
HELP: Everlasting Privacy through Server-Aided Randomness

Yevgeniy Dodis
New York University
dodis@cs.nyu.edu

Jiaxin Guan
New York University
jiaxin@guan.io

Peter Hall
New York University
pf2184@nyu.edu

Alison Lin
Independent Contributor
colorfly@gmail.com

Abstract

Everlasting (EL) privacy offers an attractive solution to the Store-Now-Decrypt-Later (SNDL) prob-
lem, where future increases in the attacker’s capability could break systems which are believed to
be secure today. Instead of requiring full information-theoretic security, everlasting privacy allows
computationally-secure transmissions of ephemeral secrets, which are only “effective” for a limited
periods of time, after which their compromise is provably useless for the SNDL attacker.

In this work we revisit such everlasting privacy model of Dodis and Yeo [DY21] (ITC’21), which we
call Hypervisor EverLasting Privacy (HELP). HELP is a novel architecture for generating shared ran-
domness using a network of semi-trusted servers (or “hypervisors”), trading the need to store/distribute
large shared secrets with the assumptions that it is hard to: (a) simultaneously compromise too many
publicly accessible ad-hoc servers; and (b) break a computationally-secure encryption scheme very
quickly. While Dodis and Yeo [DY21] presented good HELP solutions in the asymptotic sense, their
solutions were concretely expensive and used heavy tools (like large finite fields or gigantic Toeplitz
matrices).

We abstract and generalize the HELP architecture to allow for more efficient instantiations, and
construct several concretely efficient HELP solutions. Our solutions use elementary cryptographic oper-
ations, such as hashing and message authentication. We also prove a very strong composition theorem
showing that our EL architecture can use any message transmission method which is computationally-
secure in the Universal Composability (UC) framework. This is the first positive composition result
for everlasting privacy, which was otherwise known to suffer from many “non-composition” results
(Müller-Quade and Unruh [MU10]; J of Cryptology’10).

1 Introduction

Public-key cryptography has come a long way from theory to practice, allowing people to securely commu-
nicate without expensive key distribution. Unfortunately, public-key cryptography comes at the cost of
requiring unproven computational assumptions, which may be falsified some day or broken by more pow-
erful computing in the future. This is especially important in light of the famous Store-Now-Decrypt-Later
(SNDL) attack [BMV06, MVZJ18], where a computationally bounded attacker can passively store sensi-
tive ciphertexts that it cannot decrypt at the moment. Later, when the power of the attacker increases
(through novel cryptanalysis, or say, running Shor’s algorithm [Sho94] or Grover’s algorithm [Gro96] on
a quantum computer), the attacker can then decrypt the stored messages. Indeed, traditional public-key

1

encryption schemes are ill-equipped to combat the SNDL attack, and a lot of attention is given to finding
alternative solutions. Post-quantum cryptography (PQC) is a step in this direction, in that it directly
addresses the threat of quantum computers. Unfortunately, PQC is still in its infancy, and the com-
munity does not have very high confidence in traditional post-quantum assumptions. For example, the
SIKE [FJP14, JF11] public-key encryption was originally selected as one of the finalists to the NIST PQC
competition [CCH+22] only to be broken almost immediately after [CD23, MMP+23]. More recently,
Chen announced [Che24] a ground-breaking attack on the famous Learning-with-Errors problem [Reg10].
If correct, the attack would likely have devastating consequences to the existing PQC candidates. Fortu-
nately, the community have found a mistake in the proposal (see [Che24]). This mistake took weeks to
find, though, and many experts were clearly concerned by the potential break.

While PQC solutions form an important line of defense against SNDL attacks, there is also a need for
solutions which offer stronger security and/or confidence to the system’s users, even against unforeseen
(and even believed to be unlikely) future cryptanalysis. From this perspective, Information-Theoretic
(IT) security would be much preferable, as these do not rely on any computational assumption. As a
result, IT-security resists advances in computational power, novel cryptanalysis, and the threat of future
quantum computers.

Unfortunately, the famous impossibility result of Shannon [Sha49, Dod12] states that IT-security
comes at a price: The secret must be at least as large as the message. To encrypt large amounts of data,
then, it appears that users must pre-share large amounts of randomness, which is often very onerous and
impractical.

Everlasting Privacy. Several communication models have emerged over the years which overcome
this limitation, by settling on a novel type of security called everlasting privacy [ADR02, DR02, HN06],
which lies between the traditional computational and the full IT privacy. First, these models require some
type of “outsourcing” of large amounts of shared randomness to one or more semi-trusted entities. We call
these hypervisors, or just servers, in this work. The hypervisors will help communicating parties agree on
effectively arbitrary amount of shared randomness — which can be used as a one-time pad, for example, —
without the parties needing to pre-share this randomness. We will assume the minimal level of trust from
the servers. Concretely, if malicious servers are modeled as active attackers, we need an honest majority
(as otherwise users cannot tell which half of the servers is “for real”). And for passive/failing servers, we
assume only 1 honest server (clearly optimal). In particular, if all the hypervisors are distrusted, the IT
models for key distribution will not offer additional benefits beyond computational security (offered by
public-key cryptography).

Second, these models assume some realistic, temporary limitations on the attacker during the phase
that the hypervisors have not erased all the randomness which is no longer needed. Once this temporary
phase is over, the attacker can be completely unbounded. However, at this point, this powerful adversary
will be unable to break the privacy of the system, because the randomness required for this task has already
been erased. To state this directly, we can separate into two customizable timelines: (1) “short/medium”,
where the generated one-time pads need to be reproducible by good parties; (2) “long”, by which the pads
should not be reconstructible by attackers, provided servers properly erased randomness. In practice, it
is not hard to set these thresholds for concrete applications; e.g. (1) could be hours/days, while (2) likely
years/decades.

Everlasting privacy serves as a perfect compromise between computational and IT privacy in com-
bating SNDL-style attacks. During a reasonably short window, which is often under the control of the

2

application,1 one could make realistic assumptions about the attacker’s limitations. By bounding how
long they must hold, these assumptions are firmly based in reality and can take into account the current
state of quantum computers, classical computing capabilities, geographic considerations (e.g., when the
servers are well separated), or existing cryptanalysis. And once this short window is gone, no (foreseen
or unforeseen) development in any of these dimensions will harm the privacy of the system.

Real-World Considerations. The introduction of the hypervisors overcomes the limitations of
public-key cryptography, without the need to pre-share huge keys. However, it is a non-trivial new
component, so extra care needs to be taken to ensure that the particular everlasting privacy model is
interesting. For starters, Shannon’s impossibility result [Sha49] implies that preventing SNDL attacks
(and hence achieving everlasting privacy) is impossible without pre-shared keys, if the attacker can always
observe the communication channels between the user and all of the hypervisors. Thus, in all meaningful
everlasting privacy models it is essential that some of these communication channels are assumed (per-
fectly) secure. While this assumption is (necessarily!) strong, it seems reasonable in many real-world
situations. In essence, performing SDNL attacks against users and several hypervisors is often exponen-
tially harder than simply dumping encrypted traffic onto hard disk on a single Alice-to-Bob channel, as
we explain below.

First, the attacker needs to actually monitor (or “break into”) multiple channels instead of a single
channel. Second, if servers can come and go in an ad hoc fashion (which our model will easily allow), it
might be hard for the attacker to never miss the introduction of a new server. Third, instead of dumping
traffic only corresponding to the single channel of interest, now the attacks need to store the traffic from
the sender to all the servers, making it more expensive. Fourth, in our model the users can try to disguise,
delay, or spread their access to the servers over time, making it extremely hard for the attacker to even
figure out which “ciphertext chunks” are relevant for a given target conversation/ciphertext. And, finally,
even if everything fails, the users can always use conventional public-key crypto on top of our model,
meaning that we did not make things worse for the user, but only harder for the SNDL attacks.

Of course, while we want to make the life of the attacker harder, a given model of hypervisor-assisted
everlasting privacy should be convenient/cheap to use. Indeed, to prevent trivial (but very impractical)
solutions, hypervisors have to be extremely simple, and cannot keep growing amount of state which depends
on the number of generated keys. For example, in our models we will not allow trivial solution where
a user Alice will actively “route” the message to Bob through a trusted hypervisor — or secret shared
with multiple hypervisors.2 Indeed, this would require each hypervisor to keep the message/share until
Bob comes on-line, making its state balloon over time. Additionally, it would require a possibly expensive
authentication mechanism between the user and the hypervisors. Instead, we want each server to be either
stateless, or “minimally stateful” (see below), and not introduce any expensive setup routines between
the user and the servers, so that new servers can be added/removed at will.

Motivated by the above considerations, in this work we primarily focus on a particular model of ever-
lasting privacy from Dodis and Yeo [DY21], which is the only model we know to satisfy the requirements
mentioned above, and is arguably the most convenient model for practical deployment. (We survey several
everlasting privacy proposals in Section 1.3.) As the authors did not give a catchy name to their model,
we term it Hypervisor EverLasting Privacy (HELP).

1This could be as short as minutes or even seconds; certainly, less than months or years.
2For example, this rules out solutions based on Secure Message Transmission (SMT) techniques [DDWY93].

3

1.1 HELP Model for Everlasting Privacy

HELP is a novel architecture for generating shared randomness using a network of semi-trusted servers
(or “hypervisors”), trading the need to store/distribute large shared secrets with the assumptions that
it is hard to: (a) simultaneously compromise too many publicly accessible ad-hoc servers; and (b) break
a computationally-secure message transmission scheme very quickly. Below we describe the single-server
variant first. As we will see, definition and constructions from the one server setting usually generalize
quite easily to the multi-server scenario, while providing more realistic trust assumptions about the servers.

Single-Server HELP [DY21]. In this setting, a single server S is assumed to be trusted. Moreover,
somewhat unrealistically it is assumed that S has private channel with all the users of the system (an
assumption which will be significantly relaxed in the multi-server setting). The server does not have
any explicit authentication mechanism for the users, and arbitrary users (including the adversary!) can
communicate with S.

In the original model of [DY21], the server was truly stateless: its state consists of a single long-and-
random string X, and nothing beside X is remembered between the calls. Imagine now that the user
Alice wants to transmit a message m to user Bob. Alice would choose a random seed S, and send it to
S. S will apply a particular primitive called doubly-affine extractor to its string X and the seed S, and
obtain a random one-time pad R, which it returned to Alice. Moreover, since R was really extracted
from X, it is statistically independent from the seed S. Alice will then use any computationally secure
mechanism — e.g., public-key encryption, — to send the tuple (S,m⊕ R) to Bob. Bob would go to the
server with the same string S to recover the one-time pad R, and finally get the message.

In the meanwhile, the attacker Eve can come to the server with her own seeds S1, . . . , Sq, and get its
own pads R1, . . . , Rq. However, since Eve is assumed to be unable to decrypt S from the computationally-
secure channel, doubly-affine extractors have a property that all these pads R1, . . . , Rq are statistically
independent from R (as long as q is not too large). Moreover, after some reasonable amount of time —
enough for Bob to contact the server after Alice’s initial request — the server is assumed to erase its
randomness X forever. Once that happens, even if Eve were to become computationally unbounded, it
would be too late to break the privacy of m. All Eve could do is maybe get the correct seed S and the
one-time pad m ⊕ R. But the string X is long gone, and R is independent from the seed S, as well as
previously obtained pads R1, . . . , Rq. Hence, we get everlasting privacy.

Some Limitations of the Model. While the work of [DY21] achieved great asymptotic parameters,
their model and solution suffered from a number of drawbacks:

(a) Trade-off between Access Efficiency and Entropy Waste. The model had an inherent trade-off
between the number of bits (called probe complexity) read from the randomizer X, and the total length
of one-time pads requested by all users. For example, if |m| = ℓ and |X| = N , in order to read at most
ℓ/β bits from X to derive R, one had to “waste” at least βN bits from X; namely, the sum of all the
one-time pads R returned by the server could not be more than (1 − β)N . Moreover, the ℓ/β bits read
are randomly dispersed over X.3

(b) Computational Efficiency. The doubly-affine extractors from Dodis and Yeo [DY21], while elegant
and “polynomial-time”, required pretty heavy computation, and non-standard libraries. Concretely, to
extract a 1Mb secret (say, to encrypt a low-resolution picture), one would either need a finite field

3And the concrete number were worse; for example, to derive a 512-bit pad, while sacrificing half of the 10Gb randomizer
X (so β = 0.5, and only 5Gb of randomness can be derived overall), the scheme of [DY21] has to access 1527 individual bits
of X, which is ∼ 50% worse than reading 512/0.5 = 1024 bits.

4

multiplication of size several megabytes (depending on β and other efficiency parameters), or a Toeplitz
matrix-vector multiplication of similar size. Both of which can hardly be done efficiently by the server,
especially at scale.

(c) Restricted Everlasting Privacy. [DY21] first defined an information-theoretically (IT) secure version
of doubly-affine extractors, which effectively corresponds to an ideal channel between Alice and Bob to
transmit (S,m⊕R). Of course, this is not directly interesting for everlasting privacy, as then Alice could
have simply send m over this ideal channel. Nevertheless, [DY21] showed a limited type of composition
theorem, which implies a restrictive type of everlasting privacy. Concretely, instead of being transmitted
over a computationally secure channel, together with m ⊕ R, the seed S for their IT-solution could be
generated by a computationally secure key agreement protocol run before the HELP instance is even
initialized. Moreover, no additional computational leakage about S could happen afterwards. While
interesting conceptually, this is not very practical, as it forces Alice and Bob either run a lot of such key
agreement protocols beforehand (defeating the desire not to pre-share a long secret), or have the server
generate a fresh string X after each such agreement.

(d) Lack of User Integrity. While the framework of [DY21] provided some security against malicious
server (or servers, in the distributed variant below), this protection was limited to privacy. Concretely, even
if the server kept the randomizer X, the one-time pad m⊕R could be encrypted over a computationally
secure channel. Thus, we lose everlasting privacy, but at least maintain computational privacy. On
the other hand, there is no built-in integrity against malicious server, even when the computational
channel has such integrity (i.e., Bob gets correct S and the ciphertext m ⊕ R). For example, S could
return non-matching one-time pads R ̸= R′ to Alice and Bob, causing Bob to output a wrong message
m′ = m⊕ (R⊕R′).

(e) Lack of Server Authentication. The model of [DY21] did not explicitly separate pad generation
requests of Alice from the pad retrieval requests on Bob. For example, imagine that Alice sends a message
to a group of people, or if Bob want to decrypt the ciphertexts multiple times. It seems reasonable
that multiple retrieval of “old pads” should be allowed, and not “count” towards using up the limited
randomness from the randomizer X. But it is unclear how to implement this effectively in the model of
[DY21]. First, if the server is truly stateless, this seems impossible. Second, even if we allow for some
small state (as we will do in our model below), it would force the server to track the number of distinct
seed requests, which is possible (e.g., using “hyperloglog” method [HNH13]) but somewhat cumbersome
and imprecise. More generally, one could imagine other situations where retrieval requests should be
treated differently than generation requests (e.g., users only pay for generation, and subsequent multiple
retrievals are free). For such scenarios, servers might want to have an additional security which we call
server authentication: one should be able to only retrieve previously generated pads. Once again, the
model of [DY21] does not have this property.

1.2 Our Results

We first highlight the main results of this work, which are elaborated upon in the remainder of this
subsection.

• Formalizing HELP: We eliminate several inherent shortcomings of the existing HELP framework
by introducing a relaxed, generalized syntax that allows for a short, dynamic server state. This new
framework allows us to eliminate the shortcomings (a)-(e) as mentioned above.

• Single-Server Construction: We propose a simple single-server HELP construction that achieves
nearly zero entropy waste and ensures strong security properties, including server authentication,

5

user integrity and privacy. Our construction leverages a computational MAC scheme and introduces
the notion of an extractor-hash for statistical randomness extraction, which we show how to build
from collision-resistant hash functions.

• General Composition: We present one of the first successful composition theorems for everlasting
privacy within the HELP framework. This enables clean, modular design of information-theoretic
schemes with guaranteed everlasting privacy when combined with computationally secure channels.

• Distributed Setting: We generalize the single-server HELP framework to a distributed multi-
server setting, significantly reducing the reliance on secure channels between servers and users. By
introducing syndrome-resilient functions (SRFs), we achieve robust error correction and extraction
properties, enabling us to extend the single-server construction to the distributed setting with near-
optimal parameters. We make the same assumptions about server trustworthiness as in [DY21].

Our Formalization of HELP. In this work we eliminate these shortcoming (a)-(e). As some of the
limitations are inherent in “doubly-affine extractor” restriction on the HELP framework, we do it by first
relaxing the framework itself, without significantly affecting its usefulness and practicality.

Our key observation comes from the fact that the restriction on S to be fully stateless seems both
restrictive, and likely not realizable anyway. Indeed, since Eve has direct access to the server, and the
length of the randomizer X is a-priori bounded, with a stateless server everlasting security is impossible,
unless Eve asks a bounded number of questions to the server. Indeed, the total number of one-time pads
obtained by Bob has to be bounded by (1− β)|X| in the framework of [DY21], where β ∈ (0, 1) was the
“waste” parameter mentioned earlier. In practice, of course, a motivated attacker Eve can spam the server
with many more requests than it is allowed. And while we can implement some indirect counter-measures
(like slow sequential responses), by far the easiest solution is to allow the server to maintain some small
state; at the minimum, to count the number of (distinct) requests. Moreover, since all the requests to
a particular server could be serialized, it seems that allowing for short state should not be a big deal in
practice.4

This is precisely what we do: in addition to storing a long randomizer X, which is static, we allow a
short amount (say, security parameter number of bits) of state µ which the server is allowed to change.
As we will see, it will immediately allow us to solve efficiency issues (a)+(b). In fact, our solutions will
have almost no entropy waste, and will read ∼ |m| bits from X. Moreover, state allows us to not limit
the number of queries Eve can make. If too many queries are made, the server simply shuts down, which
in the worst case corresponds to the denial of service to legitimate users.

Once we have this, we also generalize the fact that server access should happen by necessarily sending
a random seed S. (Indeed, the latter seems like the artifact of the stateless server.) And once we allow
this more general syntax, we can explicitly replace the computational key-agreement step to generate
S, with a more general “computational channel” allowing Alice to transmit whatever information she
wants to Bob. As a side benefit, it will allow us to state and prove a much more general composition
theorem in our (generalized) HELP framework, solving issue (c). Namely, like [DY21], we will define
an information-theoretic version of our model (at least for privacy), which will focus on generating the
one-time value R in the HELP framework (and will abstract out the message m, for now). This will
roughly correspond to Alice transmitting certain values over an ideal channel to Bob. Then, we show

4This should be contrasted with trivial solutions, where the server state can grow with the number of keys, which seem
much harder to implement, especially for heavy concurrent access. Our solutions will prohibit such non-constant dynamic
state.

6

that our scheme generically implies (formally defined) everlasting privacy (where now we introduce the
message m), if the ideal channel is replaced by any computationally secure channel, formalized in the
UC-Framework of [Can01], and this channel additionally transmits m⊕R.

Next, to address limitation (d), we will explicitly require user-integrity properties against malicious
HELP server(s), which will ensure that the most integrity harm caused by this server will be denial-
of-service (which is inevitable). Finally, to address limitation (e), we will require server authentication
property, which will separate pad generation requests from pad retrieval, and ensure that such retrieval
is only possible for previously generated pads. As a side benefit, it will allow unbounded number of pad
retrieval requests for previously generated pads. Namely, the server will only reject, if too many fresh
pad generation requests are made, but retrieving old pads by legitimate users should always be possible,
as long as they happen before the server erases its randomness.

The resulting framework is presented in Figure 1, where the missing notation, and other forms of
“leakage” to Eve will be explained in Section 3 (for the information-theoretic part of generating R) and
Section 5 (for UC-part, which also introduces the message m). Instead, we only mention some key parts:
(a) everlasting privacy (and SNDL-resistance) is modeled by Eve being computationally bounded while
having access to the HELP instance, and later computationally unbounded (represented by a “quantum

computer” Uri on the right); (b) the computational message transmission protocol 3 could be interactive
(e.g., TLS), and could happen at any time during the experiment; for example, after Eve has made many
HELP queries.

Single-Server Construction. Having defined HELP syntax, we carefully define correctness and
security for HELP, including server-correctness, user-correctness, server authentication, user integrity and
privacy. (These properties were either undefined or only sketched by [DY21], since HELP was mainly
one of the applications of their doubly-affine extractor primitive.) We then show an extremely simple
single-server HELP primitive meeting our definition. In essence, the server splits X into a short key k for
a computational MAC, and a long string Xpad. Upon request to produce n-bit pad Y , it simply reads
Y from the unused portion of Xpad, keeping track of the starting index i of Y (which is part of its short
state µ). It authenticated Y by simply tagging the corresponding tuple (i, n) with k, and returns the tag
σ to Alice. Later, when Bob asks (i, n, σ) to the server, it only responds with Y if the tag value matches.
By the unforgeability of the MAC, this means user can only request values previously returned by the
server. In particular, the scheme is super efficient, and has (almost) no entropy waste.

The only interesting subtlety is the new user integrity property, protecting Alice and Bob for malicious
server. Concretely, Alice wants to extract a value R from the pad Y together with the value z, so that z
prevents the server from returning any Y ′ ̸= Y . The naive way is to set z to be a collision-resistant hash
of Y . But now we have a tricky problem of ensuring that R is statistically random even conditioned on z
(which will be leaked to the unbounded attacker later). One can use a general randomness extractor [NZ96]
to Y , since Y has a lot of entropy given z. But this requires an additional pass over Y , as well as extra
seed. And is overall inelegant. Instead, we use the fact that Y is random (when the server is honest).
As a result, we can set Y = (R∥W), for a short suffix W , and use the iterative nature of existing hash
functions to observe that Hash(R∥W) = Hash′(Hash(Y)∥W). Moreover, the function Hash′(v,W) is
likely a statistically hiding commitment to v (and hence R), when W is random and sufficiently long.
Hence, we can effectively do the naive thing of setting z = Hash(Y), but our extractor is trivial: it takes
a big prefix R or Y as its final key. More generally, in Section 4.1 we formalize the notion of extractor-
hash, which abstracts the properties of this concrete construction, and show that such functions can be
efficiently build from collision-resistant hash functions.

7

0 Alice receives a message m to send to Bob, and computes how many bits she should request, n ←
PadLength(|m|), based on the length of m.

1 Alice sends Gen(n) query to the HELP instance, requesting n random bits.

2 The HELP instance responds with (σ, y), where σ is a tag and y is the pad.

3 Alice runs (z, r)← Auth(σ, y) to get the randomness r and helper z. Then, Alice runs UC-secure message
transmission protocol to send (m⊕ r, σ, z) to Bob.

4 Upon receipt of (c, σ, z), Bob sends Rep(σ) query to the HELP instance.

5 The HELP instance responds with y.

6 Bob runs r ← Ver(z, y) and outputs the decrypted message m = c⊕ r.

7 Computationally bounded Eve outputs its view to a computationally-unbounded Uri, but only after the
HELP instance becomes offline.

∞ Uri (unsuccessfully) tries to obtain information about the message m.

Eve also has the following additional information A , B , C , which will be passed to Uri:

A Eve may interact with the HELP instance like a normal user, making Gen or Rep queries. Notice that
Eve may make such queries at arbitrary times.

B Partial leakage (compromise of several HELP servers) from the channels in steps 1 , 2 , 4 , and 5 .

C Computational leakage (e.g.ciphertexts) from the UC-secure message transmission protocol during 3 .

Figure 1: HELP Framework for Everlasting Privacy (we omit security parameter λ).

8

General Composition. We mention that there were several unsuccessful composition attempts for
various everlasting privacy models. For example, the Bounded Storage Model (BSM) [Mau92, ADR02]
achieves everlasting privacy assuming the attacker has limited space, but Alice and Bob start with a short
secret key S. A natural suggestion would be to replace S with a computationally secure key agreement
protocol. Unfortunately, Dziembowski and Maurer [DM04] showed that such composition is flawed,
by giving a convincing counter-example, and a black-box barrier to this was proved later by Harnik
and Naor [HN06]. In other related settings of the streaming BSM [DQW23, GZ21] or incompressible
cryptography [Dzi06, GWZ22, GWZ23], the question of building secure schemes against hybrid attackers
was left open by [BCEQ24]. In general, Müller-Quade and Unruh [MU10] defined a general UC-type
notion of everlasting security (termed “long-term security”), and showed that it suffers from severe non-
composition issues.

Thus, it is non-trivial to have successful composition theorems for everlasting privacy. Nevertheless,
in Section 5 we give one of the first such theorems, albeit in the HELP model. This shows that one can
design clean and simple-to-analyze HELP schemes according to our information-theoretic (for privacy)
notion in Section 3, and automatically get everlasting privacy when the idealized computation channel
transmitting the tag/helper-tuple from Alice to Bob is replaced by any UC-secure message transmission

(see 3 in Figure 1). The idea why this was successful was that our IT-notion has an efficiently verifiable
relation under which is was clear whether the adversary broke the scheme.

Distributed Setting. Finally, in Section 7 , similar to [DY21], we generalize the single-server HELP
to the distributed setting, with the goal to significantly weaken the unrealistic secure channel assumption
between the server and all the users. Instead, as it is done in all paper in IT-secure multiparty computation
(MPC) [BGW88], we assume that the adversary Eve can compromise at most tp < t channels between
the honest user and the t servers. Additionally, we also want to protect Bob against a small number tf
servers being unavailable, and up to ta servers giving inconsistent answers to Alice and Bob. Namely,
Bob should still be able to decrypt Alice’s message (or get her key R) using appropriate error-correcting
techniques.

However, the simplicity of the HELP framework allows us to go much further than traditional MPC.
The t servers can operate completely independently, without any knowledge about the other servers! In
fact, each of these servers has the same syntax as in single-server HELP. This also means the servers never
need to communicate with (or know about!) each other, and do not need any coordination about when
they need to erase their randomness. Instead, each server should just independently keep it long enough
for the honest users to access. And even if a small number of servers happened to accidentally erase their
randomness too soon, users can overcome it by conservatively setting the value tf corresponding to the
number of “unavailable” servers.

We also use a simple coding-theory technique to effectively generalize our single-server tools to the
multi-server setting. Since this technique is of independent interest, in Section 6, we abstract the resulting
primitive, which we call syndrome-resilient function (SRF). Intuitively, SRFs simultaneously has error-
correcting properties (similar to “syndrome decoding“ [HJR06]), and extraction properties akin those of
resilient functions [CGH+85]. Using SRFs, we show how our single-server construction can be extended
to distributed HELP with nearly optimal parameters: roughly, to extract ℓ-bit secret, each server has to
send approximately ℓ/(t− tp − tf − 2ta) bits.

9

1.3 Related Work

The Bounded Storage Model [Mau92] is one of the first models for everlasting privacy, where the attacker
was assumed to be space-bounded for a short period of time. Unfortunately, this beautiful model has
some limitations. First, we already mentioned it cannot withstand hybrid attackers, where the initial
key between Alice and Bob comes from a computationally secure key agreement protocol [DM04, HN06].
Second, space is often cheap, so it might be hard to justify the space restriction on the attacker. Motivated
by this, Rabin [Rab05] semi-formally defined the Limited Access Model (LAM), where Alice and Bob
contact a dynamically-changing sequence of servers who also continuously change their data over time.
LAM could be viewed as a precursor of HELP, except the server were assumed to be ad hoc, had possibly
non-random data, and not guaranteed to erase their data in a timely manner (the inspiration came from
the World-Wide Web, where it is hard to monitor giant amount of constantly changing data). In contrast,
the HELP servers are specifically designed to help users derive randomness, and have well defined syntax,
security and data erasure policies, making this model more scalable, and amendable to formal analysis.

Another related model is that of (Perfectly) Secure Message Transmission (SMT), pioneered by the
work of [DDWY93]. In this model there are several “disjoint communication paths” between Alice and
Bob, and the attacker is assumed to monitor a bounded number of such paths. While similar to our
distributed HELP modeling, SMT requires that Bob is on-line when Alice sent her message. Which
is inconvenient, as Alice and Bob need to a-priori agree on which channels to use, but also rules out
application where Bob is “Alice in the future”.5 Moreover, the on-line assumption makes it easier to
perform a coordinated SNDL attack, as compared to our setting.

Yet another related topic is Quantum Key Distribution (QKD) [BB14, Ren08], which distributes an
information-theoretically secure key through quantum channels. Specifically, there is a line of work [Ell02,
BPP05, ARML06, LBD07b, LBD07a, LBD08, ABB+14, CZL+21, FYLW+22, BZG+23, VM24, MW24]
in QKD that achieves this by utilizing a number of trusted, untrusted or semi-trusted QKD relays.
Furthermore, the syndrome-resilient functions developed in Section 6 of this work, which address both
error correction and randomness extraction, bear strong connections to the error-correction/reconciliation
and privacy amplification phases of QKD. However, while the QKD setting also achieves information-
theoretic security (assuming authenticated channels), the HELP setting studied in this paper is purely
classical. This means all our results can be implemented today, and do not require the power of quantum
computers.

Finally, our new technical tools of extractor-hash and syndrome-resilient functions, can be viewed as
highly optimized special cases of randomness extractors [NZ96] and fuzzy extractors [DORS08], respec-
tively, where one starts with the uniform distribution, and knows precisely the type of “leakage” one needs
to withstand.

Paper Organization. The rest of the paper is organized as follows. In Section 2, we present the relevant
preliminaries for the paper. In Section 3, we define HELP for the single server setting. In Section 4, we
construct HELP that satisfies our definition (along the way defining and constructing extractor-hash).
Then in Section 5, we show how to compose the HELP instance with a UC-secure message transmission
scheme to obtain everlasting privacy. In Section 6, we define and construct Syndrome Resilient Function,
which we use to construct HELP in the distributed setting. The actual distributed HELP definition and
construction are discussed in Section 7.

5Alternatively, each channel can buffer the message until Bob comes on-line, making its storage grow with the number of
uses, and would require some kind of user authentication solution. Both of these deficiencies are not needed in our model.

10

2 Preliminaries

For a natural number n ∈ N, we use the notation [n] = {1, . . . , n}. In general, lower-case letters will
represent values and vectors of values, while upper-case letters will represent random variables — the
exception to this is the servers’ internal randomness, which we denote by X even after it is sampled. A
tilde over a letter will usually represent a recovered value whose correctness may not be trusted. For

universe U , we will denote by x ∼ U or x
$← U drawing x from U uniformly at random. PPT stands for

“Probabilistic Polynomial Time”.

Definition 2.1 (Negligible Function). A function f : N → R is negligible, denoted negl(n), if for all
c > 0, there exists a value n0 such that for every n > n0, |f(n)| < 1/nc.

Definition 2.2 (Statistical Distance). Let D1 and D2 be two distributions with support in X. The
statistical distance between D1 and D2 is

∆(D1, D2) =
1

2

∑
x∈X
|Pr [D1 = x]− Pr [D2 = x]|.

We will later use the following Lemma in the proof for Theorem 5.3.

Lemma 2.1. Let A0, A1, B0, B1 be random boolean variables, then we have

|Pr[A0]− Pr[A1]| ≤ Pr[¬B0] + Pr[¬B1] + |Pr[A0 ∧B0]− Pr[A1 ∧B1]|.

Proof.

|Pr[A0]− Pr[A1]| = |Pr[A0 ∧B0] + Pr[A0 ∧ ¬B0]− Pr[A1 ∧B1]− Pr[A1 ∧ ¬B1]|
≤ |Pr[A0 ∧ ¬B0]− Pr[A1 ∧ ¬B1]|+ |Pr[A0 ∧B0]− Pr[A1 ∧B1]|
≤ Pr[A0 ∧ ¬B0] + Pr[A1 ∧ ¬B1] + |Pr[A0 ∧B0]− Pr[A1 ∧B1]|
≤ Pr[¬B0] + Pr[¬B1] + |Pr[A0 ∧B0]− Pr[A1 ∧B1]|

This work is concerned with authenticating randomness to users querying a server. We will use
message authentication codes (MACs) throughout. Our primary tool in particular are computational
MACs, which we define below.

Definition 2.3 (Message Authentication Code). Let λ be a security parameter, and let ℓMAC, ℓtag ∈ N.
Let (Mac.Gen,Mac.Tag,Mac.Ver) be a tuple of algorithms with the following syntax:

• Mac.Gen(1λ)→ k: takes in the security parameter and outputs a MAC key k.

• Mac.Tagk(m)→ t: takes in a MAC key k and a message m of maximum length ℓMAC and outputs an
associated tag t of length ℓtag.

• Mac.Ver(k,m, t) → 0/1: verifies whether the tag t is a valid tag on the message m using the MAC
key k.

We say that (Mac.Gen,Mac.Tag,Mac.Ver) is a (computational) message authentication code if the follow-
ing are true:

11

1. Correctness: For all messages m and keys k, we have

Pr[Mac.Ver(k,m,Mac.Tagk(m)) = 1] = 1.

2. Unforgeability: For all PPT A, there exists a negligible function ε such that

Pr

[
Mac.Ver(k,m, t) = 1 ∧m ̸∈ {m1, . . . ,mq}

∣∣∣∣ k ← Mac.Gen(1λ),
(m, t)← AMac.Tagk(1λ)

]
≤ ε,

where m1, . . . ,mq are the queries made by the adversary to Mac.Tagk.

In many cases, Mac.Gen will be simply to sample a random key from a set (such as binary strings
of the key length). In addition, for many MACs, the verification algorithm Mac.Ver is simply to run
the MAC with the input and check that it matches the tag (i.e., Mac.Ver(k,m, t) = 1 if and only if
Mac.Tagk(m) = t). For ease of reading, we will restrict our view to such cases through the rest of the
paper. In this case, we may simply describe the signing algorithm Mac.Tag as the MAC.

While we will primarily prove our results using a computational MAC, we note our constructions
can also be instantiated using one-time message authentication. Below, we provide the unforgeability for
one-time MACs.

Definition 2.4 (One-Time MAC Unforgeability). Let λ be the security parameter, ℓMAC, ℓtag ∈ N, and let
(Mac.Gen,Mac.Tag,Mac.Ver) be algorithms with syntax above. We say that (Mac.Gen,Mac.Tag,Mac.Ver)
is a one-time MAC if it satisfies MAC correctness and for all (computationally unbounded) A, there exists
some ε = negl(λ) such that

Pr

[
Mac.Ver(k,m′, t) = 1 ∧m′ ̸= m

∣∣∣∣ k ← Mac.Gen(1λ),m← A(1λ);
(m′, t)← A(Mac.Tagk(m))

]
≤ ε.

One-time MACs have the advantage of being more light weight and information theoretic (from, e.g.,
pairwise independent hashing) at the cost of needing to resample a key each time. In our applications,
this will involve the server having to store more internal randomness for each query (as only a single key
will need to be stored for all queries in the computational MAC variant). As such, we present our results
with computational MACs and include discussion on the differences in parameters when relevant.

3 Defining Single Server HELP

3.1 Syntax and Correctness

The HELP scheme consists of a tuple (Init,PadLength,Auth,Ver,Gen,Rep) of algorithms, where (Init,Gen,
Rep) are run by the server, while (PadLength,Auth,Ver) are run by the users.

Syntax. The server-based algorithms have the following syntax:

• Init(N, 1λ)→ (X,µ). The initialization algorithm run by the server S, where:

- N is the total length of all pads ever requested by the users, and λ is the security parameter.

- X is a truly random string of some length |X| = Ñ ≥ N , which will stay static throughout the
life-time of the system.

12

- µ is the initial state of the server, which is meant to be compact, but can vary by future calls
to Gen (but not Rep; see below).

• Gen(n, (X,µ))→ (σ, y, µ). Pad generation algorithm run by server S(X,µ), which returns a sample
y of length |y| = n, its tag σ, and updates the server state µ.

• Rep(σ̃, (X,µ))→ ỹ. Pad reproduction algorithm run by the server S(X,µ), which takes tag σ̃, and
returns the pad ỹ corresponding to σ̃.

The user-based algorithms have the following syntax:

• PadLength(ℓ, 1λ) → n. Length calculation algorithm run by the user A, which outputs how many
bits n the user should request from S, if A wants to derive an ℓ-bit key.

• Auth(σ, y, 1λ)→ (z, r). Transforms n-bit pad y returned by S into an ℓ-bit key r, and helper z.

• Ver(z, ỹ)→ r̃. Checks helper z against pad ỹ, and outputs a key r̃ ∈ {0, 1}ℓ ∪ {⊥}.

Correctness. We split the correctness into two parts. First, server correctness states that calls to Gen
and Rep always return the same value, if Rep uses the tag σ returned by Gen. More formally,

Definition 3.1. Let λ,N ∈ N. Assume n1, . . . , nq are integers such that
∑q

i=1 ni ≤ N . Let us denote
the initial state of the server (X,µ0) ← Init(N, 1λ). Then HELP satisfies server-correctness if, for all
1 ≤ i ≤ q, we have:

Pr
[

ỹi = yi
∣∣ (σi, yi, µi)← Gen(ni, (X,µi−1)), ỹi ← Rep(σi, (X,µi))

]
= 1.

Similarly, for user-correctness we require that the value R produced by Auth is always recovered by
Ver when used with the correct value z. More formally,

Definition 3.2. HELP satisfies user-correctness if, for all y ∈ {0, 1}n, and all σ we have:

Pr
[

r̃ = r
∣∣ (z, r)← Auth(σ, y, 1λ), r̃ ← Ver(z, y)

]
= 1.

It is immediately clear that server-correctness and user-correctness imply the overall correctness of the
HELP scheme, which states that users should recover the same keys by Auth and Ver when using correct
tag and helper values σ̃ = σ and z̃ = z.

Definition 3.3. Let λ, L ∈ N. Assume ℓ1, . . . , ℓq are integers such that
∑q

i=1 ℓi ≤ L, ni = PadLength(ℓi,
1λ), and N is an integer such that

∑q
i=1 ni ≤ N . Let us denote the initial state of the server (X,µ0) ←

Init(N, 1λ). Then HELP satisfies server-aided correctness if, for all for all 1 ≤ i ≤ q, we have:

Pr

[
r̃i = ri

∣∣∣∣ (σi, yi, µi)← Gen(ni, (X,µi−1)), (zi, ri)← Auth(σi, yi, 1
λ),

ỹi ← Rep(σi, (X,µi)), r̃i ← Ver(zi, ỹi)

]
= 1.

Before proceeding to security, we will make a notational convention, which will make our definition
easier to parse. Namely, we will often omit explicit reference to server state (X,µ), and simply write
Gen(n)→ (σ, y) and Rep(σ̃)→ ỹ. With the understanding that:

(1) X always stays the same;

13

(2) µ is correctly updated by every call to Gen.

For example, the Correctness condition in Definition 3.3 becomes easier to parse with this convention:

Pr

[
r̃i = ri

∣∣∣∣ (σi, yi)← Gen(ni), (zi, ri)← Auth(σi, yi, 1
λ),

ỹi ← Rep(σi), r̃i ← Ver(zi, ỹi)

]
= 1.

Further, in some of our notions we will give the attacker various oracles related to Gen and Rep
procedures. As we are omitting explicit reference to the server’s state (X,µ), it should be understood
that in these oracles the attacker can only supply “user-specified” inputs, but not any part of the server’s
state (X,µ). For example, in the Gen(·) oracle the attacker can only choose the pad length n (but the
state µ will update after the call), and in the Rep(·) oracle the attacker can only choose a tag σ̃.

Remark 3.1. In most natural schemes, Auth() will sample some “reusable object” h (such as a hash
function), which can be safely used by future calls to Auth(). To minimize the number of algorithms, in
the current formalization the Auth() algorithm will sample a fresh value of h for each call, and include
it in the helper value z. In practice, we expect the “reusable part” h will be sampled only once, and not
included in the value of z. Both versions are equally secure, but the second one is obviously preferable.
When clear from the context, we will slightly abuse the notation, and not include the “reusable part” h in
the helper value z.

3.2 Security

The security of HELP = (Init,PadLength,Auth,Ver,Gen,Rep) will consist of three components:

(a) Server Authentication, protecting the server from malicious users;

(b) User Integrity, protecting honest users from malicious server; and

(c) Privacy, protecting honest users from eavesdroppers who have (partial) access to honest server.

Server Authentication. Intuitively, the server S wants to ensure that the only way to call the
reproduction function Rep(σ∗) successfully, is to use some value σ∗ returned by a previous call to Gen.

Definition 3.4. Let λ be the security parameter. We say that HELP satisfies {bounded, unbounded} ε-
server authentication for ε = negl(λ) if, for all {PPT , unbounded} A with oracle access to Gen,Rep,Gen∗,
and any value of N , after we run Init(N, 1λ) to initialize (X,µ), we have

Pr
[
Rep(σ∗) ̸=⊥ ∧ σ∗ ̸∈ {σ1, . . . , σq}

∣∣∣ σ∗ ← AGen,Rep,Gen∗(N, 1λ)
]
≤ ε,

where Gen,Rep are defined as before, Gen∗(n) calls (σ, y) ← Gen(n) but only returns y, and {σ1, . . . , σq}
denotes the set of tags returned in response to the adversary’s queries to Gen.

Note, calls to Gen∗ are used to model queries made to Gen by other honest users, where the attacker
is not allowed to see the tag σ returned by such a call (but might be able to get some information about
the pad y by other means).6 Moreover, we allow A’s forged tag σ∗ to be equal to such “erased” tag σ,

6While in the current definition the attacker does not get any information about tags σ produced by Gen∗ calls, in
Section 5.3 we will make a more realistic definition where the attacker gets some “computational information” about such
tags. And also show how our current definition of server authentication implies this more realistic definition.

14

meaning it should be hard for the attacker to compute any such “erased” tag. Because doing so will
make the attacker successful in breaking the server authentication game, by outputting σ∗ = σ. Thus,
the attacker can only succeed in making a Rep call, by explicitly using a tag σ returned by a prior call to
Gen.

Looking ahead, also notice that we will be able to satisfy bounded server authentication with Ñ =
|X| ≈ N , while for unbounded authentication we will use slightly longer Ñ = |X| ≈ O(N). Interestingly,
when compiling our notion to a more realistic server authentication notion in Section 5.3, we will always
end up with computational security, irrespective on whether we start with bounded or unbounded server
authentication. Thus, in practice there might be little reason to strive for unbounded server authentica-
tion, other than minimizing complexity assumptions.

User Integrity. Notice, in our main application, the user performing authorization Auth(σ, Y)→ (z, r)
might either be different from the user calling Ver(z̃, ỹ) → r̃, or otherwise not have the correct values
z̃ = z and ỹ = y. In such cases there could be a real danger for the r̃ ̸= r. In particular, a malicious
server could potentially return inconsistent values y and ỹ on the two corresponding calls to Gen and Rep.
User integrity ensures that such malicious server is limited to the denial of service attack, provided that
the helper values are correct (i.e., z̃ = z). This means that, as long as the server S is computationally
bounded, either r̃ = r (correctness still holds), or r̃ = ⊥ (denial of service).

Thus, as long as authenticity of the helper value z is ensured, server cannot cause the user to output
inconsistent keys. Put differently, authenticating the helper value z is implicitly authenticating the derived
key r. Point being that authenticating z is easier than r for our application, as z does not need to be
secret, while we aim for r to be everlastingly private.

Definition 3.5. Let λ be the security parameter. We say that HELP satisfies δ-user integrity with δ =
negl(λ), if for all PPT servers S, we have

Pr

[
r̃ ̸∈ {r,⊥}

∣∣∣∣ (st, σ, y)← S(1λ); (z, r)← Auth(σ, y, 1λ);
ỹ ← S(st, z, r); r̃ = Ver(z, ỹ)

]
≤ δ

Note, in this game we do not even require S to maintain any (random) database X, or follow any
rules that the honest server would follow.

Privacy. Now we define our notion of privacy for a HELP scheme. Intuitively, it states that randomness
R generated with the help of the honest server is unconditionally secure, even against attacker who made
many pad generation queries Gen to the server, and knows the authentication values σ and z associated
with R. Notice, such (surprisingly) strong security is only possible because the attacker is not given
access to the pad reproduction oracle Rep, which would have trivially rendered this notion impossible.
Nevertheless, we will later lift this restriction in Section 5.5, where we will show that our notion of
Privacy, coupled with Server Authentication,7 will imply the notion of Everlasting Privacy discussed in
the Introduction. Where the attacker is initially computationally bounded and has access to Rep, but can
become unbounded after losing access to Rep, and potentially learning the challenge values (σ, z).

Definition 3.6. Let λ be the security parameter. We say that HELP satisfies ξ-privacy for ξ = negl(λ),
if for all unbounded adversaries A with oracle access to Gen, and any value of N , after we run Init(N, 1λ)

7Plus a “message transmission functionality” which we will define later.

15

to initialize (X,µ), and sample a random bit b
$← {0, 1}, we have

Pr

 b′ = b

∣∣∣∣∣∣∣
(ℓ, st)← AGen(N, 1λ);n← PadLength(ℓ, 1λ);
(σ, y)← Gen(n); (z, r0)← Auth(σ, y, 1λ);

r1
$← {0, 1}ℓ; b′ ← AGen(st, σ, z, rb)

 ≤ 1

2
+ ξ.

4 Constructing Single Server HELP

We will now construct single server-aided HELP from message authentication codes (MAC) and collision-
resistant hash functions (CRHF).

4.1 Extractor-Hash

In order to realize HELP in the single server setting, we introduce the new notion of an extractor-hash.
Intuitively, when the user gets the pad value y from the server, she has to extract a random key r and
the helper value z, s.t.: (a) z is commitment to r; but (b) r is information-theoretically secure given z.
This is easy to do theoretically, by setting z to be a collision-resistant hash function (CRHF) h applied to
y, and then extracting randomness r from the source y conditioned on “leakage” z. While this approach
works, it is practically inefficient for two reasons. First, this requires scanning the input y twice — once
for hashing, and once for extracting. Second, provably secure randomness extractors (e.g., given by the
Leftover Hash Lemma [ILL89]) require an extra random seed, and have non-trivial entropy loss. Instead,
by abstracting the security properties of our extractor-hash primitive, we take advantage of the fact that
the initial source y is truly random, and achieve a much more efficient solution. Details follow.

For security parameter λ ∈ N, let Eλ = {EH : {0, 1}∗ → {0, 1}ℓhelp × {0, 1}∗} be a family of efficient
functions, where ℓhelp = ℓhelp(λ), and let EH← Eλ be a randomly chosen member of such a family. Given
y ∈ {0, 1}n, we denote the outputs of EH by (z, r) = EH(y), where z ∈ {0, 1}ℓhelp and r ∈ {0, 1}ℓ for some
ℓ = ℓ(n, λ). We call the helper length ℓhelp the compactness of Eλ and the value (n − ℓ) as the entropy
loss of Eλ.

Definition 4.1. The family Eλ = {EH : {0, 1}∗ → {0, 1}ℓhelp × {0, 1}∗} is an extractor-hash family if for
a randomly chosen EH← Eλ, we have:

1. Collision-Resistance. For all PPT adversaries A,

Pr

[
z1 = z2 ∧ r1 ̸= r2

∣∣∣∣ (y1, y2)← A(EH, 1λ);
(z1, r1) = EH(y1), (z2, r2) = EH(y2)

]
≤ negl(λ).

2. Extraction. There exists some function δ = negl(λ) such that, for any n and a randomly sampled

Y
$← {0, 1}n, if (Z,R) = EH(Y), then

∆((Z,R), (Z,Uℓ)) ≤ δ,

where ℓ = |R|, and Uℓ denotes the uniform distribution of ℓ-bit strings.

Notice that the first property is exactly collision resistance on the extracted key r, while the second
is a statistical hiding property on the extracted key r. Moreover, we only need the extraction property
to hold for a randomly sampled value y, which will allow for a super-efficient construction below.

16

Remark. Similar to collision-resistant hash function families, we define a family of function for extractor-
hashes. In our application to HELP, we will want to select one of these uniformly from the set Eλ and use
it throughout. One way to ensure this is to add the description of EH to Auth,Ver. Users could also agree
upon the choice of EH ← Eλ in a preprocessing step. We will not write either of these choices explicitly,
though we note here that neither poses any issue to the above properties of EH.

Construction. We will now show how to construct an extractor-hash from any family of collision-
resistant hash functions (CRHF) and any statistically hiding commitment (SHC) scheme on short mes-
sages, which we define below.

Definition 4.2 (Collision-Resistant Hash Function (CRHF)). We say Hλ = {h : {0, 1}∗ → {0, 1}ℓhash} is
a family of collision-resistant hash functions with output length ℓhash = ℓhash(λ), if for a randomly sampled
h← Hλ and for every PPT A, we have

Pr[h(x) = h(x′) ∧ x ̸= x′ | (x, x′)← A(h, 1λ)] ≤ negl(λ).

Next we define the notion of SHCs. Notice, we only needs SHCs on short messages (of length ℓhash,
which is the CHRF output).

Definition 4.3 (Statistically Hiding Commitments). We say Cλ = {Com : {0, 1}ℓhash × {0, 1}ℓrand →
{0, 1}ℓSHC} is a family of statistically-hiding commitments (SHCs) for input length ℓhash = ℓhash(λ) and
randomness length ℓrand = ℓrand(λ) if for a randomly chosen Com ← Cλ, we have the following two
properties:

1. Computationally Binding: For all PPT A, we have

Pr
[
Com(v;w) = Com(v′;w′) ∧ v ̸= v′ | (w′, w, v′, v)← A(Com, 1λ)

]
≤ negl(λ).

2. Statistically Hiding: There exists δ = negl(λ) such that for any messages v, v′ ∈ {0, 1}ℓhash, we
have

∆(Com(v;Uℓrand),Com(v′;Uℓrand)) ≤ δ

With these in mind, we present our construction.

Construction 4.1. Let H = {h} be a CRHF with output length ℓhash, and let C = {Com} be a SHC for
input length ℓhash and randomness length ℓrand. Then these families define a family E = {EH : {0, 1}∗ →
{0, 1}ℓSHC × {0, 1}∗} with compactness ℓSHC and entropy loss ℓrand, as follows.

• Given input y ∈ {0, 1}n, parse it as y = (r||w), where w ∈ {0, 1}ℓrand and r ∈ {0, 1}ℓ with ℓ =
n− ℓrand. Then define helper string z = Com(h(r);w), and output

EH(y) := (z, r)

Theorem 4.1. Assuming CRHF and SHC satisfy Definitions 4.2 and 4.3, respectively, then Construc-
tion 4.1 is a secure Extractor-Hash family.

17

Proof. To prove collision-resistance, suppose we have an efficient algorithm A that outputs (with non-
negligible probability) y1, y2, for which r1 ̸= r2, but z1 = z2, where (z1, r1) = EH(y1) and (z2, r2) = EH(y2).
Since zi = Com(h(ri);wi), the binding property of SHCs implies that we must have h(r1) = h(r2). But
then the collision-resistance of h further implies r1 = r2, which is a contradiction to our assumption. In
short, if such an A exists, it would break either the binding property of the SHC, or the collision-resistance
of h.

To show the extraction property, notice that when Y = (R,W) is truly random, R by itself is perfectly
random, and independent of W . Let us sample another value R′ ← Uℓ. For any particular fixing of values
(r, r′) ∼ (R,R′), which in turn fixes values v = h(r) and v′ = h(r′), statistically hiding property of SHCs
on (v, v′) implies that

∆(Com(h(r);W), (Com(h(r′);W)) ≤ δ = negl(λ)

Taking the average over (R,R′), we then get

∆((Com(h(R);W), R,R′), (Com(h(R′);W), R,R′)) ≤ δ

Applying a truncation of R′ operation to both sides, we get

∆((Com(h(R);W), R), (Com(h(R′);W), R)) ≤ δ

But now we rename R and R′ on the right-hand side, and get

∆((Com(h(R);W), R), (Com(h(R);W), R′)) ≤ δ

which is exactly ∆((Z,R), (Z,R′)) ≤ δ we needed, since Z = Com(h(R);W).

Instantiating Extractor-Hash. Notice, the existence of CRHFs with output length O(λ) implies
the existence of SHCs [DPP94] with randomness O(λ) for committing to O(λ)-bit length messages. Thus,
we get:

Corollary 4.1. Assuming the existence of CRHFs with output length O(λ), there exists an efficient
Extractor-Hash family with compactness and entropy loss O(λ).

In practice, however, one can instantiate our construction even more efficiently, via a single call to an
existing CHRF, such as SHA-2, SHA-3, or SHA-256.

That is, consider a CRHF which is an iterative process like the Merkle-D̊amgard transform [Dam89]
applied to an appropriate compression function h, so that hashing an input x = (x1, x2, . . . , xn) of n
blocks is represented by iteratively hashing h(h(. . . (h(h(0n, x1), x2), . . .), xn), possibly with some other
finalization process. In Construction 4.1, we would then apply some CRHF-based SHC to the output of
this process. If we instead are able to:

1. Pull out a finalizing function Finalize from the hash which heuristically satisfies the properties of
SHC (say, the last hash or two of the above Merkle-D̊amgard-based process) when xn is random,
and

2. Show the first steps of the hash when this finalization is removed is still collision-resistant,

18

we could simplify our construction of EH to be just a single call to the iterative hash function, say SHA-2.
This would in effect save us the cost of running this finalization procedure twice.

We show this is feasible when the CRHF used is of the SHA family (i.e., SHA-2, SHA-3, SHA-256,
SHA-512). In particular, the first property is satisfied if the function Finalize is collision-resistant and
its output are close to uniform. If we assume these, though, then we see from prior work that the
second property follows for the SHA family of hash functions. This follows from Corollary 1 and Lemma
2 of [DP08], which state that if h is collision resistant and its outputs are regular, then the overall
Merkle-D̊amgard composition is also collision resistant, as well as Merkle-D̊amgard with truncation on
the compression function. So, using a heuristic assumption that a (few Merkle-D̊amgard rounds of) SHA
compression function is close to random, and assuming the inputs to the EH are variable length, we see
that a single call to a SHA hash is sufficient for an extractor-hash.

4.2 Main Single-Server Scheme

Construction 4.2. For security parameter λ, Eλ = {EH : {0, 1}∗ → {0, 1}ℓhelp × {0, 1}∗} an extractor-
hash, and let Mac.Tag : {0, 1}∗ × {0, 1}ℓMAC → {0, 1}ℓtag be a computational MAC. We define HELP =
(Init,Gen,Rep,PadLength,Auth,Ver) as so, starting first with the initialization and length:

• Init(N, 1λ): On input N , set Ñ = N + ℓMAC and sample X ← {0, 1}Ñ uniformly at random. Parse
X = (k,Xpad), where |k| = ℓMAC. Set µ = (1, N).

• PadLength(ℓ, 1λ): On input (ℓ, 1λ), output n = ℓ+ ℓhelp.

With these in mind, we can now define how the server accepts and responds to Gen,Rep queries:

• Gen(n): Let µ = (index, N). If index + n > N , return ⊥. Otherwise, define y = Xpad[index, . . . ,
index+n−1]. Set σ = (Mac.Tagk(index, n), index, n). Then, output (y, σ) and set µ = (index+n,N).

• Rep(σ): Parse σ = (t, index, n). Then, if t = Mac.Tagk(index, n), return ỹ = Xpad[index, . . . , index+
n− 1]. Otherwise, return ỹ = ⊥.

Finally, to parse these queries for pads, we define:

• Auth(σ, y) : On input (σ, y), output (z, r)← EH(y).

• Ver(z, ỹ): On input (z, ỹ), set (z̃, r̃)← EH(ỹ). If z = z̃, output r̃. Otherwise, output ⊥.

Theorem 4.2. For security parameter λ, if Eλ is an extractor-hash and Mac.Tag is a computational MAC,
then Construction 4.2 is a HELP. Under standard assumptions about CHRFs and MACs, this gives nearly
optimal randomizer length Ñ = N +O(λ), and server overhead n = ℓ+O(λ) per ℓ-bit extraction.

Proof. Correctness follows from direct inspection of Gen,Rep and Ver. Below we prove bounded server
authentication, user integrity, and privacy separately.

Server Authentication: Suppose for some λ,N there exists a PPT adversary A with oracle access to
Gen,Rep,Gen∗ and some polynomial p(λ) such that

Pr
[
Rep(σ∗) ̸=⊥ ∧σ∗ ̸∈ {σ1, . . . , σq}|σ∗ ← AGen,Rep,Gen∗(N, 1λ)

]
>

1

p(λ)
,

where σ1, . . . , σq are the query response tags from Gen. We show how to use A to construct B that forges
message authentication codes for Mac.Tag. B plays the role of the challenger in the server authentication
game for A as follows. Notice that B has access to the Mac.Tagk procedure.

19

• B initializes a HELP server by directly sampling Xpad
$← {0, 1}N , and setting µ = (index = 1, N). It

additionally samples a uniform MAC key k∗.

• Whenever A makes a Gen(n) query, B first checks if index+ n > N . If so, return ⊥. Otherwise, B
queries Mac.Tagk with (index, n), receiving a tag t. B sets y = Xpad[index, . . . , index + n − 1] and
σ = (t, index, n), updates index = index+ n, returns and stores (y, σ).

• WheneverAmakes a Gen∗(n) query, B completes the same process as above, but queryingMac.Tagk∗
instead and only returning y.

• Whenever A makes a Rep(σ̃) query, B simply checks if there exists an entry (y, σ) in its storage
with σ = σ̃. If so, return ỹ = y. Otherwise, return ỹ = ⊥.

• At the end of the experiment, A outputs σ∗ = (t∗, index∗, n∗). B simply outputs m = (index∗, n∗)
and t = t∗ as the forged tag.

Now we quickly argue that if A wins the server authentication game, B wins the MAC forgery game.
Notice that A winning the server authentication game yields that t∗ = Mac.Tagk(index

∗, n∗) and that
(t∗, index∗, n∗) isn’t part of the response of a Gen query. We now have that t∗ is a valid tag for (index∗, n∗),
so what is left is to show that B never queried Mac.Tagk on (index∗, n∗). Notice that B queries Mac.Tagk
only when answering Gen queries. So if B had queried Mac.Tagk on (index∗, n∗) during some Gen query,
then it would have responded with (Mac.Tagk(index

∗, n∗), index∗, n∗) = (t∗, index∗, n∗), which contradicts
with the tuple never returned by a Gen query. Therefore, t∗ is a valid tag on the tuple (index∗, n∗) that
has never been queried before, and hence B wins the MAC forgery game.

User Integrity: Suppose for some λ there exists a PPT adversarial server S which wins the user
integrity game with advantage p(λ) for some polynomial p. We use this to break the collision resistance
property of EH as so: To construct A, simply run S(1λ), receiving ((st, σ, y), ỹ) from S satisfying (z, r)←
Auth(σ, y, 1λ) and r̃ = Ver(z, ỹ). Finally, A outputs (y, ỹ).

By construction, we have (z, r)← EH(y) and (z, r̃)← EH(ỹ), but r ̸= r̃. We see then that for y1 = y,
y2 = ỹ, (z1, r1) = EH(y1) and (z2, r2) = EH(y2), we have z1 = z = z2 yet r1 ̸= r2. So when S breaks user
integrity, A breaks collision resistance of EH. We conclude that S must not exist.

Privacy: Privacy comes directly from the extraction property of EH. In the privacy game, notice that
the only difference between b = 0 and b = 1 is whether the adversary receives r0 or r1. Therefore, for
an adversary to win the privacy game, it needs to distinguish the distribution of (st, σ, z, r0) from the
distribution of (st, σ, z, r1). Since st and σ are independent from y, z, r0, and r1, effectively the adversary
needs to distinguish between the distributions of (z, r0) and (z, r1). Notice that these two distributions
are exactly (Z,R) = EH(Y) and (Z,Uℓ). By the extraction property of EH, since y ∼ {0, 1}n, they are
statistically close and hence no adversary can distinguish between them with non-negligible probability.

Unbounded Server Authentication. The above construction uses a computational MAC (as in
Definition 2.3) in order to create the randomness tags. This allows the construction to achieve Ñ = N+ℓMAC
at the cost of only satisfying bounded server authentication. If instead we use an information-theoretic
one-time MAC [GN94] (as in Definition 2.4), we can achieve unbounded server authentication. However,

20

in this case, the length Ñ of randomness needed for N bits of transmitted randomness will be Ñ = O(N),
where the constant factor in front of N can be made smaller and smaller, by placing a lower bound on
the minimal value ℓ = Ω(λ) allowed for Gen(ℓ).

In more detail, the server string X will consist of two parts Xpad and Xmac, where Xmac will contain
the one-time MAC keys (k1, k2, . . .) uses for successive calls to Gen. And the dynamic server state µ will
also contain the index j of the current Gen query, in addition to values index, n. The j-th call to Gen will
use the one-time MAC key kj to tag the tuple (index, n), and increment j (to ensure each kj is only used
at most once).

To argue that Ñ = O(N), we only need to argue that |Xmac| = O(N) = O(|Xpad|). To see this,
recall that unconditional one-time MACs use a key of size O(λ) to authenticate messages of length up to
exponential in λ, where λ is the security parameter [GN94]. In our case we only tag a couple of indices
(index, n), which certainly has size O(λ). Thus, the claim follows if we ensure that the length n of each
pad Y is Ω(λ). More generally, we only need the overall length N of all pads (say, T of them) requested
by all users to satisfy N = Ω(Tλ). This is a reasonable requirement, and likely true for most uses.

Using Dictionaries instead of MACs. Yet another possible trade-off for the main construction is to
go one step further, and replace MACs (either a single computational, or many one-time) with “zero-time”
time IT-MACs, where the key k is the tag of every message. Namely, one needs k to tag any message,
but there is no distinctions between different messages. This presents a viable option if we do not want to
use any cryptography at all, which could be attractive for low-powered devices or ease of implementation
and deployment.

However, this optimization comes at a cost in a different dimension: off-loading static storage of mac
keys k1, k2 . . . (or as a single computational MAC key k) from the static server storage X to the dynamic
server storage µ. Concretely, the server will use a fresh “zero-time” key kj for each call to Gen, but then
store the mapping from kj to the authenticated message Vj = (index, n) in some dynamically growing
dictionary D. Moreover, if the server has a fresh source of randomness, it does not need to store all
one-time keys kj in Xmac, but can sample them on the spot, only adding the map from kj to Vj to the
dictionary D.

When Bob provides a value kj in Rep, the server will look for a record Vj = (index, n) in D. If found,
it proceeds as before. Otherwise, it returns ⊥. Thus, since each kj is used only once and the messages is
remembered in the dictionary, the attacker cannot fool the server from retrieving the wrong index index
or message length n. Overall, this variant is extremely simple to implement, but forces the server to store
an extra dictionary whose size grows with the number of Gen calls. This trade-off may or may not be
preferable in various settings.

As another pragmatic option, the server can even accept the key kj from the user Alice making the
Gen request, although this slightly deviates from our syntax, and puts the burden on users to generate
good randomness for “zero-time” MAC key. On a positive, this option gives more flexibility for Alice to
distribute MAC keys in advance, so the recipient Bob can make the Rep call even before Alice sent her
ciphertext. Additionally, using a single master key k∗ shared in advance, Alice and Bob can derive the
required “zero-time” keys kj pseudorandomly from k∗, and only transmit the nonces needed to derive kj
from k∗ over a public (but authenticated) computational channel. Such extra flexibility could be attractive
in some scenarios, and might justify the need for the server to store a dynamically growing dictionary
mapping kj to Vj .

21

5 Composing with Message Transmission

Recall that in Figure 1, we imagined running an HELP instance in composition with a Message Transmis-
sion protocol. The single-server HELP construction that we present in Section 4 (and also the distributed
HELP construction later in Section 7) satisfy the properties defined in Section 3 (and Section 7), but not
quite what we promised in Figure 1. For starters, the HELP instance did not explicitly process messages m
to be sent/received, but instead focused on generating proper one-time pads r. Of course, Figure 1 takes
care of this by using the simple one-time pad encryption, and also sending Bob the values σ, z needed for
the pad reconstruction. More importantly, though, HELP definitions in Section 3 (and later in Section 7)

completely ignored the computational leakage in step 3), due to the transmission of values (m⊕ r, σ, z)
to Bob over (only) computationally secure channel. For example, server authentication Definition 3.4 in
Section 3 allowed the attacker to make Gen∗ calls, and obtain no leakage of the corresponding tag value σ
(which corresponded to honest users using the scheme). In reality, however, the value σ will be sent over

channel 3 in Figure 1, which could leak some computational leakage about σ. Similarly, in the privacy
Definition 3.6 in Section 3 the attacker was not allowed to make any Rep queries, which is allowed in step

A in Figure 1.
In this section, we fill those modeling gaps, and show how composing a HELP instance with a com-

putationally secure Message Transmission protocol achieves the promised everlasting security guarantees
we desire from Figure 1. To achieve this goal, in this section we define stronger variants of user in-
tegrity, server authentication, and, most importantly, everlasting privacy of our compiler illustrated in
Figure 1. These stronger properties will fill the gaps in the single-server definitions from Section 3. Cru-
cially, we will show that the stronger properties are always implied by the seemingly weaker properties
from Section 3, provided the computationally secure Message Transmission scheme satisfies the widely
accepted notion of Universal Composability (UC) security [Can01]. Concretely, we show that given a
(computationally-secure) Message Transmission scheme with Universal Composability (UC) security, we
can compose it with any HELP scheme satisfying security properties from Section 3, to obtain a Message
Transmission scheme with everlasting privacy (and correspondingly stronger forms of user integrity and
server authentication).

We start by refreshing the minimal UC security background needed to define the Message Transmission
functionality. This allows us to formalize our composition in Figure 1, from any HELP instance and
UC-secure Message transmission. Then, for each of the security properties (server authentication, user
integrity, and privacy), we present their corresponding stronger definitions for our composed scheme
(including everlasting privacy as opposed to privacy), and show that HELP security from Section 3 and
UC-security of message transmission generically satisfy these new security definitions.

5.1 Universal Composability

The central components of our composition is a HELP instance and a UC-secure message transmission
protocol, so we first provide a very brief overview of the UC framework below to remind the reader of the
related concepts.

In the Universal Composability (UC) framework [Can01], the goal is to model real-world protocols
Π as ideal functionalities F . Towards this end, we consider real-world processes and ideal processes. A
protocol Π is said to UC-realize an ideal functionality F if the real-world process of running the protocol
“emulates” the ideal process for the corresponding ideal functionality. In both processes, we use a PPT
Interactive Turing Machine (ITM) to represent the program run by one of the parties. An ITM has 4
different tapes: the input and output tapes model the inputs and outputs that the machine receives or

22

sends to other programs on the same machine, while the incoming and outgoing message tapes model the
messages received and sent over the network. Below, we (very briefly) describe the two processes (also
illustrated in Figure 2) following the high-level description presented in [CF01]. For a full and formal
treatment of the UC framework, we refer the readers to Canetti’s original paper [Can01].

Real-World Process. In both the real-world and ideal processes, we consider a computational envi-
ronment E , which can be thought of as a PPT distinguisher trying to distinguish between the real-world
and the ideal process. In the real-world process, we consider some honest parties P1,P2, . . . executing the
protocol Π with some adversary A and the environment E . All of the participants are in PPT of some
security parameter λ.

The execution of the process proceeds through a sequence of activations, where one participant (A, E ,
or one of the Pi’s) is activated each time. The activated participant may read from its own input and
incoming message tape, execute its code, and then possibly write on its own output or outgoing message
tape. The environment E and the adversary A have additional capabilities. Additionally, the environment
E can write on the input tapes of the honest parties or the adversary and read from their output tapes.
The adversary A can read messages from the outgoing message tapes of the honest parties and copy
them to the incoming message tapes of the recipient party. Notice that the adversary A is not allowed to
modify or duplicate the messages – only the original messages produced by the honest parties are allowed.
The adversary may also corrupt honest parties, gaining full control of the party, as well as its internal
information.

In the execution of the process, the environment E is activated first with the input x on its input tape.
Once activated, the environment may write onto the input tape of either one of the honest parties or the
adversary. Then, that participant is activated next. If no input tape is written onto, then the execution
halts. Every time an honest party finishes activation, the environment is activated automatically. When
the adversary delivers a message to some honest party Pi during activation, Pi will be activated next. If
the adversary does not write onto any incoming message tape during activation, then the environment is
activated right after. Notice this allows the environment and the adversary to freely exchange information
using the adversary’s input and output tape. The output of the experiment is a single bit output by E ,
which we denote as RealΠ,A,E(λ, x).

Ideal Process. We now describe the ideal process, which centers around an ideal functionality F that
captures the desired functionality. This F is modeled as another ITM that interacts with the environment
E , an ideal process adversary S, and a set of dummy parties P̃1, P̃2, The dummy parties have a very
simple fixed behavior: upon activation with an input, it simply forwards the input to F by copying the
input to its own outgoing message tape; upon activation with an incoming message from F , it simply
copies the message to its own output tape. F receives the messages from the dummy parties by directly
reading from their outgoing message tapes and sends messages to them by directly writing on their
incoming message tapes. The ideal process adversary S behaves similarly to a real-world adversary A,
except that it cannot read the incoming and outgoing message tapes of F and the dummy parties. Here
instead, F is in charge of delivering the messages between F and the dummy parties. As in the real-world
process, S can also corrupt dummy parties.

The execution of the idea process is similar to that of a real-world process. Notice that there is no
direct communication between the dummy parties – all communications are achieved through the ideal
functionality F . The output of the experiment is also a bit by E , which we denote as IdealF ,S,E(λ, x).

Definition 5.1 (Universal Composability [Can01]). Let F be an ideal functionality, and let Π be an

23

Figure 2: Illustration of the real-world process vs. the ideal process in the UC framework.

implementation. We say that Π γ-UC-realizes F if, for any security parameter λ and any real-world
adversary A there exists an ideal-process adversary S such that for any environment E and any input x
we have

|Pr[RealΠ,A,E(λ, x) = 1]− Pr[IdealF ,S,E(λ, x) = 1]| ≤ γ.

The above definition can be simplified with a dummy adversary Adummy. A dummy adversary’s
behavior is very simple: it just forwards messages from the environment to the designated parties, and
also from the parties back to the environment. With this dummy adversary, the environment has almost
full control of the protocol, and hence simulating this dummy adversary will be the hardest, therefore
capturing the “for all” quantifier on the real-world adversaries.

Definition 5.2 (Universal Composability (UC) with Adummy). Let F be an ideal functionality and let
Π be an implementation. We say Π γ-UC-realizes F if for any security parameter λ, there exists an
ideal-process adversary S such that for any environment E and any input x we have∣∣Pr[RealΠ,Adummy,E(λ, x) = 1]− Pr[IdealF ,S,E(λ, x) = 1]

∣∣ ≤ γ.

5.2 A Compiler for Secure Message Transmission

Now we show how to augment a UC-secure Message Transmission protocol Π to obtain a message trans-
mission Π′ with everlasting privacy using a HELP.

We first define the ideal functionality for secure message transmission FMT.

Functionality FMT

FMT proceeds as follows, running with parties P1, . . . ,Pn and an adversary S.

1. Upon receiving a tuple (Send,m,Pj) from Pi, leak (Pi,Pj , |m|) to S.

2. When S returns OK, output (Sent,m) to Pj .

We next show how to construct a message transmission protocol Π′ with everlasting privacy, by using
a message transmission protocol Π that UC-realizes FMT and a HELP instance HELP as ingredients.

Construction 5.1. Let λ be the security parameter. Let Π be a message transmission protocol, and HELP
be a HELP instance. We construct message transmission protocol Π′ as follows:

• To send a message m to Pj:

24

1. Compute n← PadLength(|m|, 1λ);
2. Send a Gen(n) query to HELP, and receive (σ, y);

3. Compute (z, r)← Auth(σ, y, 1λ);

4. Run protocol Π to send the tuple (m⊕ r, σ, z) to Pj.

• Upon receiving m̃ from Π:

1. Parse m̃ = (x, σ̃, z̃);

2. Send a Rep(σ̃) query to HELP, and receive ỹ;

3. Compute r̃ ← Ver(z̃, ỹ);

4. If r̃ = ⊥, abort and output ⊥;
5. Output m′ = x⊕ r̃.

Correctness requires that m′ = m and follows trivially from the correctness of Π and HELP. We
discuss the three desired security properties for this construction in the following three subsections.

5.3 Server Authentication

5.3.1 Definition

First, let us recall the original definition of server authentication.

Definition 3.4. Let λ be the security parameter. We say that HELP satisfies {bounded, unbounded} ε-
server authentication for ε = negl(λ) if, for all {PPT , unbounded} A with oracle access to Gen,Rep,Gen∗,
and any value of N , after we run Init(N, 1λ) to initialize (X,µ), we have

Pr
[
Rep(σ∗) ̸=⊥ ∧ σ∗ ̸∈ {σ1, . . . , σq}

∣∣∣ σ∗ ← AGen,Rep,Gen∗(N, 1λ)
]
≤ ε,

where Gen,Rep are defined as before, Gen∗(n) calls (σ, y) ← Gen(n) but only returns y, and {σ1, . . . , σq}
denotes the set of tags returned in response to the adversary’s queries to Gen.

Notice that this definition has a slight mismatch from Figure 1. In the definition above, the adversary
with access to the Gen∗ oracles (recall that these are used to model queries made to Gen by honest users)
can only get the y values, not the σ’s. However, in Figure 1 and Construction 5.1, when the honest users
make Gen queries, σ is sent through the message transmission protocol. In this case, the adversary does
receive computational leakage of σ from the message transmission protocol, which is not captured by the
definition above.

With that in mind, we modify the server authentication definition as follows to fit into the composed
protocol.

Definition 5.3. Let λ be the security parameter. We say a HELP-aided message transmission protocol
MT has ε-server authentication for ε = negl(λ) if for all PPT adversaries A and choices of N (the
parameter in HELP), we have

Pr
[
ExptSvrAuthHELP,MT

C,A (N,λ) = 1
]
≤ ε,

where ExptSvrAuth is specified in Figure 3.

The key difference is in Step 2c, the challenger runs MT to send mi, which could potentially leak
information about the HELP tag σ used by the challenger.

25

ExptSvrAuthHELP,MT
C,A (N,λ):

1. The challenger C runs (X,µ)← Init(N, 1λ).

2. For a polynomial number of rounds i = 1, 2, . . . , q, the adversary A may choose one of the
following:

(a) Submit a Gen(ni) query to C:
C computes (σi, yi)← Gen (ni), and responds with (σi, yi).

(b) Submit a Rep(σ̃i) query to C:
C computes ỹi ← Rep (σ̃i), and responds with ỹi.

(c) Submit a message mi to C:
C runs MT to send mi, and A receives the corresponding leakage from MT.
Specifically, C computes the following:

i. n∗
i ← PadLength(|mi|, 1λ);

ii. (σ∗
i , y

∗
i)← Gen(n∗

i);

iii. (z∗i , r
∗
i)← Auth(σ∗

i , y
∗
i , 1

λ);

iv. Run the underlying message transmission protocol Π to send the tuple (mi ⊕
r∗i , σ

∗
i , z

∗
i).

ab

3. A wins the game (the experiment outputs 1) if and only if A submits some Rep(σ̃i) query and
receives a non-⊥ response, but σ̃i is not a tag returned by a previous Gen query, i.e. A forges
the tag σ̃i. Put formally, A wins the game if and only if

∃i ∈ [q] s.t. σ̃i ̸∈ {σj}j∈[i] ∧ ỹi ̸= ⊥.
aTypically, C would also need to specify a party Pj to receive the tuple. But here we omit the party, as we only care

about the leakage caused by running the protocol. If it helps, a reader could think about here C runs Π to send the
tuple to itself.

bIn the case where Π is interactive, the adversary A is also allowed to make other Gen and Rep queries asynchronously
during the execution of Π.

Figure 3: Security experiment ExptSvrAuth.

26

5.3.2 Proving Server Authentication

We first prove that our construction satisfies server authentication after the composition.

Theorem 5.1. If HELP has ε-server authentication, and Π γ-UC-realizes FMT, then the HELP-aided
message transmission protocol Π′ in Construction 5.1 has (ε+ γ)-server authentication.

Proof. The intuition behind the proof is that we want to reduce this to the server authentication of HELP,
but notice that in the ExptSvrAuth experiment, A can potentially get some additional information from
step 2c than in the original server authentication definition (Definition 3.4. Therefore, we take one extra
step by invoking the UC-security of Π and replacing the leakage with just the length. Formally, we prove
this through the following hybrids.

• H1: The same as ExptSvrAuthHELP,Π
′

C,A .

• H2: Now we replace the message transmission protocol Π with the ideal functionality FMT. Specif-
ically, we change step 2(c)iv to the following:

2(c)iv. Send the tuple (Send, (mi ⊕ r∗i , σ
∗
i , z

∗
i), ·) to FMT.

In the rest of the proof, we first bound the probability that any PPT adversary A can distinguish
between H1 and H2, and then bound the probability of the adversary winning the game in H2, denoted
as PrH2 [BREAK].

First, we show that if a PPT adversary A can distinguish between H1 and H2 with probability γ′, then
for all ideal-process adversary S, there exists an environment machine E that can distinguish between
(F ,S) and (Π,Adummy) with probability γ = γ′. The high-level idea is that the environment machine E
will simulate either H1 or H2 for A and construct its own output based on the output of A. Specifically,
given A, we construct E as follows by simulating the view for A. Most of the steps are directly simulating
ExptSvrAuth, so we highlight the main differences in red.

1. Run (X,µ)← Init(N, 1λ).

2. To answer A’s queries:

(a) Whenever A submits a Gen(ni) query, compute (σi, yi)← Gen(ni), and respond with (σi, yi).

(b) Whenever A submits a Rep(σ̃i) query, compute ỹi ← Rep (σ̃i), and respond with ỹi.

(c) Whenever A submits a message query mi, compute n∗
i ← PadLength(|mi|, 1λ), (σ∗

i , y
∗
i) ←

Gen(n∗
i), (z

∗
i , r

∗
i) ← Auth(σ∗

i , y
∗
i , 1

λ). Invoke either Adummy or S to have an honest party send
(mi ⊕ r∗i , σ

∗
i , z

∗
i), Adummy or S will receive a leakage τi which is also forwarded back to the

environment. Send τi to A.

3. At the end of the experiment, if A outputs it is in H1, output that E is in the real-world process
interacting with Adummy. Otherwise, output that it is in the ideal process interacting with S.

Notice that if E were in the ideal process, then τi = |(mi ⊕ r∗i , σ
∗
i , z

∗
i)|, which matches what A expects

from step 2c. On the other hand, if E were in the real-world process, then τi is whatever is leaked to
the adversary through the execution of Π, which also matched what A expects. Therefore, the view
is simulated correctly for A. If A successfully distinguishes between H1 and H2, E also successfully

27

distinguishes between real and ideal. Since for PPT E , the real process and the ideal process are γ-close,
H1 and H2 are also γ close for PPT A.

Next we finish the proof by showing that in H2 the probability of the adversary winning is just ε.
This is by direct reduction to the server authentication of HELP. Specifically, we show that an adversary
A that wins H2 implies an adversary A′ that breaks the server authentication of HELP. A′ simulates
the view for A by simply forwarding all the Gen and Rep queries made by A to the oracles that A′ has
access to and correspondingly forwarding the oracle responses. Upon receiving mi from A, simply leak
(Sent, |mi|) to A. By the end of the experiment, A has won the game by querying σ̃ that is not returned
by a previous Gen query and has a non-⊥ response. A′ simply outputs σ̃ and wins the game. Therefore,
the probability of A breaking H2 is at most the probability that A′ can break server authentication, i.e.
PrH2 [BREAK] ≤ ε.

Combining the previous two parts, we have Pr
[
ExptSvrAuthHELP,MT

C,A (N,λ) = 1
]
≤ γ+ε as desired.

5.4 User Integrity

5.4.1 Definition

Similar to server authentication, the notion of user integrity would also need to be adjusted accordingly
for the composed setting. On a high level, the original user integrity definition dictates that a malicious
server cannot fool the user into producing a different yet valid random key r. In the composed setting,
we would like to modify the definition to capture the user integrity for messages, as opposed to keys.
Namely, we want that an adversarial HELP server cannot cause a transmitted message to be received as
a different one. Specifically, we define it as below.

Definition 5.4. Let λ be the security parameter. We say that HELP satisfies δ-user integrity with δ =
negl(λ), if for all PPT servers S and choices of N , we have

Pr
[
ExptUsrIntHELP,MT

C,S (N,λ) = 1
]
≤ δ,

where ExptUsrInt is specified in Figure 4.

5.4.2 Proving User Integrity

We prove user integrity of our Construction 5.1 through the following theorem.

Theorem 5.2. If HELP has δ-server authentication, and Π γ-UC-realizes FMT, then the HELP-aided
message transmission protocol Π′ in Construction 5.1 has (δ + γ)-user integrity.

Proof. The first step, similar to the proof of Server Authentication for Theorem 5.1, is to invoke the
UC-security of the underlying message transmission protocol Π to replace it with the ideal functionality
FMT. This step introduces an error of γ.

Once we have the ideal functionality FMT, it is guaranteed that the tuple (m ⊕ r, σ, z) is received as
is, and therefore we have x = m⊕ r, σ̃ = σ, and z̃ = z8.

8Notice that in fact, only integrity of m⊕ r and z are necessary for the proof. So practically, σ can be sent through some
message transmission protocol with no integrity guarantees (secrecy is still needed for the server authentication property
though).

28

ExptUsrIntHELP,MT
C,S (N,λ):

1. The adversary S is initialized with the security parameter 1λ.

2. The challenger C samples message m, and computes n← PadLength(|m|, 1λ).

3. The challenger C submits the Gen(n) query.

4. The adversary S on input n produces the response (σ, y), which the challenger C receives.

5. The challenger computes (z, r)← Auth(σ, y, 1λ), and runs the underlying message transmission
protocol Π to send (m⊕ r, σ, z), which will be received as (x, σ̃, z̃).

6. The challenger C submits the Rep(σ̃) query.

7. The adversary S on input σ̃ produces the response ỹ, which the challenger C receives.

8. The challenger C computes r̃ ← Ver(z̃, ỹ). The adversary wins the game (and the experiment
outputs 1) if and only if r̃ ̸= ⊥ and x⊕ r̃ ̸= m.

Figure 4: Security experiment ExptUsrInt.

Then, we can reduce to the user integrity of the HELP instance. Specifically, if an adversary S is able
to win the composed user integrity game with ideal message transmission functionality, then we can build
an adversary S ′ that wins the original user integrity game. S ′ will use S as a subroutine by playing the
role of the challenger in the ExptUsrInt game as follow:

1. S ′ receives the security parameter 1λ, which it uses to initialize S.

2. S ′ samples message m, computes n← PadLength(|m|, 1λ), and submits the Gen(n) query to S.

3. The adversary S responds with (σ, y), which S ′ also outputs. Additionally, S ′ outputs a state st = σ.

4. S ′ receives z, r together with st = σ. It submits the Rep(σ) query to S.

5. The adversary S responds with ỹ, which S ′ also outputs.

Now we briefly argue that if S wins the ExptUsrInt game, then S ′ wins the original user integrity game.
S wins the game only if r̃ ̸= ⊥ and r̃ ̸= m ⊕ x = r for r̃ ← Ver(z, ỹ). This immediately gives r̃ ̸∈ {r,⊥}
as desired.

Therefore, bringing the two parts together, Construction 5.1 has (δ + γ)-user integrity.

5.5 Everlasting Privacy

5.5.1 Definition

The overall idea behind everlasting privacy is to capture the security model illustrated in Figure 1 using an
indistinguishability-based game definition. We define the security game as a two-stage experiment. First,
the adversary A1 is PPT but has access to the HELP instance. To capture A1’s ability to communicate

29

with the HELP instance arbitrarily, we allow A1 arbitrary adaptive Gen and Rep queries, before and
after the challenge. In the first stage, A1 also chooses two challenge messages of equal length. The
challenger picks a random one to send using the message transmission protocol. At the end of the first
stage, A1 outputs its own view, which is then passed to the second-stage adversary A2. The adversary
A2 is computationally unbounded but no longer has access to the HELP instance. The goal is for A2 to
successfully guess which of the two challenge messages were sent in the first stage by solely depending on
the view of A1 in the first stage. Put formally, we define everlasting privacy as follows.

Definition 5.5. Let λ be the security parameter. We say a HELP-aided message transmission protocol
MT has ω-everlasting privacy for ω = negl(λ) if for all adversaries A = (A1,A2) with PPT A1 and
unbounded A2, and choices of N (the parameter in HELP), we have∣∣∣Pr[ExptEvltPrivHELP,MT

C,A,1 (N,λ) = 1]− Pr[ExptEvltPrivHELP,MT
C,A,0 (N,λ) = 1]

∣∣∣ ≤ ω,

where ExptEvltPriv is specified in Figure 5.

5.5.2 Proving Everlasting Security

Now we formally prove that our construction of Π′ in Construction 5.1 has everlasting privacy.

Theorem 5.3. If HELP has ε-server authentication and ξ-privacy, and Π γ-UC-realizes FMT, then the
HELP-aided message transmission protocol Π′ in Construction 5.1 has (2ε+2γ +4ξ)-everlasting privacy.

Proof. We structure the proof around an invocation of Lemma 2.1.

We first define a BREAK(ExptEvltPrivHELP,Π
′

C,A,b) predicate to indicate whether A1 has broken server au-

thentication in experiment ExptEvltPrivHELP,Π
′

C,A,b . For simplicity, we shorthand it as just BREAKb. Specifi-
cally, we have

BREAKb := ∃ i ∈ [q2].
(
σ̃i ̸∈ {σj}j∈[i] ∧ ỹi ̸= ⊥

)
.

Notice that Pr[BREAK0] and Pr[BREAK1] are both bounded by the server authentication error. And
by Theorem 5.1, since HELP has ε-server authentication and Π γ-UC-realizes FMT, Π

′ has (ε+ γ)-server
authentication. Hence, we have Pr[BREAK0] = Pr[BREAK1] ≤ ε+ γ.

Invoking Lemma 2.1, let Ab be the event that ExptEvltPrivHELP,Π
′

C,A,b (N,λ) = 1, and Bb be simply
¬BREAKb. Then by Lemma 2.1,∣∣∣Pr[ExptEvltPrivHELP,Π′

C,A,1 (N,λ) = 1]− Pr[ExptEvltPrivHELP,Π
′

C,A,0 (N,λ) = 1]
∣∣∣

≤Pr[BREAK0] + Pr[BREAK1] + |Pr[A0 ∧ ¬BREAK0]− Pr[A1 ∧ ¬BREAK1]|

Since we already have Pr[BREAK0],Pr[BREAK1] ≤ ε + γ from server authentication, we just need to
show that |Pr[A0 ∧ ¬BREAK0]− Pr[A1 ∧ ¬BREAK1]| is negligible through the following Lemma.

Lemma 5.1. If HELP has ξ-privacy, then

|Pr[A0 ∧ ¬BREAK0]− Pr[A1 ∧ ¬BREAK1]| ≤ 4ξ.

On a high level, we want to reduce this to the privacy of the underlying HELP scheme. But the
challenge is that in the everlasting privacy game the adversary A1 is allowed Rep queries, while the
adversary A in the privacy game is not. We handle this through a sequence of hybrid. In all of the

30

ExptEvltPrivHELP,MT
C,A=(A1,A2),b

(N,λ):

1. The challenger C runs (X,µ)← Init(N, 1λ).

2. For a polynomial number of rounds i = 1, 2, . . . , q1, the adversary A1 may choose one of the
following:

(a) Submit a Gen(ni) query to C:
C computes (σi, yi)← Gen (ni), and responds with (σi, yi).

(b) Submit a Rep(σ̃i) query to C:
C computes ỹi ← Rep (σ̃i), and responds with ỹi.

3. A1 chooses two messages m0, m1 with |m0| = |m1| and sends m0,m1 to C.

4. The challenger C runs MT to send mb, and A1 receives the corresponding leakage from MT.
Specifically, C computes the following:

(a) n← PadLength(|mb|, 1λ);
(b) (σ, y)← Gen(n∗);

(c) (z, r)← Auth(σ, y, 1λ);

(d) Run the underlying message transmission protocol Π to send the tuple (mb ⊕ r, σ, z). a

5. Again, for a polynomial number of rounds i = q1+1, q1+2, . . . , q2, the adversary A1 may choose
one of the following:

(a) Submit a Gen(ni) query to C:
C computes (σi, yi)← Gen (ni), and responds with (σi, yi).

(b) Submit a Rep(σ̃i) query to C:
C computes ỹi ← Rep (σ̃i), and responds with ỹi.

6. A2 takes as input view(A1) and outputs a bit, the output of the experiment.

aSimilar to server authentication, in the case where Π is interactive, the adversary A is also allowed to make other
Gen and Rep queries asynchronously during the execution of Π.

Figure 5: Security experiment ExptEvltPriv.

31

hybrids, we have the outputs of the experiments set to be the logical AND of the adversary’s output and
the BREAK predicate. First of all, we modify the experiment so that Rep queries simply return ⊥ on
all σ̃’s that are not the result of previous Gen queries, but when we calculate the BREAK predicate, we
still calculate it based on the old query responses. We argue that this change results in identical output
distributions of the experiments. Then, we can reduce to the privacy game, as now the Rep queries do not
provide any useful information, and thus can be easily simulated by the adversary in the privacy game.

Proof. We prove this through a sequence of hybrids. As an overview, in H1, we have ExptEvltPrivHELP,Π′

C,A,0

except that we adjust the output to reflect the ¬BREAK0 predicate. In H2, we reply ⊥ to the Rep queries
that would lead to BREAK0. In H3, we switch from sending m0 to random. In H4, we switch from

random back to m1. In H5, we revert the changes made in H2 and get back ExptEvltPrivHELP,Π
′

C,A,1 with
the ¬BREAK1 adjusted into the output. We will show that the outputs of H1 and H2, H4 and H5 are
identically distributed, while the outputs of H2 and H3, H3 and H4 are statistically close. We detail the
hybrids below:

• H1: The same as ExptEvltPrivHELP,Π
′

C,A,0 , except that the output of experiment is adjusted to reflect

ExptEvltPrivHELP,Π
′

C,A,0 ∧ ¬BREAK0. Concretely, it is as below, with the adjustment highlighted in red:

H1:

1. The challenger C runs (X,µ)← Init(N, 1λ).

2. For a polynomial number of rounds i = 1, 2, . . . , q1, the adversary A1 may choose one of
the following:

(a) Submit a Gen(ni) query to C:
C computes (σi, yi)← Gen (ni), and responds with (σi, yi).

(b) Submit a Rep(σ̃i) query to C:
C computes ỹi ← Rep (σ̃i), and responds with ỹi.

3. The adversary A1 chooses two messages m0, m1 with |m0| = |m1| and sends m0,m1 to C.
4. The challenger C runs the following:

(a) n← PadLength(|m0|, 1λ);
(b) (σ, y)← Gen(n);

(c) (z, r)← Auth(σ, y, 1λ);

(d) Run the message transmission protocol Π to send the tuple (m0 ⊕ r, σ, z).

5. Again, for a polynomial number of rounds i = q1 +1, q1 +2, . . . , q2, the adversary A1 may
choose one of the following:

(a) Submit a Gen(ni) query to C:
C computes (σi, yi)← Gen (ni), and responds with (σi, yi).

(b) Submit a Rep(σ̃i) query to C:
C computes ỹi ← Rep (σ̃i), and responds with ỹi.

6. The adversary A2 takes as input view(A1) and sends a bit b′ to C. C computes BREAK =
∃ i ∈ [q2].

(
σ̃i ̸∈ {σj}j∈[i] ∧ ỹi ̸= ⊥

)
, and outputs b′ ∧¬BREAK as the output of the experi-

ment.

• H2: The same as H1, except for the following changes in steps 2 and 5.

32

Changes in H2:

2. For a polynomial number of rounds i = 1, 2, . . . , q1, the adversary A1 may choose one of
the following:

(a) Submit a Gen(ni) query to C:
C computes (σi, yi)← Gen (ni), and responds with (σi, yi).

(b) Submit a Rep(σ̃i) query to C:
C computes ỹi ← Rep (σ̃i). If σ̃i = σj for some j < i, return ỹi = yj . Otherwise, return
⊥.

5. Again, for a polynomial number of rounds i = q1 +1, q1 +2, . . . , q2, the adversary A1 may
choose one of the following:

(a) Submit a Gen(ni) query to C:
C computes (σi, yi)← Gen (ni), and responds with (σi, ri).

(b) Submit a Rep(σ̃i) query to C:
C computes ỹi ← Rep (σ̃i). If σ̃i = σj for some j < i, return ỹi = yj . Otherwise, return
⊥.

• H3: The same as H2, except that in step 4d, instead of sending (m0 ⊕ r, σ, z), now send (u, σ, z),
where u is a uniform |m0|-bit string.

• H4: The same as H3, except that in step 4d, revert back to sending (m1 ⊕ r, σ, z).

• H5: Revert the changes made in H2. This is the same as ExptEvltPrivHELP,Π
′

C,A,1 apart from the same
adjustments highlighted in H1.

First, we show that the outputs of H1 and H2 (W.L.O.G. also H4 and H5) are identically distributed.
First, note that the only differences between H2 and H1 are how Rep queries are answered. Further, for a
Rep query on σ̃i, notice that the answer is yi in both hybrids if there exists some j < i such that σ̃i = σj .
In the other case, if σ̃i ̸= σj for all j < i, then in H2, C always responds ⊥ (though it does compute ỹi
anyway). In H1, the response may or may not be ⊥. If for all such Rep queries (σ̃i ̸= σj for all j < i)
in H1, the answers are all ⊥, then the adversary’s view in H1 and H2 are identical, and hence outputs
the same bit b′. If there exists such a Rep query with non-⊥ answer in H1, the adversary’s view might
be different, causing b′ to have a different distribution. But notice that in that case, BREAK is 1, so the
output of the experiment is always 0 regardless of the adversary’s output b′. Therefore, the outputs of
H1 and H2 are identically distributed.

Next, we show that, the outputs of H2 and H3 are statistically close (and similarly H3 and H4).
Concretely, we show that no unbounded distinguisher D can distinguish between the outputs of H2 and
H3 with probability more than ξ. We argue this by reduction to ξ-privacy. We show how to use such
a distinguisher D to build an adversary B for the privacy game. Notice that B needs to simulate the
interactions between A = (A1,A2) and C for H2 and H3 in order to produce the outputs of H2 and H3. B
performs the simulation in the following manner, by running A = (A1,A2) “in its head” and pretending
to be the challenger C:

1. Runs the code of A1:

(a) Whenever A1 submits a Gen(ni) query to C, forward it to the Gen(·) oracle, and correspondingly
the response back to A1.

33

(b) Whenever A1 submits a Rep(σ̃i) query to C, check if there exists j < i such that σ̃i = σj . If
exists, respond with ỹi = yj . Otherwise, respond with ⊥.

(c) When A1 sends the challenge messages m0 and m1 to C, B outputs |m0| and its current state
in the privacy game. It then gets reactivated with the same state and receives rb, σ, z. Then B
run the message transmission protocol Π′ to send (rb⊕m0, σ, z), which causes a certain leakage
to A1.

2. Runs the code of A2 on view(A1) as input, when A2 outputs the bit b′, produce the output of the
experiment as just b′. Notice the difference from b′∧¬BREAK, as B cannot compute BREAK without
access to the Rep oracle.

3. Give the output of the experiment to D. If D outputs it receives the output from H2, B output 0.
Otherwise, B output 1.

Notice that the above simulated transcript by B is only correct if BREAK = 0. However, if BREAK = 1,
the outputs of H2 and H3 are always 0, hence trivially no distinguisher can distinguish between them.
In the cases where BREAK = 0, if D successfully distinguishes H2 and H3, then the adversary B above
successfully distinguishes between real or random in the privacy game. Therefore, we have shown that
no unbounded distinguisher can distinguish between the outputs of H2 and H3 (also H3 and H4) with
probability more than 1

2 +Pr[¬BREAK] · ξ, i.e. |Pr[H2(·) = 1]− Pr[H3(·) = 1]| ≤ 2 ·Pr[¬BREAK] · ξ ≤ 2ξ.
Bringing the five hybrids together, we have∣∣∣Pr [ExptEvltPrivHELP,Π′

C,A,0 (N,λ) = 1 ∧ ¬BREAK0

]
−Pr

[
ExptEvltPrivHELP,Π

′

C,A,1 (N,λ) = 1 ∧ ¬BREAK1

]∣∣∣
≤ |Pr[H2(·) = 1]− Pr[H3(·) = 1]|+ |Pr[H3(·) = 1]− Pr[H4(·) = 1]|
≤ 4ξ.

Combining Lemma 2.1, Theorem 5.1, and the above Lemma 5.1 finishes the proof for Theorem 5.3.

Implications for HELP. This section showcases how one can use a HELP instance to elevate any
message transmission protocol with computational privacy to everlasting privacy. This presents new paths
towards building everlasting-secure protocols. Instead of building the schemes directly from information-
theoretic assumptions, one can build a scheme that is secure only against computational adversaries, and
then compose the construction with HELP to obtain everlasting security. While we only proved the case
of everlasting privacy for message transmission schemes, we believe many other applications are possible,
such as key exchange protocols. We leave these directions as interesting open questions for the reader.

6 Syndrome Resilient Functions

The goal of this section is to introduce the notion of syndrome resilient functions, which will be helpful for
the multi-server HELP setting, but could be of independent interest. At a high level, this combines the error
correction of syndrome decoding with the privacy guarantees of so called resilient functions [CGH+85].
Note, we use the same notation for dist as in Equation 1.

34

Definition 6.1 (Syndrome Resilient Function). Let Σ be some alphabet, let τ = (t, ta, tf , tp) be natural
numbers, and let ∆, k ∈ N. Let SRF = (Eval,Rec) for Eval : Σt → Σ∆ × Σk and Rec : (Σ ∪ ⊥)t × Σ∆ →
(Σk ∪ ⊥) for failure symbol ⊥. Let SRF = (Eval,Rec), and denote Eval(y) = (z, w), Rec(ỹ, z) = w̃ for
y ∈ Σt, ỹ ∈ (Σ ∪ ⊥)t. We say SRF is a (τ,∆, k)-syndrome resilient function if:

1. If dist(y, ỹ) ≤ (ta, tf), then Rec(z, ỹ) = w for Eval(y) = (z, w).

2. For all subsets BAD ⊆ [t] such that |BAD| = tp, and all values y∗i for i ∈ BAD, define random
variable Yi for all i ∈ [t] as follows:

Yi =

{
y∗i i ∈ BAD

UΣ i ̸∈ BAD

Then, if (Z,W) = Eval(Y1, . . . , Yt), we require that (Z,W) ≡ (Z, (UΣ)
k).

Essentially, the first requirement of SRFs require that the recovery is error-correcting for all codewords
with at most ta adversarially-chosen points and at most tf points returning ⊥. The second ensures perfect
secrecy for the recovered word even given tp known points and the helper word z.

Construction. We will show that a Vandermonde matrix suffices for building an SRF. This is natural,
as the notion of SRFs draws inspiration from syndrome decoding of Reed-Solomon codes [RS60]. For the
sake of brevity, we introduce the minimal amount of terminology for this that we need to describe SRFs
and our construction.

Definition 6.2 (Codes, Minimum Distance, Generator Matrix). Let Σ be a finite alphabet, and let C be
a subset of Σn (that is, a set of length n words in the alphabet). Then, we say C is a code over Σ, and
the minimum distance of C is defined as the minimum Hamming distance between elements of C.

Further, if we letM be some message space, then we call A :M→ C an encoding ofM for code C.
When A is a matrix, we may also call it the generator matrix of the code C.

The Vandermonde matrix is a well-known generator matrix. We describe it below, along with the
useful properties it possesses for us.

Definition 6.3 (Vandermonde Matrix). Let F be a field, and let t,m ∈ N. Let x1, . . . , xt ∈ F be arbitrary
distinct field elements. Then, we define the m× t Vandermonde matrix, denoted Vm = Vm(x1, . . . , xt), as:

Vm =

1 1 . . . 1
x1 x2 . . . xt
x21 x22 . . . x2t
.

xm−1
1 xm−1

2 . . . xm−1
t

 .

The Vandermonde matrix allows us to do polynomial interpolation on the points x1, . . . , xt by multi-
plying a given coefficient (row) vector by Vm. This allows the Vandermonde matrix to have some incredibly
useful properties in coding theory. In particular, we will take advantage of two well-known properties of
the Vandermonde matrix:

1. It is a generator matrix of a Reed-Solomon code [RS60].

2. It is a parity check matrix for the generalized Reed-Solomon code.

35

In particular, the former property give us a simple encoding procedure for our SRF construction. The
second property will give us the needed error correction for our decoding procedure. That is, given
y, ỹ ∈ Ft where ỹ and y have distance less than the minimum distance of the implicit Reed-Solomon code,
there is a procedure Decode(ỹ, Vmy) which returns y. Importantly, this minimum distance plays nicely
with our notion of distance before; that is, this minimum distance is exactly dist(y, ỹ) in Equation 1.

As an aside, Vmy here is called the syndrome of y, and this process is known as syndrome decoding,
owing to the name SRF. With all this in mind, we are ready to present our construction of SRF.

Construction 6.1. Let Σ = F, |F| ≥ t, ∆ = 2ta + tf , and let Vm be the m × t Vandermonde matrix,
where m = t− tp. Define Eval,Rec as follows:

• Eval(y): Let Vmy = z||w, where z is the first ∆ entries of Vmy and w is the remaining t − tp −∆
entries. Output (z, w).

• Rec(ỹ, z): Run Decode(ỹ, z) as above, receiving y ∈ {0, 1}n∪⊥. If y ̸= ⊥, let Vmy = z||w as in Eval,
and output w.

The notion of SRFs also draws on a primitive known as resilient functions (and their relaxations,
exposure-resilient functions [CDH+00]). The notion of resilience is as such relevant to the proof of our
SRF construction, so we include it here.

Definition 6.4 (Resilient Function). A deterministic polynomial time computable function rf : {0, 1}t →
{0, 1}k is said to be an ℓ-resilient function if for all subsets L ⊆ [t] such that |L| = t−ℓ and all r ∈ {0, 1}t−k,
we have

⟨rf(U |t:L|r)⟩ = ⟨Uk⟩,

where U |t:L|r denotes the uniform distribution over t-bit strings where the L-th positions are equal to r.

We now have the vocabulary needed to prove that Construction 6.1 is an SRF.

Theorem 6.1. For τ = (t, ta, tf , tp) satisfying |Σ| ≥ t, t − tp ≥ 2ta + tf , define ∆ = 2ta + tf . Then,
Construction 6.1 is a (τ,∆, (t− tp −∆))-SRF.

Proof. We prove each property separately.

Property 1. Let Y, Ỹ ∈ Ft such that dist(Y, Ỹ) ≤ (ta, tf). By definition, this means Ỹ has at most tf
erasures and otherwise differs from Y in at most ta positions. Because the minimum distance of the Reed
Solomon code which Vm generates is ∆ = 2ta + tf , we see Decode can correct the errors and erasures.
This yields the first property, as Rec(ỹ, z) simply runs Decode.

Property 2. Let BAD ⊆ [t] be a subset of size tp, and let y∗i ∈ F be arbitrary for i ∈ BAD. We define
the random variable Y = (Y1, . . . , Yt) where each Yi = y∗i if i ∈ BAD and is uniformly sampled from
F otherwise. We see from Theorem 1 of [CGH+85] that, since t ≤ 2n − 1, there exists a (t, tp)-perfect
exposure resilient function. In particular, Theorem 2 of [CGH+85] gives us that the generator matrix of
the generalized Reed-Solomon with minimum distance t − tp + 1 is this exposure resilient function. So,
as long as t − tp ≥ 2ta + tf , Vm perfectly hides t − tp points from tp exposures, satisfying the second
property.

36

Instantiating SRF. In the following section, we will use SRFs to process the received random bits re-
ceived from each server. This will intuitively allow us to retrieve some certified (Definition 6.1 Property 1),
private (Property 2) randomness from the n-bit samples provided by the t servers. Using Construction 6.1
with F = {0, 1}n in this setting will work, but the multiplications needed for the resulting Eval,Rec will
be over a very large field.

To make this more efficient, we note that we can make this more efficient by separating the retrieved
n-bit samples into n/ log t blocks of length log t, applying Construction 6.1 to each of these. While we
elide this discussion to Section 7.3, our practical construction will take this into account.

7 Distributed HELP

We generalize our model to the distributed setting, where now A and B may communicate with one
of t servers S1, . . . ,St. As we will see, this setting will be very similar to the single-server setting, but
with minor changes to correctness and security. Crucially, we will rely on SRFs (Section 6) to achieve
our strong correctness and distributed privacy guarantees. By satisfying these, though, all our results
conveniently generalize, including everlasting privacy (Section 5).

7.1 Redefining Distributed Syntax and Correctness

In our generalization to t ≥ 1 servers, we will allow some of the servers to be failing, adversarial, or
non-private. While users will not know which of the servers will be faulty in some way, we assume we
know reasonable upper bounds on each type of servers. These are defined below. We will use the following
parameters for bounds on these faulty servers:

• t — the total number of servers;

• ta — the number of adversarially chosen servers, which may reproduce arbitrarily different values
from the original generated randomness;

• tf — the number of failing servers, which may return ⊥ upon calling Rep, even for a valid tag;

• tp — the number of public servers, which the adversary has full view on (which may be distinct
from the previous categories).

Additionally, we will use the notation tg = t − tp to represent the “good” servers which the users have
private channels with. We will also use the following notation to simplify definitions, as the above are
used as parameters for many of the distributed syntax:

τ := (t, ta, tf , tp).

Syntax. In this setting, Init,Gen and Rep are unchanged, since we want our servers to act independently.
In fact, the servers need not know of how many other servers are participating, their identities, etc.
However, to simplify the notation, we will use a subscript to differentiate servers from each other. We
stress this is only done when describing the correctness and security of the system, but each server is not
aware of this index. Moreover, servers need not care about the tuple τ described above, as this is only
relevant for the users of the system. Thus, new server syntax is as follows:

37

• Initi(N, 1λ) → (Xi, µi): The initialization algorithm run by server Si. We denote |Xi| =: Ñ ≥ N .
When initializing all the servers, we use the shortcut Init(N, 1λ) := {Initi(N, 1λ)}i∈[t].

• Geni(n, (Xi, µi)) → (σi, yi, µi): The pad generation query for server Si for n bits of randomness yi
and tag σi.

• Repi(σ̃i, (Xi, µi))→ ỹi: The pad reproduction query for server Si, which reproduces ỹi from tag σ̃i.

As in the single server setting, we will elide mentions of Xi and µi in Geni and Repi, when obvious.
Turning to the user, they also run the same algorithms PadLength,Auth and Ver, but now these

algorithms also take the tuple τ = (t, ta, tf , tp) above. For example, the length calculation algorithm
becomes:

• PadLength(ℓ, τ, 1λ)→ n.

Intuitively, since the user will get n bits of randomness from t servers, we could hope to extract close to
ℓ ≈ tn bit. However, since only tg out of t servers provide private randomness, the correct expectation
is to have ℓ ≈ tgn. Equivalently, if our randomness extraction procedure is good, we will manage to set
n ≈ ℓ/tg. But the exact formula will also depend on the security parameter to ensure user integrity later.

Algorithms Auth and Ver are also similar. First, instead of taking a single n-bit pad y, now they take t
such pads y1, . . . , yt. To simplify notation, we will still denote the vector of these pads by y := (y1, . . . , yt).
And similarly for the vector of tags σ := (σ1, . . . , σt) returned by t called to Gen. With these conventions,
the new syntax is very similar to the earlier syntax:

• Auth(σ, y, τ, 1λ) → (z, r). Transforms the tags σ = (σ1, . . . , σt) and the pads y = (y1, . . . , yt) to a
(single) ℓ-bit key r and a (single) helper string z.

• Ver(z, ỹ, τ) → r̃. Checks the helper string z against (recovered) pads ỹ = (ỹ1, . . . , ỹt), and outputs
a key r̃ ∈ {0, 1}ℓ ∪ {⊥}.

• When the value τ is clear from context, we will sometimes omit it as an explicit input to Auth,Ver.

The only additional twist, required by our new distributed Correctness below, comes from the fact that
some tf servers might be unavailable when the user calls Rep for these servers. Thus, in the verification
algorithm Ver we allow up to tf values ỹi to be equal to ⊥.

Correctness. Recall, in the single-server case, we separately defined server-correctness (Definition 3.1)
and user-correctness (Definition 3.2), which immediately implied overall correctness of the HELP scheme.
We do the same here. First, server-correctness does not change, as each server runs independently without
knowing about the other servers.

For user-correctness, we need the following definition. Given a t-value vector y = (y1, . . . , yt) over
alphabet {0, 1}n (so each yi ∈ {0, 1}n), and a t-value vector ỹ = (ỹ1, . . . , ỹt) over alphabet {0, 1}n ∪ {⊥}
(so each ỹi ∈ {0, 1}n ∪ {⊥}), we say that

dist(y, ỹ) ≤ (ta, tf) (1)

if (a) |{j : ỹj ̸∈ {yj ,⊥}| ≤ ta; and (b) |{j : ỹj = ⊥}| ≤ tf . With this in mind, the user-correctness is
defined below:

38

Definition 7.1. HELP satisfies user-correctness for a given τ = (t, ta, tf , tp) if, for all y ∈ ({0, 1}n)t and
ỹ ∈ ({0, 1}n ∪ {⊥})t with dist(y, ỹ) ≤ (ta, tf), and all t-value vectors σ we have:

Pr
[

r̃ = r
∣∣ (z, r)← Auth(σ, y, τ, 1λ), r̃ ← Ver(z, ỹ, τ)

]
= 1.

We can also show that server-correctness and (distributed) user-correctness imply the overall (dis-
tributed) correctness of the scheme. However, we will need to explicitly introduce a (potentially un-
bounded) attacker A which is allowed to arbitrarily modify the correct t-tuple y of Rep-responses, into a
corrupted t-tuple ỹ satisfying dist(y, ỹ) ≤ (ta, tf). The overall correctness will still ensure that the users
output correct derived key r̃ = r. For simplicity of notation, we omit this straightforward implication.

7.2 Redefining Distributed Security

Recall, security of HELP consists of three components: server authentication, user integrity and privacy.
We now show how to extend them from the single-server setting (see Section 3.2) to the distributed
setting.

Distributed Server Authentication. Since each of the servers run independently, and have the
same syntax, we simply require that the (single-server) server authentication given in Definition 3.4 must
hold for all t servers.9

Distributed User Integrity. We make only a couple of syntactic changes to single-server User
integrity in Definition 3.5. Instead, we model a single adversary controlling all t servers.

Definition 7.2. Let λ be the security parameter. We say that HELP satisfies δ-user integrity with δ =
negl(λ) for a given τ = (t, ta, tf , tp), if for all PPT attackers S, we have

Pr

[
r̃ ̸∈ {r,⊥}

∣∣∣∣ (st, σ, y)← S(1λ); (z, r)← Auth(σ, y, τ, 1λ);
ỹ ← S(st, z, r); r̃ = Ver(z, ỹ, τ)

]
≤ δ.

Notice, σ, y and ỹ are now t-element vectors, and further ỹ may contain ⊥ at some points (up to tf).
Intuitively, this models the attacker acting on behalf of the as the entire collective of the t servers, as
Auth and Ver are over the entirety of the server responses. Of course, this also implies integrity when only
some of the servers are malicious, and others are honest.

Distributed Privacy. This property involves the main difference from the single-server case (see
Definition 3.6), as this time we deal with an attacker who compromised a certain number tp of the
servers, unbeknownst to the users. For simplicity of definition, we will assume a static attacker — i.e.,
the tp bad servers are chosen at setup — but we believe that our results should work for active attackers
as well.

For notation, let BAD be this set of compromised servers, so |BAD| ≤ tp. Finally, for a t-valued
vector X = (X1, . . . , Xt), we let X |BAD= ∪i∈BADXi.

Definition 7.3. Let λ be the security parameter, and let τ = (t, ta, tf , tp). We say that HELP satisfies
ξ-privacy for ξ = negl(λ), if for all subsets BAD ⊆ [t] such that |BAD| ≤ tp, all unbounded adversaries

9Technically, we can let the attacker interact with all t servers, and dynamically choose the one to attack. But a simple
hybrid argument shows that this definition is easily implied by satisfying t individual server authentication definitions.

39

A with oracle access to {Geni}i∈[t], any value of N , after we run Init(N, τ, 1λ) to initialize {(Xi, µi)}i∈[t]
and sample a random bit b

$← {0, 1}, we have

Pr

 b′ = b

∣∣∣∣∣∣∣∣∣
(ℓ, st)← AGen(X |BAD, N, 1λ); n← PadLength(ℓ, τ, 1λ);
∀i ∈ [t], (σi, yi)← Geni(n);
y = {yi}, σ = {σi}, (z, r0)← Auth(σ, y, τ, 1λ);

r1
$← {0, 1}ℓ; b′ ← AGen(st, σ, z, rb)

 ≤ 1

2
+ ξ.

Essentially, the adversary is assumed to have complete knowledge of all of the tp compromised servers,
including their internal randomness X |BAD.

Remark. For simplicity of exposition, in our privacy definition above we assumed that the tp compromised
servers are acting honestly otherwise. We could have considered them fully byzantine, by allowing the
attacker A to also control the oracle Geni for i ∈ BAD, used by the challenger to compute the values yi.
Indeed, it is not hard to see that our subsequent scheme in Section 7.3 would satisfy this notion. But we
decided to stay with a simpler-to-define privacy notion instead.

7.3 Distributed HELP Construction

We present our construction of HELP with t servers. At a high level, we will use an SRF to process the
communication with the t servers in order to approximate the communication of single-server HELP. In
this way, the error correcting of SRFs will allow the user to reconstruct even given ta incorrect server
responses and tf failures, and the perfect secrecy of the SRF will allow us to achieve privacy even when
the adversary sees some of the servers’ communications.

Construction 7.1. For security parameter λ and parameters τ = (t, ta, tf , tp), let SRF = (Eval,Rec)
be a (τ, 2ta + tf , n)-SRF, let Eλ = {EH} be an extractor-hash family with helper length ℓhelp, and let
Mac.Tag : {0, 1}∗ × {0, 1}ℓMAC → {0, 1}ℓtag be a computational MAC. Then, we will define

HELP = ({Initi,Geni,Repi}i∈[t],PadLength,Auth,Ver)

as so, starting first with the initialization and length:

• Initi(N, τ, 1λ): On input N , set Ñ = N + ℓMAC and sample Xi ← {0, 1}Ñ uniformly at random.
Parse Xi = (ki, Xi,pad), where |k| = ℓMAC . Set µi = (1, N).

• PadLength(ℓ, τ, 1λ): On input (ℓ, τ, 1λ), output n = (ℓ+ ℓhelp)/(t− tp − 2ta − tf).

With these in mind, we define how each server accepts and responds to Gen,Rep queries:

• Geni(n): Let µi = (index, N). If index+n > N , return ⊥. Else, define yi = Xi,pad[index, . . . , index+
n− 1]. Set σi = (Mac.Tagki(index, n), index, n). Then, output (yi, σi) and set µ = (index+ n,N).

• Repi(σ) : Parse σ = (tag, index, n). Then, return ỹi = Xi,pad[index, . . . , index+ n− 1] if and only if
tag = Mac.Tagki(index, n).

Finally, to parse these queries for pads, we define:

• Auth(σ, y, τ) : On input (σ, y), compute Eval(y) = (zsrf , w) and EH(w) = (zEH , r). Set z =
(zsrf , zEH) and output (z, r).

40

• Ver(z, ỹ, τ) : On input (z, ỹ), parse z = (zsrf , zEH). Set w̃ = Rec(ỹ, zsrf), and set (z̃EH , r̃)← EH(w̃).
Output r̃ if and only if zEH = z̃EH .

As mentioned when describing the syntax, we note the above construction is for ultimately extracting
t× ℓ bits of randomness from the servers.

Theorem 7.1. Let t, tp, tf , ta ∈ N such that t − tp > tf + 2ta, and let λ be the security parameter.
If SRF is a (τ, 2ta + tf , n)-SRF, Eλ is an extractor-hash and Mac.Tag is a computational MAC, then
Construction 7.1 is a distributed HELP.

Proof. Server-Correctness follows from Theorem 4.2, as Initi,Geni,Repi are unchanged from the single-
server construction. We prove user-correctness, server authentication, user integrity, and privacy.

User-Correctness: Let y = (y1, . . . , yt) and ỹ = (ỹ1, . . . , ỹt) be arbitrary satisfying dist(y, ỹ) ≤ (ta, tf).
By construction, we have that Auth(σ, y, τ) = (z, r) satisfying Eval(y) = (zsrf , w), EH(w) = (zEH , r),
and z = (zsrf , zEH). We also have by construction that Ver(z, ỹ, τ) = r̃ satisfying z = (zsrf , zEH),
w̃ = Rec(ỹ, zsrf), (z̃EH , r̃) = EH(w̃), and r = r̃ if and only if zEH = z̃EH .

By the first property of SRF, we have that w̃ = Rec(zsrf , ỹ) = w. So, we have that

(z̃EH , r̃) = EH(w̃) = EH(w) = (zEH , r).

We conclude that this implies that Ver(z, ỹ, τ) = r̃ = r always.

Server Authentication: Note that server authentication only relies on queries which are the same as
in Construction 4.2. Unsurprisingly, then, the proof here will follow straightforwardly from as in the single
server case. Suppose for some λ,N there exists a PPT adversary A with oracle access to Geni,Repi,Gen

∗
i

for all i ∈ [t] and some polynomial p(λ) such that:

Pr
[
Repj(σ

∗) ̸= ⊥
∣∣∣ (j, σ∗)← AGeni,Repi,Gen

∗
i (N, 1λ)

]
>

1

p(λ)
,

where σ∗ was not queried by A. We construct B that can forge message authentication codes for Mac.Tag.
At the start, BMac.Tagk will choose a random point i ∈ [t], which will serve as the server index for which it
injects Mac.Tagk. For all points j ∈ [t] \ {i}, B will act as in the regular challenge, running Initj(N, τ, 1λ)
and responding to Genj ,Repj , and Gen∗j queries normally. For server i, though, B will run instead as in

the single-server case, sampling Xpad ← {0, 1}N uniformly at random and setting index = 1. With all this
setup done, B will begin running A, responding to Gen,Rep,Gen∗ queries to servers in [t] \ {i} normally.

For server i, B will perform essentially as in the reduction proof for single-server authentication, which
we reproduce below (with minor syntactical changes):

• For Geni(n) queries, B will first check if index + n > N . If so, return ⊥ right away. Otherwise, B
queries Mac.Tagk with (index, n), receiving a tag tag. B sets y = X[index, . . . , index + n − 1] and
σ = (tag, index, n), updates index = index+ n, returns and stores (y, σ).

• For Gen∗i (n) queries, B completes the same process as above, except that it now queries/computes
Mac.Tagk∗ instead, where k

∗ is a MAC key sampled by B itself. B also only returns y as the response.

• For Repi(σ̃) queries, B will simply respond with one of the stored y if and only if σ̃ is equal to the
corresponding σ stored.

41

When A completes and outputs (j, σ∗), B aborts if j ̸= i. Otherwise, B parses σ∗ = (tag, index, n) and
outputs that tag is a valid Mac.Tag tag for (index, n).

As argued in the single-server case, B wins the MAC forgery game if A wins the server authentication
game and j = i. Notice that since i is sampled uniformly and independent from the view of A, j = i
with probability 1/t. So if A succeeds with probability 1/p(λ), B would succeed with probability 1/tp(λ),
which is more than negligible. Hence, construction 7.1 satisfies server authentication.

User Integrity: As before, we will rely on the collision resistance property of extractor-hash to ensure
user integrity. Suppose for some λ there exists a PPT adversarial server ensemble S and some polynomial
p(λ) such that

Pr

[
r̃ ̸∈ {r,⊥}

∣∣∣∣ (st, σ, y)← S(1λ); (z, r)← Auth(σ, y, τ, 1λ);
ỹ ← S(st, z, r); r̃ = Ver(z, ỹ, τ)

]
>

1

p(λ)
.

We will use this to break the collision resistance property of EH as so: To construct A, simply run S(1λ),
receiving (st, σ, y), ỹ from S satisfying (z, r)← Auth(σ, y, τ, 1λ) and r̃ = Ver(z, ỹ, τ). Now, as A computes
and returns Auth(σ, y, τ, 1λ), it parses z = (zsrf , zEH). Let w = Rec(y, zsrf) and w̃ = Rec(ỹ, zsrf). From
this, A outputs (w, w̃).

Notice that since S wins the user integrity game, we have r̃ ̸∈ {r,⊥}. This means for (z̃EH , r̃)← EH(w̃),
we have z̃EH = zEH and r̃ ̸= r, where as (zEH , r) ← EH(w). So (w, w̃) is indeed a collision for the
extractor-hash.

Distributed Privacy: It suffices to show the distribution of b′ is the same for b = 0, 1. We will prove
this via a series of (short) hybrid arguments.

H1 : The game as described above when b = 0. So, A is initially given X |BAD and outputs (ℓ, st).
Then, A is given (z, r0) ← Auth(σ, y, τ, 1λ) alongside st and tag σ and outputs bit b′. By construction,
Auth(σ, y, τ, 1λ) is defined as computing Eval(y) = (zsrf , w) and EH(w) = (zEH , r), and outputting (z =
(zsrf , zEH), r).

H2 : The same game as H1, but replace w with a uniformly sampled w̃ ∼ {0, 1}n.
H3 : The same game as H2, but replace r0 with a uniformly sampled r̃ ∼ {0, 1}ℓ.
H4 : The original game when b = 1.

Note that A is an unbounded adversary, so we need statistical closeness of our hybrids. We now prove
this for each pair.

H1 = H2: This comes directly from the second property of SRFs. That is, by construction of Init, we
see Xi ∼ {0, 1}N for i ̸∈ BAD. We also have that σ = {σi}i∈[t] is independent of all Xi (and so all yi), so
we have Eval(y) = (zsrf , w) = (zsrf , w̃) as distributions.

H2 ≈ H3: This follows analogously from the proof for single-server privacy that utilizes the extraction
property of EH, with the addition that zsrf can just be sampled independently as a subroutine.

H3 = H4: Note that in H3 the view of the adversary is now X |BAD, st, σ = {σi}i∈[t], z = (zsrf , z̃EH),

and r̃ ∼ {0, 1}ℓ, where (z̃EH , r̃) = EH(w̃) for w̃ ∼ {0, 1}n. By the same reasoning as in the first hybrid
argument, we may replace w̃ with w as Eval(y) = (zsrf , w) and consequently switch z̃EH back to zEH . It
is clear from this that this is now exactly distributed as in H4 (the original game).

42

The compilation of these hybrids shows that the output bit b′ is statistically close in the game where
the input bit b is 0 or 1, so no unbounded adversary can distinguish with non-negligible advantage.

Extending to Everlasting Privacy. Notice that construction 5.1 for composing with a message
transmission protocol in section 5 works with distributed HELP analogously. We highlight the key modi-
fications needed below:

• In Definition 5.3, the adversary A will have access to Geni(·) and Repi(·) queries for each of the HELP
servers, and when C sends a message, it will use the distributed HELP servers accordingly. Similar
to the plain distributed server authentication definition, A wins if it breaks server authentication of
any single server.

• In the proof for Theorem 5.1, in the reduction for H2, A′ would forward the oracle queries to the
corresponding server. H2 now reduces to Distributed Server Authentication instead.

• In Definition 5.4, the adversarial server S would now have control of all the t HELP servers, as
similar to how distributed user integrity is defined in Definition 7.2.

• In the proof for Theorem 5.2, S and S ′ now correspond to all the t servers, and the produced y and
σ are now vectors. It now also reduces to Distributed User Integrity (Definition 7.2).

• In Definition 5.5, the first stage adversary A1 will have access to Geni(·) and Repi(·) queries for each
of the HELP servers.

• In the proof for Theorem 5.3, the BREAK predicates now correspond to breaking server authen-
tication for any server. The probability of these predicates are thus bounded by the composed
distributed server authentication error.

• In Lemma 5.1 and the proof of it, use the definition of Distributed Privacy (Definition 7.3) instead.
The reduction proof should follow by reducing to Distributed Privacy, accordingly.

References

[ABB+14] Romain Alléaume, Cyril Branciard, Jan Bouda, Thierry Debuisschert, Mehrdad Dianati,
Nicolas Gisin, Mark Godfrey, Philippe Grangier, Thomas Länger, Norbert Lütkenhaus, et al.
Using quantum key distribution for cryptographic purposes: a survey. Theoretical Computer
Science, 560:62–81, 2014.

[ADR02] Y. Aumann, Yan Zong Ding, and M.O. Rabin. Everlasting security in the bounded storage
model. IEEE Transactions on Information Theory, 48(6):1668–1680, 2002.

[ARML06] Romain Alléaume, François Roueff, Oliver Maurhart, and N Lutkenhaus. Architecture,
security and topology of a global quantum key distribution network. In 2006 Digest of the
LEOS Summer Topical Meetings, pages 38–39. IEEE, 2006.

[BB14] Charles H Bennett and Gilles Brassard. Quantum cryptography: Public key distribution
and coin tossing. Theoretical computer science, 560:7–11, 2014.

43

[BCEQ24] Chris Brzuska, Geoffroy Couteau, Christoph Egger, and Willy Quach. On bounded storage
key agreement and one-way functions. In Elette Boyle and Mohammad Mahmoody, editors,
TCC 2024, Part I, volume 15364 of LNCS, pages 287–318. Springer, Cham, December 2024.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In 20th ACM
STOC, pages 1–10. ACM Press, May 1988.

[BMV06] Johannes Buchmann, Alexander May, and Ulrich Vollmer. Perspectives for cryptographic
long-term security. Communications of the ACM, 49(9):50–55, 2006.

[BPP05] H Bechmann-Pasquinucci and Andrea Pasquinucci. Quantum key distribution with trusted
quantum relay. arXiv preprint quant-ph/0505089, 2005.

[BZG+23] Riccardo Bassi, Qiaolun Zhang, Alberto Gatto, Massimo Tornatore, and Giacomo Verticale.
Quantum key distribution with trusted relay using an etsi-compliant software-defined con-
troller. In 2023 19th International Conference on the Design of Reliable Communication
Networks (DRCN), pages 1–7. IEEE, 2023.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

[CCH+22] Matthew Campagna, Craig Costello, Basil Hess, Aaron Hutchinson, Amir Jalali, Koray Kara-
bina, Brian Koziel, Brian LaMacchia, Patrick Longa, Michael Naehrig, et al. Supersingular
isogeny key encapsulation, 2022.

[CD23] Wouter Castryck and Thomas Decru. An efficient key recovery attack on SIDH. In Carmit
Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part V, volume 14008 of LNCS,
pages 423–447. Springer, Cham, April 2023.

[CDH+00] Ran Canetti, Yevgeniy Dodis, Shai Halevi, Eyal Kushilevitz, and Amit Sahai. Exposure-
resilient functions and all-or-nothing transforms. In Bart Preneel, editor, EURO-
CRYPT 2000, volume 1807 of LNCS, pages 453–469. Springer, Berlin, Heidelberg, May
2000.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 19–40. Springer, Berlin, Heidelberg, August
2001.

[CGH+85] Benny Chor, Oded Goldreich, Johan Hasted, Joel Freidmann, Steven Rudich, and Roman
Smolensky. The bit extraction problem or t-resilient functions. In 26th Annual Symposium
on Foundations of Computer Science (sfcs 1985), pages 396–407, 1985.

[Che24] Yilei Chen. Quantum algorithms for lattice problems. Cryptology ePrint Archive, Report
2024/555, 2024.

[CZL+21] Yuan Cao, Yongli Zhao, Jun Li, Rui Lin, Jie Zhang, and Jiajia Chen. Hybrid
trusted/untrusted relay-based quantum key distribution over optical backbone networks.
IEEE Journal on Selected Areas in Communications, 39(9):2701–2718, 2021.

44

[Dam89] Ivan Damg̊ard. A design principle for hash functions. In Advances in Cryptology - CRYPTO
’89, 9th Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 20-24, 1989, Proceedings, volume 435 of Lecture Notes in Computer Science, pages
416–427. Springer, 1989.

[DDWY93] Danny Dolev, Cynthia Dwork, Orli Waarts, and Moti Yung. Perfectly secure message trans-
mission. Journal of the ACM, 40(1):17–47, January 1993.

[DM04] Stefan Dziembowski and Ueli M. Maurer. On generating the initial key in the bounded-
storage model. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume
3027 of LNCS, pages 126–137. Springer, Berlin, Heidelberg, May 2004.

[Dod12] Yevgeniy Dodis. Shannon impossibility, revisited. In Adam Smith, editor, ICITS 12, volume
7412 of LNCS, pages 100–110. Springer, Berlin, Heidelberg, August 2012.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How
to generate strong keys from biometrics and other noisy data. In SIAM Journal of Computing,
2008.

[DP08] Yevgeniy Dodis and Prashant Puniya. Getting the best out of existing hash functions; or
what if we are stuck with sha? In Applied Cryptography and Network Security. ACNS 2008,
volume 5037. Springer, 2008.

[DPP94] Ivan Damg̊ard, Torben P. Pedersen, and Birgit Pfitzmann. On the existence of statistically
hiding bit commitment schemes and fail-stop signatures. In Douglas R. Stinson, editor,
CRYPTO’93, volume 773 of LNCS, pages 250–265. Springer, Berlin, Heidelberg, August
1994.

[DQW23] Yevgeniy Dodis, Willy Quach, and Daniel Wichs. Speak much, remember little: Cryptogra-
phy in the bounded storage model, revisited. In Carmit Hazay and Martijn Stam, editors,
EUROCRYPT 2023, Part I, volume 14004 of LNCS, pages 86–116. Springer, Cham, April
2023.

[DR02] Yan Zong Ding and Michael O. Rabin. Hyper-encryption and everlasting security. In Pro-
ceedings of the 19th Annual Symposium on Theoretical Aspects of Computer Science, STACS
’02, page 1–26, Berlin, Heidelberg, 2002. Springer-Verlag.

[DY21] Yevgeniy Dodis and Kevin Yeo. Doubly-affine extractors, and their applications. In Stefano
Tessaro, editor, ITC 2021, volume 199 of LIPIcs, pages 13:1–13:23. Schloss Dagstuhl, July
2021.

[Dzi06] Stefan Dziembowski. On forward-secure storage (extended abstract). In Cynthia Dwork,
editor, CRYPTO 2006, volume 4117 of LNCS, pages 251–270. Springer, Berlin, Heidelberg,
August 2006.

[Ell02] Chip Elliott. Building the quantum network. New Journal of Physics, 4(1):46, 2002.

[FJP14] Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies. J. Math. Cryptol., 8(3):209–247, 2014.

45

[FYLW+22] Guan-Jie Fan-Yuan, Feng-Yu Lu, Shuang Wang, Zhen-Qiang Yin, De-Yong He, Wei Chen,
Zheng Zhou, Ze-Hao Wang, Jun Teng, Guang-Can Guo, et al. Robust and adaptable quan-
tum key distribution network without trusted nodes. Optica, 9(7):812–823, 2022.

[GN94] Peter Gemmell and Moni Naor. Codes for interactive authentication. In Douglas R. Stinson,
editor, CRYPTO’93, volume 773 of LNCS, pages 355–367. Springer, Berlin, Heidelberg,
August 1994.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search. In 28th ACM
STOC, pages 212–219. ACM Press, May 1996.

[GWZ22] Jiaxin Guan, Daniel Wichs, and Mark Zhandry. Incompressible cryptography. In Orr Dunkel-
man and Stefan Dziembowski, editors, EUROCRYPT 2022, Part I, volume 13275 of LNCS,
pages 700–730. Springer, Cham, May / June 2022.

[GWZ23] Jiaxin Guan, Daniel Wichs, and Mark Zhandry. Multi-instance randomness extraction and
security against bounded-storage mass surveillance. In Guy N. Rothblum and Hoeteck Wee,
editors, TCC 2023, Part III, volume 14371 of LNCS, pages 93–122. Springer, Cham, Novem-
ber / December 2023.

[GZ21] Jiaxin Guan and Mark Zhandry. Disappearing cryptography in the bounded storage model.
In Kobbi Nissim and Brent Waters, editors, TCC 2021, Part II, volume 13043 of LNCS,
pages 365–396. Springer, Cham, November 2021.

[HJR06] K. Harmon, S. Johnson, and L. Reyzin. An implementation of syndrome encoding and
decoding for binary bch codes, secure sketches and fuzzy extractors, 2006.

[HN06] Danny Harnik and Moni Naor. On everlasting security in the hybrid bounded storage model.
In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors, ICALP
2006, Part II, volume 4052 of LNCS, pages 192–203. Springer, Berlin, Heidelberg, July 2006.

[HNH13] Stefan Heule, Marc Nunkesser, and Alexander Hall. Hyperloglog in practice: Algorithmic
engineering of a state of the art cardinality estimation algorithm. In Proceedings of the 16th
International Conference on Extending Database Technology, pages 683–692, 2013.

[ILL89] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation from
one-way functions (extended abstracts). In 21st ACM STOC, pages 12–24. ACM Press, May
1989.

[JF11] David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In PQCrypto, volume 7071 of LNCS, pages 19–34. Springer, 2011.

[LBD07a] Quoc-Cuong Le, Patrick Bellot, and Akim Demaille. On the security of quantum networks:
a proposal framework and its capacity. In New Technologies, Mobility and Security, pages
385–396. Springer, 2007.

[LBD07b] Quoc-Cuong Le, Patrick Bellot, and Akim Demaille. Stochastic routing in large grid-shaped
quantum networks. In 2007 IEEE International Conference on Research, Innovation and
Vision for the Future, pages 166–174. IEEE, 2007.

46

[LBD08] Quoc-Cuong Le, Patrick Bellot, and Akim Demaille. Towards the world-wide quantum
network. In International Conference on Information Security Practice and Experience,
pages 218–232. Springer, 2008.

[Mau92] Ueli M. Maurer. A universal statistical test for random bit generators. Journal of Cryptology,
5(2):89–105, January 1992.

[MMP+23] Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope, and Benjamin Wesolowski.
A direct key recovery attack on SIDH. In Carmit Hazay and Martijn Stam, editors, EU-
ROCRYPT 2023, Part V, volume 14008 of LNCS, pages 448–471. Springer, Cham, April
2023.

[MU10] Jörn Müller-Quade and Dominique Unruh. Long-term security and universal composability.
Journal of Cryptology, 23(4):594–671, October 2010.

[MVZJ18] Vasileios Mavroeidis, Kamer Vishi, Mateusz D Zych, and Audun Jøsang. The impact of
quantum computing on present cryptography. International Journal of Advanced Computer
Science and Applications (IJACSA), 9(3):405–414, 2018.

[MW24] Giulio Malavolta and Michael Walter. Robust quantum public-key encryption with ap-
plications to quantum key distribution. In Leonid Reyzin and Douglas Stebila, editors,
CRYPTO 2024, Part VII, volume 14926 of LNCS, pages 126–151. Springer, Cham, August
2024.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer
and System Sciences, 52(1):43–52, 1996.

[Rab05] Michael O Rabin. Provably unbreakable hyper-encryption in the limited access model. In
IEEE Information Theory Workshop on Theory and Practice in Information-Theoretic Se-
curity, 2005., pages 34–37. IEEE, 2005.

[Reg10] Oded Regev. The learning with errors problem. In 25th Annual IEEE Conference on Com-
putational Complexity, CCC 2010, pages 191–204, 2010.

[Ren08] Renato Renner. Security of quantum key distribution. International Journal of Quantum
Information, 6(01):1–127, 2008.

[RS60] Irving S. Reed and Gustave Solomon. Polynomial codes over certain finite fields. Journal of
the Society for Industrial and Applied Mathematics, 8:300–304, 1960.

[Sha49] Claude E Shannon. Communication theory of secrecy systems. The Bell system technical
journal, 28(4):656–715, 1949.

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In
35th FOCS, pages 124–134. IEEE Computer Society Press, November 1994.

[VM24] Nilesh Vyas and Paulo Mendes. Relaxing trust assumptions on quantum key distribution
networks. arXiv preprint arXiv:2402.13136, 2024.

47

	Introduction
	HELP Model for Everlasting Privacy
	Our Results
	Related Work

	Preliminaries
	Defining Single Server HELP
	Syntax and Correctness
	Security

	Constructing Single Server HELP
	Extractor-Hash
	Main Single-Server Scheme

	Composing with Message Transmission
	Universal Composability
	A Compiler for Secure Message Transmission
	Server Authentication
	Definition
	Proving Server Authentication

	User Integrity
	Definition
	Proving User Integrity

	Everlasting Privacy
	Definition
	Proving Everlasting Security

	Syndrome Resilient Functions
	Distributed HELP
	Redefining Distributed Syntax and Correctness
	Redefining Distributed Security
	Distributed HELP Construction

