
hax: Verifying Security-Critical Rust Software
using Multiple Provers

Karthikeyan Bhargavan1, Maxime Buyse1, Lucas Franceschino1, Lasse Letager
Hansen2, Franziskus Kiefer1, Jonas Schneider-Bensch1, and Bas Spitters2

1 Cryspen, France
2 Aarhus University, Denmark

Abstract. We present hax, a verification toolchain for Rust targeted at
security-critical software such as cryptographic libraries, protocol imple-
mentations, authentication and authorization mechanisms, and parsing
and sanitization code. The key idea behind hax is the pragmatic obser-
vation that different verification tools are better at handling different
kinds of verification goals. Consequently, hax supports multiple proof
backends, including domain-specific security analysis tools like ProVerif
and SSProve, as well as general proof assistants like Coq and F*. In this
paper, we present the hax toolchain and show how we use it to translate
Rust code to the input languages of different provers. We describe how
we systematically test our translated models and our models of the Rust
system libraries to gain confidence in their correctness. Finally, we briefly
overview various ongoing verification projects that rely on hax.

1 Verifying Security-Critical Software

A software component is deemed security-critical if any bug or design flaw in it
could be exploited by an attacker to break the security of the larger system it is
a part of. This definition generally includes any code that performs operations
whose inputs are partially or completely controlled by the adversary, such as
code that processes packets received over an untrusted network, or code that
handles an unauthenticated API call. An attacker may use the public-facing
interfaces of such components to craft inputs that cause memory errors, break
internal code invariants, bypass security mechanisms, and steal secrets through
public interfaces or covert side-channels.

Modern software applications typically rely on a number of security-critical
components, such as cryptographic libraries, protocol implementations, parsing
and sanitization code, authentication and authorization mechanisms, etc. For
example, every Web application relies on an implementation of the Transport
Layer Security (TLS) protocol [42], which contains cryptography, protocol state
machines, message parsing, and X.509 certificate-based authentication. All of
this code becomes part of the trusted computing base of the application, and
any bug in this code typically result in a high-profile vulnerability and expensive
security updates. Consequently, this kind of code is usually separately audited by
security experts and comprehensively tested and fuzzed before being deployed.

2 K. Bhargavan et al.

Formal Verification: Challenges. Given the high cost of failure, security-
critical software components would, in principle, be excellent candidates for the
high levels of assurance provided by formal verification and machine-checked
proofs, but they come with their own unique challenges.

First of all, many security-critical components need to operate with high
privileges, e.g. within operating system kernels or deep within web servers, so
that they can have direct access to network buffers or to internal security mech-
anisms. Furthermore, they need to execute efficiently with minimal overhead,
both in terms of processing time and memory usage, so that the attacker cannot
overwhelm the system with junk inputs. For both these reasons, security-critical
components are typically written in low-level languages like assembly or C with
many platform-specific optimizations for different target architectures.

Second, these components often build upon advanced cryptographic mech-
anisms and protocols that require significant domain expertise to program and
to analyze. Cryptographic algorithms rely on efficient implementations of math-
ematical structures like elliptic curves and lattices that are heavily optimized
using single-instruction multiple data (SIMD) parallelization on different plat-
forms. Protocol implementations embed complex state machines that interleave
cryptographic operations with network actions and parsing code.

Consequently, to verify (say) a typical implementation of TLS, we need tools
that can handle a wide range of tasks: we need to prove that its low-level assembly
or C code is memory safe, that it is functionally correct with respect to some
high-level mathematical specification, and that it meets its security goals against
the class of attackers defined by its threat model. Although many verification
tools have been developed to address subsets of these tasks, no single tool is
suited to handle all of them and verifying large, complex systems remains a big
challenge.

Formal Verification: Approaches. A whole field of study, sometimes called
computer-aided cryptography [9], is devoted to the formal analysis of crypto-
graphic designs and implementations, using both general-purpose software ver-
ification tools and domain-specific proof tools like symbolic protocol analyz-
ers [15,11,18] and computational cryptographic provers [14,10,7,27].

The most successful projects in this area build customized tools for different
proof tasks and link them within a single verification framework. For example,
the F∗ verification framework [43] has been used to implement the HACL∗ ver-
ified cryptographic library [46], to build verified zero-copy binary parsers [41],
and to perform cryptographic security proofs for a TLS implementation [20]. The
code for all of these is written in a carefully designed subset of F∗, verifies us-
ing custom proof libraries, and then compiled to low-level languages like C [40]
and WebAssembly [39]. Similar projects link verified cryptographic assembly
code written in the Jasmin language [3] with high-level security proofs in Easy-
Crypt [10], or verified C code in Coq [23] with security proofs in SSProve [27],
or verified JavaScript code with proofs in ProVerif and CryptoVerif [13].

Code verified using some of these projects have been widely deployed in main-
stream software projects like Google Chrome, Mozilla Firefox, Linux, Python,

hax: Verifying Secure Rust Software 3

WireGuard, etc. However, the key to their success, and also their main limita-
tion, is that they are self contained and do not attempt to verify code written
by programmers. Instead, all these projects target code written by verification
researchers that are then compiled to C or assembly code that can be deployed
by regular software developers who never have to see the proofs. Furthermore,
the verification itself relies on deep expertise in the tools used and often takes
years of effort by teams of researchers. So, while these projects show what can
be done, their methods cannot scale to real-world projects driven by developers.

A key roadblock is that although several frameworks are capable of formally
verifying security critical C, e.g. [32,5], and assembly, e.g. [3,16,38], however much
of the time and effort for verification is usually spent in proving properties like
memory safety, leaving little appetite for verifying higher-level correctness and
security guarantees. Furthermore, even if one such component is fully verified,
the lack of memory safety and isolation in the overall system means that any
bug in another (seemingly non-security-critical) C or assembly component can
break all our carefully obtained verification guarantees, by accidentally reading
or overwriting the memory used by the verified code.

hax: Verifying Secure Rust Code. The advent of memory-safe systems-
oriented languages like Rust has made it possible to write high-assurance high-
performance code where memory safety for large swathes of code is automatically
ensured by the compiler itself, allowing the programmer and reviewer to focus
on higher-level properties of the code. For this reason, Rust is starting to be
used in many modern security critical projects3, operating systems4, and web
browsers 5. Governmental organizations [1], research institutions6, and industry
bodies7 all now heavily promote the use of memory safety languages like Rust.

There is also a vibrant community of formal verification tools for Rust
code [21,6,33,45,37,24,29]. Several of these tools explore the edges of the memory
safety guarantees of Rust, such as unsafe code blocks and panic freedom. Many
tools also support functional correctness reasoning via model checking or SMT
solvers or general proof assistants. As yet, none of these tools support security
analysis of cryptographic applications. Furthermore, all these tools are still rel-
atively young and only time will tell which techniques will be most effective on
real-world software.

In this paper, we present hax, a verification framework targeted towards
the formal verification of security-critical Rust software. The development of
hax began with hacspec [34], a domain-specific subset of Rust for writing and
analyzing specifications of cryptographic algorithms. Over time, hax has evolved
to support the development, specification, and verification of implementations
of more general security mechanisms written in idiomatic Rust.

3 https://cryptography.rs/
4 https://docs.kernel.org/rust/index.html
5 https://security.googleblog.com/2023/01/supporting-use-of-rust-in-chromium.
html

6 https://www.darpa.mil/program/translating-all-c-to-rust
7 https://www.memorysafety.org/

https://cryptography.rs/
https://docs.kernel.org/rust/index.html
https://security.googleblog.com/2023/01/supporting-use-of-rust-in-chromium.html
https://security.googleblog.com/2023/01/supporting-use-of-rust-in-chromium.html
https://www.darpa.mil/program/translating-all-c-to-rust
https://www.memorysafety.org/

4 K. Bhargavan et al.

The key features that drive the design of hax are:

– Support for multiple provers, including general-purpose proof assistants
and security-oriented analyzers for cryptographic code;

– Formal specifications for correctness and security embedded within the
source Rust code and translated to each proof backend;

– Formal Rust library model written and specified once in Rust and trans-
lated to each proof backend;

– Programmer-driven verification that allows the Rust programmer to
embed lemmas, annotations, and proofs within the Rust code and keep them
consistent as the code evolves;

– Translation validation via testing which allows the programmer and ver-
ification engineer to execute and test both the Rust code and the generated
models in various backends to gain assurance in the correctness of the hax
engine and library models.

In particular, hax does not promote a single verification framework and instead
makes it easy to add new proof backends for different target domains. At the
same time, hax takes charge of the technical tasks of processing and simplifying
the input Rust code, modeling the Rust standard libraries, and providing an
integrated development and verification environment for Rust developers that
scales.

2 hax: methodology and workflow

Figure 1 depicts the high-level architecture of the hax framework. The program-
mer provides a Rust crate containing some code and a formal specification for
the code written as pre- or post-conditions, invariants, assertions, or lemmas
within the source code. The user would typically also provide tests that can be
run on the code. When this crate is compiled, the Rust compiler translates the
Rust code to assembly, links it with the Rust standard library and any other
external crates the user may rely on, and produces an executable that runs the
tests.

The first phase of the hax toolchain is the hax frontend, which plugs into the
Rust compiler and uses it to parse and typecheck the source Rust code before
producing a fully annotated abstract syntax tree (AST) for the crate as a JSON
file. The frontend is capable of producing both the Typed High-Level Interme-
diate Representation (THIR) and the Mid-Level Intermediate Representation
(MIR) of Rust. Since the Rust compiler and its internal data structures evolve
fairly rapidly, the frontend takes on the responsibility of keeping track of com-
piler changes while producing a stable AST that other tools can use. As a result,
the hax frontend is an independently useful tool and is also used by other Rust
verification frameworks like Aeneas [28].

The second phase is the hax engine, which imports the Rust THIR AST for a
crate and transforms it via a sequence of phases to a simplified AST that can be

hax: Verifying Secure Rust Software 5

Fig. 1: hax architecture

directly translated to the input languages of various backends. We will describe
some of these phases in Section 3.

In the final phase, hax passes on the simplified program to the backend chosen
by the programmer. For example, if the programmer chooses F∗, the F∗ backend
of hax will generate a purely functional model of the source Rust code and its
specification in F∗. This model is then linked with F∗ models of the Rust standard
library (and any other external crates) and can be verified for panic freedom
and functional correctness against the high-level specification. Completing the
proof may require additional annotations, such as loop invariants, or calls to
mathematical lemmas. A verification failure may indicate an incomplete proof or
a bug in the source code. Other proof backends, such as ProVerif, are completely
automated and will either verify the code to produce a security theorem, or
generate a counter-example. We describe our current backends in Section 4.

6 K. Bhargavan et al.

We use hax to translate not just the user code, but also handwritten abstract
models of the Rust standard library from Rust to various backends. This allows
us to model the library once and automatically obtain consistent models for
each backend. Modeling the Rust standard library is an incremental, continuous
community-driven process. We currently support a few commonly-used libraries,
and allow the programmer to extend the library either in Rust or directly in
their chosen backend. More details on our model of the Rust libraries are given
in Section 5.

Our goal is for all these translations in the hax engine and backends to be well-
documented and auditable, but we notably do not yet provide formal guarantees
for their correctness, which would require us to formalize the semantics of the
source Rust and each target language in a proof framework. Instead, we aim
to provide pragmatic guarantees based on testing. The generated code for some
backends (such as F∗ and Coq [44]) is executable, so we can compile the tests
from the source code to the proof backend and run them to check that the
input-output behavior is the same. This gives us additional confidence in the
translation and in our model of the Rust standard library. We describe this
testing strategy in Section 6.

Several projects are using hax to formally verify real-world software. We
briefly mention some of these projects in Section 7.

The hax project is developed as a community-driven open source project and
all our code, libraries, and examples are available online at:

https://github.com/cryspen/hax

3 hax engine: Transforming and Simplifying Rust Code

The hax engine takes as its input the AST produced by the frontend, which
is close to the Rust THIR AST, except that all types, trait information, and
attributes are inlined. It then performs a series of passes on this AST, called
phases, that transform the Rust code to a simplified form that is suitable for
translation to a proof backend.

3.1 Input Rust AST

Figure 2e presents the input AST in extended Backus-Naur form (EBNF). This
figure captures the syntax of Rust as received by the hax engine from the fron-
tend. It includes all the familiar constructions from Rust, but does not include
features like macros that are eliminated by the Rust compiler.

Literals (literal) include strings, integers, booleans, and floating point num-
bers (although most of our backends do not have any support for floats).

Types (ty) include the Rust builtin types: characters, strings, booleans, inte-
gers (of size 8, 16, 32, 64, 128 bits or pointer-sized), and floats (16, 32, or 64 bit).
They also include composite types such as tuples, fixed length arrays, variable
length slices, function types, and named types defined by enums and structs. We
currently do not support raw pointer types or dynamic dispatch.

https://github.com/cryspen/hax

hax: Verifying Secure Rust Software 7

string ::= char*
digit ::= [0-9]
uint ::= digit+
int ::= ("-")? uint
float ::= int (".")? uint
bool ::= "true" | "false"

local_var ::= ident
global_var ::= rust-path-identifier

literal ::=
| "\"" string "\""
| "’" char "’"
| int
| float [d]
| bool

generic_value ::=
| "’" ident
| ty
| expr

goal ::=
| ident "<" (generic_value ",")* ">"

ty ::=
| "bool"
| "char"
| "u8" | "u16" | "u32" | "u64"
| "u128" | "usize"
| "i8" | "i16" | "i32" | "i64"
| "i128" | "isize"
| "f16" | "f32" | "f64" [d]
| "str"
| (ty ",")*
| "[" ty ";" int "]"
| "[" ty "]"
| "*const" ty | "*mut" ty [a]
| "*" expr | "*mut" expr [a]
| ident
| (ty "->")* ty
| dyn (goal)+ [d]

pat ::=
| "_"
| ident "{" (ident ":" pat ";")* "}"
| ident "(" (pat ",")* ")"
| (pat "|")* pat
| "[" (pat ",")* "]" [b]
| "&" pat
| literal
| ("&")? ("mut")? ident ("@" pat)? [c]

modifiers ::=
| ""
| "unsafe" modifiers
| "const" modifiers
| "async" modifiers [a]

guard ::=
| "if" "let" pat (":" ty)? "=" expr

expr ::=
| "if" expr "{" expr "}" ("else" "{" expr "}")?
| "if" "let" pat (":" ty)? "=" expr "{" expr "}" (
"else" "{" expr "}")?

| expr "(" (expr ",")* ")"
| literal
| "[" (expr ",")* "]" | "[" expr ";" int "]"
| ident "{" (ident ":"expr ";")* "}"
| ident "{" (ident ":"expr ";")* ".." expr "}"
| "match" expr guard "{"

(("|" pat)* "=>" (expr "," | "{" expr "}"))*
"}"

| "let" pat (":" ty)? "=" expr ";" expr
| "let" pat (":" ty)? "=" expr "else" "{" expr "}"

";" expr
| modifiers "{" expr "}"
| local_var
| global_var
| expr "as" ty
| "loop" "{" expr "}" [e]
| "while" "(" expr ")" "{" expr "}" [e]
| "for" "(" pat "in" expr ")" "{" expr "}" [e]
| "for" "(" "let" ident "in" expr ".." expr ")" "{
" expr "}" [e]

| "break" expr
| "continue"
| pat "=" expr
| "return" expr
| expr "?"
| "&" ("mut")? expr [c]
| "&" expr "as" "&const _" [a]
| "&mut" expr "as" "&mut _"
| "|" pat "|" expr

impl_item ::=
| "type" ident "=" ty ";"
| modifiers "fn" ident ("<" (generics ",")* ">")?
"(" (pat ":" ty ",")* ")" (":" ty)? "{" expr "}"

trait_item ::=
| "type" ident ";"
| modifiers "fn" ident ("<" (generics ",")* ">")?
"(" (pat ":" ty ",")* ")" (":" ty)? ("{" expr "}"
| ";")

item ::=
| "const" ident "=" expr
| "static" ident "=" expr [a]
| modifiers "fn" ident ("<" (generics ",")* ">")?
"(" (pat ":" ty ",")* ")" (":" ty)? "{" expr "}"

| "type" ident "=" ty
| "enum" ident ("<" (generics ",")* ">")? "{" (
ident ("(" (ty)* ")")? ",")* "}"

| "struct" ident ("<" (generics ",")* ">")? "{" (
ident ":" ty ",")* "}"

| "trait" ident ("<" (generics ",")* ">")? "{" (
trait_item)* "}"

| "impl" ("<" (generics ",")* ">")? ident "for" ty
"{" (impl_item)* "}"

| "mod" ident "{" (item)* "}"
| "use" path ";"

Fig. 2: hax Input Rust AST in EBNF
(a) no support yet for raw pointers, async/await, static, extern, or union types
(b) partial support for nested matching and range patterns
(c) partial support for mutable borrows
(d) most backends lack support for dynamic dispatch, floating point operations
(e) some backends only handle specific forms of iterators

8 K. Bhargavan et al.

Patterns (pat) allow matching over the supported types: wildcards, liter-
als, arrays, records, tuples etc. with some limitations in the support for nested
patterns and range patterns.

Expressions (expr) include literals, variables, type conversions, assignments,
array and type constructor applications, and control flow expressions such as
conditionals, pattern matches, loops, blocks, and closures. They also include ref-
erencing, dereferencing, mutably borrows, and raw pointer operations, although
the engine currently does not support raw pointers and only offers limited sup-
port for mutable borrows. Specifically, we do not currently support user-written
functions that return mutable borrows. Although the engine can handle any kind
of loop expression, many of our backends (e.g. ProVerif) have very limited sup-
port for loops and so the backend code may impose restrictions on the forms of
loops it will accept.

Items (item) are the top-level construct in a module and include constants,
function definitions, type definitions, trait definitions, trait implementations,
modules, and imports. We do not support global static pointers, and we do not
model the asynchronicity of async functions.

A Rust crate consists of a set of (potentially mutually-recursive) modules,
each of which consists of a list of items. A crate may refer to external crates
and to the Rust standard library. The engine treats each crate independently: to
analyze the crate, we assume that all its dependencies have either been translated
or have been modeled by hand for the target backend.

3.2 Transformation Phases

A phase is a typed transformation of AST items: each phase takes a typed
AST representing a Rust crate and produces a new typed AST after rewriting
some items. The full list of phases implemented by the engine is documented in
the source code8. Here, we focus on the most important transformations imple-
mented by sets of phases:

– Order and Bundle Items and Modules. Rust offers programmers a high
degree of flexibility in referencing code and items within and across mod-
ules. For example, an item can refer to another item that appears later in
the module, or an item within any other module or crate. One can define
mutually recursive functions within modules and across modules, but even
without recursion, there may be cyclic dependencies between modules. Con-
versely, most backend proof languages (including all the ones we currently
support) allow these kinds of dependencies. Consequently, the engine imple-
ments phases that reorder and bundle mutually recursive items so that every
item’s dependencies occur before it in the AST. For modules with cyclic de-
pendencies, the engine breaks the cycle by creating a big bundled module
with the contents of all the modules in the cycle.

8 https://hax.cryspen.com/engine/docs/hax-engine/Hax_engine/Phases/index.
html

https://hax.cryspen.com/engine/docs/hax-engine/Hax_engine/Phases/index.html
https://hax.cryspen.com/engine/docs/hax-engine/Hax_engine/Phases/index.html

hax: Verifying Secure Rust Software 9

– Eliminate Local Mutation. Rust functions can declare local mutable vari-
ables and modify them in conditional and loop expressions, but this kind of
mutation is not supported by some backends. The engine contains a phase
that eliminates local mutation and replaces it by shadowing. That is, the
mutation of a variable x gets replaced with a let expression that defines a
new instance of x with the updated value. This transformation is propagated
through blocks, loops, and function bodies, so that each expression returns
a pair consisting of its original return value and the set of updated values for
all mutable variables it modifies. This state-passing transformation is quite
straightforward and was also used e.g. in hacspec [34] and Aeneas [29].

– Eliminate Mutable Borrows. Each Rust function can have mutably bor-
rowed inputs, mutably borrowed outputs, and local mutable borrows within
the function body. The engine implements a transformation that rewrites
functions that use mutable borrows as arguments into a state-passing style
(in a similar spirit to the elimination local mutation). Conversely, hax has
only limited support for functions that create or return mutable borrows.
In general, such borrows are only supported as long as they do not cre-
ate aliases; that is, as long as the mutable borrows are immediately used as
function arguments, in which case they are rewritten in a state-passing style.

– Simplify Control Flow. Rust programs may contain any combination of
conditional, match, and loop expressions, where any deeply nested expression
could contain a return, break, or continue which can cause the control
flow to jump several layers outwards. Rust also supports the question mark
(?) operator that automatically propagates errors out from deep within a
function. Most backend provers do not have such expressive control flow,
and consequently, the engine implements a set of phases that rearranges
expressions so that all these kinds of return expressions are always in leaf
position in the control flow graph and so the control flow of each expression
is simplified and made explicit in the syntax.

– Functionalize Iterators. The Rust compiler desugars all the loop con-
structions in its surface syntax, such as for and while loops, into a generic
loop construction over a generic iterator. The engine implements a phase
that propagates the state-passing transformation to loops so that they get
transformed into a state-passing fold construction that modifies an accumu-
lator at each iteration of the loop. Since proofs about loops often require the
most manual intervention, the engine also implements phases that identify
common loop patterns and translates them to specialized fold construc-
tions. For example, a for loop over a range is translated in a way that it is
trivial to show that it terminates.

3.3 Choosing and Composing Phases

The hax engine is designed to be modular in that it can be used to execute
different sequences of phases to obtain different results. Each phase has a set of
preconditions, expressed in terms of features it expects to be present or absent in
the input AST, and a post-condition that describes how it changes these features.

10 K. Bhargavan et al.

These constraints are enforced in the engine using typed OCaml functors and
feature variables that together ensure that only sensible compositions of phase
transformations can be created.

For each backend, we choose a specific set of phases. For example, to translate
Rust code to purely functional models in F∗ and Coq, we use all the phases
described above. ProVerif supports more flexible control flow, so we do not need
to perform the control flow transformation. SSProve supports local mutation,
and so we do not transform local mutation, while we still use the other phases.
Finally, each backend may only have limited support for certain features, like
loops or floating point numbers. In these cases, the engine leaves it to the backend
to identify and reject code that uses unsupported features.

4 hax backends: Translating Rust to Verifiable Models

Once the hax engine has transformed the input Rust code into a suitable form,
we can use the corresponding backend implementation to emit a model in the
input language for some prover. The hax backend framework provides a set of
convenient libraries that make it easy to add new backends. This includes utilities
for formatting the output, mapping locations between the output model and the
input Rust source code, and other visualisation and dependency analysis tools
that can be shared between backends.

To add a backend, we need to implement rules for translating various syn-
tactic elements (items, expressions, types, etc.) into the corresponding syntax
of the target prover. We illustrate how this works for four backends: F∗, Coq,
SSProve, and ProVerif. Backends for others provers such as EasyCrypt and Lean
are currently under development.

4.1 F∗

F∗ [43] is a proof-oriented programming language that has been used to develop
verified software for a variety of projects, including cryptography [46], proto-
cols [20], and parsing [41]. Code written in F∗ can be compiled to OCaml for
testing and execution, and some subsets of F∗ can be compiled to C [40] and
WebAssembly [39]. To develop a proof in F∗, the user annotates the F∗ program
with assertions, refinement types, invariants, pre- and post-conditions, and lem-
mas. These are then formally proved using F∗’s dependent type system, with
the assistance of the Z3 SMT solver [35].

We illustrate the F∗ backend of hax with an example. Below is a function
that implements the Barrett reduction for signed 32-bit integers. This function
is taken from a new Rust implementation of the ML-KEM post-quantum cryp-
tographic standard [2] that uses hax for formal verification.

1 #[hax::requires((i64::from(value) >= -BARRETT_R && i64::from(value) <= BARRETT_R))]
2 #[hax::ensures(|result| result > -FIELD_MODULUS && result < FIELD_MODULUS &&
3 result % FIELD_MODULUS == value % FIELD_MODULUS)]
4 pub fn barrett_reduce(value: i32) -> i32 {
5 let mut t = i64::from(value) * BARRETT_MULTIPLIER;

hax: Verifying Secure Rust Software 11

6 t += BARRETT_R >> 1;
7 let quotient = t >> BARRETT_SHIFT;
8 let sub = (quotient as i32) * FIELD_MODULUS;
9 hax::fstar!(r"Math.Lemmas.cancel_mul_mod (v $quotient) 3329");

10 value - sub
11 }

Barrett reduction is a commonly-used algorithm in implementations of mod-
ular arithmetic. Here, the function takes an input of type i32 and performs a
series of arithmetic and bitwise operations on it (multiplications, shift-right, ad-
dition, subtraction) that implement a modular reduction with respect to the
constant FIELD_MODULUS (which here is the prime 3329). The reader might won-
der why do not directly use the remainder operator of Rust (%). The reason is
that division and remainder are not constant-time operations—their execution
time may depend on the value of their inputs—and hence are vulnerable to side-
channel attacks that may the potentially secret input value. Indeed, such attacks
have been found on similar function in ML-KEM implementations [12].

Panic Freedom. It is also important to remember that while Rust programs
are memory safe, they can still panic. In the code above, unless we can prove
that every multiplication, addition, and subtraction produces results that are
within the target type, the code will potentially panic on some inputs and never
return a result. For example, for any input greater or equal to 2147468668 the
barrett reduction function above goes out of bounds on line 8 and Rust panics
(in debug mode). So, when defining a hax backend, we need to decide whether
to generate the model in a way that the programmer must intrinsically prove
that the code never panics, or to produce a model that may panic and allow the
programmer to reason about panics extrinsically via lemmas. Different backends
may make different choice. In the F∗ backend we always prove panic-freedom
and so ask the programmer to add pre-conditions on the input to ensure the
absence of panics.

Correctness Specification. We add a specification to the function in the form
of a pre-condition and post-condition. The pre-condition (hax::requires) says
that the input is within a given range (here −226 <= value <= 226). The post-
condition (hax::ensures) says that the output computes the signed modulus of
the input with respect to the FIELD_MODULUS. Proving that the function meets
this specification requires a prover that can reason about the mathematical and
bitwise operations in the code as well as modular arithmetic.

F∗ Translation. When we use hax to translate the Rust code above to F∗,
we obtain the model in Figure 3. There are several notable elements in this
translation:

– The Rust compiler elaborates all the type conversions and arithmetic oper-
ations to the corresponding library calls, such as core::convert::from and
core::ops::arith::neg::neg and adds the relevant type annotations. These
are then translated by the F∗ backend to the corresponding library functions
modeled in F∗ (e.g. Core.Convert.f_from).

12 K. Bhargavan et al.

1 let barrett_reduce (value: i32)
2 : Prims.Pure i32
3 (requires
4 (Core.Convert.f_from #i64 #i32 #FStar.Tactics.Typeclasses.solve value <: i64) ≥
5 (Core.Ops.Arith.Neg.neg v_BARRETT_R <: i64) &&
6 (Core.Convert.f_from #i64 #i32 #FStar.Tactics.Typeclasses.solve value <: i64) ≤
7 v_BARRETT_R)
8 (ensures
9 λresult →

10 let result:i32 = result in
11 result ≥ (Core.Ops.Arith.Neg.neg v_FIELD_MODULUS <: i32) &&
12 result ≤ v_FIELD_MODULUS &&
13 (result %! v_FIELD_MODULUS <: i32) = (value %! v_FIELD_MODULUS <: i32)) =
14 let t:i64 =
15 (Core.Convert.f_from #i64 #i32 #FStar.Tactics.Typeclasses.solve value <: i64) ∗!
16 v_BARRETT_MULTIPLIER
17 in
18 let t:i64 = t +! (v_BARRETT_R >>! 1l <: i64) in
19 let quotient:i64 = t >>! v_BARRETT_SHIFT in
20 let sub:i32 = (cast (quotient <: i64) <: i32) ∗! v_FIELD_MODULUS in
21 let _:Prims.unit = Math.Lemmas.cancel_mul_mod (v quotient) 3329 in
22 value −! sub

Fig. 3: Barrett Reduction function translated to F∗ by hax

– The pre-condition and post-condition get translated to the corresponding
requires and ensures clauses in F∗.

– All mathematical operations are translated to the strict versions of these
operations in F∗ (e.g. +! ,−! ,∗! ,>>!) which have pre-conditions stating that
their inputs must be within certain ranges to prevent panics.

– Local mutability for the variable t (line 6 in Rust) gets translated to variable
shadowing in F∗ (line 18 in Figure 3).

F∗ Proof. The F∗ typechecker is able to automatically prove that the code does
not panic by using the Z3 SMT solver to reason about the arithmetic operations
and their bounds. In fact, it can prove that the function will not panic for any
input from −2147468667 to 2147468667. To prove the post-condition, however,
we need to use a mathematical property about modular multiplication called
cancel_mul_mod in the F∗ libraries. We inject a call to this lemma within the
source Rust code at line 9 and it gets translated to the F∗ model. With this
lemma call, the F∗ typechecker is able to verify the function.

Backend Features. We have illustrated the F∗ translation by one example,
but more generally, the generated programs in the Pure (i.e. total, terminating,
side-effect-free) fragment of the F∗ language. Since F∗ is usually more expressive
than Rust, most of the translations are straightforward: enums translate to al-
gebraic data types, structs to records, traits to typeclasses, etc. The F∗ backend
includes models for many commonly-used Rust features and libraries, but does
not support reasoning about raw pointers or mutable borrows that have not been
eliminated by the engine.

hax: Verifying Secure Rust Software 13

4.2 Coq

Coq, recently renamed Rocq, is a fully-featured interactive theorem prover with
a rich history and a large user community. Notably, Coq has a small kernel for
checking proofs and hence has a much smaller trusted base compared to F∗

which relies on the correctness of both its typechecker and the Z3 SMT solver.
The Coq backend is very similar to the F∗ backend, with superficial dif-

ferences in the notations and libraries used in Coq. By translating Rust code
to Coq, we can prove the same kinds of properties as in F∗ (panic-freedom,
functional correctness) but using the tactic-based interactive proof style of Coq.
Some examples on the use of the hax Coq backend are given in [26].

4.3 SSProve

The SSProve tool [27] supports computational security proofs about crypto-
graphic constructions, using a technique called State Separating Proofs (SSP) [17].
SSProve is structured as a library within Coq that defines an embedded impera-
tive domain specific language (DSL) that allows mutable local variables, random
sampling, and various cryptographic and mathematical operations.

The backend for SSProve follows the same structure as for Coq, except that
it produces code within the SSProve DSL, which is restricted to a smaller set
of types. Notably SSProve does not support enums and structs, so we need to
encode these using tuples and sum types.

Security Proofs with SSProve. To show the use of the SSProve backend, we
will go through a simple example also used in the last yard [26]. The example
is the classic one-time pad (OTP) construction, implemented in Rust using the
XOR operation:

1 fn xor(a : u64, b : u64) -> u64 {
2 let x : u64 = a;
3 let y : u64 = b;
4 x ^ y
5 }

The SSProve backend translates this Rust function into the following definition
in SSProve (within Coq):

1 Definition xor (a : both int64) (b : both int64) : both int64 :=
2 xor a b :=
3 letb (x : int64) := a in
4 letb (y : int64) := b in
5 x .^ y : both int64.

Next, we model the ideal behavior of this function. That is a purely mathematical
formulation of the desired behavior. The idealized function is written by hand
in SSProve as follows
Definition ideal_xor (a : both int64) (b : both int64) : both int64 :=

ret_both (is_pure a ⊕ is_pure b)

To follow the methodology for state-separating proofs (SSP) [17], we modularize
each function into a package to isolate its behavior. A game, a pair of packages
indexed by a Boolean value, is defined from the real and ideal packages

14 K. Bhargavan et al.

Definition IND_CPA_game :=
fun b ⇒ if b then ideal_xor_package else xor_package.

Our security statement is: given the above game, it is impossible to find the
value of the Boolean, regardless of how you interact with the resulting package.
The best you can do is guess. This is called IND-CPA security. In SSProve, this
security statement is written as follows:
Theorem uncondition_security : ∀ A, Advantage IND_CPA_game A = 0.

Linking SSProve with Coq. When proving, it is often useful to have a
translation between the imperative SSProve code and the functional Coq code,
so that, for example, we can compute functions without needing to interpret
the SSProve code, or we can use existing Coq libraries. The SSProve backend
automatically generates translations between the generated SSProve and Coq
models, along with proofs of equality between the two, allowing the programmer
to freely switch between the two backends and safely compose their proofs.

4.4 ProVerif

ProVerif [15] is an automated security protocol verification tool, where protocols
are modeled in the applied π-calculus. Given such a protocol model and secu-
rity goals (such as confidentiality, authentication, privacy) stated as queries over
the model, ProVerif uses sophisticated algorithms to automatically verify that
the protocol satisies these goals against a large class of symbolic or Dolev-Yao
adversaries [22]. This threat model is one where the adversary can perform un-
bounded computatation, start and control any number of protocol sessions, read
any message sent over the public network, and construct and send messages of
any size.

In terms of cryptography, the symbolic model of ProVerif is less precise than
the probabilistic computational model used in SSProve: it cannot guess secrets
and must treat all cryptographic operations as perfect black boxes. Conversely,
this abstraction allows ProVerif to automatically verify a large class of protocols
which would require painstaking manual proofs in computational proof backends.

Implementing Protocols. As an example, consider the following Rust func-
tion taken from a protocol implementation. Here, the initiator function takes
some input keying material (ikm) and a pre-shared key (psk); it derives an en-
cryption key and initialization vector (response_key_iv); it serializes and en-
crypts this value with the pre-shared key; and it returns the key and a message
(initiator_message) that must be sent over the public network to the peer.

1 pub fn initiate(ikm: &[u8], psk: &KeyIv) -> Result<(Message, KeyIv), Error> {
2 let response_key_iv = derive_key_iv(ikm, RESPONSE_KEY_CONTEXT)?;
3 let serialized_responder_key = serialize_key_iv(&response_key_iv);
4 let initiator_message = encrypt(psk, &serialized_responder_key)?;
5 Ok((initiator_message, response_key_iv))
6 }

A protocol implementation typically consists of a list of such functions, each
of which either processes or produces a protocol message, using some internal

hax: Verifying Secure Rust Software 15

1 letfun proverif_psk__initiate(ikm : bitstring, psk : proverif_psk__t_KeyIv) =
2 let response_key_iv = proverif_psk__derive_key_iv(
3 ikm, proverif_psk__v_RESPONSE_KEY_CONTEXT
4) in (
5 let serialized_responder_key =
6 proverif_psk__serialize_key_iv(response_key_iv)
7 in
8 let initiator_message = proverif_psk__encrypt(
9 psk, serialized_responder_key

10) in (initiator_message, response_key_iv)
11 else bitstring_err()
12)
13 else bitstring_err().

Fig. 4: ProVerif Translation of Protocol Initiator

state, cryptographic operations (like encrypt) and parsing/serialization func-
tions.

The security goals of the protocol implementation are typically expressed in
terms of confidentiality—which variables must remain secret from the adversary–
and authentication—which variables must be protected from tampering by unau-
thorized parties. In the function above, we may wish to ask that response_key_iv
must remain secret as long as the psk is secret, even if the attacker get to read
(and tamper) with the initiator_message (or any other message sent over the
public network).

ProVerif Translation. The Rust function above is translated to a function
macro on ProVerif, as depicted in Figure 4. Here, calls to the derive_key_iv and
encrypt functions are translated to calls to our cryptographic library model in
ProVerif, where they are modeled using symbolic constructors and destructors.

Serialization and parsing functions, like serialize_key_iv, can either be mod-
eled using tuples, constructors, and pattern matching, or the user can abstract
them as opaque constructors, depending on the precision of analysis desired.

The translation also shows how certain control-flow constructions in Rust are
transformed by the engine and the backend. On lines 2 and 4 of the Rust code,
we see the question-mark operator of Rust. This means that the expressions on
these lines can return an error and if they do, then the function immediately
returns with an error result. These lines are transformed by the hax engine so that
they have a more explicit control flow, which is then reflected in the generated
ProVerif model, which returns explicit errors when functions fail.

Automated Protocol Security Analysis. To verify security properties on
the ProVerif model, we extend the generated model with a verification scenario
and security goals as shown below:

1 free PSK: proverif_psk__t_KeyIv [private].
2 free SECRET_PAYLOAD: bitstring [private].
3 query attacker(PSK).
4 query attacker(SECRET_PAYLOAD).
5 process

16 K. Bhargavan et al.

6 Initiator(PSK) | Responder(PSK, SECRET_PAYLOAD)

Here, Initiator and Responder are ProVerif processes that call the func-
tions extracted from the Rust code for the two parties in the protocol. Both share
a global secret variable PSK containing the pre-shared key, and the responder also
has a secret payload it encrypts back to the initiator.

The two confidentiality queries ask whether an attacker would be able to
obtain the pre-shared key or the secret payload. ProVerif is able to automati-
cally analyze the model and prove that these values are indeed secret. We can
also further extend the model and study the security of the protocol with an
arbitrary number of keys and payloads, where some pre-shared keys may be
compromised, etc. and ProVerif will be able to either prove security or provide
a counter-example with a symbolic attack. In some cases, especially where the
protocol contains some logical loops or recursive data structures, ProVerif may
not terminate and the user would need to encode some abstractions for analysis
to terminate.

ProVerif is just one of the many protocol verificaiton tools available in the
literature. In the future, one could consider targeting other such verifiers by
adding backends for them, or for languages like SAPIC+ language [18] that
unify many such tools under a common syntax.

5 Formal Models for Rust Libraries

Rust programs rely on a number of builtin features and libraries provided by
the Rust compiler and the standard libraries: core, alloc, and std.

Primitive types, like machine integers, and operators on them are defined
within the compiler. The core library defines a minimal set of features needed
by most Rust programs. The alloc library builds on top of core and handles
memory allocation and some basic data structures. The std library uses core
and alloc to provide a number of data structures.

These libraries are large: core is ∼60,000 lines of Rust code (∼2300 public
functions); alloc is another ∼27,500 lines (∼800 public functions); and std is
∼92,000 lines (∼3900 public functions). Not all these libraries are written in
Rust; some of them use wrappers around external C and assembly libraries.

To formally verify a Rust program, we must therefore provide models for
all its dependencies, including the Rust standard libraries and external third-
party crates. Of course, it would be even more desirable to formally verify these
external dependencies (see e.g. one ongoing effort to verify std9), but even mod-
eling the public functions in these libraries is a mammoth task that requires a
incremental community effort.

In the context of hax, we need to provide models of the libraries for each
backend, which can be both a tedious task and risks creating inconsistencies
between different backends. To this end, we employ two strategies towards mod-
eling the Rust libraries. For a minimal set of primitive types and functions, we
9 https://github.com/model-checking/verify-rust-std

hax: Verifying Secure Rust Software 17

manually write models for each backend in a way that maximally leverages ex-
isting libraries and abstractions in that backend. For higher-level libraries, we
write models in Rust and compile them using hax itself to generate consistent
libraries for each backend.

Hand-written Models for Primitive Types. Many types and functions
that are primitive to Rust still need to be mapped to the corresponding types
and constructions in various backends. This includes:

– machine integers (e.g. u8, i16, etc.), booleans, strings
– slices and arrays ([T], [T; N]})
– options, results, and panic
– iterators (loop, map, enumerate, etc.)

For each backend we need to manually write the translation of these primi-
tives; see figure 5 for how some of them are mapped in the Coq backend.

fn primitives() {
// bool
let _: bool = false;
let _: bool = true;

// Numerics
let _: u8 = 12u8;
let _: u16 = 123u16;
let _: u32 = 1234u32;
let _: u64 = 12345u64;
let _: u128 = 123456u128;
let _: usize = 32usize;

let _: i8 = -12i8;
let _: i16 = 123i16;
let _: i32 = -1234i32;
let _: i64 = 12345i64;
let _: i128 = 123456i128;
let _: isize = -32isize;

let _: f32 = 1.2f32;
let _: f64 = -1.23f64;

// Textual
let _: char = ’c’;
let _: &str = "hello world";

}

⇒

Definition primitives ’(_ : unit) : unit :=
let _ : bool := (false : bool) in
let _ : bool := (true : bool) in

let _ : t_u8 := (12 : t_u8) in
let _ : t_u16 := (123 : t_u16) in
let _ : t_u32 := (1234 : t_u32) in
let _ : t_u64 := (12345 : t_u64) in
let _ : t_u128 := (123456 : t_u128) in
let _ : t_usize := (32 : t_usize) in
let _ : t_i8 := (-12 : t_i8) in
let _ : t_i16 := (123 : t_i16) in
let _ : t_i32 := (-1234 : t_i32) in
let _ : t_i64 := (12345 : t_i64) in
let _ : t_i128 := (123456 : t_i128) in
let _ : t_isize := (-32 : t_isize) in

let _ : float := (1.2%float : float) in
let _ : float := ((-1.23)%float : float) in

let _ : ascii := ("c"%char : ascii) in
let _ : string := ("hello world"%string : string) in
tt.

Fig. 5: Primitives translated to Coq

A key requirement for these hand-written models is that they must be exe-
cutable, so that we can run and test both these libraries and the code that uses
them. Of course, we also need these models to be suitable for verification, and
so we often extend these libraries with all the necessary lemmas and tactics to
help the user prove properties about their programs.

18 K. Bhargavan et al.

Generating Library Models from Rust. For most libraries in core, alloc,
and std, we advocate writing models of the library directly in Rust and compiling
these models to each backend.

In effect, we build a new version of these libraries, layered on top of the Rust
standard libraries, but shadowing the namespaces so that we can link them to
unmodified Rust code. For example, we implement the Add trait in core::ops, as
a new hax-core::ops::Add, and translate it via hax to obtain models of core::ops
in each backend.

To implement traits like Add generically for all machine integers in Rust, we
first build an architecture for the mathematical interpretation of rust types. We
define a Rust library for mathematical integers (represented by the type HaxInt),
and for each machine integer of type T, we define a method lift() that computes
its underlying integer (HaxInt) and a method lower() that casts a mathematical
integer into the machine integer (if it is within bounds, and panics otherwise).

This notion of abstracting (or lifting) and concretizing (or lowering) Rust
data types into mathematical structures is generally useful for writing formal
models in Rust and we systematically use it in our library models.

We can now specify libraries like core::num and core::ops directly in Rust, by
lifting the inputs to mathematical integers, doing the operations on HaxInt and
lowering the result back to machine integers. For example, the equality operation
on u8 is defined in Rust as an implementation of the PartialEq trait. We model
it in Rust as follows (using a type wrapper U8):

1 impl<’a> PartialEq for U8<’a> {
2 fn eq(&self, rhs: &Self) -> bool {
3 compare_fun(self.clone().lift(), rhs.clone().lift())
4 == Ordering::Equal
5 }
6 }

This then gets translated to each backend using the definitions of lift, lower,
and mathematical integers in that backend. For example, the Coq translation
is as follows. The trait implementation translates to a typeclass instance that
operates on Coq integers.

1 Instance t_PartialEq_774173636 : t_PartialEq ((t_U8)) ((t_U8)) :=
2 {
3 PartialEq_f_eq := fun (self : t_U8) (rhs : t_U8) ⇒
4 PartialEq_f_eq
5 (haxint_cmp
6 (Abstraction_f_lift (Clone_f_clone (self)))
7 (Abstraction_f_lift (Clone_f_clone (rhs))))
8 (Ordering_Equal);
9 }.

The F∗ implementation is similar, while in ProVerif, all machine integers are
modeled as mathematical integers, so lifting and lowering are identity functions.

Mixing the Two Styles. For each library, we always have the choice between
using the automatically generated model or manually writing models for different

hax: Verifying Secure Rust Software 19

backends. Where possible, we prefer generated libraries, since they require less
work and keep libraries consistent between different backends. However, in some
cases we may want to exploit some data structure or proof library that is available
in a specific backend. In such cases, we often start with the generated library
and then edit it to exploit features of the backend. For example, in the Coq
translation above we could replace haxint_cmp with the comparison operation in
Coq, which might result in simpler proofs.

6 Testing the Generated Models

The hax toolchain implements a sequence of translations from Rust to various
formal languages. There are many ways of gaining confidence that the models
generated by hax correctly capture the semantics of the input Rust code.

One could formalize the semantics of the source and target languages and
prove that the translation preserves the observable behaviors of the program.
This kind of proof effort can be valuable but requires significant effort and is less
feasible for frameworks like hax that support multiple, widely different backends.

Instead, we take a more pragmatic approach of using a mixture of testing
and proof to get more assurance in our methodology.

Verifying Library Annotations. For each function in the Rust library, our
library models provide pre- and post-conditions that specify whether and when
these functions may panic and what they compute. For the core library functions,
we also add specification of various useful properties, and prove these properties
for out library models. When generating library models, we can add these lemmas
in the Rust source so that they are reflected in all backends.

A simple example is commutativity of addition:

#[hax_lib::lemma]
fn add_comm(x: u8, y: u8) -> Proof<{ x + y == y + x }> {}

This generates a lemma that must be proven for each backend library.
We have added such lemmas for associativity, commutativity, distributivity,

negation, etc. for various combinations of arithmetic and bitwise operators for
various numerical types. We define similar lemmas about concatenation and
slicing of arrays and slices. These lemmas gives us more confidence that the
annotations we use for our proofs are sound with respect to our library models.

Testing Source Annotations. In addition to proving lemmas about source
code (and library) annotations, we can also use these annotations to drive
property-based tests. We systematically use the QuickCheck [19] framework to
automatically generate tests based on the pre- and post-conditions on the Rust
source code. In particular, this technique is used to generate hundreds of tests
for each function in our Rust standard library model, including our models for
each arithmetic operation.

Testing Generated Models. An important feature of the many hax backends
is that the generated models are executable, and hence testable. So, when we

20 K. Bhargavan et al.

compile some Rust code to (say) F∗, we also compile its tests and run them
on the generated F∗. This gives us confidence in the hax translation and in our
(executable) library models.

For example, [26] presents a reference implementation of the AES crypto-
graphic algorithm in Rust, and shows how it can be compiled via the hax
toolchain to SSProve. We test this AES implementation in both Rust and in
Coq/SSProve to prove that the encryption and decryption produce the same
result in the source code and target model.

Linking Different Models. Another way of gaining confidence in our transla-
tions is to formally link the models produced via independent translations. For
example, our SSProve backend actually consists of two translations. A functional
translation, which is very close to the Coq backend (but uses a smaller universe
of types); and an imperative translation with state, making use of the domain
specific language (DSL) for code in SSProve. The translations are combined into
language constructions, with a projection to each of the translations and a proof
of equality between them [26]. In a sense the main difference between the two
translation is that one of them uses a few extra functionalization phases, so this
proof can be seen as a proof of correctness for those phases.

7 Verifying Rust Applications with hax

The hax verification framework is used by several projects for the specification
and verification of security and correctness properties. In this section, we give a
brief overview of some of these applications.

hacspec. hacspec10 is a purely functional subset of Rust that can be used,
together with a specification library, to write succinct, executable, and verifiable
specifications in Rust, that can then be translated into various formal languages
using hax. It has been proposed as a general specification language for IETF and
NIST standards [8].

The hacspec language has recently also been adopted by Crux-Mir [37], a
cross-language verification tool for Rust and C/LLVM. Crux-MIR has been used
to verify the Ring library implementations of SHA-1 and SHA-2 against their
hacspec specifications.

Libcrux. The libcrux library [31] provides a uniform API for formally veri-
fied cryptographic implementations in Rust, C, and assembly. It uses hacspec
to specify the correctness of its implementations and presents a safe, defensive
Rust API to applications. Recently, the post-quantum key encapsulation mech-
anism ML-KEM [36] was added to libcrux11. It was verified using hax and its
F∗ backend. This implementation has since been adopted by OpenSSH and by
Mozilla for use in its NSS cryptographic library.

10 https://hacspec.org
11 https://cryspen.com/post/ml-kem-implementation/

https://hacspec.org
https://cryspen.com/post/ml-kem-implementation/

hax: Verifying Secure Rust Software 21

In [30], hax’ Coq backend is used to connect the Fiat-cryptography [23] ver-
ified compiler for finite field arithmetic in Coq. In this way, a simple specifica-
tion/reference implementation in hacspec can be compiled to a highly optimized
implementation in many C-like languages, such as C, Rust, Java, etc. This code
has also been integrated into libcrux.

Bertie. hax is used to extract a ProVerif model from the TLS 1.3 implemen-
tation in Bertie12 to perform a symbolic security analysis13. hax is also used to
compile the parsing and serialization code of Bertie to F∗ in order to prove panic
freedom and functional correctness.

Smart contracts. Rust is a popular smart contract language, as it allows
one to efficiently compile to Wasm which is a popular on-chain virtual machine.
In [25], hax has been used to verify properties of Rust smart contracts using
the ConCert smart contract verification framework [4] in Coq. This is combined
with cryptographic proofs in SSProve.

8 Conclusion and Future work

We have presented hax: a developer-oriented framework for verifying security
critical Rust code. Verification can be done in a wide spectrum of proof back-
ends, ranging from tools for generic program verification (F* and Coq) to sym-
bolic protocol analyzers (ProVerif) and provers for computational cryptography
(SSProve). We use a combination of testing and proving to gain assurance that
our specifications, translations, and library models are correct. The hax toolchain
is being used in many active projects, both in industry and academia.

The design is hax makes it compatible and extensible with other proof method-
ologies and backend provers. The hacspec language is used in Crux-Mir, the hax
frontend is used in Aeneas, and the specifications used in hax are compatible with
Kani and Creusot. Moreover, our backend framework makes it easy to add new
backends. In future work, we would like to add new backends for EasyCrypt and
Lean, as well as explore fully automated tools for verifying generic Rust code.

References

1. Back to the building blocks: a path towards secure and measurable
software. https://www.whitehouse.gov/wp-content/uploads/2024/02/
Final-ONCD-Technical-Report.pdf (Feb 2024)

2. Module-Lattice-Based Key-Encapsulation Mechanism Standard (Aug 2024).
https://doi.org/10.6028/NIST.FIPS.203

3. Almeida, J.B., Barbosa, M., Barthe, G., Blot, A., Grégoire, B., Laporte, V.,
Oliveira, T., Pacheco, H., Schmidt, B., Strub, P.: Jasmin: High-assurance and high-
speed cryptography. In: CCS. pp. 1807–1823. ACM (2017)

12 https://github.com/cryspen/bertie
13 https://cryspen.com/post/hax-pv/

https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.203
https://github.com/cryspen/bertie
https://cryspen.com/post/hax-pv/

22 K. Bhargavan et al.

4. Annenkov, D., Nielsen, J.B., Spitters, B.: Concert: a smart contract certification
framework in coq. In: CPP. pp. 215–228. ACM (2020)

5. Appel, A.W.: Verified software toolchain. In: Goodloe, A., Person, S. (eds.) NASA
Formal Methods - 4th International Symposium, NFM 2012, Norfolk, VA, USA,
April 3-5, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7226, p. 2.
Springer (2012). https://doi.org/10.1007/978-3-642-28891-3_2

6. Astrauskas, V., Müller, P., Poli, F., Summers, A.J.: Leveraging Rust types for
modular specification and verification. In: Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA). vol. 3, pp. 147:1–147:30 (2019)

7. Baelde, D., Delaune, S., Jacomme, C., Koutsos, A., Lallemand, J.: The squirrel
prover and its logic. ACM SIGLOG News 11(2), 62–83 (2024)

8. Barbosa, M., Bhargavan, K., Kiefer, F., Schwabe, P., Strub, P., Westerbaan, B.:
Formal specifications for certifiable cryptography (2024)

9. Barbosa, M., Barthe, G., Bhargavan, K., Blanchet, B., Cremers, C., Liao, K.,
Parno, B.: Sok: Computer-aided cryptography. In: SP. pp. 777–795. IEEE (2021)

10. Barthe, G., Dupressoir, F., Grégoire, B., Kunz, C., Schmidt, B., Strub, P.: Easy-
crypt: A tutorial. In: FOSAD. Lecture Notes in Computer Science, vol. 8604, pp.
146–166. Springer (2013)

11. Basin, D.A., Cremers, C., Dreier, J., Sasse, R.: Tamarin: Verification of large-scale,
real-world, cryptographic protocols. IEEE Secur. Priv. 20(3), 24–32 (2022)

12. Bernstein, D.J., Bhargavan, K., Bhasin, S., Chattopadhyay, A., Chia, T.K., Kan-
nwischer, M.J., Kiefer, F., Paiva, T., Ravi, P., Tamvada, G.: KyberSlash: Exploit-
ing secret-dependent division timings in kyber implementations. Cryptology ePrint
Archive, Paper 2024/1049 (2024), https://eprint.iacr.org/2024/1049

13. Bhargavan, K., Blanchet, B., Kobeissi, N.: Verified models and reference imple-
mentations for the TLS 1.3 standard candidate. In: 2017 IEEE Symposium on
Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017. pp. 483–502.
IEEE Computer Society (2017). https://doi.org/10.1109/SP.2017.26

14. Blanchet, B.: Cryptoverif: Computationally sound mechanized prover for crypto-
graphic protocols. In: Dagstuhl seminar “Formal Protocol Verification Applied.
vol. 117, p. 156 (2007)

15. Blanchet, B.: Automatic verification of security protocols in the symbolic model:
The verifier proverif. In: FOSAD. Lecture Notes in Computer Science, vol. 8604,
pp. 54–87. Springer (2013)

16. Bond, B., Hawblitzel, C., Kapritsos, M., Leino, K.R.M., Lorch, J.R., Parno, B.,
Rane, A., Setty, S.T.V., Thompson, L.: Vale: Verifying high-performance crypto-
graphic assembly code. In: Kirda, E., Ristenpart, T. (eds.) 26th USENIX Security
Symposium, USENIX Security 2017, Vancouver, BC, Canada, August 16-18, 2017.
pp. 917–934. USENIX Association (2017), https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/bond

17. Brzuska, C., Delignat-Lavaud, A., Fournet, C., Kohbrok, K., Kohlweiss, M.:
State separation for code-based game-playing proofs. In: Advances in Cryptology
– ASIACRYPT 2018. p. 222–249. Springer (2018). https://doi.org/10.1007/
978-3-030-03332-3_9

18. Cheval, V., Jacomme, C., Kremer, S., Künnemann, R.: SAPIC+: protocol verifiers
of the world, unite! In: USENIX Security Symposium. pp. 3935–3952. USENIX
Association (2022)

19. Claessen, K., Hughes, J.: Quickcheck: a lightweight tool for random testing of
haskell programs. In: ICFP. pp. 268–279. ACM (2000)

https://doi.org/10.1007/978-3-642-28891-3_2
https://doi.org/10.1007/978-3-642-28891-3_2
https://eprint.iacr.org/2024/1049
https://doi.org/10.1109/SP.2017.26
https://doi.org/10.1109/SP.2017.26
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/bond
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/bond
https://doi.org/10.1007/978-3-030-03332-3_9
https://doi.org/10.1007/978-3-030-03332-3_9
https://doi.org/10.1007/978-3-030-03332-3_9
https://doi.org/10.1007/978-3-030-03332-3_9

hax: Verifying Secure Rust Software 23

20. Delignat-Lavaud, A., Fournet, C., Kohlweiss, M., Protzenko, J., Rastogi, A.,
Swamy, N., Béguelin, S.Z., Bhargavan, K., Pan, J., Zinzindohoue, J.K.: Implement-
ing and proving the TLS 1.3 record layer. In: 2017 IEEE Symposium on Security
and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017. pp. 463–482. IEEE
Computer Society (2017). https://doi.org/10.1109/SP.2017.58

21. Denis, X., Jourdan, J.H., Marché, C.: Creusot: a foundry for the deductive ver-
ification of rust programs. In: International Conference on Formal Engineering
Methods. pp. 90–105. Springer (2022)

22. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Trans. Inf.
Theory 29(2), 198–207 (1983)

23. Erbsen, A., Philipoom, J., Gross, J., Sloan, R., Chlipala, A.: Simple high-level
code for cryptographic arithmetic - with proofs, without compromises. In: IEEE
Symposium on Security and Privacy. pp. 1202–1219. IEEE (2019)

24. Gäher, L., Sammler, M., Jung, R., Krebbers, R., Dreyer, D.: Refinedrust: A type
system for high-assurance verification of rust programs. Proceedings of the ACM
on Programming Languages 8(PLDI), 1115–1139 (2024)

25. Hansen, L.L., Spitters, B.: Specifying smart contract with hax and concert.
In: CoqPL (2024), https://popl24.sigplan.org/details/CoqPL-2024-papers/
9/Specifying-Smart-Contract-with-Hax-and-ConCert

26. Haselwarter, P.G., Hvass, B.S., Hansen, L.L., Winterhalter, T., Hritcu, C., Spitters,
B.: The last yard: Foundational end-to-end verification of high-speed cryptography.
In: CPP. pp. 30–44. ACM (2024)

27. Haselwarter, P.G., Rivas, E., Muylder, A.V., Winterhalter, T., Abate, C.,
Sidorenco, N., Hritcu, C., Maillard, K., Spitters, B.: Ssprove: A foundational frame-
work for modular cryptographic proofs in coq. ACM Trans. Program. Lang. Syst.
45(3), 15:1–15:61 (2023)

28. Ho, S., Boisseau, G., Franceschino, L., Prak, Y., Fromherz, A., Protzenko, J.:
Charon: An analysis framework for rust (2024), https://arxiv.org/abs/2410.
18042

29. Ho, S., Protzenko, J.: Aeneas: Rust verification by functional translation. PACM
PL 6(ICFP) (2022). https://doi.org/10.1145/3547647

30. Holdsbjerg-Larsen, R., Spitters, B., Milo, M.: A verified pipeline
from a specification language to optimized, safe rust. In: CoqPL’22
(2022), https://popl22.sigplan.org/details/CoqPL-2022-papers/5/
A-Verified-Pipeline-from-a-Specification-Language-to-Optimized-Safe-Rust

31. Kiefer, F., Bhargavan, K., Franceschino, L., Merigoux, D., Hansen, L.L., Spitters,
B., Barbosa, M., Séré, A., Strub, P.Y.: HACSPEC: a gateway to high-assurance
cryptography. RealWorldCrypto (2023)

32. Kroening, D., Schrammel, P., Tautschnig, M.: CBMC: the C bounded model
checker. CoRR abs/2302.02384 (2023). https://doi.org/10.48550/ARXIV.
2302.02384

33. Lehmann, N., Geller, A.T., Vazou, N., Jhala, R.: Flux: Liquid types for rust. Pro-
ceedings of the ACM on Programming Languages 7(PLDI), 1533–1557 (2023)

34. Merigoux, D., Kiefer, F., Bhargavan, K.: Hacspec: succinct, executable, verifiable
specifications for high-assurance cryptography embedded in Rust. Technical report,
Inria (Mar 2021), https://inria.hal.science/hal-03176482

35. de Moura, L.M., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan,
C.R., Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,

https://doi.org/10.1109/SP.2017.58
https://doi.org/10.1109/SP.2017.58
https://popl24.sigplan.org/details/CoqPL-2024-papers/9/Specifying-Smart-Contract-with-Hax-and-ConCert
https://popl24.sigplan.org/details/CoqPL-2024-papers/9/Specifying-Smart-Contract-with-Hax-and-ConCert
https://arxiv.org/abs/2410.18042
https://arxiv.org/abs/2410.18042
https://doi.org/10.1145/3547647
https://doi.org/10.1145/3547647
https://popl22.sigplan.org/details/CoqPL-2022-papers/5/A-Verified-Pipeline-from-a-Specification-Language-to-Optimized-Safe-Rust
https://popl22.sigplan.org/details/CoqPL-2022-papers/5/A-Verified-Pipeline-from-a-Specification-Language-to-Optimized-Safe-Rust
https://doi.org/10.48550/ARXIV.2302.02384
https://doi.org/10.48550/ARXIV.2302.02384
https://doi.org/10.48550/ARXIV.2302.02384
https://doi.org/10.48550/ARXIV.2302.02384
https://inria.hal.science/hal-03176482

24 K. Bhargavan et al.

Hungary, March 29-April 6, 2008. Proceedings. Lecture Notes in Computer Science,
vol. 4963, pp. 337–340. Springer (2008)

36. NIST: Module-lattice-based key-encapsulation mechanism standard. Tech. Rep.
Federal Information Processing Standards Publications (FIPS PUBS) 203, U.S.
Department of Commerce, Washington, D.C. (2024). https://doi.org/10.6028/
NIST.FIPS.203

37. Pernsteiner, S., Diatchki, I.S., Dockins, R., Dodds, M., Hendrix, J., Ravich, T.,
Redmond, P., Scott, R., Tomb, A.: Crux, a precise verifier for rust and other
languages. arXiv preprint arXiv:2410.18280 (2024)

38. Polyakov, A., Tsai, M., Wang, B., Yang, B.: Verifying arithmetic assembly pro-
grams in cryptographic primitives (invited talk). In: Schewe, S., Zhang, L. (eds.)
29th International Conference on Concurrency Theory, CONCUR 2018, September
4-7, 2018, Beijing, China. LIPIcs, vol. 118, pp. 4:1–4:16 (2018)

39. Protzenko, J., Beurdouche, B., Merigoux, D., Bhargavan, K.: Formally verified
cryptographic web applications in webassembly. In: 2019 IEEE Symposium on
Security and Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019. pp.
1256–1274. IEEE (2019). https://doi.org/10.1109/SP.2019.00064

40. Protzenko, J., Zinzindohoué, J.K., Rastogi, A., Ramananandro, T., Wang, P.,
Béguelin, S.Z., Delignat-Lavaud, A., Hritcu, C., Bhargavan, K., Fournet, C.,
Swamy, N.: Verified low-level programming embedded in F. Proc. ACM Program.
Lang. 1(ICFP), 17:1–17:29 (2017). https://doi.org/10.1145/3110261

41. Ramananandro, T., Delignat-Lavaud, A., Fournet, C., Swamy, N., Chajed, T.,
Kobeissi, N., Protzenko, J.: Everparse: Verified secure zero-copy parsers for au-
thenticated message formats. In: 28th USENIX Security Symposium, USENIX Se-
curity 2019, Santa Clara, CA, USA, August 14-16, 2019. pp. 1465–1482. USENIX
Association (2019)

42. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446
(Aug 2018). https://doi.org/10.17487/RFC8446

43. Swamy, N., Hritcu, C., Keller, C., Rastogi, A., Delignat-Lavaud, A., Forest, S.,
Bhargavan, K., Fournet, C., Strub, P., Kohlweiss, M., Zinzindohoue, J.K., Béguelin,
S.Z.: Dependent types and multi-monadic effects in F*. In: Bodík, R., Majumdar,
R. (eds.) Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA,
January 20 - 22, 2016. pp. 256–270. ACM (2016). https://doi.org/10.1145/
2837614.2837655

44. The Coq Development Team: The Coq Proof Assistant (2024). https://doi.org/
10.5281/zenodo.11551307

45. VanHattum, A., Schwartz-Narbonne, D., Chong, N., Sampson, A.: Verifying dy-
namic trait objects in rust. In: Proceedings of the 44th International Conference
on Software Engineering: Software Engineering in Practice. pp. 321–330 (2022)

46. Zinzindohoué, J.K., Bhargavan, K., Protzenko, J., Beurdouche, B.: Hacl*: A veri-
fied modern cryptographic library. In: Thuraisingham, B., Evans, D., Malkin, T.,
Xu, D. (eds.) Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03,
2017. pp. 1789–1806. ACM (2017). https://doi.org/10.1145/3133956.3134043

https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.1109/SP.2019.00064
https://doi.org/10.1109/SP.2019.00064
https://doi.org/10.1145/3110261
https://doi.org/10.1145/3110261
https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/RFC8446
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.5281/zenodo.11551307
https://doi.org/10.5281/zenodo.11551307
https://doi.org/10.5281/zenodo.11551307
https://doi.org/10.5281/zenodo.11551307
https://doi.org/10.1145/3133956.3134043
https://doi.org/10.1145/3133956.3134043

	hax: Verifying Security-Critical Rust Software using Multiple Provers

