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Abstract. Timed cryptography has initiated a paradigm shift in the de-
sign of cryptographic protocols: Using timed cryptography we can realize
tasks fairly, which is provably out of range of standard cryptographic con-
cepts. To a certain degree, the success of timed cryptography is rooted
in the existence of efficient protocols based on the sequential squaring
assumption.
In this work, we consider space analogues of timed cryptographic primi-
tives, which we refer to as space-hard primitives. Roughly speaking, these
notions require honest protocol parties to invest a certain amount of
space and provide security against space constrained adversaries. While
inefficient generic constructions of timed-primitives from strong assump-
tions such as indistinguishability obfuscation can be adapted to the
space-hard setting, we currently lack concrete and versatile algebraically
structured assumptions for space-hard cryptography.
In this work, we initiate the study of space-hard primitives from con-
crete algebraic assumptions relating to the problem of root-finding of
sparse polynomials. Our motivation to study this problem is a candi-
date construction of VDFs by Boneh et al. (CRYPTO 2018) which are
based on the hardness of inverting permutation polynomials. Somewhat
anticlimactically, our first contribution is a full break of this candidate.
However, we then revise this hardness assumption by dropping the per-
mutation requirement and considering arbitrary sparse high degree poly-
nomials. We argue that this type of assumption is much better suited for
space-hardness rather than timed cryptography. We then proceed to con-
struct both space-lock puzzles and verifiable space-hard functions from
this assumption.

1 Introduction

Timed Cryptography. Traditionally, in public key cryptography [DH76], the abil-
ity to decrypt ciphertexts which have been generated with a public key pk is tied
to the possession of a secret key sk corresponding to pk. Likewise, generation
of signatures with respect to a verification key vk is tied to the possession of
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corresponding signing key. Timed cryptography [RSW96] adds a twist to this
rigid paradigm: Rather than the possession of a secret key, investing time facil-
itates the decryption of a ciphertext or generation of signature. In other words,
time-lock encryption allows to encrypt to the future.

This enables new applications both in theory and practice: Timed commit-
ments [BN00] facilitate e.g. fair exchange and fair coin-toss in the two party
setting, notions which have been shown to be beyond reach of standard crypto-
graphic notions [Cle86]; Likewise, from a more practical angle time-lock puzzles
play a crucial role in the design of public randomness beacons, a crucial compo-
nent in the design of distributed ledgers (see e.g. [KWJ23]).

Verfiable Delay Functions Boneh et al. [BBBF18] introduced the notion of ver-
ifiable delay functions (VDFs), which can be loosely thought of as the timed
analogue of digital signatures: Computing a VDF output together with a cer-
tificate of its validity takes a long time T , whereas verification of a certificate
can be performed rapidly, that is in time poly(λ, log(T )). VDFs are likewise
powerful tools in the construction of randomness beacons and consensus proto-
cols, as they e.g. facilitate techniques such as self-selection [CM19] and proofs
of replication [ABBK16].

Boneh et al. [BBBF18] provide both generic and concrete constructions of
VDFs. The generic constructions are obtained by combining specific sequen-
tial functions, such as iterated hashing, with incrementally verifiable computa-
tion [Val08,BCCT13].

Alas, when it comes to concrete assumptions, VDFs in particular and timed
cryptography in general rest on a rather narrow foundation; most candidates of
time-lock puzzles and verifiable delay functions are tied to the sequential squar-
ing assumption in groups of unknown order. Bitansky et al. [BGJ+16] showed
that by relying on indistinguishability obfuscation, timed primitives can be re-
alized assuming the minimal assumption that inherently sequential problems
exist. As this construction relies on very heavy theoretical tools, its appeal
is currently limited to the domain of pure theory. Another significant candi-
date are verifiable delay functions from isogenies [DMPS19]. Proofs of sequen-
tial [MMV13,CP18,DLM19] can be seen as a more lightweight alternative to
VDFs and are achievable from potentially weaker assumptions. However, PoSW
lack a uniqueness property, which makes them unsuitable for many of the more
advanced applications of VDFs.

The concrete VDF candidates given in [BBBF18] constitute a notable ex-
ception from the sequential squaring blueprint. These candidates are based on a
novel family of hardness assumptions relating to the inversion of rational func-
tions of high degree.

Space-Hard Cryptography. Conceptually, there is nothing intrinsically special
about the computational resource of time. Hence, a natural conceptual next
step is to consider more general computational resources. In fact, there is a
growing body of works investigating the notion of memory or space-hard func-
tions [Per09,AS15,AB16,ACP+17,BP17,ABB22,AGP24].
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In this work, we are concerned with both space-lock puzzles, the space-
analogue of time-lock puzzles, and verifiable space-hard functions, the analogue
of VDFs.

Syntactically, we define a space-lock puzzle to consist of two algorithm Gen
and Solve. Gen takes as input a space parameter S and a message m and outputs
a puzzle p, whereas Solve takes a puzzle p and outputs a message m. In terms of
efficiency, we require that Gen runs in time and space poly(λ, log(S)), whereas
Solve runs in space S. In terms of security, we require that any algorithm run-
ning in time poly(λ, S) having access to space of size at most S1−ϵ has at most
negligible advantage guessing an encrypted bit.

A verifiable space-hard function syntactically consists of two algorithms Eval
and Verify (potentially along with a setup algorithm producing public parame-
ters). Eval takes a space parameter S and a value x and outputs a value y and a
certificate π, whereas Verify takes inputs x, y and a certificate π and outputs ei-
ther accept or reject. In terms of efficiency, we require that Eval runs in space S,
whereas Verify runs in time and space poly(λ, log(S)). In terms of security, we re-
quire computational uniqueness and space-hardness. Computational uniqueness
requires that no algorithm running in time and space poly(λ, S) can produce a
verifying tuple x, y′, π′ with y′ ̸= y, where (y, π) = Eval(S, x). Space-hardness
requires that no algorithm running in time poly(λ, S) and space S1−ϵ finds y
with non-negligible probability.

In terms of assumptions and constructions, the design-space of space-hard
cryptography is comparatively much less explored than that of timed cryptog-
raphy. In terms of generic constructions, a closer look at the time-lock puzzle
construction given in [BGJ+16] reveals that this construction can be adapted to
space-lock puzzles, i.e. we can construct a space-lock puzzles assuming iO and,
additionally, the minimal assumption that inherently space-hard computations
exist.

However critically, there are currently no algebraically structured candidates
for efficient space-lock puzzles.

1.1 Our Results

In this work, we take a first step in studying efficient space-hard primitives from
algebraic assumptions relating to the solvability of sparse univariate polynomials
of large degree. The contributions of our work are two-fold:

1. As a first contribution, we provide an efficient attack against the specific
proposal of the “Inverting Injective Rational Maps” Assumption of Boneh et
al. [BBBF18]. While we do not break the assumption in its most general form,
we demonstrate a full break on their suggested candidate, which indicates
that the assumption stands on brittle ground. A major challenge towards
instantiating the general assumption is finding suitable families of injective
rational maps, and [BBBF18] suggested a family of rational functions of
(large) degree d constructed by [GM97]. In [BBBF18] it was conjectured
that this family cannot be inverted in time and space poly(log(d)) (i.e. by
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circuits of size poly(log(d))). We provide and implement an algorithm which
inverts these rational functions in time and space poly(log(d)), thus falsifying
the main candidate instantiation of the Inverting Injective Rational Maps
assumption.

We remark that this VDF was a weak VDF to begin with, i.e. algorithms
that run in time poly(log(d)) and space O(dc) for some c ≥ 1 were known
and discussed in [BBBF18]. The main innovation of this part of our work is
that our attack runs in both time and space poly(log(d)).

2. In Section 4 we introduce and discuss a new algebraically structured space-
hardness assumption which we refer to as the sparse root finding (SRF)
assumption. Building on this, in Section 5 we provide a construction of space-
lock puzzles from the SRF assumption, whereas in Section 6 we construct a
verifiable space-hard function from the SRF assumption.

1.2 Our Techniques

Invertibility of Guralnick Müller Polynomials As mentioned above, Boneh et
al. [BBBF18] provided a concrete candidate for a VDF based on Guralnick-
Müller permutation polynomials [GM97]. These are defined via rational functions
fµ,q over a finite field Fpm and parametrized by an element µ ∈ Fpm and a (large)
degree parameter q = pr (for some r < m). Both µ and q need to obey some
additional constraints to ensure that the function is a permutation. The function
fµ,q(X) is then given by

fµ,q(X) =
(Xq − µX − µ)(Xq − µX + µ)q + ((Xq − µX + µ)2 + 4µ2X)(q+1)/2

2Xq
.

Notice that this function is neither linear nor affine, consequently at a first
glance one may reasonably conjecture that it takes space proportional to q to
invert it on random inputs. In fact, [BBBF18] provide a survey of cryptanalytic
techniques to invert rational functions and argue why these techniques fail for
the case of Guralnick-Müller polynomials. This includes inversion of extremely
sparse polynomials, linear algebraic attacks, as well as attacks against so-called
exceptional polynomials, which remain permutations when considered as rational
functions over the extension field Fpm′ for infinitely many choices of the degree
m′. Boneh et al. [BBBF18] conjecture that inverting a function fµ,q for a ran-
domly chosen µ ∈ Fpm (under some constraints) takes time polynomial in the
degree parameter q.

Yet, our first contribution in this work is a full break of this assumption.
Interestingly, we draw the mathematical tools for this attack from the original
work of Guralnick and Müller [GM97]. We observe the following: While the
function fµ,q itself is not affine, the problem of inverting fµ,q on a target t ∈ Fpm

can be embedded into a linear system of higher degree. Specifically, [GM97]
provides us with the following property of fµ,q: If θ is q − 1-st root of µ in
the algebraic closure of Fpm , then there exist efficiently computable coefficients



Algebraic Space-Lock Puzzles and Verifiable Space-Hard Functions 5

A0, B0, B1, B2 (depending on µ and t) in an extension of Fpm such that∏
i∈Fq

(fµ,q(X + iθ)− t) = Xq3 +B2X
q2 +B1X

q +B0X +A0. (1)

Consequently, any solution ξ ∈ Fpm of fµ,q(ξ) = t is also a solution to the
right-hand side of equation (1), i.e. such a solution satisfies

ξq
3

+B2ξ
q2 +B1ξ

q +B0ξ +A0 = 0. (2)

Now observe that equation (2) is in fact a linear equation system (as exponenti-
ation with q is a Frobenius action). Hence we can efficiently compute a solution
space using standard linear algebra techniques. In Theorem 2 in Section 3 we
show that, except with negligible probability over the choice of t, the system (2)
possesses a unique solution, hence our attack succeeds. Furthermore, our ex-
periments in MAGMA (see Section A) demonstrate that this attack is indeed
practical.

Space-hardness from Inverting Sparse Polynomials Guralnick-Müller polynomi-
als are one specific instance of the more general problem of finding roots of sparse
polynomials 3, a problem which we will refer to as Sparse Root Finding (SRF).

As [BBBF18] note, their root-finding-based candidate achieves only a mild
form of sequentiality to begin with. In fact, a moderate polynomial increase in
parallel computation power will enable a solver to find roots significantly faster.
On the other hand, however, the space-hardness of these problems seems to be
much more robust, as all known algorithms for this type of problem consume a
large amount of space, in fact an amount of memory that scales linearly with
the degree of the polynomial.

This is the starting point for the constructive results in this work. In a
nutshell, we consider the problem of inverting sparse, high degree polynomi-
als but drop the requirement that the polynomial needs to act as a permutation.
Hence, the resulting problem carries significantly less structure than e.g. invert-
ing Guralnick-Müller polynomials and does not provide an obvious angle for
cryptanalysis.

More importantly, by basing our constructions on the problem of root-finding
for general sparse polynomials, we can achieve a win-win scenario:

– If our assumptions hold, we obtain practically efficient candidates for space-
hard cryptography

– While we do not provide a worst-to-average case reduction, refuting our as-
sumptions would constitute a considerable advance in the algorithmic state-
of-the art of polynomial factorization algorithms, as it is a long open problem
to design polynomial factorization algorithms which leverage sparsity (in a
non-extreme parameter regime).

3 More generally, we can consider this as finding roots of structured polynomials which
possess a compact representation and can be evaluated quickly
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Space-Lock Puzzle Building Space-Lock Puzzles from the assumption that SRF
is space-hard in sparse high-degree polynomials is fairly straight forward. To
generate a puzzle for a random message m, generate a random sparse polynomial
f(X) with high degree and a random constant coefficient. Now, we know that
f(X) − f(m) has a root at m and can be output as a space-lock puzzle for m.
There are two minor problems with this construction. First, we might want to
create a puzzle for a non-random message, which we can resolve by using hybrid
encryption. Second, there might be polynomials f(X)−f(m) with multiple roots.
We can fix this problem by padding the message and checking for the correct
padding after solving the puzzle.

Verifiable Space-Hard Functions. We start by discussing our construction of ver-
ifiable space-hard functions from SRF. As we let go of the permutation require-
ment of the polynomials, we need to work harder to make this function verifiable.
Our technical tool to achieve this is a novel and efficient special-purpose proof
system for certifying the greatest common divisor between the polynomial f(X)
and Xp − X. This is sufficient, as given this gcd one can quickly and space-
efficiently find the roots of f(X).

For the purpose of this outline, assume that we have cheap way to prove
equations over high-degree and possibly dense polynomials. We will later explain
how to carry out these checks. We make use of the fact that the greatest common
divisor between a polynomial f(X) and Xp − X is constant degree with high
probability over the choice of a random sparse polynomial f(X). Note that this
gcd allows us to immediately compute the roots of f(X) in Fp. Our proof system
establishes that some constant degree polynomial g(X) is the gcd of f(X) and
Xp−X in two phases. In the first phase, the prover computes f ′(X) = Xp−X
mod f(X) via square and multiply. Each step of this computation is defined by

a simple polynomial equation (X2n mod f(X)) · ((X2n mod f(X)) = (X2n+1

mod f(X)) + h(X)f(X) for some polynomial h(X).
In the second phase, we use that gcd(Xp − X, f(X)) = gcd(f ′(X), f(X))

and compute g(X) = gcd(f ′(X), f(X)) together with its Bézout coefficients
a(X), b(X) via the extended Euclidean algorithm. The greatest common divisor
is unique, up to normalization, hence we require the prover to normalize this
polynomial. The verifier can easily check this property by checking that the
leading coefficient is 1. Bézouts identity guarantees that for all ā(X), b̄(X) we
have ā(X)f ′(X) + b̄(X)f(X) is a multiple of gcd(f ′(X), f(X)). Further, the
verifier can check whether g(X) = a(X)f ′(X)+b(X)f(X) is a divisor, by making
sure that f(X) mod g(X) = 0 and Xp − X mod g(X) = 0. Now we have
verified that g(X) is a divisor of f(X) and f ′(X) and that g(X) is a multiple of
the their greatest common divisor, therefore, it is a greatest common divisor.

So far we have skipped over the issue of how we can verify polynomial equa-
tions, when the polynomials have representations that are bigger than the ver-
ifier’s space. Polynomial commitments such as [KZG10] would be the perfect
tool for this but its common reference string scales with the degree of the poly-
nomials, which we want to avoid. Instead we commit to evaluation of these
polynomials at specific points, which in fact defines a Reed-Solomon code. We
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then use interactive oracle proofs of proximity to establish that the commit-
ments are indeed close to a codeword of the corresponding Reed-Solomon code.
To check the equations we pick a few random positions of the codeword and
check whether the equations hold at these positions. We can then use the the
Schwartz-Zippel lemma to argue soundness of the polynomial equations.

1.3 Open Problems

We consider it to be an interesting question to investigate whether it is possible
to intrinsically and flexibly tie the resources of space and time in a puzzle or
verifiable time-space hard function. That is, is it possible to force the puzzle
solver to spend S space for T time? Here S and T are adjustable parameters.
This concept may be most closely captured by the concept of sustained space
complexity [ABP18].

We believe any solution to this problem that goes beyond taking a sequen-
tial function that has a scalable domain and generically applying incrementally
verifiable computation to it might be of big interest. An example for such a func-
tion is sequential squaring over a modulus that scales with the space parameter.

More specifically the function could be on input x ∈ [2λ] compute h((Ns− x)2
T

mod Ns) where h is some compressing function to reduce the size of the result.

1.4 Related Work

There are many works in memory restricted cryptography such as memory-
hard functions and various forms of proof of space. Memory-hard functions
are functions that are only computable with a large amount of memory ac-
cesses. The measure that many works use is called cumulative memory com-
plexity. These functions are used to reduce the effectiveness of building appli-
cation specific integrated circuits (ASICs) or field programmable gate arrays
(FPGA) for brute force attacks because these excell at computation and do not
have a faster way of accessing memory than off-the-shelf CPUs. Memory-hard
functions are used in password hashing, proof of work, and other applications
where the goal is to make computation expensive. The first memory-hard func-
tion was proposed by Percival in 2009 [Per09]. So far, all memory hard func-
tions [Per09,AS15,AB16,ACP+17] use graphs with special structure and itera-
tion of a function to force anyone trying to evaluate the function to do a lot of
memory accesses.

Our functions are hard in a slightly different way. We are trying to increase
the amount of maximum storage that is necessary to compute the function,
which we call space hardness. A space-lock puzzle closely resemble trapdoor
memory-hard function [AGP24], asymmetrically memory-hard functions [BP17]
and memory-hard puzzles [ABB22], but under the notion of memory hardness.

We introduce space-hard functions and their verifiable counter part. Verifi-
able space-hard functions are a space-analogue of verifiable delay functions. We
heavily deviate from the design space of memory-hard functions as most con-
structions are based on the random oracle model. Therefore, using incrementally
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verifiable computation to verify their evaluation requires proving statements over
random oracle, which is concretely inefficient and conceptually unsatisfying. In-
deed, [ABFG14] show how to verify that the function used much memory, but
not that the output is correct. [DFKP15] further extend the notion to proof of
space, where the prover executes a memory-hard function and then regularly
gets queried to prove that he maintains a large amount of the computation in
his memory. For an excellent overview on the topic, we refer to [RD16], as they
detail the different notions and their relations.

Our verifiable space-hard function follows a similar design principle as the
weak verifiable-delay function suggested by [BBBF18]. They suggest that in-
verting a fast to evaluate high degree permutation polynomial requires a lot of
sequential computation. We instead conjecture and use the space-hardness of the
same computation. Because we, however, want to move away from permutation
polynomials to less structured polynomials our constructions require a special
purpose proof system.

Indeed, verifiable space-hard functions can be though of as a space-analogue
of verifiable delay functions [LW17,BBBF18,Wes19,Pie19,HHK+22,HHKK23] and
space-lock puzzles as a space-analogue of time-lock puzzles [RSW96].

1.5 Acknowledgements

Nico Döttling and Jesko Dujmovic: Funded by the European Union (ERC, LA-
CONIC, 101041207). Views and opinions expressed are however those of the
author(s) only and do not necessarily reflect those of the European Union or
the European Research Council. Neither the European Union nor the granting
authority can be held responsible for them.

2 Preliminaries

2.1 Notation

We use the Landau notation to describe the asymptotic behavior of functions.
We write f(x) = O(g(x)) if there exists a constant c such that |f(x)| ≤ c|g(x)|
for all x larger than some constant x0. Further we write f(x) = o(g(x)) if
limx→∞ f(x)/g(x) = 0. We use the notation [n] to denote the set {1, . . . , n}. We
use the notation poly to denote a polynomial. With negl we denote a negligible
function, which is a function that is asymptotically smaller than the inverse of
any polynomial. We use the notation λ to denote the security parameter.

2.2 Finite fields

For a prime-power q = pk we denote the finite field of size q by Fq. We call
p the characteristic of Fq. Recall a few basic facts about finite fields. For a

field Fq of characteristic the polynomial functions x 7→ xpi

are called Frobenius

automorphisms and it holds that xq = xpk

= x for all x ∈ Fq. Hence, the q roots
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of the polynomial Xq −X are precisely all the elements in Fq. Consequently, if
x is in an extension field of Fq and xq − x = 0, then it must hold that x ∈ Fq.
Likewise, the q − 1 roots of the polynomial Xq−1 − 1 are exactly all non-zero
elements in Fq.

2.3 Polynomials

We call the variable for polynomials X and a polynomial is usually denoted
like this f(X) or in explicit form, e.g. X + X2. We call a value x a root of a
polynomial f(X) if f(x) = 0. The degree of a polynomial f(X) is the highest
power of X that appears in f(X). A polynomial is called monic if the coefficient
of the highest power of X is 1.

Recall that a univariate polynomial f(X) is square-free if and only if it holds
that gcd(f(X), f ′(X)) = 1, where f ′(X) is the formal derivative of f(X) in X.

Lemma 1 (Polynomial Identity Lemma). [Sch80,Zip79,DL78] Let f(X) be
a polynomial of degree d over a field Fq. Let S ⊆ Fq be a set of size s. Then for
a random x←$ S we have f(x) = 0 with probability at most d/s.

Lemma 2 (Bézout’s Identity for Polynomials). Let f(X) and g(X) of
degree d1 and d2 be two polynomials with greatest common divisor d(X). Then
there exist polynomials a(X) and b(X) such that a(X)f(X)+ b(X)g(X) = d(X)
and deg(a(X)) < d2 and deg(b(X)) < d1. Moreover, for all ā(X), b̄(X) then
polynomials of the form ā(X)f(X)+ b̄(X)g(X) are exactly the multiples of d(X).

Lemma 3 (Vandermonde Matrix Invertible). Over any field F the Van-
dermonde matrix 

1 x1 x2
1 · · · xn−1

1

1 x2 x2
2 · · · xn−1

2
...

...
...

. . .
...

1 xn x2
n · · · xn−1

n


is invertible if the xi are distinct.

2.4 Codes

A code C is a set of codewords. A code is called linear if it is a vector space
over a finite field Fq. The distance of a code is the minimum Hamming distance
between any two distinct codewords. The distance of a code is denoted by δ. A
code is called an [n, k, δ] code if it has length n, dimension k, distance δ, and
relative distance δ/n. A Reed-Solomon code is a linear code that is defined by
evaluating a polynomial at a set of points. The code is defined by a polynomial
f(X) of degree k− 1 and a set of points x1, . . . , xn. The codewords are then the
evaluations of f(X) at the points x1, . . . , xn. The distance of a Reed-Solomon
code is n − k + 1. We call the Reed-Solomon code evaluated at a set of points
L with polynomials of degree d RS[L, d]. The field this code is over will be clear
from the context.
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2.5 Combinatorics

H is family of strongly universalt hash functions [WC81] that map from X to
Y if for any distict x1, . . . , xt ∈ X, and any possibly non-distinct y1, . . . , yt ∈ Y ,
we have that

Prh←$H [h(x1) = y1, . . . , h(xt) = yt] = |Y |−t.

We detail the first two Bonferroni inequalities.

Lemma 4 (Bonferroni Inequalities). [Bon36] Let A1, . . . , An be events. We
have

∑
i∈[n] Pr[Ai]−

∑
i∈[n],j∈[i−1] Pr[Ai ∩Aj ] ≤ Pr[∪i∈[n]Ai] ≤

∑
i∈[n] Pr[Ai].

2.6 IOP

An interactive oracle proof (IOP) [BCS16] combines the powers of an interactive
proof and a probabilistically checkable proof. It is a proof system where a prover
and a verifier interactively exchange messages. The prover sends long strings
that the verifier does not have to read entirely. The verifier only sends random
challenges to the prover and checks the consistency of the responses. Formally:

Definition 1 (IOP). An IOP with soundness error β for a language L with
witness relation R is defined by a tuple of algorithms IOP = (P,V) defined with
the following two properties:

Completeness For all (x,w) ∈ R:

Pr

Vπ1,...,πt(x, ρ1, . . . , ρt) = 1

∣∣∣∣∣∣∣∣∣∣∣

Sample ρ1, . . . , ρt uniformly at random
π1 ← P(x,w)

π2 ← P(x,w, ρ1)
...

πt ← P(x,w, ρ1, . . . , ρt−1)


is 1.

Soundness For all x /∈ L and all unbounded provers P∗:

Pr

Vπ1,...,πt(x, ρ1, . . . , ρt) = 1

∣∣∣∣∣∣∣∣∣∣∣

Sample ρ1, . . . , ρt uniformly at random
π1 ← P∗(x)

π2 ← P∗(x, ρ1)
...

πt ← P∗(x,w, ρ1, . . . , ρt−1)


is ≤ β

IOPP An interactive oracle proof of proximity (IOPP) is an IOP related notion
where the prover is given a word of some code to which the verifier has query
access. The prover then wants to convince the verifier that the word is close to
a codeword of some code C. Formally:
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Definition 2 (IOPP). An IOPP for a code C with distance δ and soundness
error β is defined by a tuple of algorithms IOPP = (P,V) defined with the fol-
lowing two properties:

Completeness For all c ∈ C:

Pr

Vc,π1,...,πt(w, ρ1, . . . , ρt) = 1

∣∣∣∣∣∣∣∣∣∣∣

Sample ρ1, . . . , ρt uniformly at random
π1 ← P(c)

π2 ← P(c, ρ1)
...

πt ← P(c, ρ1, . . . , ρt−1)


is 1.

Soundness For all c is at distance ≥ δ from C and all unbounded provers P∗:

Pr

Vc,π1,...,πt(w, ρ1, . . . , ρt) = 1

∣∣∣∣∣∣∣∣∣∣∣

Sample ρ1, . . . , ρt uniformly at random
π1 ← P∗(w)

π2 ← P∗(w, ρ1)
...

πt ← P∗(w, ρ1, . . . , ρt−1)


is ≤ β.

There exist an IOPPs for Reed-Solomon codes [BBHR18,ACY23,ACFY24].

Combiner Beyond IOPPs, we actually use the batch IOPPs as defined in
Arnon et al. [ACFY24]. Specifically, we use a procedure Combine with the fol-
lowing properties. It takes as input a natural number d∗, some random field
element r, m functions f1, . . . , fm and corresponding degrees d1, . . . , dm. If fi
is a univariate polynomial of degree di and di ≤ d∗ for all i ∈ [m] then
Combine(d∗, r, (fi, di)i∈[m]) is a degree d∗ univariate polynomial. Further if for
some distance parameter δ, rate ρ, and error err we have if

Prr←$F[∆(Combine(d∗, r, (fi)i∈[m]),RS[L, d∗]) ≤ δ] > err

then there exists S ⊂ L with |S| ≥ (1 − ρ) · |L|, and for all i ∈ [m] exists a
u ∈ RS[L, di] with fi(S) = u(S). For guidance on how to choose the parameters
we refer to [ACFY24].

3 Inverting the Guralnick–Müller permutation
polynomial

In 1997, Guralnick and Müller [GM97] introduced a family of permutation poly-
nomials that were later proposed as a candidate for building a verifiable delay
function [BBBF18]. In this proposal it is crucial that inverting the polynomial
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is not easy. Guralnick–Müller polynomials do not seem as easy to invert as per-
mutation polynomials from other families.

In this Section, we show – using the properties established by Guralnick and
Müller – that, on the contrary, they can be easily inverted. As a consequence,
they should not be used as a building block for verifiable delay functions.

We start by recalling the definition of the Guralnick–Müller polynomials and
some of their relevant properties. We use the original notations of [GM97] rather
the notations from [BBBF18].

3.1 Notations and known facts

Let K be a finite field of characteristic p. A polynomial in K[X] is called
exceptional if it acts as a permutation on infinitely many finite extensions of
K.

Theorem 1 ((Part of) Theorem 1.4 of [GM97]). Let K be a finite field
of characteristic p. Let q be a power of p. Given µ ∈ K, set:

aµ(X) = X2q − 2µXq+1 + 2µXq + µ2X2 + 2µ2X + µ2.

Define:

fµ(X) =
aµ(X)(q+1)/2 + (Xq − µX + µ)q(Xq − µX − µ)

2Xq
.

Then fµ is exceptional over K provided that µ is not a (q− 1)-st power in K Fq.

Remark 1. At first glance, fµ(X) is defined as a rational fraction. However, its
numerator is divisible by Xq, so fµ(X) is a polynomial of degree q2.

We use the following property of fµ.

Proposition 1 (Proposition 3.4 of [GM97]). Let t be a variable and set
Y = Xq − µX and δ = (t2 − 4µ2q+1)(q−1)/2. Let θ denote a (q − 1)-st root of µ
in K̄. Then ∏

i∈Fq

(f(X + iθ)− t) = H(Y ),

where H(Y ) = Y q2 + A2Y
q + A1Y + A0. The coefficients A0, A1, A2 ∈ K are

given by

A2 =
tq − δt

2µq
,

A1 = −µqδ,

A0 = − tq + (t− 2µq+1)δ

2
+ µq2 .
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3.2 Inversion in the context of VDFs

In the setting of verifiable delay functions, the authors of [BBBF18] consider
the use of the Guralnick–Müller on a fixed field where it acts as a permutation.
More precisely, they take q = pr and consider the family fµ on Fpn . Without
loss of generality we may assume that r and n are co-prime. If they are not let g
denote their greatest common divisor. Then both q and pn are powers of pg, with
coprime exponents. In the sequel, we change r and n and consider the following
case:

q0 = pg, q = qr0, and Q = qn0 .

Assume now that we want to solve the equation fµ(x) = t for some given
target t in FQ and some solution x also in FQ. As a direct consequence of
Proposition 1, x has to be a root of:

H(Xq − µX) = Xq3 +B2 X
q2 +B1 X

q +B0 X +A0, (3)

with:

B2 = A2 − µq2 , B1 = A1 − µqA2, and B0 = −µA1.

Since Equation (3) is affine, it is easy to solve using standard techniques.
More precisely, we use the action of Frobenius to amplify this equation in an
affine system of n equations in n variables. First, we define each variable Xi

as Xqi0 . Since we look for a solution in FQ, we have the constraint Xn = X0

and similarly Xi = Xi mod n for any i. Let d be an integer modulo n, by raising
Equation (3) to the power qd0 we obtain (by linearity of Frobenius) that:

Xd+3r +B
qd0
2 Xd+2r +B

qd0
1 Xd+r +B

qd0
0 Xd = −Aqd0

0 .

Taken these n equations together, we obtain a linear system and can recover
the desired value x as the value of X0 in the solution.

3.3 Efficiency of the Algorithm

The hardness assumption in [BBBF18] assumes that inverting the Guralnick–
Müller polynomial costs at least q2 operations in FQ. Our algorithm falsifies
this assumption. Indeed, its most time consuming part is the resolution of the
linear system. Using Gaussian elimination, it can be achieved in n3 arithmetic
operation over FQ. Thus, its bit complexity is Õ(n4 log q0).

Note that a more careful implementation can instead solve a linear system of
the same dimension over Fq0 , thus reducing the bit complexity to Õ(n3 log q0).

It would be tempting to consider the use of faster linear algebra in this
algorithm. However, this is not really useful, since there exists a faster algorithm
that uses only O(n) arithmetic operations in FQ to invert the Guralnick–Müller
polynomial.
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3.4 Correctness of the Algorithm

In order to establish the correctness of our algorithm, we will need the following
additional lemma which describes the result of the FQ-Frobenius action on θ,
which is a q − 1-st root of µ.

Lemma 5. Let µ ∈ K be as in Theorem 1 and let θ be a q − 1-st root of µ. Let
|FQ| = |Fq ·K| = qn. Then it holds that

θq
n

= µ
qn−1
q−1 θ.

Furthermore, given that θ /∈ Fq ·K, it holds that 1 ̸= µ
qn−1
q−1 ∈ Fq.

Proof. First recall that qn−1
q−1 =

∑n−1
i=0 qi is indeed an integer. Furthermore, since

θ is a q − 1-st root of µ it holds that

θq = θq−1 · θ = µ · θ.

Hence, by iterating this identity we obtain via induction that

θq
n

= (θq)q
n−1

= (µ · θ)q
n−1

= µqn−1

· θq
n−1

= µqn−1

· µ
qn−1−1

q−1 · θ

= µqn−1

· µ
∑n−2

i=0 qi · θ

= µ
∑n−1

i=0 qi · θ

= µ
qn−1
q−1 · θ,

where the inductive step happens from the third to the fourth equality. For the
second part of the statement, observe that as µ ∈ K ⊆ Fq ·K it holds that

(µ
qn−1
q−1 )q−1 = µqn−1 = 1,

i.e. µ
qn−1
q−1 ∈ Fq. Finally note that µ

qn−1
q−1 = 1 would imply that

θq
n

− θ = 0,

i.e. θ ∈ Fq ·K. But this immediately contradicts the assumption that θ /∈ Fq ·K.

The following theorem establishes that our algorithm always returns the
correct solution given that the coefficient A1 = −µqδ is non-zero. Note that
δ = (t2 − 4µ2q+1)(q−1)/2 is non-zero whenever t ̸= ±2 (√µ)2q+1. If

√
µ /∈ K

this event never happens, otherwise if
√
µ ∈ K the event that t = ±2 (√µ)2q+1

happens with negligible probability 2/|K|, given that t is distributed uniformly
on K. Note further that in the [BBBF18] scheme the input t is chosen uniformly
random.
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Theorem 2. Let H(Y ) = Y q2 +A2Y
q +A1Y +A0 as in Proposition 1. Given

that the coefficient A1 of H(Y ) is non-zero, the equation H(Xq − µX) = 0 has
a unique solution in K.

Proof. First off, note that since f is permutation on K, by Proposition 1 the
system H(Xq − µX) = 0 has at least one solution. Observe first that given that
A1 ̸= 0, the polynomial H(Xq−µX) is square free, i.e. over its algebraic closure
it splits into distinct linear factors. This holds as its formal derivative is −µA1,
which is non-zero given that A1 ̸= 0.

Assume towards contradiction that H(Xq − µX) = 0 has two distinct solu-
tions x ̸= x′ in K. Thus, by Proposition 1 there exist i, i′ ∈ Fq such that x+ iθ
and x′ + i′θ are both roots of f(X)− t, i.e.

f(x+ iθ)− t = 0

f(x′ + i′θ)− t = 0.

Observe that not both i and i′ can be 0, as otherwise x and x′ would be two
distinct roots of f(X)− t in K, which contradicts the permutation property of
f . Without loss of generality, assume that i ̸= 0 and set z = x + iθ. We claim

that x+ iµ
qn−1
q−1 θ is also a root of f(X)− t, as

0 = (f(z)− t)q
n

= f((x+ iθ)q
n

)− t

= f(x+ iθq
n

)− t

= f(x+ iµ
qn−1
q−1 θ)− t.

Here the second equality follows as f(X)−t is in K[X], the third equality follows
as x, i ∈ Fq ·K, and the last equality follows by the first item of Lemma 5.

Now set i∗ = i · (µ
qn−1
q−1 − 1) which is a non-zero element of Fq by Lemma 5.

We claim that z is also a root of f(X + i∗θ), as

f(z + i∗θ) = f(x+ iθ + i · (µ
qn−1
q−1 − 1)θ) = f(x+ iµ

qn−1
q−1 θ) = 0.

Consequently, z is a zero of both f(X) − t and f(X + i∗θ) − t, and therefore
X− z divides both f(X)− t and f(X+ i∗θ)− t, and therefore, as i∗ ̸= 0 it holds
that (X − z)2 divides

∏
j∈Fq

(f(X + jθ)− t) = H(Xq − µX) (by Proposition 1).

But this contradicts the square-freeness of H(Xq − µX), which concludes the
proof.

3.5 Implementation

We provide Magma code for the attack in Appendix A.
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4 Space-Hardness of Root-Finding

We conjecture that root-finding for polynomials over a big finite field requires a
lot of space. As far as we are aware of, all root finding algorithms [Ber70,CZ81]
[VZGS92,Sho93,KS95,KU11,GNU16] in a finite field Fp for large p and compara-
tively smaller degree d, start by computing Xp−X mod f(X). For a discussion
of recent results, see [GNU16]. In general, this polynomial Xp−X mod f(X) is
a dense polynomial of degree d− 1, whose representation requires d elements in
Fp. For this reason, we conjecture a minimal space of d for any algorithm with
a runtime o(p). Proving this conjecture wrong would greatly advance the state
of the art concerning polynomial factorization.

Assumption 1 (Sparse Root-Finding (SRF)) We define the space-hardness
of finding a root in a polynomial from distribution Dλ,S as follows: Root-Finding

is hard with a gap ε < 1 if there exists a polynomial S̃(·) such that for all polyno-
mials S(·) ≥ S̃(·) and PPT adversaries {Aλ}λ∈N with space bound Sε(λ) there
exists a negligible function negl such that for all λ ∈ N:

Pr

[
f(x∗) = 0

∣∣∣∣f(X)← Dλ,S(λ)

x∗ ← Aλ(f(X))

]
= negl(λ)

We also define a space-hardness assumption for the problem of computing the
greatest common divisor of a polynomial and Xp −X.

Assumption 2 (Sparse GCD Computation) We define the space-hardness
of gcd computation from distribution Dλ,S as follows: gcd computation is hard

with a gap ε < 1 if there exists a polynomial S̃(·) such that for all polynomials
S(·) ≥ S̃(·) and PPT adversaries {Aλ}λ∈N with space bound Sε(λ) there exists
a negligible function negl such that for all λ ∈ N:

Pr

[
g(X) = gcd(f(X), Xp −X)

∣∣∣∣ f(X)← Dλ,S(λ)

g(X)← Aλ(f(X))

]
= negl(λ)

Lemma 6. If root-finding is hard with gap ε < 1 then gcd computation is hard
with gap ε < 1.

Proof. Given an adversary A that breaks Assumption 2 we construct an adver-
sary A′ that breaks Assumption 1.

A′(f(X)) :

– Let g(X)← A(f(X)) where g(X) is an n-degree polynomial.
– Factor g(X) into degree 1 polynomials X − h1, . . . , X − hn using the

Cantor-Zassenhaus algorithm.
– Return h1.

The factors of g(X) can only be of degree 1 because Xp − X only factors
of degree 1. The Cantor-Zassenhaus [CZ81] algorithm has space-complexity
O(n log p) [Sho93] and runs in poly(n, log p).
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We require these assumptions for two different but related applications, which
we will detail in later chapters. One is a space lock puzzle and the other a
verifiable space-hard function. For the space lock puzzle we only really require
that the polynomials by the distributions are fast to evaluate and that root-
finding is space-hard.

In general, we will stick with prime order fields because they tend to have
less structure, which might protect them against structural attacks. We will also
try to impose as little structure as possible on the polynomials. In order to make
proofs over the these fields better we choose FFT-friendly fields.

A natural candidate is the distribution of random sparse polynomials. We
make sure that the lowest two monomials are random for better estimation of
number of roots. More formally, we define the distribution Dλ,S as follows:

Definition 3 (Random Sparse Polynomial (with Uniform Constant and
Linear Coefficient)). Pick a prime p ∈ Ω(2λ), degree d ∈ Ω(S), and num-
ber of non-zero monomials k ∈ Ω(λ). Operations happen over Fp. Output the
following univariate (the variable is X) polynomial

a0 + a1X +
∑

i∈[k−2]

aiX
ei +Xd

For uniformly random ai ←$ Fq and ei ←$ [d− 1].

We prove these polynomials define a family of strongly universal2 hash func-
tions [WC81].

Lemma 7. For any polynomial h(X), any distict x1, . . . , xt ∈ Fp, and any pos-
sibly non-distinct y1, . . . , yt ∈ Fp, we have that

Pra0,...,at−1←$Fp
[h(x1) + l(x1) = y1, . . . , h(xt) + l(xt) = yt] = p−t

where l(X) =
∑

i∈[t] ai−1X
i−1.

Proof. The statment h(x1) + l(x1) = y1, . . . , h(xt) + l(xt) = yt is equivalent to
the this linear system of equations:

1 x1 . . . xt−1
1 h(x1)

...
...

...
...

...
1 xt . . . x

t−1
t h(xt)




a0
...

at−1
1

 =

y1
...
yt

 ⇔

1 x1 . . . xt−1
1

...
...

...
...

1 xt . . . x
t−1
t


 a0

...
at−1

 =

y1 − xd
1

...
yk − xd

k


The matrix is a Vandermonde matrix, which is invertible. Therefore, multiplica-
tion by it is a bijection. Because a0, . . . , at−1 are uniformly random, the proba-
bility of the system of equations to hold is p−t.
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Via a inclusion-exclusion argument, we can upper bound the probability of the
polynomial having no roots.

Lemma 8. For any polynomial h(X) and uniform a0, a1 ←$ Fp we have a0 +
a1X + h(X) no roots with probability ≤ 1/2.

Proof. We have

Pra0,a1 [∨x∈Fp(a0 + a1x+ h(x) = 0)]

≥
∑
x∈Fp

Pra0,a1
[a0 + a1x+ h(x) = 0] (4)

−
∑

x1<x2∈Fp

Pra0,a1
[∧x∈{x1,x2}(a0 + a1x+ h(x) = 0)]

=1−
∑

x1<x2∈Fp

1/p2 (5)

≥1/2

Inequality 4 follows from a Bonferroni inequality 4 and equality 5 follows from
Lemma 7.

We need the following basic fact.

Lemma 9. The size of the image of a polynomial h(X) corresponds to the num-
ber of a0 ∈ Fp for which the polynomial h(X)− a0 has a root in Fp.

Proof. If there exists an x ∈ Fp such that h(x) = a0 then h(X)− a0 has a root
in Fp and vice versa.

Lemma 10. For any polynomial h(X) and uniform a1 ←$ Fp it holds with
probability > 1− 1/

√
2 that h(X) + a1X has a image of size > p(1− 1/

√
2).

Proof. Fix a polynomial h(X). By Lemma 8 we know that the number of a0, a1 ∈
Fp for which the polynomial f(X) = a0 + a1X + h(X) has no root is at most
p2/2. Therefore, by a pidgeon-hole argument there are < p/

√
2 choices of for a1

such that there exist > p/
√
2 choices of a0 such that a0+a1X+h(X) has no root.

This means that there are > p− p/
√
2 choices for a1 such that ≤ p/

√
2 choices

for a0 such that a0 + a1X + h(X) has no root. Therefore, there are > p− p/
√
2

choices for a1 such that > p − p/
√
2 choices for a0 such that a0 + a1X + h(X)

has a root. The statement follows by Lemma 9.

Lemma 11. Fix a polynomial h(X). The statistical distance between (a1, h(x)+
a1x) and (a1, y) where a1, x is uniformly random over Fp and y is uniformly
random from the image of h(X) + a1X is <

√
2− 0.5.

Proof. By Lemma 10 h(X) + a1X has a image of size > p(1 − 1/
√
2) with

probability 1− 1/
√
2. For the rest of this analysis we assume to be in this case.
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Picking a random x and evaluating h(X)+a1X on it is the same as sampling
the output uniformly random from the multiset image of h(X) + a1X (the mul-
tiset where each element y has the multiplicity of the number of elements such
that the element evaluates to y). This multiset has size p.

We now convert the multiset image to set by enumerating the multiplicities
of each element and call this set M. E.g. a multiset {8, 8, 8, 13, 55, 55} would
turn into a set of tuples {(8, 1), (8, 2), (8, 3), (13, 1), (55, 1), (55, 2)}. We do the
same thing to the image of h(X) + a1X and call it D. However because it is a
set it only ever has multiplicity one. So we would turn the set {8, 13, 55} into
{(8, 1), (13, 1), (55, 1)}. By the definition of these sets D ⊆M. BecauseM is of
size p and D is of size > p(1−1/

√
2) sampling a random element fromM will be

in D with probability > 1− 1/
√
2. Therefore, for a 1− 1/

√
2 fraction of random

choices in sampling x at random and then evaluating h(x)+a1x behaves exactly
as sampling uniformly random from the image. Thus, the statistical distance is
< 1− (1− 1/

√
2)2 = 1− (1.5− 2/

√
2) =

√
2− 0.5.

For our verifiable space-hard functions, we also want to have tight bound
on the number of roots of these polynomials. A natural candidate for this is a
distribution over permutation polynomials. In previous chapters we showed how
to efficiently invert the specific set of Guralnick-Müller permutation polynomials
[GM97], which [BBBF18] suggested as a time-lock puzzle. As we leveraged the
specific structure of these polynomials for our attack, we believe it to be prudent
to stay away from permutation polynomials.

If we instead use random sparse polynomials in our verfiable space-hard func-
tions, we would want to have a good bound on the number of roots of these
polynomials. The work of [Kel16] conjectures that the number of roots in a ran-
dom sparse polynomial is O(k log p), which would be good enough for as this
also implies that the probability of sampling a polynomial without roots is not
overwhelming.

To have a lower probability of sampling a polynomial without roots that we
can even prove, we suggest the distribution of polynomials which are the sum
of a dense low-degree polynomial and a single high-degree monomial. We define
the distribution Dλ,S as follows:

Definition 4 (Low-Degree Dense). Pick a prime p ∈ Ω(2λ), degree d ∈
Ω(S), and number of non-zero monomials k such that k log k − 2k ≥ λ. Opera-
tions happen over Fp.

a0 +
∑

i∈[k−1]

aiX
i +Xd

For uniformly random ai ←$ Fq.

Lemma 12. For a polynomial f(X) sampled from distribution Dλ,S we have
f(X) has at least k (as in Definition 4) roots with probability ≤ 2−λ.

Proof. A polynomial having k roots equivalent to the statement that there exists
a set of λ distinct points x1, . . . , xk ∈ Fp such that the polynomial evaluates to
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zero at these points. There are
(
p
k

)
much sets. For each of those sets, the proba-

bility that the polynomial evaluates to zero at these points is p−k by Lemma 7.
Therefore, by union bound the probability that the polynomial evaluates to zero

at any set of k distinct points is ≤ (pk)
pk ≤ p(p−1)···(p−k+1)

k!·pk ≤ 1
k! ≤ 2−λ. The last

inequality follows from Stirling’s approximation and our choice of k relative to
λ.

5 Space-Lock Puzzle from SRF

We define space-lock puzzles analogously to time-lock puzzles but the resource
we restrict is not sequential time but space.

Definition 5 (Space-Lock Puzzle). A space-lock puzzle (SLP) with message
space {0, 1}n is a tuple of three algorithms SLP = (Setup, Gen, Solve) defined as
follows:

pp← Setup(1λ, S) : The setup algorithm Setup takes as input a security param-
eter 1λ and a space bound S and outputs public parameters pp.

p← Gen(pp,m) : The puzzle generation algorithm Gen takes as input public pa-
rameters pp and a message m and outputs a puzzle p.

m← Solve(pp, p) : The solving algorithm Solve takes as input a puzzle p and
outputs a message m.

Statistical Correctness : SLP = (Setup,Gen,Solve) is statistically correct if
for all polynomials S(·) there exists a negligible function negl s.t. for all
n, λ ∈ N and m ∈ {0, 1}n :

Pr

[
m ̸= Solve(pp, p)

∣∣∣∣pp← Setup(1λ, S(λ))
p← Gen(pp,m)

]
≤ negl(λ)

Efficiency : There exists a polynomial poly such that for all n, λ, S ∈ N, and
m ∈ {0, 1}n the runtime (and therefore space usage) of pp ← Setup(1λ, S)
and p← Gen(pp,m) is ≤ poly(λ, n, logS).

Security : SLP is secure with gap ε < 1 if there exists a polynomial S̃(·) such
that all polynomials S(·) ≥ S̃(·) and PPT adversaries {Aλ}λ∈N with space
bound Sε(λ) there exists a negligible function negl s.t. for all n, λ ∈ N:

Pr

b = Aλ(st, p)

∣∣∣∣∣∣∣∣
pp← Setup(1λ, S(λ))
(m0,m1, st)← Aλ(pp)

b←$ {0, 1}
p← Gen(pp,mb)

 ≤ 1/2 + negl(λ)

We present the first space-lock puzzle based on the space hardness of finding
roots of polynomials.

Construction 1 (Space-Lock Puzzle) Let Dλ,S be a distribution of polyno-
mial that are fast to evaluate and where finding roots is space-hard. Further,
H : Fq → {0, 1}λ+n, where n is the size of the message space then the following
defines a space-lock puzzle.
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Setup(1λ, S) : Return (λ, S).

Gen(pp,m) :

– Sample a degree S polynomial f(X) ∈ Dλ,S.

– Sample a uniformly random element z ←$ Fq.

– Let y = f(z).

– Return (f(X), y,H(z)⊕ (0λ||m)).

Solve(p = (f(x), y, c)) :

– Compute Z, the set of roots of the polynomial f(X)− y.

– For z∗ ∈ Z:

• Compute m̃← H(z∗)⊕ c.
• If the first λ bits of m̃ are all 0 return the rest of m̃

Theorem 3. Construction 1 is a space-lock puzzle under the assumption that
the SRF assumption 1 holds for polynomials with uniform linear coefficient.

Proof. The proof follows from lemmas 13 to 15.

Lemma 13 (Statistical Correctness). Construction 1 is statistically correct.

Proof. Because f(X) − y has degree S it has at most S roots. We know that
f(z) = y, therefore, z is a root of f(X) − y. Because H is a random oracle we
have that for all z∗ ∈ Z \ {z} the probability that the first λ many bits of m̃
are 0λ is 2−λ. Therefore, Solve outputs m with all but probability ≤ S(λ) · 2−λ,
which is negligible in λ.

Lemma 14 (Efficiency). Construction 1 is efficient.

Proof. The properties of Dλ,S tell us that evaluating f(X) on z can be done in
poly(λ, logS). It follows that Gen runs in time and space poly(λ, logS).

Lemma 15 (Security). Construction 1 is secure under the SRF assumption 1
for polynomials with uniform linear coefficient.

Proof. To break security of the Construction 1 the adversary has to compute z
given f(X) and y otherwise he has no way of computing H(z).

y is computed by evaluating a f(X) at a uniform position. By Lemma 12
this is at constant c statistical distance from sampling y uniformly at random
from the image of f(X). This is the same as sampling f(X) and y uniformly
at random under the condition that f(X) − y has a root. Lemma 8 tells us
that polynomial with uniform constant coefficient have no root with probability
≤ 1/2. Therefore, any adversary that breaks the security of Construction 1 with
probability ϵ breaks the SRF assumption with probability cϵ/2.
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6 Verifiable Space-Hard Function from SRF

The definition of verifiable space hard function is similar to the definition of
verifiable delay function but instead of a sequential time bound we have a space
bound.

Definition 6 (Verifiable Space-Hard Function). A verifiable space-hard
function (VSHF) with domain space X, codomain Y, and proof space Π has
the following algorithms:

pp← Setup(1λ, S) : The setup algorithm Setup takes as input a security param-
eter λ and a space bound S and outputs public parameters pp.

(y, π)← Eval(pp, x) : The evaluation deterministic algorithm Eval takes as input
public parameters pp and outputs a function output y and a proof π ∈ Π.

b← Verify(pp, x, y, π) : The verification algorithm Verify takes as input public
parameters pp, a function input x ∈ X, a function output y and a proof
π ∈ Π and outputs a bit b.

it has the following properties:

Correctness : VSHF = (Setup,Eval,Verify) is correct if for all λ, S ∈ N and
x ∈ X we have Verify(pp, x, y, π) = 1 for pp ← Setup(1λ, S) and (y, π) ←
Eval(pp, x).

Space Hardness : VSHF = (Setup,Eval,Verify) is sound with entropy E and
a gap ε < 1 if there exists a polynomial S̃(·) such that for all polynomials
S(·) ≥ S̃(·) and PPT adversaries {Aλ}λ∈N with space bound Sε(λ) there
exists a negligible function negl such that for all λ ∈ N, x ∈ X:

Pr

[
Eval(pp, x) = (y, π)

∣∣∣∣pp← Setup(1λ, S(λ))
(x, y)← Aλ(pp)

]
≤ 2−E + negl(λ)

Computational Uniqueness : VSHF = (Setup, Eval, Verify) is computation-
ally unique if for all PPT adversaries A there exists a negligible function
negl s.t. for all λ ∈ N and x ∈ X :

Pr

Verify(pp, x, y∗, π∗) = 1 ∧ y∗ ̸= y

∣∣∣∣∣∣
pp← Setup(1λ, S(λ))
(x, y∗, π∗)← Aλ(pp)
(y, π)← Eval(pp, x)

 ≤ negl(λ)

Efficiency : There exists a polynomial poly such that for all λ, S ∈ N, π ∈ Π,
and x ∈ X the runtime (and therefore space usage) of pp← Setup(1λ, S) and
Verify(pp, x, y, π) is ≤ poly(λ, logS).

We now show how to construct a verifiable space-hard function. We follow
the same basic idea as the weak verifiable delay function of [BBBF18] but we
require more care because we do not rely on permutation polynomials.

We present the function as an IOP, but the proof can be made non-interactive
using the Fiat-Shamir heuristic and Merkle trees [BCS16].
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Construction 2 (Verifiable Space-Hard Function) Let (P,V) be an IOPP
for Reed-Solomon codes that evaluates the polynomials at points L and has a
negligible soundness error. It proves a string x is at constant relative distance
from a Reed-Solomon codeword (degree d polynomials).

We also use the combine procedure form Section 2.6.
Our verifiable space-hard function does not require any setup.

Eval(S, x) :
– Let f(X) = H(x).
– Let the degree of f(X) be d.
– Let (pi)i∈{0}∪[⌊log p⌋] be the binary decomposition of p.
– Let m0(X) = X and v0(X) = Xp0 .
– For i ∈ [⌊log p⌋]:
• Compute mi(X) = mi−1(X) ·mi−1(X) mod f(X).
• Compute ei(X) = (mi−1(X) ·mi−1(X)−mi(X))/f(X)
• Compute vi(X) = vi−1(X) ·mpi

i (X) mod f(X).
• Compute wi(X) = (ii−1(X) ·mpi

i (X)(X))/f(X)
• Send mi(X), ei(X), vi(X), and wi(X) evaluated at L to the verifier.

– Compute g(X), the gcd of v⌊log p⌋(X)−X and f(X) together with their
Bézout coefficients a(X), b(X).

– Send a(X) and b(X) evaluated at L to the verifier.
– Pick a uniformly random field element r ←$ Fp.
– Run c(X) ← Combine(d, r, (mi(X), d − 1)i∈{0}∪[⌊log p⌋], (ei(X), d −

2)i∈{0}∪[⌊log p⌋], (vi(X), d − 1)i∈{0}∪[⌊log p⌋], (wi(X), d − 2)i∈{0}∪[⌊log p⌋],
(a(X), d− 1), (b(X), d− 2)).

– Send c(X) evaluated at L to the verifier.
– Run P to prove that c(X) is at a constant relative distance from a poly-

nomial of degree d.

– Return function output y = g(X)
leading coefficient of g(X) .

Verify(x, y = g(X)) :
– Let f(X) = H(x).
– If g(X) is not monic return 0.
– Run V to verify that c(X) is at a constant relative distance from a poly-

nomial of degree d.
– Let (pi)i∈{0}∪[⌊log p⌋] be the binary decomposition of p.
– Sample a random set R ⊂ L of size λ.
– For r ∈ R:
• Read m0(r) and v0(r) from the prover string.
• If m0(r) ̸= r return 0.
• If v0(r) ̸= rp0 return 0.

– For i ∈ [⌊log p⌋]:
• For r ∈ R:

∗ Read (mi−1, mi(r), ei(r), vi−1(r), vi(r), wi(r)) from the prover
string.

∗ If mi−1(r)
2 ̸= mi(r) + ei(r) · f(r) return 0.

∗ If vi−1(r) ·mi(r)
pi ̸= vi(r) + wi(r) · f(r) return 0.
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– For r ∈ R:
• If a(r) · (v⌊log p⌋(r)− r) + b(r) · f(r) ̸= g(r) return 0.

– If f(X) mod g(X) ̸= 0 or Xp −X mod g(X) ̸= 0 return 0.
– Return 1.

Remark 2. Note, the above function does not have high output entropy because
f(X) does not have any roots with ≤ 1/2 probability. This is required by many
applications and can easily be fixed by repetition.

Theorem 4. Construction 2 is a verifiable space-hard function.

Proof. Follows from Lemmas lemmas 16 to 18 and Corollary 1.

Lemma 16. [Correctness] Construction 2 is correct.

Proof. Because the prover divides g(X) by its leading coefficient it outputs a
monic polynomial. All the checks made by V pass, which follows from the cor-
rectness of (P,V). For i ∈ {0} ∪ [⌊log p⌋] it holds that mi(X) = X2i mod f(X).
We also have for i ∈ [⌊log p⌋] it holdsmi−1(X)2 = mi(X)+f(X)ei(X). Similarly,
for binary decomposition (pi)i∈{0}∪[⌊log p⌋] of p we have

vi(X) =
∏

i∈{}∪[⌊log p⌋]

X2ipi mod f(X)

and
wi(X) =

∏
i∈{}∪[⌊log p⌋]

X2ipi/vi(X).

Therefore, evaluating all these polynomial at the point r still makes these equa-
tions hold.

By definition of a common divisor g(X) divides v⌊log p⌋(X) − X and f(X).
Because v⌊log p⌋(X)−X = Xp−X mod f(X) we get if g(X) divides v⌊log p⌋(X)−
X and f(X) it also divides Xp −X. The Bézout coefficients have the property
that a(X) · (v⌊log p⌋(X)−X)+ b(X) · f(X) = g(X). Therefore, each check passes
if π is honestly generated.

Lemma 17. [Efficiency] Construction 2 is efficient.

Proof. We require from Dλ,S that with all but negligible probability f(X) has a
polynomial number of roots. For polynomials where the λ low order monomials
are dense (see Definition 4) this follows from Lemma 12. Therefore, the degree of
g(X) is polynomial in λ. Reading the prover string for each polynomial at ≤ 2λ
many locations is in poly(λ). If we have an IOPP for Reed-Solomon codes where
the verifier runs in time poly(λ, logS), then the verifier of the entire protocol
runs in time poly(λ, logS).

Lemma 18. [Computational Uniqueness] The Construction 2 is computation-
ally unique.
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Proof. Assume there exists an S ⊂ L with |S| ≥ (1− δ) · |L| such that

– for all (mi(X))i∈{0}∪[⌊log p⌋], there exists a m̂i(X) ∈ RS[L, d−1] withmi(S) =
m̂i(S),

– for all (ei(X))i∈{0}∪[⌊log p⌋], there exists a êi(X) ∈ RS[L, d− 2] with ei(S) =
êi(S),

– for all (vi(X))i∈{0}∪[⌊log p⌋], there exists a v̂i(X) ∈ RS[L, d− 1] with vi(S) =
v̂i(S),

– for all (wi(X))i∈{0}∪[⌊log p⌋], there exists a ŵi(X) ∈ RS[L, d−2] with wi(S) =
ŵi(S),

– there exist â(X) ∈ RS[L, d − 1] and b̂(X) ∈ RS[L, d − 2] with a(S) = â(S)
and b(S) = b̂(S).

First, we lower-bound the number of elements in S ∩ R. So we can use them
together with the polynomial identity lemma to check the polynomial equations.

By multiplicative Chernoff bound we have that

Pr[|S ∩R| ≤ λ(1− δ)/2] ≤
(

e−1/2

(1/2)1/2

)λ(1−δ)

< 0.9λ(1−δ)

. Since δ is constant, we have that with all but negligible probability |S ∩ R| >
λ(1− δ)/2.

Each polynomial equation we check is at most of degree 2d. Therefore, we
get via polynomial identity lemma 1 if a polynomial equation does not hold then
evaluating the polynomial at a random point on S and then checking holds with
probability 2d/|S|, which, again, is constant. Because we run this test |S ∩ R|
many times we detect it with all but negligible probability.

From these equations follows that v̂⌊log p⌋(X) − X = Xp − X mod f(X).
Therefore, gcd(v̂⌊log p⌋(X)−X, f(X)) = gcd(Xp−X, f(X)). By Bézout’s identity
for all a′(X), b′(X) we have a′(X) · (v̂⌊log p⌋(X)−X)+ b′(X) · f(X) is a multiple
of gcd(v̂⌊log p⌋(X), f(X)). So, the check a(X) · (v̂⌊log p⌋(X)−X) + b(X) · f(X) =
g(X) verifies that g(X) is a multiple of gcd(Xp − X, f(X)). The checks f(X)
mod g(X) = 0 and Xp − X mod g(X) = 0 verify that g(X) is a divisor of
f(X) and Xp −X. Therefore, g(X) is a greatest common divisor of f(X) and
Xp−X. The gcd is unique up to multiplication by a field element, which is why
we require g(X) to be monic.

If our initial assumption about the existence of S does not hold, then by
the soundness of Combine, detailed in Section 2.6, we get that c(X) is far from
RS[L, d]. By the soundness of the IOPP that checks that c(X) is close to the
code this can only happen with negligible probability.

Remark 3. With access to a extractable polynomial commitment scheme the
above construction can be made much simpler by replacing the IOPPs with the
polynomial commitment. Then we only need to check the polynomials at one
location instead of λ many locations.

Corollary 1 (Space Hardness). Construction 2 is space-hard.

Proof. Under Assumption 2 for polynomials that are dense in the low degrees 4
space-hardness follows directly from computational uniqueness.
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A Implemented Attack

It follows an implementation of the attack we describe in Section 3. The code is
written in Magma.

//Parameters
p:=101;
s:=pˆ3;
n:=11;
q:=pˆn;

GFq<a>:=GF(q);
GFpol<X>:=PolynomialRing(GFq);

//Definition of the polynomial
function PermEval(mu,x)
a:=xˆ(2∗s)−2∗mu∗xˆ(s+1)+2∗mu∗xˆs+muˆ2∗xˆ2+2∗muˆ2∗x+muˆ2;
return (aˆ((s+1) div 2)+(xˆs−mu∗x+mu)ˆs∗(xˆs−mu∗x−mu))/(2∗xˆs);

end function;

//Generating the polynomial
//Checking mu is correct (this part is slow).
//Indeed, this is not even part of the attack;
//this defines the function we are trying to invert.
//Can be skipped as mu is likely to be correct.
notfound:=true;
while notfound do
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mu:=Random(GFq);
if #Roots(Xˆ(s−1)−mu) eq 0 then
notfound:=false;

end if;
end while;
input:=Random(GFq);
target:=PermEval(mu,input);

//Attack starts here
delta:=(targetˆ2−4∗muˆ(2∗s+1))ˆ((s−1) div 2);
A2:=(targetˆs−delta∗target)/(2∗muˆs);
A1:=−muˆs∗delta;
A0:=−targetˆs/2−((target−2∗muˆ(s+1))/2)∗delta+muˆ(sˆ2);
B2:=A2−muˆ(sˆ2);
B1:=A1−A2∗muˆs;
B0:=−mu∗A1;
M:=ZeroMatrix(GFq,n,n);
for i:=0 to n−1 do

M[i+1,i+1]:=B0ˆ(sˆi);
M[i+1,(i+1) mod n+1]:=B1ˆ(sˆi);
M[i+1,(i+2) mod n+1]:=B2ˆ(sˆi);
M[i+1,(i+3) mod n+1]:=1;

end for;
Q:=[];
for i:=0 to n−1 do
Append(˜Q,−A0ˆ(sˆi));

end for;
V:=Vector(Q);
M:=Transpose(M);
S:=Solution(M,V);

if (S[1] eq input) then
print ”Correct input recovered!”;

end if;

B Improvement of the attack complexity

The attack described in Section 3 is polynomial time but can still be improved.
In its most basic form, it requires to perform linear algebra on a n × n system
defined over the large field FQ. A first easy improvement is to remark that
because the linear system is Frobenius invariant, one can use Weil descent to
instead consider a system over Fq0 . Alternatively, we remark that the system
is sparse which can also lead to algorithm speed-up by relying on an iterative
algorithm. Unfortunately, the linear system over the small field is not sparse
which reduces the total gain we can achieve with this approach.

In the present section, we show a different approach to solve the system using
only O(n) arithmetic operation over FQ. For this, we proceed in two steps:
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1. We solve the equation Y q2 +A2 Y
q+A1 Y +A0 = 0 provided by Theorem 2.

2. We recover X by solving Xq − µX − Y = 0.

We use the same technique to solve both systems. Since the equation Xq−µX−
Y = 0 has fewer terms, it is easier to start by describing the second step.

Let y0 be a given value in FQ. We want to recover an element X in FQ, such
that Xq = µX + y0. As a consequence of X being in FQ we also know that
Xqn −X = 0. Raising our first equation to the power qi, we can remark that:(
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Let Mi denote the 2 × 2 matrix in the above equation. As a consequence, we
have: (
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In particular:
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Thus, the vector (
1 0
)
·

n∏
i=1

Mn−i

provides an expression ofXqn as a linear combination ofX and 1. After replacing
Xqn in the equation Xqn −X = 0, we obtain a linear equation in X and recover
its value.

In the first step we solve the equation Y q2 + A2 Y
q + A1 Y + A0 = 0. We

proceed in a similar fashion by noting that:Y qi+2
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Using the same argument, we can express Y qn as a linear combination of Y q, Y
and 1. This yields an equation a Y q + b Y + c = 0. Raising to the power q gives
aq Y q2+bq Y q+cq = 0. Putting the two equations with Y q2+A2 Y

q+A1 Y +A0 =
0 yields an easy to solve linear system of dimension 3.

By inspection, one can see that the complete process only requires O(n)
arithmetic operations in FQ.

B.1 Code for Improved Attack

Below, we provide the magma code for this improved attack.
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// Y then X approach
p:=101;
s:=pˆ4;
n:=11;
q:=pˆn;
GFq<a>:=GF(q);
GFpol<X>:=PolynomialRing(GFq);

function PermEval(mu,x)
a:=xˆ(2∗s)−2∗mu∗xˆ(s+1)+2∗mu∗xˆs+muˆ2∗xˆ2+2∗muˆ2∗x+muˆ2;
return (aˆ((s+1) div 2)+(xˆs−mu∗x+mu)ˆs∗(xˆs−mu∗x−mu))/(2∗xˆs);

end function;

//Don’t test mu for now
mu:=Random(GFq);
input:=Random(GFq);
target:=PermEval(mu,input);

delta:=(targetˆ2−4∗muˆ(2∗s+1))ˆ((s−1) div 2);
A2:=(targetˆs−delta∗target)/(2∗muˆs);
A1:=−muˆs∗delta;
A0:=−targetˆs/2−((target−2∗muˆ(s+1))/2)∗delta+muˆ(sˆ2);

//Yˆ(sˆ2) + A2 Yˆs + A1 Y + A0
//Yˆ(sˆn)−Y
//Get simplified Yˆ(sˆn) by many small matrix mults [Express in terms of Yˆ(sˆi), Yˆ(sˆ(i−1)) and 1 until i=1]
V:=Vector([GFq!1,0,0]); //Trivial init
for i:=n−2 to 0 by −1 do
M:=Matrix(GFq,3,3,[−A2ˆ(sˆ(i)),−A1ˆ(sˆ(i)),−A0ˆ(sˆ(i)),1,0,0,0,0,1]);
V:=V∗M;

end for;
V[2]:=V[2]−1;
W:=V/V[1];
VecBase:=Vector([1,A2,A1,A0]);
VecWs:=Vector([1,W[2]ˆs,0,W[3]ˆs]);
VecW:=Vector([0,1,W[2],W[3]]);
VecFinal:=VecBase−VecWs−(A2−W[2]ˆs)∗VecW;
Yval:=−VecFinal[4]/VecFinal[3];

// Go back from Y to X −− Xˆ(sˆn)−X=0 and Xˆs−mu∗X−Yval=0
V:=Vector([GFq!1,0]); //Trivial init
for i:=n−1 to 0 by −1 do
M:=Matrix(GFq,2,2,[muˆ(sˆ(i)),Yvalˆ(sˆ(i)),0,1]);
V:=V∗M;

end for;
V[1]:=V[1]−1;

recovered:=−V[2]/V[1];
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