resilience to MEV.

Current state-of-the-art consensus protocols, such as Ethereum, Chia, Algorand [Gil+17]
and Hotstuff [Yin+19] employ aggregatable signature schemes like BLS signatures [BLS04].
BLS signatures allow multiple validators to merge their signatures on the same message,
e.g. a block, into a single, compact, aggregated message, reducing both transmission and
verification overhead. To achieve accountability, Blockchain protocols [BDN18] pair BLS
aggregates with a bit vector indicating who has signed. This enables slashing validators
who sign conflicting proposals. To add redundancy and improve communication, consensus
protocols can use multiple layers of recursive aggregation, aggregating already aggregated
signatures into one. In proposed designs [Resa], the signatures are aggregated in multiple
layers, and each aggregation layer has between r = 16 and r = 32 aggregators. Figure 1
depicts such a tree-based aggregation mechanism.

K validators K validators

Aggregators Aggregators

Recursive
Aggregators

K validators K validators

Aggregators Aggregators

Recursive
Aggregators

Recusive
Aggregator

Block Proposer

Figure 1: A tree-based aggregation scheme with a single layer of recursive aggregation.

Limitations of signature aggregation. In this work, we are interested in accountable
signature aggregation schemes with minimal communication and verification overhead. Re-
garding communication, an accountable aggregation scheme such as the one depicted in
Figure 1, requires nodes to transmit, at minimum, a compact bit vector (i.e. a bitfield)
indicating who signed. For verification, nodes must scan the bitfield to identify the signers
while ensuring that verification complexity remains independent of the number of signers.
BLS aggregation, while yielding a small aggregate signature, does not achieve this optimal

8

design in either dimension: Each recursive aggregation layer incurs an O(log r) communi-
cation overhead, where r is the total number of aggregators. This overhead arises because
aggregating bitfields with overlapping signers requires each aggregator to track multiplic-
ities, i.e. the number of times each signature appears across overlapping bitfields. If r
aggregators combine their bitfields then log(r) bits are necessary to indicate the multiplic-
ity for each signer. BLS aggregate verification is dominated by the computation of the
aggregate public key. This is done through a multi-scalar multiplication (MSM) between
the multiplicities and the list of public keys. For n signers the MSM has length n and
log(r)-bit scalars. For n = 2 million and r = 16 the verification time of a BLS aggregate
signature, is 0.7 seconds (See Table 4). Every validator incurs this cost before checking the
correctness of a consensus proposal and moving on to the next block.

Additionally, transmitting these multiplicity lists introduces a k · log r multiplicative
factor communication costs, where k is the number of aggregation layers. Even with a
single layer of recursion and r = 16, the multiplicities have a 1 MB representation. For
4 million validators, 4 levels of recursion and r = 32, the multiplicities require 10MB to
represent. Today, the average Ethereum block is less than 1MB, and is published every 12
seconds. This demonstrates how even the constant factor overhead of aggregate BLS can
become a significant bottleneck in consensus.

Signature aggregation using PCD. Our work examines the use of distributed verifi-
able computing for signature aggregation, leveraging their expressiveness to union bitfields
directly within the proof. Unlike BLS, which requires multiplicities, SNARKs enable a
compact bitfield to represent validator participation, reducing communication overhead.
Effectively, the PCD proves that the signature was correctly aggregated and that the bit-
fields were correctly unioned. This approach offers a more bandwidth-efficient solution for
accountable voting in P2P protocols with a large number of participants.

1.4 Contributions

We make theoretical and systems contributions that advance the state of the art for dis-
tributed proving:

KZH polynomial commitment scheme. In Section 4 we introduce KZH, a polyno-
mial commitment scheme that has sublinear verification, sublinear proof size, and efficient
opening proof generation and the commitment consists of a single group element.

KZH-fold with sublinear accumulator/decider. Building on KZH, we design KZH-
fold in Section 4.1, the first accumulation scheme with a sublinear accumulator and decider.
It sits between Nova and Halo in the trade-off space as can be seen in Table 2. Using KZH-
fold, we built the first IVC/PCD scheme with a sublinear accumulator and decider, as

9

described in Section 4.2. In Appendix C we generalize KZH and KZH-fold to polynomial
commitments of dimension k.

New approach to non-uniform IVC. In Section 4.3 we propose a new non-uniform
IVC approach using a PCS accumulation scheme with a sublinear verifier such that, the
per-step cost matches the step circuit cost. However, unlike prior methods, the witness size
of the step function does not grow linearly with the number of instructions. For a zkVM
with 64 instructions, this achieves a 64x reduction in witness size and communication.

Signature aggregation protocol. We design and optimize an accountable signature
aggregation protocol in Section 5, using KZH-fold. The protocol supports unlimited aggre-
gations with optimal communication and verification time. The communication is domi-
nated by a bitvector indicating the signers. The verification is dominated by just one field
multiplication per signer.

Implementation and evaluation. We implementc and evaluate KZH-2-fold and KZH-
3-fold and compare it against Nova in Section 6. We show that KZH-3-fold, at the expense
of only 3x prover cost, achieves a 2000x reduction in communication overhead and a 50x
slimmer verifier time. We also implement our accountable voting protocol using KZH-3-
fold, demonstrating its effectiveness and practical applicability. For four million signatures,
our scheme reduces the communication cost by more than 10x and the verifier time by 4x
compared to an accountable voting protocol using BLS signatures.

1.5 Additional related work

Accumulation. The Halo protocol [BGH19] was the first accumulation protocol; it has
a succinct accumulator of O(log n) size and an accumulation verifier with O(log n) group
operations, but the decider runs in time O(n). In contrast, KZH-fold, only has a constant
size accumulation verifier, as well as an accumulator and decider of size O(k · n

1
k).

Distributed proving. Most prior works on distributed zkSNARKs [Wu+18; Liu+23;
Ros+24; Wan+24] rely on a coordinator that receives the circuit C, the public input x,
and the witness w, then distributes these to worker nodes and aggregates their outputs
into a single proof. This centralized approach introduces a significant vulnerability: the
coordinator represents a single point of failure and carries substantial responsibility, making
it unsuitable for fully decentralized systems. Another limitation is that aggregated proofs
cannot be further aggregated. An alternative approach involves using Proof-Carrying Data
(PCD), where each node performs a portion of the computation, and these partial proofs
are aggregated (accumulated) hierarchically in a tree-like structure. However, decentralized

chttps://github.com/asn-d6/kzh_fold

10

https://github.com/asn-d6/kzh_fold

PCD requires each aggregator to verify the validity of incoming partial proofs using a
decider, which cannot trust other nodes by default. In previous schemes, this verification
step was a bottleneck because the decider’s complexity is linear with respect to the original
statement. Additionally, the witness size also grows linearly with the statement, leading to
substantial peer-to-peer (P2P) communication overhead. KZH-fold addresses these issues
by reducing both communication complexity and witness size to O(k · n

1
k), significantly

enhancing the efficiency and scalability of decentralized proving systems.

Signature aggregation. Several works have studied signature aggregation for consen-
sus. Handel shows how to build aggregation structures, in the face of adversarial corrup-
tions [Bé+19]. Their work is largely orthogonal and should be compatible with arbitrary
aggregate signature schemes. [Kha+21; Aar+24] provide aggregation schemes for hash
and lattice-based signature schemes, respectively. However, their constructions only sup-
port one level of aggregation, whereas our construction is focused on aggregating already
aggregated signatures.

2 Technical Overview

At the core of our construction is our new KZH polynomial commitment scheme, combining
ideas from the Hyrax polynomial commitment [Wah+18] and KZG [KZG10]. Similar to
Hyrax, we are building a commitment for a matrix M ∈ Fm×n, such that we can open
a bilinear vector matrix-vector product, for vectors a⃗ ∈ Fm and b⃗ ∈ Fn, i.e. prove that
y = a⃗T × M × b⃗. This is general enough to construct both univariate and multilinear
polynomial commitments, i.e. a⃗ and b⃗ are extensions of the evaluation point.

In Hyrax, each row of M is committed using a Pedersen commitment [Ped92]. The
resulting commitment vector, D⃗ = [D1, . . . ,Dm] ∈ Gm, consists of m group elements, with
each element corresponding to a row of M . Due to the homomorphic properties of the
commitment scheme, the verifier can validate an opening efficiently. To verify, the verifier
first computes C = ⟨⃗a, D⃗⟩. The prover then opens C to a vector r⃗ ∈ Fn and claims y = ⟨r⃗, b⃗⟩.
The verifier checks two conditions: C = Commit(r⃗), and y = ⟨r⃗, b⃗⟩. These checks involve
two inner products, one of size n and the other of size m. For a matrix with ℓ entries,
setting n = m = ℓ

1
2 yields a verification time of O(ℓ

1
2).

Moreover, efficient accumulation schemes for inner products are known [Bün+21; BC23],
suggesting that it may be feasible to construct an accumulation scheme for Hyrax. However,
Hyrax has a significant limitation: its commitment consists of m group elements, and
while the commitment is homomorphic, performing homomorphic operations requires m
group additions. The primary method for constructing accumulation schemes relies on
homomorphically combining commitments. In the case of Hyrax, this approach leads to an
accumulation verifier with size O(m) = O(ℓ

1
2), which is notably larger than the constant-

size accumulation verifiers achievable with other group-based constructions.

11

Our key insight is that we can modify Hyrax, such that the commitment only consists
of a single group element, and the homomorphism can be performed efficiently, using only a
single group operation. A strawman approach here, would be to commit to D⃗ ∈ Gm using a
structure-preserving commitment to group elements [Abe+16]. While these commitments,
preserve the homomorphism, the commitment to a vector of group elements will be a target
group element in a pairing-based group. Target group operations are significantly more
expensive, especially when implemented as an arithmetic circuit. A single target group
scalar multiplication takes tens of thousands of R1CS constraints.

We aim to design a commitment scheme where the homomorphism only requires a single
G1 operation, in a pairing-friendly group. To do this, we utilize a common reference string,
similar to KZG. Let G⃗ = (G1, . . . ,Gn) be the generators for the Pedersen commitment. We
now construct H⃗(i) = τ (i) × G⃗, for each i ∈ [m] and a secret trapdoor τ (i). We first commit
to the matrix M by computing the commitment C =

∑
i∈[m],j∈[n]Mi,j ×H

(i)
j , where C ∈ G1

is a single group element. Next, we compute commitments to each individual row of the
matrix using the vector G⃗, where each row commitment is given by Di =

∑
j Mi,j × Gj .

During the opening phase, the prover sends [Di]
m
i=1, and the verifier ensures consistency

between the Dis commitments and C using a pairing-based check. Specifically, a generator
V ∈ G2 is sampled, and the verifier computes Vi = τ (i) × V for all i ∈ [m]. The correctness
of the decomposition is verified by checking the equality e(C,V) =

∑m
i=1 e(Di,Vi). Here,

[Di]
m
i=1 corresponds exactly to the Hyrax commitment, allowing us to reuse Hyrax’s opening

algorithm with the added decomposition check. Furthermore, C is a homomorphic commit-
ment to both the Di values and the matrix M , represented compactly as a single element
in G1.

KZH-fold. Next, we leverage the Protostar [BC23] compiler to design an efficient ac-
cumulation scheme for KZH, referred to as KZH-fold. The verifier’s structure in KZH
enables a highly efficient scheme. Specifically, the Hyrax checks, namely multi-scalar
multiplications (MSMs), can be efficiently accumulated using existing techniques. Ad-
ditionally, the KZH verifier validates a pairing product: e(C,V) =

∑m
i=1 e(Di,Vi). No-

tably, one side of all pairings remains fixed. When combining two equations, we derive:
e(C+X×C′,V) =

∑m
i=1 e(Di+X×D′

i,Vi), with an overwhelming probability for a random
X ∈ F, if and only if the pairing check holds for both (C, [Di]

m
i=1) and (C′, [D′

i]
m
i=1). The

linearity of this check ensures no additional error terms (which would belong to the target
group GT) are introduced. The final accumulation verifier thus performs only 3 G1 oper-
ations when combining an accumulator with a fresh proof, or 4 operations when merging
two accumulators. The accumulator size matches that of a PCS proof, with a size of O(ℓ

1
2).

The decider, equivalent to the PCS verifier, is dominated by O(ℓ
1
2) pairings. In order to go

from accumulation for a polynomial commitment to accumulation for all of NP, we leverage
the Spartan PIOP for R1CS into the scheme. In the accumulation setting, evaluations of
multilinear extensions of the R1CS matrices can be efficiently deferred, requiring only a

12

logarithmic number of additional field operations for the accumulation verifier.

KZH-k. We generalize the scheme to further improve the proof size and verifier efficiency,
which yields a smaller accumulator and more efficient decider. The key insight is that in-
stead of committing to a two-dimensional matrix we can commit to a k-dimensional tensor.
The matrix vector-matrix product turns into a k-dimensional tensor product, between the
tensor and k matrices of size n

1
k . We first commit to the entire tensor using a structured

reference string. Then we use the same technique to open commitments to all k− 1 dimen-
sional slices of the tensor. If the full tensor has n entries, then there are n

1
k such slices.

We use a pairing check and the reference string to check the consistency between the slices
and the full commitment. Then we can evaluate the slices homomorphically with the first
of k vectors. This yields a single k− 1 dimensional commitment. At this point, we proceed
recursively, until we reach a one-dimensional vector that can be opened in O(n

1
k). Since

each dimension consists of n
1
k slices, and there are k slices, the overall proof size and verifi-

cation time is O(k · n
1
k). The resulting accumulation verifier increases slightly to k + 1 G1

operations.

Signature aggregation. We use a KZH-based PCD scheme in order to construct an
aggregate accountable signature scheme. The IVC aggregates the public key signatures
and signer bitfields of a BLS accountable aggregate signature. The key challenge is ensur-
ing accountability by proving that the output bitfield is equivalent to the or of the input
bitfields. Let b⃗(1), b⃗(2) and c⃗ be three bitfields such that c⃗ = b⃗(1) ∨ b⃗(2). Naively putting
this statement into the circuit would make the IVC circuit linear in the number of signers
and possibly increase the verification cost. Instead at each aggregation step, we define
multilinear extensions of these vectors b̃1(X⃗), b̃2(X⃗), and c(X⃗) and commit to them using a
multilinear polynomial commitment. In order to prove that c⃗ = b⃗(1)∨ b⃗(2), we can show that
b̃1(x⃗)+ b̃2(x⃗)− b̃1(x⃗) · b̃2(x) = c̃(x⃗)∀x⃗ ∈ {0, 1}µ. This is a zerocheck and can be proven using
a simple sumcheck protocol as in HyperPlonk [Che+23]. The sumcheck requires evaluating
the polynomial commitments to b̃1, b̃2, c̃ at a random point. We can instantiate the PCS
with KZH and accumulate the opening proofs as part of the IVC. We detail the scheme and
further optimizations in Section 5.

3 Preliminaries

3.1 Notation

Let F be a finite field and G a group with scalars in F, with additive notation. For a ∈ F
and G ∈ G, the scalar multiplication of G by a is denoted as a × G. For an asymmetric
pairing group, we define it as a tuple (p, g1, g2,G1,G2,GT , e), where p is the order of groups
G1 and G2, and e is an efficiently computable, non-degenerate bilinear map. Let GGen be

13

a deterministic polynomial-time algorithm that takes as input a security parameter λ and
outputs a such a group description. A function f(x) is negligible if, for any polynomial
p(x), there exists a positive integer N such that for all x > N , we have f(x) < 1

p(x) .
When we say an event happens with overwhelming probability, we mean it occurs with a
probability of 1 − ϵ(λ), where ϵ(λ) is a negligible function. We use ⟨⃗a, b⃗⟩ to denote the
inner product between two vectors a⃗, b⃗ ∈ Fn, and extend this notation for a⃗ ∈ Fn and
G⃗ ∈ Gn as ⟨⃗a, G⃗⟩ =

∑n
i=1 ai × Gi. Additionally, we use MLP(F, d) to denote the set of

multilinear polynomials with d variables over the field F, which we abbreviate as MLP(d)
when F is understood from the context. Operator ∥ represents concatenation, e.g. x⃗∥y⃗ is
the concatenation of vectors x⃗ and y⃗. To indicate equality on vectors, we define eq(X⃗, Y⃗)
as eq(X⃗, Y⃗) =

∏k
i=1

(
(1−Xi) · (1− Yi) +Xi · Yi

)
, so that for x⃗, y⃗ ∈ {0, 1}k, eq(x⃗, y⃗) = 1 if

and only if x⃗ = y⃗. We denote a complete binary tree of depth n with node values in F as
T (F, n). For brevity, we will refer to complete binary trees simply as trees. Given a vector
x⃗ ∈ Fk, the equality tree EqTree(x⃗) is a tree of depth k. The root node is initialized with 1.
At depth i, the left child of a node v is v · (1− xi), and the right child is v · xi. The leaves
of the tree correspond to the equality function eq(x⃗, y⃗) for all y⃗ ∈ {0, 1}k. For any tree T ,
we denote the set of its leaf nodes by T .leaves.

Cryptographic Assumptions. We prove security of our protocols in the Algebraic
Group Model (AGM) of Fuchsbauer et al. [FKL18], using the bilinear version of the q-
dlog assumption and quadratic CDH. In the AGM, adversaries are restricted to be algebraic
algorithms, namely, whenever A outputs a group element [y] in a cyclic group G of or-
der p, it also outputs its representation as a linear combination of all previously received
group elements. In other words, if [y]← A([x1], . . . , [xm]), A must also provide z⃗ such that
[y] =

∑m
j=1 zj [xj]. This definition generalizes naturally in asymmetric bilinear groups with

a pairing e : G1 ×G2 → GT , where for i ∈ 1, 2, the adversary must construct Gi elements
as linear combinations of received Gi elements.

We denote a random oracle using H that we assume is randomly sampled from the
random oracle space H and initialize it in practice using a secure hash function.

3.2 Polynomial commitment schemes

Definition 1. [Multilinear Polynomial Commitment Scheme] A Multilinear Polynomial
Commitment Scheme is a tuple of algorithms

(
SetupPC, CommitPC, OpenPC, VerifyPC

)
such

that:

• srsPC ← SetupPC
(
ppPC, k

)
: On input the system parameters and number of variables

k, it outputs a structured reference string.

• C← CommitPC
(
srsPC, p(X⃗)

)
: On input srsPC and a polynomial p(X⃗) ∈ MLP(F, k), it

outputs a commitment C.

14

• πPC ← OpenPC
(
srsPC, p(X⃗), x⃗

)
: On input srsPC, p(X⃗), k, and vector x⃗ ∈ Fk, outputs

an evaluation proof πPC that y = p(x⃗).

• 1/0 ← VerifyPC
(
srsPC,C, x⃗, πPC, y

)
: On input srsPC, the commitment C, k, vector of

evaluations x⃗, y ∈ F, and the proof of the correct evaluation, it outputs a bit indicating
acceptance or rejection.

and satisfies the following properties:

Completeness. It captures the fact that an honest prover will always convince the verifier.
Formally, for any efficient adversary A, we have:

Pr

 VerifyPC
(
srsPC,C, x⃗, πPC, y

)
= 1

∣∣∣∣∣∣∣∣∣
srsPC ← SetupPC

(
ppPC, k

)
p(X⃗)← A(srsPC)
C← Commit

(
srsPC, p(X⃗)

)
πPC ← Open

(
srsPC, p(X⃗), x⃗

)
 = 1

Extractability: Captures the fact that whenever the prover provides a valid opening, it
knows a valid pair (p(X⃗), y) ∈ F[X⃗]×F, where p(x⃗) = y. Formally, for all PPT adversaries
A there exists an efficient extractor E such that the probability of the following event is
negligible:

Pr

 VerifyPC
(
srsPC,C, x⃗, y, πPC

)
= 1

∧ p(x⃗) ̸= y

∣∣∣∣∣∣∣∣∣∣

srsPC ← SetupPC
(
ppPC, k

)
C← A

(
srsPC

)
p(X⃗)← E

(
srsPC,C, k

)
x⃗← A

(
srsPC,C

)
(y, πPC)← A

(
srsPC, p(X⃗), x⃗

)

3.3 Accumulators

Definition 2. [Accumulation Scheme] An accumulation scheme [Bün+21; BC23] for a
predicate ϕ : X → {0, 1} is a tuple of algorithms Πacc = (Setupacc,Pacc,Vacc,Dacc), all of
which have access to the same random oracle Oacc, such that:

Setupacc(1
λ)→ srsacc : On input the security parameter, outputs public parameters srsacc.

For simplicity, we assume that all functions implicitly take srsacc as input.

Pacc

(
st, π, acc1

)
→
(
acc, pf

)
: The accumulation prover implicitly given srsacc, statement st,

predicate inputs π = (π.x, π.w), and an accumulator acc1 = (acc1.x, acc1.w), outputs
a new accumulator acc and corrections terms pf.

Vacc

(
acc1.x, acc2.x, pf

)
→ acc.x: The accumulation verifier implicitly given srsacc, and on

input the instances of two accumulators, and the accumulation proof outputs a new
accumulator instance acc.x.

15

Dacc

(
acc
)
→ 1/0: The decider takes as input acc and accepts or rejects.

and satisfies completeness and soundness as defined below:

Completeness. For all fresh proofs π such that ϕ(π) = 1 and accumulator acc such that
Dacc(acc) = 1, the following holds:

Pr

[
Vacc

(
acc1.x, acc2.x, pf

)
= acc.x

∧ Dacc

(
acc
)
= 1

∣∣∣∣ srs← Setup(1λ)(
acc, pf

)
← Pacc

(
st, π, acc1

)] = 1

Knowledge-soundness. For every PT adversary A, there exists a polynomial-time ex-
tractor Ext such that the following probability is negligible:

Pr

 (Dacc(acc1) ̸= 1 ∨ Dacc(acc2) ̸= 1) ∧
Vacc

(
srs, acc1.x, acc2.x, pf

)
= acc.x

∧ Dacc

(
acc
)
= 1

∣∣∣∣∣∣
srs← Setup(1λ)

(acc, acc1.x, acc2.x, pf)← A(srs)
(acc1.w, acc2.w)← Ext(acc, acc1.x, acc2.x, pf)

 = 1

3.4 Incrementally verifiable computation

Definition 3. (IVC) An IVC scheme is a tuple of efficient algorithms (SetupIVC,PIVC,VIVC)
with the following interface:

• SetupIVC(λ, S)→ pp: Given a security parameter λ, a poly-size bound S ∈ N, outputs
public parameters pp.

• PIVC(pp, F, F.xi, F.wi, πi)→ πi+1: Given public parameters pp, a function F : {0, 1}a×
{0, 1}b → {0, 1}a computable by a circuit of size at most S, an initial state and claimed
output F.xi ∈ {0, 1}a, advice F.wi ∈ {0, 1}b, and an IVC proof πi, outputs a new IVC
proof πi+1.

• VIVC(pp, F, F.xi, πi) → 0/1: Given public parameters pp, a function F , a claimed
output F.xi, and an IVC proof πi, outputs 0 (reject) or 1 (accept).

An IVC scheme satisfies the following properties:

Completeness. For every poly-size bound S ∈ N, pp in the output space of SetupIVC(λ, S),
function F : {0, 1}a × {0, 1}b → {0, 1}a computable by a circuit within bound S, collection
of elements F.xi ∈ {0, 1}a, F.wi ∈ {0, 1}b and IVC proof πi, the following holds:

Pr

 VIVC(pp, F, F.xi, πi) = 1
⇓

VIVC(pp, F, F.xi+1, πi+1) = 1

∣∣∣∣∣∣ πi+1 ← PIVC(pp, F, F.xi, F.wi, πi),
F.xi+1 ← F (F.xi, F.wi)

 = 1

16

Knowledge soundness. Let S ∈ N be a poly-size bound and ℓ(λ) be a polynomial in
the security parameter. Let F be an efficient function sampling adversary that outputs a
function F : {0, 1}a × {0, 1}b → {0, 1}a computable by a circuit within the poly-size bound
S. We say that an IVC scheme is knowledge sound if there exists an efficient extractor Ext
such that for every efficient IVC prover P∗

IVC the probability of the following event is greater
than 1− negl(λ):

Pr

VIVC(pp, F, F.xi, πi) = 1∧
F.xi = F (F.xi−1, F.wi−1)∧
(i = 1 =⇒ F.xi−1 = F.x0)∧

(i > 1 =⇒ VIVC(pp, F, F.xi−1, πi−1) = 1)

∣∣∣∣∣∣∣∣∣∣
pp← SetupIVC(λ, S)

ρ← {0, 1}ℓ(λ)
F ← F(pp; ρ)

(F.xi, πi)← P∗
IVC(pp, ρ)

(F.xi−1, F.wi−1), πi−1 ← Ext(pp, ρ)

3.5 IVC from accumulators

Theorem 1. Let NARK be a non-interactive argument that is (T − t)-predicate-efficient
with respect to Φ. If (Φ,SetupNARK) has an accumulation scheme accΦ then NARK has an
accumulation scheme accNARK with the efficiency properties below:

• Pacc runs in time
∑n

i=1 T (N, |xi|) plus the time taken to run Pacc,Φ.

• Vacc runs in time
∑n

i=1 T (N, |xi|) plus the time taken to run Vacc,Φ

• Dacc takes time equal to Dacc,Φ

Theorem 2. There exists a polynomial time transformation T such that if NARK =
(SetupNARK,PNARK,VNARK) is a SNARK for circuit satisfiability and AS is an accumulation
scheme for NARK, then IVC = (SetupIVC,PIVC,VIVC) = T (NARK,AS) is an IVC scheme
for constant-depth compliance predicates, provided ∃ϵ ∈ (0, 1) and a polynomial α s.t.
v∗(λ,m,N, ℓ) = O(N1−ϵ.α(λ,m, ℓ)). Moreover, if the size of the predicate Φ : F(m+2)ℓ → F
is f = ω(α(λ,m, ℓ)1/ϵ), then:

• The cost of running SetupIVC is the cost of running SetupNARK and Setupacc on an
index of size f + o(f).

• The cost of running PIVC is the cost of accumulating m instance-proof pairs using
Pacc, and running PNARK on an index of size f + o(f)and instance of size o(f).

• The cost of running VIVC is equal to the cost of running VNARK and Dacc on an index
of size f + o(f) and an instance of size o(f).

17

4 KZH: An efficiently aggregatable polynomial commitment

We present KZH in Figure 2. For a multilinear polynomial f(X⃗), where X⃗ ∈ Fk, which
interpolates a vector in F2k , we set ℓ = |f |. We can select any ν, µ such that k = ν +µ and
the following costs apply:

• Committing to f costs O(ℓ) group operations.

• Proof consists of 2ν G1 elements and 2µ field elements.

• Opening requires 2ν field operations.

• Verifier requires 2ν pairings, multi-exponentiations of size 2ν +2µ , and 2µ field oper-
ations.

We can set ν = µ = k
2 so 2ν = 2µ = 2

k
2 , or choose a trade-off between prover and

verifier work based on convenience. For example when the verifier workload or proof size
is more critical, selecting a lower ν results in fewer pairings and smaller proof size, but at
the expense of more multi-exponentiations by the prover to open the commitment. The
polynomial commitment scheme has two key properties: The opening proof can be precom-
puted during the commitment phase and is O(ℓ

1
2) in size. Secondly, it can be accumulated

efficiently using only G1 operation and has an O(ℓ
1
2) accumulator witness. More precisely,

the prover commits to the multilinear commitment f(X⃗, Y⃗) with X⃗ ∈ Fν and Y⃗ ∈ Fµ as
a matrix of evaluation points. During the opening at point (x⃗0, y⃗0), the prover presents a
decomposition of the matrix into row commitments. The correctness of this decomposition
can be checked using pairings. Intuitively, KZH is a proof of correct partial evaluation at
point X⃗ = x⃗0. Once the verifier is convinced about the correctness of f∗(Y⃗) = f(x⃗0, Y⃗), it
can evaluate f∗(Y⃗) at y0 on its own. We can then use the technique from Hyrax to evaluate
the bivariate commitment as a vector, matrix, or vector product. The technique extends
to more variables as presented in Appendix C (which reduces the verification cost). Note
that KZH is not inherently hiding; however, by utilizing the general compiler described
in [Bü+19] for homomorphic polynomial commitments, it can be transformed to achieve
hiding.

Theorem 3. The protocol in Fig. 2 is a complete and knowledge-sound polynomial com-
mitment scheme as defined in Definition 1, in the AGM under the dlog assumption.

The proof is deferred to Appendix B.1
dIt is possible to make τ (i) = τ i and G(j) = µj ·G, making the CRS equivalent to the KZG powers-of-tau.

18

SetupKZH(λ, k) :

• Choose µ, ν such that k = 2ν+µ. Let n = 2ν and m = 2µ and define the boolean cubes
as Bn = {0, 1}ν and Bm = {0, 1}µ.

• Sample {G(⃗i) ←$ G1}⃗i∈Bm
, V←$ G2 and sample trapdoor {τ (⃗j)}j⃗∈Bn

, α←$ F d.

• For i⃗ ∈ Bn, j⃗ ∈ Bm, define:

– H(⃗i, j⃗) ← τ (⃗i) × G(⃗j)

– H(⃗j) ← α× G(⃗j)

– V(⃗i) ← τ (⃗i) × V ∈ G2

– V′ ← α× V

• Let srs←
(
[G(⃗i),H(⃗i, j⃗),H(⃗j),V′,V(⃗i)]⃗i∈Bn ,⃗j∈Bm

)
.

• Output srs.

CommitKZH(srs, f(X⃗, Y⃗)): For f ∈ MLP(ν + µ) and X⃗ ∈ Fν , Y⃗ ∈ Fµ

• Output C←
∑

x⃗∈Bn

∑
y⃗∈Bm

f(x⃗, y⃗)× H(x⃗, y⃗).

• Let D(x⃗) ←
∑

y⃗∈Bm

f(x⃗, y⃗)× H(y⃗) ∀ x⃗ ∈ Bn.

• Output C and aux =
(
{D(x⃗)}x⃗∈Bn

)
as cache.

OpenKZH(srs, f(X⃗, Y⃗), x⃗0, y⃗0, aux):

• Let f∗(Y⃗)← f(x⃗0, Y⃗), f∗ ∈ MLP(F, µ).

• Let z0 ← f∗(y⃗0).

• Output π ←
(
f∗(Y⃗), aux = {D(x⃗)}x⃗∈Bn

)
, z0.

VerifyKZH(srs, C, x⃗0, y⃗0, π, z0): Accept if and only if all checks below pass:

1. e(C,V′) =
∑

x⃗∈Bn

e(D(x⃗),V(x⃗)),

2.
∑

y⃗∈Bm

f∗(y⃗)× H(y⃗) =
∑

x⃗∈Bn

eq(x⃗, x⃗0)× D(x⃗),

3. f∗(y⃗0) = z0.

Figure 2: KZH polynomial commitment scheme

19

4.1 Accumulator

We build an accumulator for KZH, the polynomial commitment scheme described in Sec-
tion 4. For the polynomial evaluation predicate, we have that the instance π.x and witness
π.w are as follows:

π.x = {C, x⃗0, y⃗0, z0}, π.w = {D⃗ := [D(x⃗)]x⃗∈Bn , f
∗(Y⃗)}

where C is the commitment to f(X⃗, Y⃗), (x⃗0, y⃗0) ∈ Fν+µ is the opening value, z0 is claimed
to be z0 = f(x⃗0, y⃗0), and π.w is the output of OpenKZH. The accumulator instance and
witness are defined as follows, where the red elements only appear in the accumulator and
not in a proof:e

acc.x = {C, T , x⃗0, y⃗0, z0, E},

acc.w = {D⃗ := [D(x⃗)]x⃗∈Bn , f⃗
∗, T (x), T (y)}

for T ∈ G1, T (x) ∈ T (F, ν), T (y) ∈ T (F, µ), and f⃗∗ which is the vector of the evaluation of
f∗(Y⃗) on the boolean hypercube. We also define the function Dec to represent the checks
performed by VerifyKZH. This function computes the error term in the verifier equations,
which should evaluate to 0 when evaluated in a fresh proof. Given a tree T of depth n
and a vector x⃗ = (x1, x2, . . . , xn), the error tree EqTree(T , x⃗) is another tree of depth n
constructed as follows: The root node of the error tree is initialized to 0; for each node in
T at depth i with value t, having left and right children with values ℓ and r, respectively,
the corresponding nodes in the error tree have left and right child values ℓ − t × (1 − xi)
and r − t× xi, respectively. Now given the following values,

• T (error)
x ← EqTree(T (x), x⃗0)

• T (error)
y ← EqTree(T (y), y⃗0)

• e′′ ← ⟨f∗, T (y).leaves⟩ − z

• EG ← ⟨f⃗∗, (H(y⃗))y⃗∈Bn⟩ − ⟨T (x).leaves, D⃗⟩

Dec is defined as it follows:

Dec(x⃗0, y⃗0, z0,f⃗
∗, T (x), T (y), D⃗) = ⟨T (error)

x ||T (error)
y ||e′′, K⃗||K′⟩+ EG.

The algorithms Setupacc and Pacc are described in Figure 3 whereas Vacc and Dacc are in
Figure 4. In Figure 3, in fact challenge β is the random challenge coming from the verifier
in an interactive accumulation protocol, but we directly apply Fiat-Shamir heuristic to
make the protocol non-interactive, deriving the random challenge through a random oracle
initialized with a hash function. We present an overview of the efficiency of the accumulation
scheme below:

eHere, proof refers to a fresh accumulator in the context of an accumulator.
fOptimized as E′′ ← E+ β × (E− E′) + (1− β)β × Q

20

Setupacc(1
λ, k):

• srsKZH ← SetupKZH(λ, k).

• Parse n,m from srsKZH and generate K⃗ = (K1, . . . ,K2·(n+m−1)) ∈ G2·(n+m−1)
1 and

K′ ← G1 (unknown DLOG from all other generators).

• Output srs =
(
srsKZH, K⃗,K

′).
Pacc(srs, st, (π.x, π.w), (acc1.x, acc1.w)):

• Build accumulator (acc2.x, acc2.w) from (π.x, π.w):

– Parse (C2, x⃗2, y⃗2, z2)← π.x and ({D(x⃗)
2 }x⃗∈Bn

, f∗
2 (Y⃗))← π.w

– Let T (x)
2 ← EqTree(x⃗2), T (y)

2 ← EqTree(y⃗2)
– Parse T (x)

2 ∈ F2n−1, T (y)
2 ∈ F2m−1 and compute T2 ← ⟨T (x)

2 ||T (y)
2 , K⃗⟩

– Output acc2.x = {C2, T2, x⃗2, y⃗2, z2, 0G}, acc2.w = ({D(x⃗)
2 }x⃗∈Bn

, f⃗∗
2 , T

(x)
2 , T (y)

2 }

• Compute proof pf:

– Parse (C1, T1, x⃗1, y⃗1, z1,E1)← acc1.x and ({D(x⃗)
1 }x⃗∈Bn

, f⃗∗
1 , T

(x)
1 , T (y)

1)← acc.w

– Set pf = Q for Q ∈ G1 such that,

Dec((1−X) · (x⃗1, y⃗1, z1, f⃗
∗
1 , T

(x)
1 , T (y)

1 , D⃗1) +X · (x⃗2, y⃗2, z2, f⃗
∗
2 , T

(x)
2 , T (y)

2 , D⃗2))
= (1−X)× E1 +X × E2 + (1−X) ·X × Q

• Accumulate (acc1.x, acc1.w) and (acc2.x, acc2.w) into (acc.x, acc.w):

– Generate challenge β ← H(acc1.x, acc2.x,Q) through Fiat-Shamir.

– Compute new error term

E← (1− β)× E1 + β × E2 + (1− β)β × Qf

– Compute the following linear combinations:

(C, T, x⃗, y⃗, z) = (1− β) · (C1, T1, x⃗1, y⃗1, z1) + β · (C2, T2, x⃗2, y⃗2, z2)

and set acc.x = (C, T, x⃗, y⃗, z,E)

– Compute the new accumulator witness

acc.w ← (1− β) · ({D(x⃗)
1 }x⃗∈Bn

, f⃗∗
1 , T

(x)
1 , T (y)

1) + β · ({D(x⃗)
2 }x⃗∈Bn

, f⃗∗
2 , T

(x)
2 , T (y)

2)

– Output (acc.x, acc.w, pf)

Figure 3: Setup and prover algorithms for KZH-fold

21

Vacc(srs, acc.x1, acc.x2, pf):

• Parse (C1, T1, x⃗1, y⃗1, z1,E1)← acc1.x and (C2, T2, x⃗2, y⃗2, z2,E2)← acc2.x
• Parse Q← pf
• Regenerate challenge β ← H(acc1.x, acc2.x,Q)
• Compute E← (1− β)× E1 + β × E2 + (1− β) · β × Q and

(C, T, x⃗, y⃗, z) = (1− β) · (C1, T1, x⃗1, y⃗1, z1) + β · (C2, T2, x⃗2, y⃗2, z2)

• Output acc.x = (C, T, x⃗, y⃗, z,E)

Dacc(srs, acc.x, acc.w):

• Parse (C, T, x⃗0, y⃗0, z0,E)← acc.x and ({D(x⃗)}x⃗∈Bn
, f⃗∗, T (x), T (y))← acc.w

• Output 1 if and only if all following checks pass, otherwise output 0.

(i)
∑

x⃗∈Bn

e(D(x⃗),V(x⃗))
?
= e(C,V′)

(ii) ⟨(T (x)||T (y)), K⃗⟩ ?
= T

(iii) Dec(x⃗0, y⃗0, z0, f⃗
∗, T (x), T (y), D⃗)

?
= E

Figure 4: Verifier and decider algorithms in KZH-fold

22

Communication. The size of the accumulation witness is O(n + m) = O(ℓ
1
2). The

accumulator instance is constant in size. The communication is significantly lower than
Nova, Halo Infinite, and Protostar, where it is Θ(ℓ). Using the generalization to multivariate
polynomial commitments in Appendix C, we can reduce the communication to O(k · ℓ

1
k)

Decider complexity. The decider is essentially has the same characteristic of KZH ver-
ifier, and thus runs in time O(ℓ

1
2) or O(k · ℓ

1
k) in the generalized case.

Prover complexity. The accumulation prover performs O(n + m) = O(ℓ
1
2) operations

to combine the two witnesses and compute the cross-term Q. This contrasts with previous
approaches - namely Nova, Halo Infinite, and Protostar - which require a linear number of
operations.

Verifier complexity. The accumulation verifier performs 3−4 G1 exponentiations, along
with a constant number of field operations, which is consistent with schemes like Nova
(requiring 2− 3 G1 operations) and Protostar (requiring 3− 4 G1 operations).

Theorem 4. The protocol in Figures 3 and 4 is an accumulator scheme satisfying complete-
ness and knowledge soundness as in Definition 2, in the AGM under the dlog assumption.

The proof is deferred to Appendix B.2. Intuitively, correctness follows since Vacc and
Dacc together go through the same computations as Pacc, and thus the outputs are the same.
For soundness, note that if decider’s first check passes, since β is computed after the prover
outputs acc1 and acc2, it implies the first check of the KZH verifier is satisfied for C1, {D(x⃗)

1 }
and for C2, {D(x⃗)

2 }. For the other two KZH verifier checks, the decider computes the error
terms and verifies their consistency with the error term computed by Pacc. Again, since β
depends on the outputs of Pacc, the error terms of acc1 and acc2 are correctly computed
and thus the KZH checks are satisfied.

4.2 An IVC scheme from KZH

At the beginning of this Section, we introduced a polynomial commitment scheme and
built an accumulation scheme for its verifier, i.e. the polynomial evaluation predicate in
Section 4.1. Notably, many modern SNARK constructions have succinct verifiers when
given oracle access to a polynomial commitment scheme capable of proving polynomial
evaluations. In Appendix D, we introduce a PIOP for R1CS inspired by Spartan with
these characteristics. Thus, from Theorem 1 in Section 3.5, an accumulation scheme for
KZH implies an accumulation scheme for our SNARK. Next, from Theorem 2 there exists an
efficient transformation that takes the SNARK and its accumulation scheme and constructs
an IVC scheme IVC = (SetupIVC,PIVC,VIVC). An overview of the IVC step function can be
seen in Figure 5. In the next section, we will use the IVC scheme to build an efficient

23

matrix

evaluations

witness

evaluation
F VKZH-fold VABC

Vspartan

zi acc
(KZH)
i acc

(ABC)
i

Spartan Proof

zi+1 acc
(KZH)
i+1 acc

(ABC)
i+1

Figure 5: KZH-fold step (augmented) circuit

signature aggregation scheme. Our IVC scheme is not zero knowledge; however, we believe
that one can use the techniques presented in HyperNova [KS23b] to make our IVC scheme
zero knowledge, we leave this to future work.

4.3 Non-uniform IVC

Non-uniform IVC [KS22b] extends traditional IVC by allowing each step to execute one
of several predefined instructions F1, F2, . . . , Fk rather than a single instruction F . Earlier
implementations relied on a universal circuit that computes all instructions and selects the
output based on the program counter, resulting in inefficiency as the prover computes every
instruction, even when only one is needed. SuperNova improves this by maintaining a run-
ning accumulator for each instruction and using memory techniques (e.g., Merkle trees) to
select and accumulate only the relevant accumulator at each step, reducing computational
effort. However, the witness size grows linearly with the combined sizes of all instruction
witnesses. Protostar [BC23] offers a similar improvement, leveraging the fact that commit-
ting to zeros incurs no additional cost. While it also reduces computational overhead, like
SuperNova, it still requires the prover to manage a witness size that scales linearly with the
sum of all instruction witnesses.

We propose an alternative approach to achieve non-uniform IVC, in high level by ac-
cumulating polynomials corresponding to Fi rather than accumulating circuit Fi (i.e. its
R1CS representation) directly. The key insight is that any polynomial of degree di < D
can be padded to become a polynomial of degree D, allowing it to be accumulated with a
running polynomial of degree D. We maintain a running accumulator corresponding to a
polynomial of degree D and use it to accumulate PCS opening statements of degree di (e.g.,
opening a witness commitment at a random point) required by the Spartan verifier. This

24

strategy is compatible with any polynomial accumulation scheme that features a sublin-
ear accumulation verifier. Unlike Protostar and SuperNova, our method achieves sublinear
witness size and does not require the PCS to be homomorphic, similar to Protostar. We
defer its details to Appendix E. In our approach similar to SuperNova and Protostar, the
decider time still depends on the number of instructions. We leave it to future work on how
to make the decider time independent of the number of instructions.

5 PIOP for signature aggregation protocol

In Figure 7 and 8, we provide a protocol enabling bandwidth-efficient recursive aggre-
gation of accountable signatures. A distinctive feature of our protocol is that the cir-
cuit size remains independent of the number of signers, made possible by the homo-
morphic properties of our KZH commitment scheme. Our protocol uses - as building
blocks - an aggregate signature scheme (KGenss, Signss,Verifyss) (Definition 4), the IVC
scheme (SetupIVC,PIVC,VIVC) of Section 4.2, and our polynomial commitment scheme
KZH = (SetupKZH, CommitKZH, OpenKZH, VerifyKZH). Our scheme also uses the famous
sumcheck protocol (Psmck,Vsmck) [Lun+90]. We implement our signature aggregation pro-
tocol using BLS as the signature scheme [BLS04], and present its efficiency, along with a
comparison to the state of the art, in Section 6. To track the signers, we use a bitvector:
a vector b⃗ with a size equal to the number of validators such that bk = 1 if user k has
signed, and 0 otherwise. Here ⟨k⟩ is the µ-bit binary representation of k. The circuit size
of the scheme is constant, independent of the number of validators, enabling the recursive
aggregation of signatures for millions of validators with minimal overhead. This is achieved
via utilizing the IVC scheme from Section 4.2. The scheme proves the union of the bitvec-
tor by relying on the fact that b⃗1 ∨ b⃗2 = b⃗1 + b⃗2 − b⃗1 ◦ b⃗2. In Figure 8, we build a simple
sumcheck-based PIOP for this statement. We compile this PIOP into a proof system using
KZH, and accumulate the resulting evaluation checks.

The Setup algorithm of the signature aggregation scheme initializes the IVC scheme.
Users use KGen to generate their public and signing key pair (sk, pk). Initalize initializes the
vector of all public keys from the users in the system. To sign, users run Signss. Next, user
k runs SigToAggSig to convert their signature into aggregated form. Aggregate is similar
to an accumulation scheme and is run by a prover and a verifier: it takes two aggregated
signatures as input and outputs a new one. The aggregated signature includes an IVC
proof πIVC for the function F , which is the KZH verifier. That is, πIVC.x consists of the
polynomial evaluation claims (including F and F.x) whereas πIVC.w is a proof that they
have been aggregated correctly. Finally, Verify (intuitively, the decider of the accumulation
scheme) is run to check the validity of aggregated signatures. We provide an overview of
the resulting IVC circuit in Figure 6.

25

matrix

evaluations

witness

evaluation
Signature Verifier 3-to-1 VKZH-fold VABC

Vspartan

(zi, acc
(KZH)
i, sc)

zi acc
(KZH)
i, sc

acc
(KZH)
i acc

(ABC)
i

Spartan Proof

(zi+1, acc
(KZH)
i+1, sc) acc

(KZH)
i+1 acc

(ABC)
i+1

Figure 6: Signature aggregation augmented circuit

Efficiency. The aggregate signature consists of the public key, the signature and a poly-
nomial that interpolates the bitvector of signers, as well as an IVC proof (which contains
PCS evaluation claims). Using the IVC protocol, induced by KZH-fold from Section 4.1,
the IVC proof is O(ℓ

1
2) in size. Thus the aggregate, accountable signature size is dominated

by the bitvector of signers c⃗, which contains at most ℓ bits. This is the minimal information
that can be transmitted for an accountable signature. The aggregator’s work consists of
computing and committing to c⃗ which takes at most ℓ group additions (not scalar multipli-
cations as c⃗ consists of bits), as well as the work of running the sumcheck prover and the
accumulation prover. Both of these are linear prover time and do not require additional
commitments. The aggregation verifier, which is implemented as a recursive circuit in the
IVC protocol, consists of a constant number of group operations and log(ℓ) native field op-
erations and hashes. These are mostly used to verify the accumulation of PCS evaluation
claims. The recursive circuit for each leaf also needs to check that the signer polynomial b⃗
is instantiated correctly and that the correct public key is being aggregated. This consists
of a single vector commitment check (can be outsourced using a PC) and an evaluation of
two Lagrange polynomials. Using the extension from Section C, the communication cost
can be lowered to O(k · ℓ

1
k) + ℓ bits, however, the aggregator’s computation overhead is

dominated by opening a KZH-k polynomial commitment of size ℓ, which still costs O(ℓ
1
2)

group scalar multiplications.

26

Setup(1λ, n):

• Sample {(p, g1, g2,G1,G2,GT , e)} ←$ GGen(1λ)

• G←$ G1

• srsIVC ← SetupIVC(λ)

• Output srs = (srsIVC,G)

KGen(λ): (sk, pk)← KGenss(1
λ, n)

Intialize(srsPC, [pki]
n
i=1):

Compute vector commitment VC such that VC[k] = pkk.

Sign(pk,M ∈ {0, 1}∗) : σ ← Signss(sk,M)

SigToAggSig(k ∈ [n ·m], pkk, σk): user k prepares its signature to aggregate

• Set b⃗ = ⟨k⟩ ∈ {0, 1}µ

• Bk ← CommitKZH(srsKZH, b(X⃗))

• Set IVC proof π(k)
IVC = ⊥

• Output:

Ak = (pkk,Bk, πIVC,k.x, bk(X⃗), σk, π
(k)
IVC.w)

Verify(srs, Ak): Verify an aggregated signature

• Check B = CommitKZH(srsKZH, b(X⃗)).

• Check Vss(pk,M, σ) = 1

• Check VerifyIVC(srsIVC, F, F.x, πIVC) = 1

Figure 7: Signature aggregation protocol - 1

27

Aggregate(Ak1
, Ak2

):

Aggregate the signatures:

• Ak1
= (pkk1

,Bk1
, π

(k1)
IVC .x, σk1

, bk1
(X⃗), π

(k1)
IVC .w)

• Ak2 = (pkk2
,Bk2 , π

(k2)
IVC .x, σk2 , bk2(X⃗), π

(k2)
IVC .w)

• Set pk′ ← pkk1
+ pkk2

• Set σ′ ← σk1
+ σk2

Proof of well-formedness of new bitvector

• Compute c(X⃗) such that c(x⃗) = bk1
(x⃗) ∨ bk2

(x⃗) ∀x⃗ ∈ {0, 1}µ

• Send C← CommitKZH(srsKZH, c(X⃗))

• Verifier sends challenge r⃗ ← Fµ

• Define c(X⃗) = bk1
(X⃗) + bk2

(X⃗)− bk1
(X⃗) · bk2

(X⃗) and run the sumcheck to prove that∑
x⃗∈{0,1}µ

eq(x⃗, r⃗)(bk1
(x⃗) + bk2

(x⃗)− bk1
(x⃗) · bk2

(x⃗)− c(x⃗)) = 0

Output bk1
(ρ⃗), bk2

(ρ⃗), c⃗(ρ⃗) where ρ⃗ ∈ Fk is the vector of randomness sampled by the verifier
during the sumcheck.

• Verifier sends random challenges α1, α2 from F

• Prover computes the polynomial p(X⃗) = bk1
(X⃗) + α1bk2

(X⃗) + α2c(X⃗), runs (π, z0) ←
OpenKZH(srsKZH, p(X⃗), x⃗0, y⃗0, aux), for x⃗0||y⃗0 = ρ⃗

• Verifier adds evaluation claim (P = Bk1 + α1Bk2 + α2C, x⃗0, y⃗0, π, z0) to π′
IVC.x

New Aggregated Signature:

• π′
IVC ← PIVC(srsIVC, F, F.x, F.w, πIVC)

• Let A′ = (pk′, σ′,C, π′
IVC.x;σ

′, c(X⃗), π′
IVC.w)

• Output A′

Figure 8: Signature aggregation protocol - 2

28

6 Implementation and efficiency

We implement all our subprotocols in Rust, by leveraging the arkworks libraryg. Our Cycle-
Fold module builds on the implementation from the Nexus zkVM projecth, and our Spartan
PIOP module builds on the original Spartan codebasei. We made our implementation pub-
licly available as an open-source libraryj.

The accumulation verifier circuit for PCD (accumulating two accumulators) in KZH2-
fold and KZH3-fold schemes, respectively requires four and five scalar multiplications, im-
plemented using CycleFold [KS23a] and Ova [Ova]. The total circuit size for KZH2-fold
and KZH3-fold verifiers are approximately 60k and 73k constraints on the primary curve
and 12k and 15k on the secondary curve, with about 40% of constraint on the primary
curve dedicated to hashing non-native field elements. Our implementation is not highly
optimized. Inspired by Nexus, we also implemented a Nova circuit for IVC, accumulating
one fresh proof with a running accumulation, resulting in a circuit size of 35k constraints
on the primary curve and 6k on the secondary curvek. This comparison aligns with expec-
tations, for example, KZH2-fold verifier is naturally larger, requiring three to four group
scalar multiplications compared to two to three for Nova.

As part of our implementation, we built an augmented circuit for our signature aggrega-
tion protocol as seen in Figure 6, along with a smaller augmented circuit for our KZH-based
folding scheme for NP. We used the R1CS PIOP from Section D to prove our circuits. We
ran our benchmarks on a laptop with an Intel i7-1370 CPU and 32GB of RAM. We used
the half-pairing cycles of BN254 and Grumpkin as our primary and secondary curves. We
present our results in the following sections.

6.1 Efficiency of KZH

In Figure 9, we provide benchmarks for our variants of KZH-2, KZH-3 and KZH-4 polynomial
commitment schemes and compare them with the celebrated KZG scheme. KZG is efficient
and offers constant verification time, while KZH benefits from faster opening times and
supports a natural accumulation scheme.

ghttps://arkworks.rs
hhttps://nexus-xyz.github.io/assets/nexus_whitepaper.pdf
ihttps://github.com/microsoft/Spartan
jhttps://github.com/asn-d6/kzh_fold
kUnlike our implementation and Nexus, the original Nova implementation by Microsoft does not use

Arkworks. We believe a primary reason for our circuit’s inefficiency is likely due to inefficiencies in Arkworks’
implementation of group operations and non-native field arithmetic in R1CS. For example, a group scalar
multiplication by Nova reportedly takes 1k constraints while it takes 3k with Arkworks.

29

https://arkworks.rs
https://nexus-xyz.github.io/assets/nexus_whitepaper.pdf
https://github.com/microsoft/Spartan
https://github.com/asn-d6/kzh_fold

10 11 12 13 14 15 16 17 18 19 20
Polynomial Degree

101

102

103

104

Co
m

m
it

Ti
m

e
(m

s)

PCS Commit Time Comparison: KZG / KZH2 / KZH3 / KZH4
KZH2
KZH3
KZH4
KZG

10 11 12 13 14 15 16 17 18 19 20
Polynomial Degree

10 1

100

101

102

103

104

Op
en

in
g

Ti
m

e
(m

s)

PCS Opening Time Comparison: KZG vs KZH2 vs KZH3 vs KZH4
KZH2
KZH3
KZH4
KZG

10 11 12 13 14 15 16 17 18 19 20
Polynomial Degree

100

101

102

Ve
rif

y
Ti

m
e

(m
s)

PCS Verify Time Comparison: KZG / KZH2 / KZH3 / KZH4
KZH2
KZH3
KZH4
KZG

10 11 12 13 14 15 16 17 18 19 20
Polynomial Degree

102

103

104

105

Op
en

in
g

Si
ze

 (B
yt

e)

PCS Opening Size Comparison: KZH2 / KZH3 / KZH4
KZH2
KZH3
KZH4

Figure 9: KZH benchmarks and comparison with KZG. Polynomial degree for KZH-k refers
to km, where m is the number of variables.

6.2 Comparison with Halo Infinite

Halo Infinite [Bon+21] (HI) presents an accumulation scheme for arbitrary homomorphic
polynomial opening aggregation schemes. The prover aggregates n polynomial openings
taking the polynomials themselves as input. In this section, we compare the efficiency of
KZH2-fold, KZH3-fold and HI by implementing all three schemes in our codebase.

In Figure 10, we observe that KZH-fold’s prover is significantly faster than HI’s. For
large witness sizes, HI spends most of its time committing to the polynomial q(x). On
the other hand, we also see that HI’s accumulation verifier is significantly faster compared
to KZH-fold. Finally, we see how KZH-fold’s communication overhead scales far more
efficiently as the polynomial’s size increases, since in HI’s private aggregation scheme the
prover must transmit the entire polynomial to the aggregator.

6.3 Comparison with Nova

We implemented our IVC scheme based on KZH2-fold and KZH3-fold, and then compared it
to our implementation of Noval using different-sized F circuits in Table 3. For the purposes
of IVC, we use a circuit F that iteratively computes Poseidon hashes, and the first column
contains the number of Poseidon invocations.

At the end of the R1CS PIOP protocol, the decider must evaluate the R1CS matrices A,
lPrimarily borrowed from Nexus zkVM project

30

210 211 212 213 214 215 216 217 218 219 220

Witness Size
100

101

102

103

104

Pr
ov

er
 T

im
e

(m
s)

Accumulation Prover Time Comparison: Halo Infinite / KZH2-Fold / KZH3-Fold
KZH2-Fold
KZH3-Fold
Halo Infinite

210 211 212 213 214 215 216 217 218 219 220

Witness Size
0.5

1.0

1.5

2.0

2.5

3.0

Ve
rif

ica
tio

n
Ti

m
e

(m
s)

Accumulation Verifier Time Comparison: Halo Infinite / KZH2-Fold / KZH3-Fold
KZH2-Fold
KZH3-Fold
Halo Infinite

210 211 212 213 214 215 216 217 218 219 220

Witness Size
103

104

105

106

107

108

Ac
cu

m
ul

at
or

 S
ize

 (B
yt

e)

Communication Cost Comparison: Halo Infinite / KZH2-Fold / KZH3-Fold
KZH2-Fold
KZH3-Fold
Halo Infinite

210 211 212 213 214 215 216 217 218 219 220

Witness Size
0

50

100

150

200

De
cid

er
 T

im
e

(m
s)

Accumulation Decider Time Comparison: KZH2-Fold / KZH3-Fold
KZH2-Fold
KZH3-Fold

Figure 10: KZH-fold performance and communication cost, along with a comparison with
Halo Infinite private aggregation

B and C at a random point. We outsource this computation by having the prover provide
an opening proof using KZH. This outsourcing is independent of the rest of the protocol,
allowing any polynomial commitment scheme to be used. The commitment to the matrices,
which the costly part, can be performed during the setup phase.

As expected, our prover is slower than Nova, with a factor of almost 3 for moderate
computations. However, our accumulator size is more compact and our verifier times are
faster. Our prover is slower for two reasons. First, Nova’s prover cost is essentially two
MSMs, whereas our prover uses KZH to commit to the witness. Furthermore, our augmented
circuit must partially verify the Spartan proof’s sumcheck and the accumulation of the
matrix evaluations (Appendix D). We believe that a large part of the slowdown is due to
unoptimized code which can be improved.

6.4 Comparison with BLS aggregation

We implemented our KZH3-based accountable signature aggregation scheme from Figure 8
and compared it to the accountable BLS signature aggregation scheme in Table 4. In the
BLS scheme, communication cost scales with the size of the multiplicity vector, which in-
curs a redundancy overhead of r ·log d, where r is the number of recursive aggregation layers
and d is the number of aggregators per layer. For an aggregation scheme with a single layer
(r = 1) with 1 million validators, the multiplicity vector requires 128 kB multiplied by
log d. With additional recursive layers, this cost increases linearly with r, further exacer-

31

of H Scheme Prover Verifier |Acc| # Constraints

0
KZH2-fold 1.1 s 103 ms 74 KB 217 ≈ 131k
KZH3-fold 0.87 s 62 ms 16 KB 217 ≈ 131k

Nova 157 ms 250 ms 3.8 MB 75k

150
KZH2-fold 4.0 s 133 ms 148 KB 219 ≈ 524k
KZH3-fold 3.1 s 63 ms 25 KB 219 ≈ 524k

Nova 447 ms 704 ms 9.6 MB 165k

1000
KZH2-fold 7.2 s 193 ms 197 KB 220 ≈ 1048k
KZH3-fold 6.68 s 93 ms 31 KB 220 ≈ 1048k

Nova 2.0 s 3.8 s 42 MB 675k

2000
KZH2-fold 23.1 s 256 ms 295 KB 221 ≈ 2097k
KZH3-fold 16.5 s 135 ms 37 KB 221 ≈ 2097k

Nova 4.8 s 5.6 s 80.8 MB 1185k

Table 3: Comparison of IVC schemes based on KZH2-fold, KZH3-fold and Nova

bating bandwidth requirements for larger validator sets. Verification involves a multiscalar
multiplication (MSM) to compute the aggregated public key, using the multiplicity vector
and validators’ public keys.

In contrast, the KZH3-based scheme eliminates the need for multiplicity vectors, making
its communication cost independent of the number of recursive layers and the number of
aggregators. The communication cost of the KZH3-based scheme is dominated by the
participation bitfield, whereas the recursive proof itself is less than 40% of the overall size.
Our signature aggregation augmented circuit is described in approximately 219 constraints.
We find that the witness for this circuit is low-weight (with about 33% of the entries being
zero or one). As a result, committing to this low-weight witness is significantly more efficient
compared to committing to a random vector of the same size. To exploit this property, we
pair KZH3-fold with the Spartan PIOP, which only requires computing a single commitment
to the witness vector.

Table 4 highlights the communication and verification costs of both schemes across
different validator counts and recursive layers. The KZH3-based approach maintains con-
sistent communication costs regardless of r, while BLS incurs significant growth due to the
r · log d multiplicative factor.

32

of validators Scheme Communication Verifier

220

BLS (r = 1, d = 16) 512 kB 338 ms
BLS (r = 4, d = 16) 2 MB 340 ms
BLS (r = 4, d = 32) 4 MB 342 ms

Ours 205 kB 226 ms

221

BLS (r = 1, d = 16) 1 MB 669 ms
BLS (r = 4, d = 16) 4 MB 670 ms
BLS (r = 4, d = 32) 8 MB 673 ms

Ours 333 kB 276 ms

222

BLS (r = 1, d = 16) 2 MB 1.29 s
BLS (r = 4, d = 16) 8 MB 1.3 s
BLS (r = 4, d = 32) 16 MB 1.3 s

Ours 589 kB 322 ms

Table 4: Comparison of BLS and KZH3-based accountable signature aggregation schemes

33

References

[CT10] Alessandro Chiesa and Eran Tromer. “Proof-Carrying Data and Hearsay Ar-
guments from Signature Cards”. In: 2010, pp. 310–331.

[CTV15] Alessandro Chiesa, Eran Tromer, and Madars Virza. “Cluster Computing in
Zero Knowledge”. In: 2015, pp. 371–403. doi: 10.1007/978-3-662-46803-
6_13.

[Her24] Polygon Hermez. Polygon zkevm: Recursion, aggregation and composition of
proofs. https://github.com/0xPolygonHermez/zkevm- techdocs/blob/
main/docs/proof-recursion.pdf. Accessed: 2024-11-15. 2024. url: https:
/ / github . com / 0xPolygonHermez / zkevm - techdocs / blob / main / docs /
proof-recursion.pdf.

[KB23] Assimakis Kattis and Joseph Bonneau. “Proof of Necessary Work: Succinct
State Verification with Fairness Guarantees”. In: 2023, pp. 18–35. doi: 10.
1007/978-3-031-47751-5_2.

[Ben+14] Eli Ben-Sasson et al. “Scalable Zero Knowledge via Cycles of Elliptic Curves”.
In: 2014, pp. 276–294. doi: 10.1007/978-3-662-44381-1_16.

[KST22] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. “Nova: Recursive Zero-
Knowledge Arguments from Folding Schemes”. In: 2022, pp. 359–388. doi:
10.1007/978-3-031-15985-5_13.

[Bün+21] Benedikt Bünz et al. “Proof-Carrying Data Without Succinct Arguments”. In:
2021, pp. 681–710. doi: 10.1007/978-3-030-84242-0_24.

[KS24] Abhiram Kothapalli and Srinath T. V. Setty. “HyperNova: Recursive Ar-
guments for Customizable Constraint Systems”. In: 2024, pp. 345–379. doi:
10.1007/978-3-031-68403-6_11.

[BC23] Benedikt Bünz and Binyi Chen. “Protostar: Generic Efficient Accumulation/Folding
for Special-Sound Protocols”. In: 2023, pp. 77–110. doi: 10.1007/978-981-
99-8724-5_3.

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. “Constant-Size Com-
mitments to Polynomials and Their Applications”. In: 2010, pp. 177–194. doi:
10.1007/978-3-642-17373-8_11.

[Bün+20] Benedikt Bünz et al. “Recursive Proof Composition from Accumulation Schemes”.
In: 2020, pp. 1–18. doi: 10.1007/978-3-030-64378-2_1.

[Set20] Srinath Setty. “Spartan: Efficient and General-Purpose zkSNARKs Without
Trusted Setup”. In: 2020, pp. 704–737. doi: 10.1007/978-3-030-56877-1_25.

[PST13] Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia. “Signatures
of Correct Computation”. In: 2013, pp. 222–242. doi: 10.1007/978-3-642-
36594-2_13.

34

https://doi.org/10.1007/978-3-662-46803-6_13
https://doi.org/10.1007/978-3-662-46803-6_13
https://github.com/0xPolygonHermez/zkevm-techdocs/blob/main/docs/proof-recursion.pdf
https://github.com/0xPolygonHermez/zkevm-techdocs/blob/main/docs/proof-recursion.pdf
https://github.com/0xPolygonHermez/zkevm-techdocs/blob/main/docs/proof-recursion.pdf
https://github.com/0xPolygonHermez/zkevm-techdocs/blob/main/docs/proof-recursion.pdf
https://github.com/0xPolygonHermez/zkevm-techdocs/blob/main/docs/proof-recursion.pdf
https://doi.org/10.1007/978-3-031-47751-5_2
https://doi.org/10.1007/978-3-031-47751-5_2
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-031-15985-5_13
https://doi.org/10.1007/978-3-030-84242-0_24
https://doi.org/10.1007/978-3-031-68403-6_11
https://doi.org/10.1007/978-981-99-8724-5_3
https://doi.org/10.1007/978-981-99-8724-5_3
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-030-64378-2_1
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/978-3-642-36594-2_13
https://doi.org/10.1007/978-3-642-36594-2_13

[Lee21] Jonathan Lee. “Dory: Efficient, Transparent Arguments for Generalised Inner
Products and Polynomial Commitments”. In: 2021, pp. 1–34. doi: 10.1007/
978-3-030-90453-1_1.

[KS23a] Abhiram Kothapalli and Srinath Setty. CycleFold: Folding-scheme-based re-
cursive arguments over a cycle of elliptic curves. Cryptology ePrint Archive,
Report 2023/1192. 2023. url: https://eprint.iacr.org/2023/1192.

[BFS20] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. “Transparent SNARKs from
DARK Compilers”. In: 2020, pp. 677–706. doi: 10.1007/978-3-030-45721-
1_24.

[KS22a] Abhiram Kothapalli and Srinath Setty. SuperNova: Proving universal ma-
chine executions without universal circuits. Cryptology ePrint Archive, Report
2022/1758. 2022. url: https://eprint.iacr.org/2022/1758.

[ZSC24] Jiaxing Zhao, Srinath Setty, and Weidong Cui. MicroNova: Folding-based argu-
ments with efficient (on-chain) verification. Cryptology ePrint Archive, Paper
2024/2099. 2024. url: https://eprint.iacr.org/2024/2099.

[Che+20] Weikeng Chen et al. Reducing Participation Costs via Incremental Verification
for Ledger Systems. Cryptology ePrint Archive, Paper 2020/1522. 2020. url:
https://eprint.iacr.org/2020/1522.

[Bon+20] Joseph Bonneau et al. Coda: Decentralized Cryptocurrency at Scale. Cryptol-
ogy ePrint Archive, Paper 2020/352. 2020. url: https://eprint.iacr.org/
2020/352.

[Gro+18] Jens Groth et al. “Updatable and Universal Common Reference Strings with
Applications to zk-SNARKs”. In: 2018, pp. 698–728. doi: 10.1007/978-3-
319-96878-0_24.

[Resb] Ethereum Research. Sticking to 8192 Signatures per Slot Post-SSF: How and
Why. https://ethresear.ch/t/sticking- to- 8192- signatures- per-
slot-post-ssf-how-and-why/. Accessed: 2024-11-15.

[Sin] Single Slot Finality. https://ethereum.org/en/roadmap/single-slot-
finality/. Accessed: 2024-11-15.

[But] Vitalik Buterin. Possible futures of the Ethereum protocol, part 1: The Merge.
https://vitalik.eth.limo/general/2024/10/14/futures1.html. Ac-
cessed: 2024-11-15.

[D’A+24b] Francesco D’Amato et al. TOB-SVD: Total-Order Broadcast with Single-Vote
Decisions in the Sleepy Model. 2024. arXiv: 2310.11331 [cs.DC]. url: https:
//arxiv.org/abs/2310.11331.

[DZ23] Francesco D’Amato and Luca Zanolini. A Simple Single Slot Finality Proto-
col For Ethereum. Cryptology ePrint Archive, Report 2023/280. 2023. url:
https://eprint.iacr.org/2023/280.

35

https://doi.org/10.1007/978-3-030-90453-1_1
https://doi.org/10.1007/978-3-030-90453-1_1
https://eprint.iacr.org/2023/1192
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-030-45721-1_24
https://eprint.iacr.org/2022/1758
https://eprint.iacr.org/2024/2099
https://eprint.iacr.org/2020/1522
https://eprint.iacr.org/2020/352
https://eprint.iacr.org/2020/352
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/978-3-319-96878-0_24
https://ethresear.ch/t/sticking-to-8192-signatures-per-slot-post-ssf-how-and-why/
https://ethresear.ch/t/sticking-to-8192-signatures-per-slot-post-ssf-how-and-why/
https://ethereum.org/en/roadmap/single-slot-finality/
https://ethereum.org/en/roadmap/single-slot-finality/
https://vitalik.eth.limo/general/2024/10/14/futures1.html
https://arxiv.org/abs/2310.11331
https://arxiv.org/abs/2310.11331
https://arxiv.org/abs/2310.11331
https://eprint.iacr.org/2023/280

[D’A+24a] Francesco D’Amato et al. 3-Slot-Finality Protocol for Ethereum. 2024. arXiv:
2411.00558 [cs.DC]. url: https://arxiv.org/abs/2411.00558.

[D’A+22] Francesco D’Amato et al. No More Attacks on Proof-of-Stake Ethereum? Cryp-
tology ePrint Archive, Report 2022/1171. 2022. url: https://eprint.iacr.
org/2022/1171.

[Gil+17] Yossi Gilad et al. Algorand: Scaling Byzantine Agreements for Cryptocur-
rencies. Cryptology ePrint Archive, Report 2017/454. 2017. url: https://
eprint.iacr.org/2017/454.

[Yin+19] Maofan Yin et al. “HotStuff: BFT Consensus with Linearity and Responsive-
ness”. In: 2019, pp. 347–356. doi: 10.1145/3293611.3331591.

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. “Short Signatures from the Weil
Pairing”. In: 17.4 (Sept. 2004), pp. 297–319. doi: 10.1007/s00145-004-0314-
9.

[BDN18] Dan Boneh, Manu Drijvers, and Gregory Neven. “Compact Multi-signatures
for Smaller Blockchains”. In: 2018, pp. 435–464. doi: 10.1007/978-3-030-
03329-3_15.

[Resa] Ethereum Research. Signature Merging for Large-Scale Consensus. https://
ethresear.ch/t/signature-merging-for-large-scale-consensus/17386.
Accessed: 2024-11-15.

[BGH19] Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive Proof Composi-
tion without a Trusted Setup. Cryptology ePrint Archive, Report 2019/1021.
2019. url: https://eprint.iacr.org/2019/1021.

[Wu+18] Howard Wu et al. DIZK: A Distributed Zero Knowledge Proof System. Cryp-
tology ePrint Archive, Paper 2018/691. 2018. url: https://eprint.iacr.
org/2018/691.

[Liu+23] Tianyi Liu et al. Pianist: Scalable zkRollups via Fully Distributed Zero-Knowledge
Proofs. Cryptology ePrint Archive, Paper 2023/1271. 2023. url: https://
eprint.iacr.org/2023/1271.

[Ros+24] Michael Rosenberg et al. Hekaton: Horizontally-Scalable zkSNARKs via Proof
Aggregation. Cryptology ePrint Archive, Paper 2024/1208. 2024. url: https:
//eprint.iacr.org/2024/1208.

[Wan+24] Wenhao Wang et al. Cirrus: Performant and Accountable Distributed SNARK.
Cryptology ePrint Archive, Paper 2024/1873. 2024. url: https://eprint.
iacr.org/2024/1873.

[Bé+19] Olivier Bégassat et al. Handel: Practical Multi-Signature Aggregation for Large
Byzantine Committees. 2019. arXiv: 1906.05132 [cs.DC]. url: https://
arxiv.org/abs/1906.05132.

36

https://arxiv.org/abs/2411.00558
https://arxiv.org/abs/2411.00558
https://eprint.iacr.org/2022/1171
https://eprint.iacr.org/2022/1171
https://eprint.iacr.org/2017/454
https://eprint.iacr.org/2017/454
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/978-3-030-03329-3_15
https://ethresear.ch/t/signature-merging-for-large-scale-consensus/17386
https://ethresear.ch/t/signature-merging-for-large-scale-consensus/17386
https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2018/691
https://eprint.iacr.org/2018/691
https://eprint.iacr.org/2023/1271
https://eprint.iacr.org/2023/1271
https://eprint.iacr.org/2024/1208
https://eprint.iacr.org/2024/1208
https://eprint.iacr.org/2024/1873
https://eprint.iacr.org/2024/1873
https://arxiv.org/abs/1906.05132
https://arxiv.org/abs/1906.05132
https://arxiv.org/abs/1906.05132

[Kha+21] Irakliy Khaburzaniya et al. Aggregating hash-based signatures using STARKs.
Cryptology ePrint Archive, Report 2021/1048. 2021. url: https://eprint.
iacr.org/2021/1048.

[Aar+24] Marius A. Aardal et al. “Aggregating Falcon Signatures with LaBRADOR”.
In: 2024, pp. 71–106. doi: 10.1007/978-3-031-68376-3_3.

[Wah+18] Riad S. Wahby et al. “Doubly-Efficient zkSNARKs Without Trusted Setup”.
In: 2018, pp. 926–943. doi: 10.1109/SP.2018.00060.

[Ped92] Torben P. Pedersen. “Non-Interactive and Information-Theoretic Secure Veri-
fiable Secret Sharing”. In: 1992, pp. 129–140. doi: 10.1007/3-540-46766-1_9.

[Abe+16] Masayuki Abe et al. “Structure-Preserving Signatures and Commitments to
Group Elements”. In: 29.2 (Apr. 2016), pp. 363–421. doi: 10.1007/s00145-
014-9196-7.

[Che+23] Binyi Chen et al. “HyperPlonk: Plonk with Linear-Time Prover and High-
Degree Custom Gates”. In: 2023, pp. 499–530. doi: 10.1007/978-3-031-
30617-4_17.

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. “The Algebraic Group Model
and its Applications”. In: 2018, pp. 33–62. doi: 10.1007/978-3-319-96881-
0_2.

[Bü+19] Benedikt Bünz et al. Proofs for Inner Pairing Products and Applications. Cryp-
tology ePrint Archive, Paper 2019/1177. 2019. url: https://eprint.iacr.
org/2019/1177.

[KS23b] Abhiram Kothapalli and Srinath Setty. HyperNova: Recursive arguments for
customizable constraint systems. Cryptology ePrint Archive, Paper 2023/573.
2023. url: https://eprint.iacr.org/2023/573.

[KS22b] Abhiram Kothapalli and Srinath Setty. SuperNova: Proving universal ma-
chine executions without universal circuits. Cryptology ePrint Archive, Paper
2022/1758. 2022. url: https://eprint.iacr.org/2022/1758.

[Lun+90] Carsten Lund et al. “Algebraic Methods for Interactive Proof Systems”. In:
1990, pp. 2–10. doi: 10.1109/FSCS.1990.89518.

[Ova] Ova: A slightly better Nova. https://hackmd.io/V4838nnlRKal9ZiTHiGYzw.
Accessed: 2024-11-15.

[Bon+21] Dan Boneh et al. “Halo Infinite: Proof-Carrying Data from Additive Polyno-
mial Commitments”. In: 2021, pp. 649–680. doi: 10.1007/978-3-030-84242-
0_23.

[Blu+91] M. Blum et al. “Checking the correctness of memories”. In: [1991] Proceedings
32nd Annual Symposium of Foundations of Computer Science. 1991, pp. 90–
99. doi: 10.1109/SFCS.1991.185352.

37

https://eprint.iacr.org/2021/1048
https://eprint.iacr.org/2021/1048
https://doi.org/10.1007/978-3-031-68376-3_3
https://doi.org/10.1109/SP.2018.00060
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/s00145-014-9196-7
https://doi.org/10.1007/s00145-014-9196-7
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://eprint.iacr.org/2019/1177
https://eprint.iacr.org/2019/1177
https://eprint.iacr.org/2023/573
https://eprint.iacr.org/2022/1758
https://doi.org/10.1109/FSCS.1990.89518
https://hackmd.io/V4838nnlRKal9ZiTHiGYzw
https://doi.org/10.1007/978-3-030-84242-0_23
https://doi.org/10.1007/978-3-030-84242-0_23
https://doi.org/10.1109/SFCS.1991.185352

A Deferred definitions

A.1 Signature schemes

Definition 4. A signature scheme is parametrized by a message space M and consists on
a tuple of PPT algorithms (KGenss, Signss,Verifyss) such that:

• KGenss(n) → (sk, pk): On input security parameter n, outputs public parameters pp,
signing key pk and verification key pk.

• Signss(sk,m)→ σm: On input sk and m ∈M, outputs a signature σM on M .

• Verifyss(pk,m, σm)→ 0/1: takes as input pk, m and signature σm and produces a bit
expressing acceptance (1), or rejection (0);

That must satisfy correctness and unforgeability:

Correctness. For all m ∈M the following holds:

Pr

[
Verifyss(pk,m, σm) = 1

∣∣∣∣ (pk, sk)← KGenss(n)
σm ← Signss(sk,m)

]
= 1

Unforgeability. For all PPT adversaries A, the following probability is negligible:

Pr

 (pk, pk)← KGenss(n)
(m,σm) /∈ Q (m,σm)← AO(pk, sk)

Verifyss(pk,m, σm) = 1

where Q is a list of all the queries A makes to the signing oracle O.

38

B Deferred proofs

B.1 Proof of theorem 3

Proof.

Completeness. The commitment C to f(X⃗) is given by

C =
∑
x⃗∈Bn

∑
y⃗∈Bm

f(x⃗, y⃗)× H(x⃗,y⃗).

Since nm = k, this can be computed from the structured reference string (srs). The
opening proof π for (x⃗0, y⃗0) is defined as: π =

(
f∗(Y⃗), aux = {D(x⃗)}x⃗∈Bn

)
, where f∗(Y⃗) =

f(x⃗0, Y⃗), and D(x⃗) =
∑

y⃗∈Bm

f(x⃗, y⃗)× H(y⃗).

We see that VerifyKZH(C, (x⃗0, y⃗0), π) = 1:

(I) Check that e(C,V′) =
∑

x⃗∈Bn

e(D(x⃗),V(x⃗)):

e(C,V′)
(1)
= e(

∑
x⃗∈Bn

∑
y⃗∈Bm

f(x⃗, y⃗)× H(x⃗, y⃗), α× V)

(2)
=
∑
x⃗∈Bn

e(
∑
y⃗∈Bm

f(x⃗, y⃗) · τ (x⃗) × G(y⃗), α× V)

(3)
=
∑
x⃗∈Bn

e(
∑
y⃗∈Bm

f(x⃗, y⃗) · α× G(y⃗), τ (x⃗) × V)

(4)
=
∑
x⃗∈Bn

e(
∑
y⃗∈Bm

f(x⃗, y⃗)× H(y⃗),V(x⃗))

(5)
=
∑
x⃗∈Bn

e(D(x⃗),V(x⃗))

(1) and (2) is exploding terms C,H(x⃗, y⃗), V′ and using the bilinearity property, (3) is using
property e(ga, gb) = e(gb, ga) by interchanging the exponents α and τ (x⃗). (4) is replaying
α× G(y⃗) with the equivalent value H(y⃗) and finally (5) follows from the definition of D(x⃗).

39

(II) Check that
∑

y⃗∈Bm

f∗(y⃗)× H(y⃗) =
∑

x⃗∈Bn

eq(x⃗, x⃗0)× D(x⃗).

∑
x⃗∈Bn

eq(x⃗, x⃗)× D(x⃗) (1)
=
∑
x⃗∈Bn

∑
y⃗∈Bm

eq(x⃗, x⃗0) · f(x⃗, y⃗)× H(y⃗)

(2)
=
∑
y⃗∈Bm

(∑
x⃗∈Bn

eq(x⃗, x⃗0) · f(x⃗, y⃗)
)
× H(y⃗)

(3)
=
∑
y⃗∈Bm

f∗(y⃗)× H(y⃗)

Finally, (III) checking that f∗(y⃗0) = z0, follows from the definition of z0.

Knowledge soundness. Let A be a PPT adversary that, on input srs outputs a commit-
ment C. We define an extractor E that outputs p(X⃗, Y⃗) such that, for any ((x⃗0, y⃗0), z0, π),
if the verifier accepts then p(x⃗0, y⃗0) = z0 with overwhelming probability. Given C and
{cx⃗,y⃗, ĉy⃗}x⃗∈Bn,y⃗∈Bm such that

C =
∑
x⃗∈Bn

∑
y⃗∈Bm

cx⃗,y⃗ × H(x⃗, y⃗) +
∑
y⃗∈Bm

ĉy⃗ × H(⃗y),

E outputs f(X⃗, Y⃗) =
∑

x⃗∈Bn

∑
y⃗∈Bm

cx⃗,y⃗X⃗
x⃗Y⃗ y⃗. Under the AGM, E does not abort. Simi-

larly, under the AGM we have that all the D(x⃗) are represented as a linear combination of
the srs elements, i.e.,

D(x⃗) =
∑
y⃗∈Bm

d
(x⃗)
y⃗ × H(y⃗) +

∑
x⃗∈Bn

∑
y⃗∈Bm

d̂
(x⃗)
x⃗,y⃗ × H(x⃗,y⃗)

The following conditions are satisfied:

(I) e(C,V′) =
∑

x⃗∈Bn

e(D(x⃗),V(x⃗)), we first consider each side separately:

e(C,V′) = e(
∑
x⃗∈Bn

∑
y⃗∈Bm

cx⃗,y⃗ × H(x⃗,y⃗) +
∑
y⃗∈Bm

ĉy⃗ × H(y⃗), α× V)

= e(
∑
x⃗∈Bn

∑
y⃗∈Bm

cx⃗,y⃗ × H(x⃗,y⃗), α× V) + e(
∑
y⃗∈Bm

ĉy⃗(y⃗)× H(y⃗), α× V)

= α
∑
x⃗∈Bn

∑
y⃗∈Bm

cx⃗,y⃗ · τ (x⃗) × e(G(y⃗),V) + α2 × e(
∑
y⃗∈Bm

ĉy⃗ × G(y⃗),V)

40

∑
x⃗∈Bn

e(D(x⃗),V(x⃗)) =
∑
x⃗∈Bn

e(
∑
y⃗∈Bm

d
(x⃗)
y⃗ × H(y⃗) +

∑
x⃗∈Bn

∑
y⃗∈Bm

d̂
(x⃗)
x⃗,y⃗ × H(x⃗,y⃗), τ (x⃗) × V)

=
∑
x⃗∈Bn

e(
∑
y⃗∈Bm

d
(x⃗)
y⃗ · α× G(y⃗) +

∑
x⃗∈Bn

∑
y⃗∈Bm

d̂
(x⃗)
x⃗,y⃗ · τ

(x⃗) × G(y⃗), τ (x⃗) × V)

=
∑
x⃗∈Bn

τ (x⃗) ·
(
α ·

∑
y⃗∈Bm

d
(x⃗)
y⃗ +

∑
x⃗∈Bn

∑
y⃗∈Bm

d̂
(x⃗)
x⃗,y⃗ · τ

(x⃗)
)
× e(G(y⃗),V)

Now the difference e(C,V′)−
∑

x⃗∈Bn
e(D(x⃗),V(x⃗)) can be seen as degree 2 polynomial of α,

then the coefficients of 1, α, α2 on the two terms are equal or we can break quadratic CDH,
which implies:

• Coefficient 1.∑
x⃗∈Bn

∑
y⃗∈Bm

d̂
(x⃗)
x⃗,y⃗ · τ

(x⃗) × e(G(y⃗),V) = 0 =⇒
∑
x⃗,y⃗

d̂
(x⃗)
x⃗,y⃗ × H(x⃗,y⃗) = 0

This implies d̂
(x⃗)
x⃗,y⃗ = 0 for all x⃗, y⃗, or we found a polynomial that vanishes at H(x⃗,y⃗) and

thus can calculate τ and the discrete log relation between the generators G(y⃗) by finding
the roots of it, which breaks the dlog assumption.

• Coefficient α.∑
x⃗∈Bn

∑
y⃗∈Bm

τ (x⃗) · cx⃗,y⃗ × e(G(y⃗),V) =
∑
x⃗∈Bn

τ (x⃗) ·
∑
y⃗∈Bm

d
(x⃗)
y⃗ × e(G(y⃗),V)

Then we have that cx⃗,y⃗ = d
(x⃗)
y⃗ for all x⃗, y⃗ or we can break the dlog assumption as above.

• Coefficient α2.
e(
∑
y⃗∈Bm

ĉy⃗ × G(y⃗),V) = 0 =⇒
∑
y⃗∈Bm

ĉy⃗ × G(y⃗) = 0

We then have:

C =
∑
x⃗∈Bn

∑
y⃗∈Bm

cx⃗,y⃗ × H(x⃗, y⃗), D(x⃗) =
∑
y⃗∈Bm

d
(x⃗)
y⃗ × H(y⃗)

(II)
∑

y⃗∈Bm

f∗(y⃗)× H(y⃗) =
∑

x⃗∈Bn

eq(x⃗, x⃗0)× D(x⃗), we have:

∑
y⃗∈Bm

f∗(y⃗)× H(y⃗) =
∑
x⃗∈Bn

eq(x⃗, x⃗0)× D(x⃗)

=
∑
x⃗∈Bn

eq(x⃗, x⃗0)×
∑
y⃗∈Bm

cx⃗,y⃗ × H(y⃗)

=
∑
y⃗∈Bm

cx⃗0,y⃗ × H(y⃗)

41

=⇒
∑
y⃗∈Bm

f∗(y⃗)× H(y⃗) =
∑
y⃗∈Bm

cx⃗0,y⃗ × H(y⃗)

Now, f∗(y⃗) =
∑

y⃗∈Bm
cx⃗0,y⃗H

(x⃗0,y⃗) = f(x⃗0, Y⃗) or we can break the dlog assumption by
finding the roots of P (Y) =

∑
y⃗∈Bm

(f∗(y⃗)−cx⃗0,y⃗)× (Y ×G(y⃗)) and give trapdoor α as output.

Finally, the extractor outputs polynomial f(x⃗, y⃗). Since f∗(y⃗0) = z0, and C commits to
f(x⃗, y⃗), we have the construction is knowledge sound.

B.2 Proof of theorem 4

Proof.

Completeness. Consider the following two satisfying accumulators:

• acc.x1 = {C1, T1,E1, x⃗1, y⃗1, z1}

• acc.w1 = {[D(⃗i)
1]⃗i∈Bn

, f⃗∗
1 , Tx(1), Ty(1)}

• acc.x2 = {C2, T2,E2, x⃗2, y⃗2, z2}

• acc.w2 = {[D(⃗i)
2]⃗i∈Bn

, f⃗∗
2 , Tx(2), Ty(2)}

As they are valid accumulators, the following hold:

• –
n∑

i=0
e(D

(i)
1 ,Vi) = e(C1,V)

– ⟨(T (1)
x ||T (1)

y), K⃗⟩ = T1

– E1 = Dec(x⃗1, y⃗1, z1, f⃗∗
1 , T

(1)
x , T (1)

y , D⃗1)

• –
n∑

i=0
e(D

(i)
2 ,Vi) = e(C2,V)

– ⟨(T (2)
x ||T (2)

y), K⃗⟩ = T2

– E2 = Dec(x⃗2, y⃗2, z2, f⃗∗
2 , T

(2)
x , T (2)

y , D⃗2)

Now let acc.x, acc.w be the accumulated instance/witness computed as follows.

acc.x← ((1− β) · [C1, T1, x⃗1, y⃗1, z1] + β · [C2, T2, , x⃗2, y⃗2, z2]), E

acc.w ← (1− β) · [D⃗1, f⃗∗
1 , T

(1)
x , T (1)

y] + β · [D⃗2, f⃗∗
2 , T

(2)
x , T (2)

y], E

where E ← (1− β)× E1 + β × E2 + (1− β)β × Q. Below, we show acc is also a satisfying
accumulator:

42

• First condition
n∑

i=0

e(D(i),Vi)
(1)
=

n∑
i=0

e
(
(1− β)× D

(i)
1 + β × D

(i)
2 ,Vi

)
(2)
= (1− β)×

n∑
i=0

e(D
(i)
1 ,Vi) + β ×

n∑
i=0

e(D
(i)
2 ,Vi)

(3)
= (1− β)× e(C1,V) + β × e(C2,V)

(4)
= e

(
(1− β)× C1 + β × C2,V

)
(5)
= e(C,V)

Where (1) holds by expanding D(i) terms, (2), (4) because of bilinearity property, (3)
holds because the first condition was satisfied for the underlying instances, and finally
(5) holds because of the definition of C.

• Second condition.

⟨(Tx||Ty), K⃗⟩
(1)
=
〈
(1− β) · (T (1)

x ||T (1)
y) + β · (T (2)

x ||T (2)
y), K⃗

〉
(2)
= (1− β) ·

〈
T (1)
x ||T (1)

y , K⃗
〉
+ β ·

〈
T (2)
x ||T (2)

y , K⃗
〉

(3)
= (1− β)× T2 + β × T2

(4)
= T

(1) holds by definition, whereas (2) is implied by bilinearity of the inner product. (3)
and (4) follow by definition.

• Third condition.

Dec(x⃗, y⃗, z, f⃗∗, Tx, Ty, D⃗)
(1)
= Dec((1− β) · [x⃗1, y⃗1, z1, f⃗∗

1 , T
(1)
x , T (1)

y , D⃗1]

+ β · [x⃗2, y⃗2, z2, f⃗∗
2 , T

(2)
x , T (2)

y , D⃗2])

(2)
= (1− β)× E1 + β × E2 + (1− β) · β × Q

(3)
= E

by definition of E.

43

Knowledge soundness. Consider an adversary A that outputs π̂ = (π.x, π.w), ˆacc =
(acc.x, acc.w), p̂f ∈ G1 and acc1.x, acc2.x. We build an extractor Extacc that if Vacc and Dacc

accept, extracts valid witnesses acc1.w, acc2.w for acc1.x, acc2.x. Since acc.w is an equation
of degree one, given two accepting transcripts for different challenges β1, β2, Extacc can use
the Vandermonde matrix to extract

acc1.w = ({D(x⃗)
1 }x⃗∈Bn , f⃗

∗
1 , T

(x)
1 , T (y)

1), acc2.w = ({D(x⃗)
2 }x⃗∈Bn , f⃗

∗
2 , T

(x)
2 , T (y)

2).

We now prove that the extracted witnesses are valid. First, note that since the verifier
accepts, E = (1− β)× E1 + β × E2 + (1− β) · β × Q and

(C, T, x⃗, y⃗, z) = (1− β) · (C1, T1, x⃗1, y⃗1, z1) + β · (C2, T2, x⃗2, y⃗2, z2)

The left side of Eq.(i) of the decider is:∑
x⃗∈Bn

e(D(x⃗),V(x⃗)) =
∑

x⃗∈Bn

e
(
(1− β)× D

(x⃗)
1 + β × D

(x⃗)
2 ,V(x⃗)

)
= (1− β)×

∑
x⃗∈Bn

e(D
(x⃗)
1 ,V(x⃗)) + β ×

∑
x⃗∈Bn

e(D
(x⃗)
2 ,V(x⃗))

Whereas the right side equals

e(C,V) = e
(
(1− β)× C1 + β × C2,V

)
= (1− β)× e(C1,V) + β × e(C2,V)

Since β is computed as a hash of acc1.x and acc2.x, except with negligible probability∑
x⃗∈Bn

e(D
(x⃗)
1 ,V(x⃗)) = e(C1,V) and

∑
x⃗∈Bn

e(D
(x⃗)
2 ,V(x⃗)) = e(C2,V). Similarly, Eq.(ii) holds

if and only if〈(
(1− β)T (x)

1 + βT (x)
2

∥∥ (1− β)T (y)
1 +βT (y)

2

)
, K⃗
〉

= (1− β)
〈(
T (x)
1

∥∥ T (y)
1

)
, K⃗
〉
+ β

〈(
T (x)
2

∥∥ T (y)
2

)
, K⃗
〉

= (1− β)T1 + βT2

= T.

Thus the equation holds for acc1.w and acc2.w. Finally, replacing the accumulation witness
by the extracted ones, we have that Eq.(iii) is

Dec((1− β)x⃗1 +βx⃗2, (1− β)y⃗1 + βy⃗2, (1− β)z1 + βz2, (1− β)f⃗∗
1 + βf⃗∗

2 ,

(1− β)Tx,1 + βTx,2, (1− β)Ty,1 + βTy,2, (1− β)D⃗1 + βD⃗2)
= (1− β)× E1 + β × E2 + (1− β)β × Q

The left side of the equation equals

⟨(1− β)T (error)
x1 + βT (error)

x2 ||(1− β)T (error)
y1 + βT (error)

y2 ||
⟨(1− β)f⃗∗

1 + βf⃗∗
2 , (1− β)T (y1).leaves + βT (y2).leaves⟩

−((1− β)z1 + βz2), K⃗||K′⟩
+⟨(1− β)f⃗∗

1 + βf⃗∗
2 , (H

(y⃗))y⃗∈Bn⟩ − ⟨(1− β)T (x1).leaves + βT (x2).leaves, (1− β)D⃗1 + βD⃗2⟩

44

Term β contains equation (iii) of the Decider for acc1, whereas term β(1− β) contains
the one for acc2. Cross terms are in the coefficient of β(1−β). Then, except with negligible
probability, Dacc(acc1) = Dacc(acc2) = 1 and the extractor succeeds. We now prove that
if E1 = 0, we can extract a valid opening to C⃗1. That is, (acc1.x, acc1.w) is a valid pair
for the predicate Φ. From term (1 − β) in the equation above we have that, except with
negligible probability, Dec(x⃗1, y⃗1, z1, f⃗∗

1 , T (x1)i., T (x2), D⃗) = 0. That is,

0 = ⟨T (error)
x ||T (error)

y ||⟨f⃗∗
1 , T (y).leaves⟩ − z1, K⃗||K′⟩+ ⟨f⃗∗

1 , (H
(y⃗))y⃗∈Bn⟩ − ⟨T (x).leaves, D⃗1⟩

Claim: D⃗1 is base (H(y⃗))y⃗∈Bn We first show that in the algebraic group model, we can
write D⃗1 base H(y⃗). Consider the following check:∑

x⃗∈Bn

e(D
(x⃗)
1 ,V(x⃗)) = e(C1,V

′)

Note that, V(x⃗) contains a factor of τ (x⃗). The only elements that contain this factor in G1

are the H((⃗i),(⃗j)) generators. Thus, C1 can only be written base H(⃗i,⃗j). Otherwise, we can
break the discrete logarithm assumption. Conversely, this implies that each D

(x⃗)
1 must be

written base H(⃗i), i.e. D
(x⃗)
1 = ⟨f⃗ (x), (H(⃗i))⃗i∈Bn

⟩. This proves the claim. Given this, we can
write

⟨T (x).leaves, D⃗1⟩ =
∑

x⃗∈Bn
T (x).leaves · ⟨f⃗ (x), (H(⃗i))⃗i∈Bn

⟩
= ⟨
∑

x⃗∈Bn
T (x).leaves · f⃗ (x), (H(⃗i))⃗i∈Bn

⟩

0 = ⟨T (error)
x ||T (error)

y ||⟨f⃗∗
1 , T (y).leaves⟩ − z1, K⃗||K′⟩+ ⟨f⃗∗

1 −
∑

x⃗∈Bn
T (x).leaves · f⃗ (x), (H(⃗i))⃗i∈Bn

⟩

We can split this equation into ⟨T (error)
x ||T (error)

y ||⟨f⃗∗
1 , T (y).leaves⟩ − z1, K⃗||K′⟩ = 0 and

⟨f⃗∗
1 −

∑
x⃗∈Bn

T (x).leaves · f⃗ (x), (H(⃗i))⃗i∈Bn
⟩ = 0 or we can break the dlog assumption as the

left side of the product is a polynomial that vanishes at the logarithms of the group elements
in K⃗. Then, we have that that Eq.(3) in Fig. 2 is satisfied since f∗(y⃗1) = ⟨f⃗∗

1 , T (y1).leaves⟩ =
z1. Also, 0 = ⟨f⃗∗

1 , (H
(y⃗))y⃗∈Bn⟩ = ⟨T (x).leaves, D⃗1⟩, representing Eq. (2) in Fig. 2. Finally,

from above we have that Eq.(1) is also satisfied. Then, it is enough for Extacc to run ExtKZH.

45

C Higher dimension PCS for smaller deciders

We extend KZH-2 to a higher dimensional polynomial commitment which has a more effi-
cient verifier and smaller proof size. This results in a smaller accumulator and more efficient
decider. In particular, we generalize the 2-dimensional KZH-2, which can be viewed as a
vector-matrix-vector product to higher dimensional tensor products. This reduces the PC
verifier from

√
n to n1/k. Note that in order to build efficient accumulation for a multilinear

PCS we need to expand a short evaluation point x⃗ into long vectors, which correspond to
eq(x⃗, b⃗) for b⃗ ∈ H ⊂ F. This transformation is equivalent to the one in KZH-2, and we omit
it here for ease of presentation.

C.1 KZH-k

Notation. We denote the space of n dimensional tensors with dimensions (d1, d2, . . . , dn)
on field F with Fd1×d2×···×dn . For T ∈ Fd1×d2×···×dk and x⃗1 ∈ Fd1 , we denote tensor inner
product as

⟨T, x⃗1⟩ = ⟨T1, x⃗1⟩ ⊗T2 ⊗ . . .⊗Tk.

Note that the result is a tensor in Fd2×···×dk . Similarly for x⃗1 ∈ Fd1 and x⃗2 ∈ Fd2 , ⟨T, x⃗1 ⊗
x⃗2⟩ = ⟨⟨T, x⃗1⟩, x⃗2⟩ ∈ Fd3×···×dk .

Protocol description. We construct a commitment scheme for such tensors, where T
represents the polynomial that can be opened at evaluation point (x⃗1, . . . , x⃗k) for x⃗j ∈ Fdj

as:
⟨⟨⟨⟨T, x⃗1⟩, x⃗2⟩, . . . , x⃗k−1⟩, x⃗k⟩ = y ∈ F.

The scheme admits an efficient accumulation scheme, and is general enough to support
multilinear and univariate polynomial commitments. Compared to two-dimensional KZH,
the tradeoff is that the accumulator instance and verifier are of size k, but the accumulation
witness is of size n

1
k . The core insight is that we commit to C = ⟨T, µ⃗1 ⊗ µ⃗2 · · · ⊗ µ⃗k⟩ × G,

for secret elements µ⃗1, . . . , µ⃗k and group generator G, and open [Ci]
k
i=1, commitments to all

k − 1 dimensional slices of T. The verifier can check that these slices are correct using a
pairing with µ⃗1 and compute C′ = ⟨(C1, . . . ,Ck), x⃗1, ⟩. C′ is now a commitment to the k−1
dimensional tensor T1 = ⟨T, x⃗1⟩ and we can recursively apply the scheme. We present the
full protocol for degree [d]k := (d, d, . . . , d) tensor in Figure 11.

Efficiency. The commitment size is a single G1 element. The commitment time is domi-
nated by an MSM of size n for tensors of size n. Part of the opening can be preprocessed,
as with KZH-2, reducing the opening time to the tensor product plus O(n1/2) group opera-
tions. Concretely, the prover will compute commitments to f(X⃗, b⃗) for all b⃗ ∈ {0, 1}log(n)/2.
Using these the first log(n)/2 steps of the opening proof can be computed in time O(

√
n).

The second half of the opening proof can also be computed efficiently using f(α⃗, X⃗) for the

46

partial evaluation point α⃗ ∈ Flog(n)/2. The proof size is (k − 1) · n1/k G1 elements, as well
as n1/k field elements. The verification time is O(k · n1/k) and dominated by k − 1 pairing
products of size n1/k.

47

KZH(k).Setup(λ, d, k):

• Sample G←$ G1,V←$ G2 and [[µi,j]
d
i=1]

k
j=1 ←$ F

• H1 = {Hi1,...,ik ← (
k∏

j=1

µis,j)× G : ∀i1, . . . , ik ∈ [d]}

• H2 = {Hi2,...,ik ← (
k∏

j=2

µij ,j)× G : ∀i2, . . . , ik ∈ [d]}

• . . .

• Hk = {Hik ← µik,k × G : ∀ik ∈ [d]}
• V = {Vi,j ← µi,j × V : ∀i ∈ [d], j ∈ [k]}
• Output (G,V,H1,H2, . . . ,Hk,V)

KZH(k).Commit(srs,T): For T ∈ Fd×d×···×d, compute the commitment as it follows:

• Output C← ⟨T,H1⟩ =
∑

(i1,i2,...,ik)∈[d]k Ti1,i2,...,ik × Hi1,i2,...,ik

KZH(k).Open(srs,C,T, x⃗1, . . . , x⃗k): Given commitment C ∈ G1, tensor T ∈ Fd×d×···×d and
inputs x⃗j ∈ Fd, compute opening as it follows:

• Let T1 = T

• For j = 1, . . . , k − 1:

– Set Tj+1 ← ⟨Tj , x⃗j⟩
– Compute vector D⃗j e.g. Dj [i] ← ⟨⟨i⟩ ⊗ Tj , Hj+1⟩ for all i ∈ [d], where ⟨i⟩

represents decomposition of i into d bits.

• Output π ← {[D⃗j]j∈[k−1], Tk}

KZH(k).Verify(srs,C, [x⃗j]j∈[k], y, π): Given commitment C ∈ G1, inputs x⃗j ∈ Fd, output y ∈ F
and opening proof π, does as it follows:

• Parse {[D⃗j]j∈[k−1], Tk} ← π

• Set C0 = C

• For j ∈ 1, . . . , k − 1

1. Check that e(Cj−1,V) =
∑d

i=0 e(Dj [i],Vi,j)

2. Compute Cj ← ⟨x⃗j , D⃗j⟩
• Check that Ck−1 = ⟨Tk,Hk⟩
• Check that ⟨Tk, x⃗k⟩ = y

Figure 11: KZH-k description

48

Theorem 5. The protocol in Figure 11 is a complete and knowledge-sound polynomial
commitment scheme in the AGM under the dlog assumption.

Proof.

Completeness. Consider honestly generated C, [Cj]
k
j=1. For the first check, note that

e(C0,V) = e(⟨T,H1⟩,V) by construction of C. On the other hand,

d∑
i=0

e(D1[i],Vi,1) =
d∑

i=0
e(⟨⟨i⟩ ⊗T1,H2⟩, µi,1 × V) =

d∑
i=0

e(⟨⟨i⟩ ⊗T1, µi,1 ×H2⟩,V)

= e(⟨T1,H1⟩,V)

and since T1 = T, the verifier accepts. For the general case,

e(Cj−1,V) = e(⟨D⃗j−1, x⃗j−1⟩,V) = e(
d∑

i=1
D⃗j−1[i]x⃗j−1[i],V)

= e(
d∑

i=1
⟨⟨i⟩ ⊗Tj−1, Hj⟩x⃗j−1[i],V) = e(

d∑
i=1
⟨⟨x⃗j−1,Tj−1⟩, Hj⟩,V)

= e(⟨Tj , Hj⟩,V) =
d∑

i=1
e(⟨Tj , Hj+1⟩,Vi,j)

=
d∑

i=1
e(Dj [i],Vi,j).

In the second verification equation we have:

Ck−1 = ⟨x⃗k−1, D⃗k−1⟩ =
d∑

i=1
D⃗k−1[i]x⃗k−1[i]

=
d∑

i=1
⟨⟨i⟩ ⊗Tk−1, Hk⟩x⃗k−1[i] =

d∑
i=1
⟨⟨Tk−1, x⃗k−1⟩, Hk⟩

= ⟨Tk,Hk⟩.

And since the third check follows directly, we have that the verifier accepts.

Knowledge soundness. Let A be a PPT adversary that on input srs outputs a com-
mitment C. We define an extractor E that outputs p(X⃗1, . . . , X⃗k) such that, for any tuple
((x⃗1, . . . , x⃗k), y, π), accepted by the verifier, p(x⃗1, . . . , x⃗k) = y with overwhelming probabil-
ity. Under the AGM, we assume A is algebraic and thus A outputs C along with {c⃗r}kr=1

such that:

C =

k∑
r=1

⟨c⃗r,Hr⟩

49

E outputs p(X⃗1, . . . , X⃗k) = (c⃗1, . . . , c⃗k)⊗ (X⃗1, . . . , X⃗k). Under the AGM, E does not abort.
Similarly, under the AGM we have that there exist [d⃗ri,j]

k
r=1 such that for all i, j:

Dj [i] =

k∑
r=1

⟨d⃗ri,j ,Hr⟩

Because the verifier accepts, we have that all their checks are satisfied. In particular, for C
and all [D1[i]]

d
i=0:

e(C,V) =
d∑

i=1

e(D1[i],Vi,1)

Replacing by the extracted C,D1[i] and the form of Vi,1, we have

e

(
k∑

r=1

⟨c⃗r,Hr⟩,V

)
=

d∑
i=1

e

(
k∑

r=1

⟨d⃗ri,1,Hr⟩, µi,1 × V

)
Then,

(1) It must be the case that c⃗r = 0 for all r ̸= 1 or we can calculate the discrete logarithm
relation between H2, . . . ,Hk and [Vi,1]

d
i=1, breaking the dlog assumption. Similarly,

we have d⃗ri,1 = 0 for all r > 2 or we can find the discrete log relation between H2 and
H3, . . . ,Hk.

(2) Also, d⃗1i,1 = 0 or we can extract (µ2
i,1

∏
j ̸=1 µi,j)× G, breaking CDH.

(3) Finally, we have that each D1[i] is base [Hii3...ik]i3,...,ik∈[d], i.e., D1[i] = ⟨d⃗2i,1, µi,2×H3⟩,
or we can find the discrete log relation between µi,1 × µs,2 ×H3 and H1 for s ̸= i.
This implies (d⃗2i,1)s = 0 for all s ̸= i.

The equation then is

e
(
⟨c⃗1,H1⟩,V

)
=

d∑
i=1

e
(
⟨d⃗2i,1,H2,i⟩, µi,1 × V

)
which implies c⃗1 =

∑d
i=1 d⃗

2
i,1. Indeed, if there exists s ∈ [k] such that cs ̸= d2s,1, µs,1 is a

root of the polynomial csX − d2s,1X and we can find it, breaking dlog. In the general case,
for every j = 2, . . . , k we have:

e (Cj ,V) =
d∑

i=0

e (Dj+1[i], µi,j+1 × V)

50

for Cj = ⟨x⃗j , D⃗j⟩. Then, if Dj = ⟨d⃗j ,Hj⟩, it must be the case that Dj+1 = ⟨d⃗j+1,Hj+1⟩,
with d⃗j+1

s = 0 fro all s ̸= j + 1 or we break dlog as in item (1) and (3), and CDH as in (2)
above. By induction, we have Dj = ⟨d⃗j ,Hj⟩ for all j = 1, . . . , k., Finally, we have

e
(
⟨x⃗j , D⃗j⟩,V

)
=

d∑
i=0

e
(
⟨d⃗j+1

i ,Hj+1⟩, µi,j+1 × V
)

And thus

⟨x⃗j , ⟨d⃗j ,Hj⟩⟩ = ⟨
d∑

i=0

d⃗j+1
i ,Hj+1⟩

So
∑d

i=0 d⃗
j+1
i = x⃗j ⊗ d⃗j , This implies Tk = x⃗k−1 ⊗ . . . ⊗ x⃗1 ⊗ c⃗ and thus y = x⃗k ⊗ Tk

implies y = p(x⃗1, . . . , x⃗k) for the polynomial p(X⃗1, . . . , X⃗k) encoded in C and we conclude
the proof.

C.2 KZH-k accumulation

We now construct an accumulation scheme for KZH-k. In particular, we focus on the case
where the tensor T is a multilinear polynomial. At a high level, the KZH-k verifier is still
low degree and algebraic, and therefore, we can apply the same accumulation strategy as
in the two-dimensional case. Importantly, the accumulator size and the decider time are
reduced to O(k · n

1
k). The accumulation verifier performs O(k) G1 operations. For a k · d-

linear polynomial, the accumulator instance and witness can be described as it follows: (red
terms only appear in accumulators not proofs)

acc.x = {C, C1, . . . ,Ck−1 ∈ G, x⃗1, . . . , x⃗k ∈ Fd, y ∈ F, EG ∈ G, eF ∈ F}

acc.w = {[Di,j]j∈[k−1], i∈[0,d],Tk ∈ Fd}

The accumulation prover, verifier and decider of KZH-k are respectively defined in Figures
12 and 13.

Efficiency. The accumulator consists of the PCS proof and is of size O(k · n1/k). The
accumulation decider runs the PCS verifier and is dominated by k−1 n1/k pairing products
and the accumulation verifier is dominated by k + 1 G1 operations.

51

Pacc(srs, (acc.x, acc.w), (acc
′.x, acc′.w)):

• Parse acc.x, acc.w and acc′.x, acc′.w as below:

– {C,C1, . . . ,Ck−1, (x⃗1, . . . , x⃗k, y), (EG, eF)} ← acc.x

– {{[Di,j]j∈[k−1], i∈[0,d], Tk} ← acc.w

– {C′,C′
1, . . . ,C

′
k−1, (x⃗

′
1, . . . , x⃗

′
k, y

′), (E′
G, e

′
F)} ← acc′.x

– {{[D′
i,j]j∈[k−1], i∈[0,d],T

′
k} ← acc′.w

• Let DecG and DecF be the verification checks as defined in Figure ??. Compute
Q ∈ G such that:

DecG
(
(1−X) · (x⃗j ,Cj , [Di,j]

d
i=0) +X · (x⃗′

j ,C
′
j , [D

′
i,j]

dj

i=0)
)

= (1−X)× Ej +X × E′
j + (1−X) ·X ×Q.

and q ∈ F such that

DecF
(
(1−X) · (Tk, x⃗k, y) +X · (T′

k, x⃗
′
k, y

′)
)

= (1−X) · eF +X · e′F + (1−X) ·X · q.

• Derive challenge α← H(acc.x, acc′.x,Q, q) through Fiat-Shamir.

• Compute

– C′′ ← (1− α)× C+ α× C′

– x⃗i
′′ ← (1− α) · x⃗i + α · x⃗i

′ for i ∈ [k]

– y′′ ← (1− α) · y + α · y′

– C′′
j ← (1− α)× Cj + α× C′

j for j ∈ [1, k − 1]

– D′′
i,j ← (1− α)× Di,j + α× D′

i,j for each j, i for i ∈ [k] and j ∈ [k − 1]

– E′′
G ← (1− α)× EG + α× E′

G + (1− α) · α×Q

– e′′F ← (1− α) · eF + α · e′F + (1− α) · α · q
– T′′

k ← (1− α)×Tk + α×T′
k

• Output the new accumulator acc′′ = (acc′′.x, acc′′.w) and pf = {Q, q} as the accu-
mulation proof.

acc′′.x = {C′′, [C′′
j]j∈[k−1], [x⃗

′′
i]i∈[k], y

′′, [E′′
G, eF}

acc′′.w = {{[D′′
i,j]j∈[k−1], i∈[0,dj],T

′′
k}

Figure 12: KZH-k accumulation prover

52

Vacc(srs, acc.x, acc
′.x, pf = {Q ∈ G, q ∈ F}):

• Input acc.x, acc′.x and pf = {Q, q}.
• Regenerate challenge α← H(A.X,A′.X, pf)

• Compute

– C′′ ← (1− α)× C+ α× C′

– x⃗i
′′ ← (1− α) · x⃗i + α · x⃗i

′ for i ∈ [k]

– y′′ ← (1− α) · y + α · y′

– C′′
j ← (1− α)× Cj + α× C′

j for j ∈ [1, k − 1]

– E′′
G ← (1− α)× EG + α× E′

G + (1− α) · α×Q

– e′′F ← (1− α) · eF + α · e′F + (1− α) · α× q

• Output the new accumulator instance acc′′.x.

acc′′.x = {C′′, [C′′
j]j∈[k−1], [x⃗

′′
i]i∈[k], y

′′, E′′
G, e

′′
F}

Dacc(srs, acc.x, acc.w):

• Parse instance and witness as it follows:

– {C, (C1, . . . ,Ck−1), (x⃗1, . . . , x⃗k, y), EG, eF} ← acc.x

– {[D⃗j = [Di,j]i∈[0,d]]
k−1
j=1 , Tk} ← acc.w

• Set C0 ← C

• For each j ∈ [1, k − 1] check that

e(Cj−1,V)−
d∑

i=0

e(Di,j ,Vi,j) = 0

• Check that DecG([x⃗i]
k
i=1C, [Ci]

k−1
i=1 , [D⃗j ∈ Gd]k−1

j=1) =
∑k−1

j=1 (Cj − ⟨x⃗j , D⃗j⟩) = EG

• Check that ⟨Tk,Hk⟩ = Ck−1

• Check that DecF(x⃗k,Tk, y) = ⟨Tk, x⃗k⟩ − y = eF

Figure 13: KZH-k accumulation verifier and decider

Theorem 6. KZH-k-fold is a secure accumulation scheme, also under the dlog-assumption
in the algebraic group model.

Proof.

Completeness. Consider the following two satisfying accumulator instances:

• acc.x = {C,C1, . . . ,Ck−1, (x⃗1, . . . , x⃗k, y), (EG, eF)}

53

• acc.w = {{[Di,j]j∈[k−1], i∈[0,d], Tk}

• acc′.x = {C′,C′
1, . . . ,C

′
k−1, (x⃗

′
1, . . . , x⃗

′
k, y

′), (E′
G, e

′
F)}

• acc′.w = {{[D′
i,j]j∈[k−1], i∈[0,d],T

′
k}

It is straightforward to see that honest Pacc and Vacc output the same acc′′.x as they follow
the same instructions. Then it is left to see that on input (acc′′.x, acc′′.w) computed by an
honest prover, Dacc always accepts. For each j ∈ [1, k − 1]:

e(C′′
j−1,V) = e

(
(1− α)× Cj−1 + α× C′

j−1,V
)
= (1− α)× e (Cj−1,V) + α× e

(
C′
j−1,V

)
= (1− α)×

∑d
i=0 e (Di,j ,Vi,j) + α×

d∑
i=0

e
(
D′
i,j ,Vi,j

)
=

d∑
i=0

e
(
(1− α)× Di,j + α× D′

i,j ,Vi,j

)
=

d∑
i=0

e
(
D′′
i,j ,Vi,j

)
so the first equation holds. For the second check, we have:

DecG([x⃗i]
k
i=1,C

′′, [C′′
i]

k−1
i=1 , [D⃗

′′
j]

k−1
j=1)

= DecG([x⃗i]
k
i=1, (1− α)× C+ α× C′, [(1− α)× Ci + α× C′

i]
k−1
i=1 , [(1− α)× D⃗j + α× D⃗′

j]
k−1
j=1)

= (1− α)× EG + α× E′
G + (1− α)α× Q = E′′

G

by construction of Q. The third equation verifies as

⟨T′′
k,Hk⟩ = ⟨(1− α)×Tk + α×T′

k,Hk⟩ = (1− α)× ⟨Tk,Hk⟩+ α× ⟨T′
k,Hk⟩

= (1− α)× Ck−1 + α× C′
k−1 = C′′

k−1.

Finally, by definition of e′′F

DecF(x⃗
′′
k,T

′′
k, y

′′) = ⟨T′′
k, x⃗

′′
k⟩ − y′′

= ⟨(1− α)eF + αe′F + (1− α) + (1− α)αq
= e′′F,

and Dacc outputs 1, concluding the proof of completeness.

Knowledge soundness. Consider an adversary A that outputs π̂ = (π.x, π.w), ˆacc′′ =
(acc′′.x, acc′′.w), p̂f ∈ G1 × F and acc.x, acc′.x. We build an extractor Extacc such that if
Vacc and Dacc accept, extracts valid witnesses acc.w, acc′.w for acc.x, acc′.x. Since acc′′.w
is an equation of degree one, given two accepting transcripts for different challenges α1, α2,
Extacc can use the Vandermonde matrix to extract

acc.w = {{[Di,j]j∈[k−1], i∈[0,d], Tk}, acc′.w = {{[D′
i,j]j∈[k−1], i∈[0,d],T

′
k}.

54

Since Dacc(acc
′′.x, acc′′.w) accepts, we have the first check passes, i.e., e(C′′

j−1,V) =
∑d

i=0 e
(
D′′
i,j ,Vi,j

)
.

We analyze each side of the equation independently:

e(C′′
j−1,V) = e

(
(1− α)× Cj−1 + α× C′

j−1,V
)
= (1− α)× e (Cj−1,V) + α× e

(
C′
j−1,V

)
d∑

i=0
e
(
D′′
i,j ,Vi,j

)
=

d∑
i=0

e
(
(1− α)× Di,j + α× D′

i,j ,Vi,j

)
= (1− α)×

d∑
i=0

e (Di,j ,Vi,j) + α×
d∑

i=0
e
(
D′
i,j ,V

′
i,j

)
Since α is computed as a hash of acc.x and acc′.x, except with negligible probability
e (Cj−1,V) −

∑d
i=0 e (Di,j ,Vi,j) = 0 and e

(
C′
j−1,V

)
−
∑d

i=0 e
(
D′
i,j ,V

′
i,j

)
= 0. Similarly,

replacing the accumulation witness by the extracted ones, we have that Eq.(ii)’s left side is

∑k−1
j=1(C

′′
j − ⟨x⃗′′j , D⃗′′

j ⟩) =
∑k−1

j=1((1− α)Cj + αC′
k − ⟨(1− α)x⃗j + αx⃗′j , (1− α)D⃗j + αD⃗′

j⟩)

whereas from the verifier’s output we have that the right side equals (1−α)×EG+α×E′
G+

(1− α) · α× Q. Because α is computed as a hash of acc.x and acc′.x we have that except
with negligible probability the equation hold for any X and, in particular, when X = 1
we got

∑k−1
j=1 Cj − ⟨x⃗j , D⃗j⟩ = EG and for X = 0,

∑k−1
j=1 C

′
j − ⟨x⃗′j , D⃗′

j⟩ = E′
G. With identical

reasoning, we have that ⟨Tk, x⃗k⟩ − y = eF and ⟨T′
k, x⃗

′
k⟩ − y′ = e′F. Finally,

⟨T′′
k,Hk⟩ = ⟨(1− α)Tk + αTk,Hk⟩ = (1− α)⟨Tk,Hk⟩+ α⟨T′

k,Hk⟩
C′′
k−1 = (1− α)Ck−1 + αC′

k−1

which, as above, implies Ck−1 = ⟨Tk,Hk⟩, and C′
k−1 = ⟨T′

k,H
′
k⟩ except with negligible

probability. We conclude the extracted acc.w and acc′.w are valid witnesses. We now
prove that if EG = eF = 0, we can extract a valid opening to c⃗. That is, (acc.x, acc.w)
is a valid pair for the predicate Φ. Note that the first check by the decider is the same
as KZH′s verifier first check. Following above, from the second check we can extract that∑k−1

j=1 Cj − ⟨x⃗j ,Dj⟩ = EG = 0. Since Dj is base Hj , we have that Cj − ⟨x⃗j ,Dj⟩ = 0 for
all j ∈ [k]. Finally, the last check is ⟨Tk, x⃗k⟩ = y, and we have extracted satisfying KZH
verifier checks, and thus can extract p(X⃗1, . . . , X⃗k) such that p(x⃗1, . . . , x⃗k) = y.

55

D Simple accumulatable R1CS PIOP

We use the Spartan NIZK to reduce R1CS to an accumulation scheme. Let A,B,C ∈ Fn×m

be the R1CS matrices and subsequently define µn = log2(n) and µm = log2(m). Further,
let Ã(X,Y) ∈ F[X1, . . . , Xµn , Y1, . . . , Yµm] be the multi-linear extension of A and similarly
define B̃, C̃ for B,C respectively. Then, given a random challenge r⃗ ∈ Fµn , the prover and
verifier run a sumcheck protocol for the following equation:∑

bx∈{0,1}µn
eq(r⃗, bx) · f(bx) = 0

for f(bx) := Ãz(bx) · B̃z(bx) − C̃z(bx), in which Ãz(bx) =
∑

by∈{0,1}µm Ã(bx, by) · z̃(by).
Spartan [Set20] gives an efficient protocol for this sumcheck. To accumulate it, we need
to accumulate the evaluations of Ã, B̃, C̃, z. For the latter, which includes the witness, we
can use the KZH-fold protocol. For Ã, note that we need to accumulate the evaluations of
the same multilinear polynomial at multiple evaluation points, i.e. Ã(r

(1)
x , r

(1)
y) = z(1) and

Ã(r
(2)
x , r

(2)
y) = z(2). This can be done easily using a simple random linear combination. We

present an accumulation scheme in Figure 14 for relation RÃ, i.e. Ã ∈ MLP(F, µn+µm) as
defined below:

RÃ = {(rx ∈ Fµn , ry ∈ Fµm , z ∈ F) : Ã(rx, ry) = z}

56

PABC(Ã, (r
(1)
x , r

(1)
y , z(1)), (r

(2)
x , r

(2)
y , z(2))):

• Given two satisfying instances (r
(1)
x , r

(2)
y , z(1)), (r(2)x , r

(2)
y , z(2)) ∈ RÃ

• Prover computes q(X) in the following polynomial identity where q(x) is a poly-
nomial of degree µ+ ν − 2.

Ã((1−X) · rx +X · r′x, (1−X) · ry +X · r′y)
= (1−X) · z +X · z′ + (1−X) ·X · q(X)

Note q(X) can be computed directly through polynomial interpolation by evalu-
ating the identity above with different X values.

• Derive challenge

α← H((r(1)x , r(2)y , z(1)), (r(2)x , r(2)y , z(2)), q(X))

• Compute the accumulated instances as follows:

rx ← (1− α) · r(1)x + α · r(2)x ry ← (1− α) · r(1)y + α · r(2)y

z ← (1− α) · z(1) + α · z(2) + α · (1− α) · q(α)

• Output accumulated instance (rx, ry, z) along with accumulation proof q(x)

VABC((r
(1)
x , r

(1)
y , z(1)), (r

(2)
x , r

(2)
y , z(2)), q(X)):

• Derive challenge α← H((r
(1)
x , r

(2)
y , z(1)), (r

(2)
x , r

(2)
y , z(2)), q(X))

• Compute the accumulated instances as it follows:

rx ← (1− α) · r(1)x + α · r(2)x ry ← (1− α) · r(1)y + α · r(2)y

z ← (1− α) · z(1) + α · z(2) + α · (1− α) · q(α)

• Output accumulated instance (rx, ry, z)

DABC(Ã, (rx, ry, z)): Compute z′ ← Ã(rx, ry) and assert z
?
= z′

Figure 14: Matrix evaluation accumulation description

57

E Non-Uniform IVC

Background. Non-uniform IVC [KS22b] extends the definition of IVC by allowing each
step to execute one of several predefined instructions F1, F2, . . . , Fk instead of a single
instruction F . Previously, non-uniform IVC was implemented using a universal circuit that
contains subcircuits for all instructions Fi. This circuit evaluates all subcircuits and selects
the correct output based on the program counter. However, this approach is inefficient
because the prover must perform computations for every instruction, even though only one
instruction is needed at each step and the witness size of the universal circuit scales linearly
with the sum of the witness size of all instructions, making it non-ideal both computation-
wise and memory-wise

Previous work. SuperNova [KS22b] introduced a more efficient method where the step
circuit maintains a running accumulator Ui (a relaxed committed R1CS instance) for each
instruction Fi. When receiving a new fresh accumulator instance ui, the prover uses mem-
ory techniques (e.g. a Merkle tree or offline memory techniques [Blu+91]) to select the
appropriate running accumulator Ui. Next, the prover accumulates Ui with ui. This ap-
proach ensures the computational effort corresponds only to the selected instruction, but
the witness size grows linearly with the sum of the witness sizes for all instructions Fi.

Protostar [BC23] offers a similar improvement, leveraging the fact that committing to
zeros with Pederson commitment incurs no additional cost. While it also reduces compu-
tational overhead, like SuperNova, it still requires the prover to manage a witness size that
scales linearly with the sum of all instruction witnesses. Another drawback, Protostar’s
approach unlike SuperNova is dependent on Pederson being homomorphic and may not be
compatible with hash-based polynomial commitment schemes.

Our approach. We observe polynomial accumulation offers more flexibility than circuit-
specific accumulation. For example, each polynomial of degree d < D, can be seen as a
polynomial of degree D by simply assuming the coefficients of xd+1, xd+2, . . . , xD are zero.
As a result, given an accumulation scheme for a polynomial of degree D, different polyno-
mials of degree di < D can be accumulated by considering them as degree D. Supernova
directly translates each circuit as an R1CS instance and since two different R1CS instances
cannot be accumulated, the prover reqquires to keep one running accumulator for each
different instruction Fi. However, similar to our IVC approach in Section 4.2, we leverage
Spartan PIOP to translate each instruction Fi as polynomials. Recalling Appendix D, to
accumulate circuit Fi, we need to accumulate polynomial ωi(·) corresponding to the R1CS
witness and matrix evaluations of Ai, Bi and Ci, corresponding to the R1CS construction
of Fi. Similar to Section 4.2, we take two different strategies to handle the accumulation
of witness polynomial ωi(·) and matrices evaluations. For each Fi, assume that its witness
polynomial is of degree di. We consider a running polynomial of degree di < D, and in each

58

step accumulate ωi(·) with this running PCS accumulator. However, the same strategy
cannot be applied to matrix evaluations. Accumulating different Ai, Bi, and Ci evaluations
via PCS accumulation is impractical because the resulting accumulated matrices may not
be sparse. This would lead to matrices with O(kn) non-zero elements instead of O(n). To
address this, we adopt an approach similar to SuperNova’s to handle matrix evaluations
efficiently.

Let us revisit the matrix evaluation accumulator (VABC), displayed in Figure 5. In
uniform IVC, the circuit keeps three running matrix evaluation accumulator instances
{(r(M)

x , r
(M)
y), z(M)} for M ∈ {A,B,C}, i.e. M̃(r

(M)
x , r

(M)
y) = z(M). And accumulates

them with the next incoming instances, as described in Figure 14. The matrix evaluation
accumulator circuit is relatively efficient: given an input polynomial q(x) (logarithmic in
size relative to the original R1CS), the circuit hashes q(x) to derive randomness r, evaluates
q(r), and performs a series of random combinations. Consequently, the witness size of the
matrix evaluation accumulator circuit is O(|r(M)

x | + |r(M)
y |), which means it is logarithmic

in the size of the original instruction F . To accumulate matrix evaluations corresponding
to different instructions Fi, we take a similar strategy to SuperNova. The prover keeps
k accumulators {(r(M,i)

x , r
(M,i)
y), z(M,i)} for 1 ≤ i ≤ k, each corresponding to instruction

Fi. Using memory techniques, at each step, the circuit selects the correct accumulator
instances and performs the accumulation as described in Figure 14. Intuitively, we have
reduced the prover’s job, from storing a running accumulator corresponding to Fi, to only
storing matrix inputs and evaluations, which is exponentially smaller in size. As a result,
we reduce the witness size of the circuit to maxi |Fi| +

∑
i log |Fi|, compared to

∑
i |Fi| in

previous approaches.

59

	Introduction
	KZH polynomial commitment scheme
	Sublinear accumulation schemes
	Signature aggregation in consensus
	Contributions
	Additional related work

	Technical Overview
	Preliminaries
	Notation
	Polynomial commitment schemes
	Accumulators
	Incrementally verifiable computation
	IVC from accumulators

	KZH: An efficiently aggregatable polynomial commitment
	Accumulator
	An IVC scheme from KZH
	Non-uniform IVC

	PIOP for signature aggregation protocol
	Implementation and efficiency
	Efficiency of KZH
	Comparison with Halo Infinite
	Comparison with Nova
	Comparison with BLS aggregation

	Deferred definitions
	Signature schemes

	Deferred proofs
	Proof of theorem 1
	Proof of theorem 2

	Higher dimension PCS for smaller deciders
	KZH-k
	KZH-k accumulation

	Simple accumulatable R1CS PIOP
	Non-Uniform IVC

