
Preprocessing Security in Multiple Idealized Models with
Applications to Schnorr Signatures and PSEC-KEM

Jeremiah Blocki

Purdue University

West Lafayette, USA

jblocki@purdue.edu

Seunghoon Lee

Purdue University

West Lafayette, USA

lee2856@purdue.edu

Abstract
In modern cryptography, relatively few instantiations of founda-

tional cryptographic primitives are used across most cryptographic

protocols. For example, elliptic curve groups are typically instan-

tiated using P-256, P-384, Curve25519, or Curve448, while block

ciphers are commonly instantiated with AES, and hash functions

with SHA-2, SHA-3, or SHAKE. This limited diversity raises con-

cerns that an adversary with nation-state-level resources could

perform a preprocessing attack, generating a hint that might later

be exploited to break protocols built on these primitives. It is often

notoriously challenging to analyze and upper bound the advan-

tage of a preprocessing attacker even if we assume that we have

idealized instantiations of our cryptographic primitives (ideal per-

mutations, ideal ciphers, random oracles, generic groups). Coretti

et al. (CRYPTO/EUROCRYPT’18) demonstrated a powerful frame-

work to simplify the analysis of preprocessing attacks, but they

only proved that their framework applies when the cryptographic

protocol uses a single idealized primitive. In practice, however,

cryptographic constructions often utilize multiple different crypto-

graphic primitives.

We verify that Coretti et al. (CRYPTO/EUROCRYPT’18)’s frame-

work extends to settings with multiple idealized primitives and we

apply this framework to analyze the multi-user security of (short)

Schnorr Signatures and the CCA-security of PSEC-KEM against pre-

processing attackers in the Random Oracle Model (ROM) plus the

Generic Group Model (GGM). Prior work of Blocki and Lee (EURO-

CRYPT’22) used complicated compression arguments to analyze the

security of key-prefixed short Schnorr signatures where the random
oracle is salted with the user’s public key. However, the security

analysis did not extend to standardized implementations of Schnorr

Signatures (e.g., BSI-TR-03111 or ISO/IEC 14888-3) which do not

adopt key-prefixing, but take other measures to protect against pre-

processing attacks by disallowing signatures that use a preimage

of 0. Blocki and Lee (EUROCRYPT’22) left the (in)security of such

“nonzero Schnorr Signature” constructions as an open question. We

fully resolve this open question demonstrating that (short) nonzero

Schnorr Signatures are also secure against preprocessing attacks.

We also analyze PSEC-KEM in the ROM+GGM demonstrating that

this Key Encapsulation Mechanism (KEM) is CPA-secure against

preprocessing attacks.

Keywords
Short Schnorr Signatures, Key Encapsulation Mechanism, PSEC-

KEM, Preprocessing Attacks, Bit-Fixing Model

1 Introduction
Many cryptographic protocols can be designed and analyzed from

a handful of primitives. For example, the Schnorr signature scheme

[38] uses an elliptic curve group and a cryptographic hash function

while the simple oblivious transfer protocol [10] uses an elliptic

curve group, a cryptographic hash function, and a block cipher.

In practice, there are only a small number of viable instantiations

of each of these cryptographic primitives, e.g., AES, Triple DES,

SHA-2, SHA-3, SHAKE, P-256, P-384, Curve25519, Curve448, and

so on. This raises the concern that an attacker with nation-state-

level resources might attempt to execute a preprocessing attack. A
preprocessing attacker invests massive computational resources

to generate a hint in the hope that this hint will help an online

attacker quickly break cryptographic protocols that use the same

instantiations of our cryptographic primitives.

There is a line of prior work considering preprocessing attacks

on various cryptographic primitives and underlying problems, e.g.,

on the discrete-log problem [5, 9, 11, 14, 30, 37], on the distributed

discrete-log problem [28], on block ciphers [17, 27, 45] on the Com-

putational/Decisional Diffie-Hellman problem [14, 37], on the salted

Merkle-Damgård construction [2, 3, 12, 25, 26], on Sponge hashing

[11, 24], on Schnorr signatures [6, 18], and much more. For example,

Corrigan-Gibbs and Kogan [14] proved that any preprocessing at-

tacker succeeds in solving the discrete log problem with probability

at most 𝑂
(
𝑆𝑞2/𝑝

)
where 𝑝 is the size of the generic group, 𝑆 is the

size of the hint generated by the offline attacker, and 𝑞 is the total

number of online queries and they also gave a generic attack that

matched this upper bound.

Many of these preprocessing lower bounds [2, 6, 14, 15, 17] uti-

lized complex and technically challenging compression arguments

which made it difficult to easily extend the ideas to new problems.

Coretti et al. [12] introduced a comprehensive framework aimed

at simplifying security analyses in the context of preprocessing in

the Random Oracle Model (ROM) [4] by proving improved bounds

for Unruh’s pre-sampling technique [44]. In particular, Coretti et al.

[12] showed how to translate the security in the Bit-Fixing ROM

(BF-ROM) [44] into the security in the Auxiliary-Input ROM (AI-

ROM). In the BF-ROM, the preprocessing attacker is allowed to fix 𝑃

random input/output pairs for the random oracle and the remaining

outputs are selected uniformly at random, whereas in the AI-ROM,

the preprocessing attacker, after interacting with the random ora-

cle (possibly making every possible query), generates a 𝑆-bit hint

for the online attacker. While the BF-ROM is not compelling as a

realistic model of preprocessing attacks in the real world, it is often

significantly easier to upper bound the attacker’s advantage in the

BF-ROM. For example, consider the function inversion problem

where we are given a random string 𝑦 ∈ {0, 1}𝜆 and the goal is

1

https://orcid.org/0000-0002-5542-4674
https://orcid.org/0000-0003-4475-5686

Jeremiah Blocki and Seunghoon Lee

to find an input 𝑥 such that 𝑓 (𝑥) = 𝑦. In the BF-ROM, it is trivial

to upper bound the attacker’s success probability as (𝑃 + 𝑞)/2𝜆
where 𝑞 denotes the number of random oracle queries made by

the online attacker. The classical Auxiliary-Input ROM (AI-ROM)

is more realistic model of real-world attacks, but proving lower

bounds in this model often involves the use of notoriously chal-

lenging compressing arguments. Coretti et al. [12] showed how

upper bounds on the attacker’s advantage in the BF-ROM 𝜀BF,𝑃,𝑞
imply upper bounds in the AI-ROM 𝜀AI,𝑆,𝑞 . In particular, if any bit-

fixing attacker who can fix 𝑃 points in the offline phase and make 𝑞

queries in the online phase succeeds with probability at most 𝜀BF,𝑃,𝑞
then any AI-ROM attacker utilizing 𝑆-bit hints and making 𝑞 online

queries succeeds with probability at most 𝜀AI,𝑆 ≤ 𝜀BF,𝑃,𝑞 +𝑂 (𝑆𝑞/𝑃).
As a concrete example, this immediately implies a lower bound

of 𝑂

(√︁
𝑆𝑞/2𝜆

)
for the function inversion problem in the AI-ROM

by setting 𝑃 =
√︁
𝑆𝑞2𝜆 . This matches state-of-the-art lower bounds

[2] for the function inversion problem obtained using complicated

compression arguments. Coretti et al. [11] extended the BF-ROM

framework [12] to encompass other idealized primitives includ-

ing the Generic Group Model (GGM) [33, 42], Ideal Cipher Model

(ICM), and Random Permutation Model (RPM). They proved that

(1) BF-GGM lower bounds yield AI-GGM lower bounds with a sim-

ilar additive loss 𝑂 (𝑆𝑞/𝑃), (2) BF-ICM lower bounds yield AI-ICM

lower bounds with a similar additive loss𝑂 (𝑆𝑞/𝑃), and (3) BF-RPM
lower bounds yield AI-RPM lower bounds with a similar additive

loss 𝑂 (𝑆𝑞/𝑃).
Technically, the results in Coretti et al. [11, 12] are only stated

for a single idealized primitive, while many cryptographic construc-

tions utilize several primitives, e.g., Schnorr signatures and PSEC-

KEM (Provably Secure Elliptic Curve-Key Encapsulation Mecha-

nism; an El-Gamal-based key encapsulation mechanism developed

byNTT [41, 43]) both utilize elliptic curve groups and cryptographic

hash functions. Thus, if we want to analyze the security of these

constructions against preprocessing attacks, we will be working

with multiple idealized primitives. For example, Blocki and Lee

[6] analyzed the multi-user security of (short) Schnorr signatures

against preprocessing attackers in the ROM+GGM. In particular,

they established the multi-user security of key-prefixed Schnorr

signatures against preprocessing attackers — key-prefixed Schnorr

Signatures salt the random oracle with the user’s public key. How-

ever, their analysis involved a complicated compression argument,

and for technical reasons, they needed to place a time-restriction

on the preprocessing attacker so that the preprocessing attack can

only examine the random oracle on a negligibly small fraction of

inputs (e.g., the attacker can only examine 2
3𝜆

of the total possi-

ble 2
4𝜆

input/output pairs). The security proof also did not extend

to the original Schnorr signature scheme without key-prefixing

since this scheme is trivially broken by preprocessing attacks who

can find a pre-image of 0. In particular, the preprocessing attacker

can simply output a pair (𝑟,𝑚) such that H(𝑔𝑟 ∥𝑚) = 0 so that

𝜎 = (𝑟, 0) becomes a universal signature for the message𝑚 which

will validate under any public key! Standardized implementations

of Schnorr Signatures (e.g., BSI-TR-03111 [21] or ISO/IEC 14888-3

[23]) do not adopt key-prefixing, but explicitly disallow those “𝑒 = 0

signatures”. We refer to such implementations as Nonzero Schnorr

Signatures. Thus, it is unclear whether or not Nonzero Schnorr Sig-

natures are secure against preprocessing attacks. Establishing the

(in)security of Nonzero Schnorr Signatures against preprocessing

attacks was left as an open research direction [6]. This leads us to

ask the following questions:

• Does Coretti et al.’s BF-to-AI framework extend to settings
with multiple idealized models?

• Do (short) key-prefixed Schnorr Signatures remain secure
against preprocessing attackers if we do not limit the at-
tacker’s running time during the preprocessing phase?

• Are standardized implementations of Schnorr signatures (no
key-prefixing, 𝑒 = 0 signatures explicitly disallowed) secure
against preprocessing attacks?

• Can we establish the preprocessing security of other cryp-
tographic protocols, e.g., PSEC-KEM, which utilize multiple
idealized models?

1.1 Our Contributions
We first verify that the results of Coretti et al. [11, 12] extend to

settings with multiple idealized models. In hindsight this result is

not particularly surprising, but Coretti et al. [11, 12] never consider

this setting so it is necessary to verify that the framework still

applies. We show that the framework actually allows us to analyze

constructions and protocols that utilize multiple random oracles,

generic group oracles, ideal ciphers, and random permutations.

In particular, we verify that Bit-Fixing upper bounds yield upper

bounds on the attacker’s success rate in the Auxiliary-Input model

with an additive loss 𝑂 (𝑆𝑞/𝑃). Here, 𝑆 denotes the size of the hint

generated by the offline attacker in the Auxiliary-Input model, 𝑃

denotes the total number of input/output pairs fixed by our Bit-

Fixing attacker across all idealized primitives and 𝑞 denotes the

total number of oracle queries made by the online attacker across

all idealized models.

Theorem 1.1 (informal). If an application𝐺 is secure with proba-
bility 𝜀′ in the Bit-Fixing multiple idealized models (e.g., ROM+GGM+
ICM) which fixes 𝑃 coordinates of random oracles/generic group or-
acles/ideal ciphers in total, then it is also secure with probability 𝜀
in the corresponding Auxiliary-Input multiple idealized model with
an 𝑆-bit hint, with 𝜀 ≤ 𝜀′ +𝑂 (𝑆𝑞/𝑃) where 𝑞 is the combined online
query complexity corresponding to 𝐺 that corresponds to the random
oracles/generic group oracles/ideal ciphers (see Definition B.1 and
Theorem B.4).

This resolves our first question in the affirmative. In the formal

statement of the theorem (Theorem B.4), we establish slightly more

refined bounds whenwe have separate upper bounds on the number

of queries to each ideal oracle. Note that in the Auxiliary-Input

model, the 𝑆-bit hint could encode information about relationships

between the various ideal oracles, e.g., the hint could identify two

generic group elements that hash to the same value under our

random oracle. Thus, we cannot simply apply the results of Coretti

et al. [11] separately to each idealized primitive in a black-box

manner. However, the proof of Theorem B.4 closely follows prior

analysis of Coretti et al. [11, 12] so in hindsight the final result is not

particularly “surprising.” In any case it is useful to formally verify

that the framework extends to settings with multiple idealized

models.

2

Preprocessing Security in Multiple Idealized Models with Applications to Schnorr Signatures and PSEC-KEM

Application 1: Multi-User Security of Short Nonzero Schnorr Sig-
natures Against Preprocessing Attacks. We leverage Theorem 1.1

to analyze the multi-user security of key-prefixed short Schnorr

signatures and regular (non-key-prefixed) short nonzero Schnorr

signatures in the ROM+GGM, answering our second and third

question in the affirmative. Here, we use nonzero Schnorr signatures
to refer to implementations where we explicitly disallow 𝑒 = 0

signatures (see Definition 4.1 for the formal definition). We first

upper bound the success rate of a multi-user signature forgery

attacker in the Bit-Fixing model and then leverage Theorem 1.1

to obtain upper bounds in the Auxiliary-Input model where the

preprocessing attacker outputs an 𝑆-bit hint after performing an

unbounded number of queries to the generic group oracles as well

as the random oracles.

In the Bit-Fixingmodel, we are able to upper bound the attacker’s

advantage as 𝑂

(
𝑞𝑃/𝑝 + 𝑞/2𝜆

)
where 𝑝 is the size of our generic

group and 𝜆 denotes the number of output bits for our random ora-

cle. This bound holds for both key-prefixed short Schnorr signatures
and for nonzero Schnorr signatures without key-prefixing. We note

that this upper bound on the advantage of a bit-fixing attacker is

tight as a bit-fixing attacker can solve the discrete log problem with

advantage Ω(𝑞𝑃/𝑝). Now setting 𝑃 = 𝑆𝑞, we can upper bound the

advantage of an auxiliary-input attacker as 𝑂

(
𝑆𝑞2/𝑝 + 𝑞/2𝜆

)
.

Theorem 1.2 (informal). Any preprocessing attacker that is un-
bounded and outputs an 𝑆-bit hint during the preprocessing phase
and makes at most 𝑞on queries during the online phase wins the
multi-user signature forgery game (chosen message attack) against
the short nonzero Schnorr signature scheme with probability at most

𝑂

(
𝑆𝑞2on/𝑝 + 𝑞on/2𝜆

)
in the generic group model of order 𝑝 > 2

2𝜆 plus
programmable random oracle model (see Theorem 4.5). Essentially
the same result holds for key-prefixed short Schnorr signatures as well
(see Theorem C.2).

We slightly oversimplified the above statement of Theorem 1.2

by hiding lower order terms involving the number of users 𝑁 1
. If

we want to achieve 𝜆-bit security2 against a preprocessing attacker

with an 𝑆-bit hint we need to set 𝑝 ≥ 2
2𝜆𝑆 so that 𝑆𝑞2/𝑝 ≤ 𝑞22−2𝜆 ≤

𝑞2−𝜆 .

Previouswork [6] gave an upper bound of𝑂

(
𝑆𝑞2on log𝑝/𝑝 + 𝑞on/2𝜆

)
for short key-prefixed Schnorr signatures. Compared to this bound,

we stress that (1) our bound is tighter, and furthermore (2) our result

is more general in that we do not impose any limitation on the run-

ning time of the offline attacker. We remark that one can actually

achieve 𝜆-bit security for slightly smaller group size, i.e., we require

𝑝 ≈ 2
2𝜆𝑆 instead of requiring 𝑝 ≈ 2

2𝜆𝑆 log𝑝 . This is due to the

missing log𝑝 term reduces the required signature length to 3.5𝜆

(see discussion below) instead of 3.5𝜆 +𝑂 (log 𝜆) [6]. Furthermore,

we stress that our results also resolve an open question [6] left

about the preprocessing security of nonzero Schnorr signatures.

1
Terms involving 𝑁 are dominated will all be lower-order terms unless the number

of users is implausibly large, e.g., 𝑁 ≥ min{2𝜆, 𝑆𝑞} where 𝑞 is the total number of

oracle queries made by the attacker.

2
For “𝜆-bit security” we require that for any running time parameter 𝑡 ≤ 2

𝜆
that any

attacker running in time 𝑡 succeeds with probability at most𝑂
(
𝑡/2𝜆

)
.

Theorem 1.2 provides valuable insights into the security of short

nonzero Schnorr signatures. It demonstrates that by suitably select-

ing parameters, these signatures can achieve 𝜆 bits of multi-user

security, even in the presence of preprocessing attacks. In partic-

ular, when setting 𝑝 ≈ 2
2𝜆𝑆 and utilizing 𝜆-bit hash outputs, the

short nonzero Schnorr signatures maintain 𝜆 bits of multi-user secu-

rity against our preprocessing attacker. For instance, if we choose

𝑆 = 2
𝜆/2

, then setting 𝑝 ≈ 2
2.5𝜆

results in signatures of length

𝜆 + log𝑝 ≈ 3.5𝜆 bits, which is shorter than that of regular Schnorr

signatures (which require 4𝜆 bits).

Application 2: Security of PSEC-KEM Against Preprocessing At-
tacks. Another application of our result is analyzing the preprocess-

ing security of an El-Gamal-based key encapsulation mechanism

called PSEC-KEM [41, 43] in the ROM+GGM, answering our final

question in the affirmative as well. PSEC-KEM has several standard-

ized implementation [1, 22, 41] and achieves provable security in

the ROM plus the hardness assumption of the discrete logarithm

problem [7, 32, 41], yet the preprocessing security of PSEC-KEM

has never been studied. We show that PSEC-KEM is CPA-secure

against preprocessing attacks. In particular, we prove that PSEC-

KEM is CPA-secure in the Bit-Fixing ROM+GGM then apply Theo-

rem 1.1 to prove CPA security in the Auxiliary-Input ROM+GGM.

In the Bit-Fixing model, we upper bound the attacker’s advantage

as 1/2 +𝑂
(
𝑞𝑃/𝑝 + 𝑞𝑃/2𝜆1 + 𝑞/2𝜆

)
where 𝜆1 specifies the length of

certain hash inputs/outputs in the PSEC-KEM protocol and 𝑝 is the

size of our generic group. Setting 𝑃 = 𝑆𝑞, we obtain the following

bound for the advantage of an auxiliary-input attacker.

Theorem 1.3 (informal). Any preprocessing attacker that is un-
bounded and outputs an 𝑆-bit hint during the preprocessing phase and
makes at most 𝑞on queries during the online phase wins the CPA in-
distinguishability game against PSEC-KEM with probability at most
1

2
+𝑂

(
𝑆𝑞2on/𝑝 + 𝑆𝑞2on/2𝜆1 + 𝑞on/2𝜆

)
in the generic group model of

order 𝑝 > 2
2𝜆 plus programmable random oracle model where 𝜆1

specifies the length of certain hash inputs/outputs in the PSEC-KEM
protocol (see Theorem 5.4).

A key ingredient in proving the preprocessing security of PSEC-

KEM is via reduction from a new game called the quadratic bridge-
finding game, where the goal of the attacker is to output a cer-

tain quadratic relationship between the unknown values (see Sec-

tion 5.1). We prove that the probability to win the quadratic bridge-

finding game for the bit-fixing attacker is upper bounded by𝑂 (𝑃𝑞/𝑝).
From Theorem 1.3, one could observe that PSEC-KEM achieves 𝜆

bits of preprocessing security by setting 𝑝 ≈ 2
2𝜆𝑆 and setting the

hash output length 𝜆1 ≈ 2𝜆 + log 𝑆 .

1.2 Related Work
The Random Oracle Model. The Random Oracle Model (ROM) is

a type of an idealized model formalized by Bellare and Rogaway

[4], in which we model a cryptographic hash function H as a truly

random function.

The Generic Group Model. The Generic Group Model (GGM) is

an idealized model proposed by Shoup [42]. One key motivation

of the GGM is that it can be used to analyze several computational

hardness assumptions. In particular, Shoup [42] proved that the

3

Jeremiah Blocki and Seunghoon Lee

discrete-log problem in a group of prime order 𝑝 requires Ω(√𝑝)
to solve, and the same lower bound holds for Computational Diffie-

Hellman (CDH) problem and Decisional Diffie-Hellman (DDH)

problem as well.

We remark that there are different GGMs; Schnorr and Jakobs-

son’s model [39] where the attacker is not directly given a labeling

map, Maurer’s model [31] that uses pointers instead of random

encoding of a group, and Kiltz et al.’s model [29] in which the

generic group oracle maintains a global counter. While those mod-

els are incomparable in general, Zhandry [46] argued that Shoup’s

model should be preferred as Maurer’s model fails to capture many

generic techniques such as Merkle-Damgård transform, Feistel net-

work, authenticated encryption, etc. Blocki and Lee [6] also noted

that Schnorr and Jakobsson’s model and Kiltz et al.’s model do not

provide a natural way to analyze preprocessing security since the

attacker is never given bit encodings of group elements which could

be processed outside of the generic group oracles. Because we are

focused on preprocessing attacks, we will utilize Shoup’s GGM in

this paper.

Equivalence of ROM and ICM. The Ideal Cipher Model (ICM)

[40] and the Random Permutation Model (RPM) are widely used

idealized models which often offer a simple framework to analyze

the security of practical cryptographic protocols and constructions.

It is known that the ROM and the ICM are equivalent by Coron

et al. [13] in a sense that one can build an ideal cipher from a ran-

dom oracle and vice versa. In particular, Coron et al. proved that

a 6-round Luby-Rackoff Feistel network is indifferentiable from a

random permutation. Given that one can construct ideal ciphers

from random oracles (or vice versa) one may wonder whether it

is necessary to develop tools to analyze preprocessing security

in multiple different idealized models. We note that the concrete

security guarantee is not ideal as the distinguishing advantage is

upper bounded as 𝑂 (𝑞16/2𝜆). Dai and Steinburger [16] improved

this bound to 𝑂 (𝑞8/2𝜆), but one would still need to select a much

larger security parameter, e.g., 𝜆 = 8𝜆′ achieves 𝜆′-bit security.
Furthermore, the indifferentiability results [13, 16] do not consider

preprocessing attackers and it is unknown whether these indiffer-

entiability results can be extended to the Bit-Fixing model or to the

Auxiliary-Input model. Thus, it is still useful to develop tools to

establish preprocessing security with multiple idealized models.

Short Schnorr Signatures. Schnorr’s original paper [38] proposed
the idea of shortening Schnorr Signatures by truncating the hash

output. The security of the Short Schnorr Signature scheme has

been subsequently studied under a variety of assumptions/settings,

e.g., see [6, 29, 34, 39], but only [6] considers preprocessing security.

We compare our results with [6] extensively throughout the paper.

Preprocessing Attacks and Lower Bounds. There is a long line of
work analyzing the security of various cryptogrphic primitivies

against preprocessing attacks, e.g., [2, 5, 9, 11, 14, 15, 17, 24, 27, 30,

44, 45]. The presampling framework of Coretti et al. [11, 12] is most

directly related to our paper and is discussed in Section 3.

2 Preliminaries
LetN be the set of positive integers, andwe define [𝑁] := {1, . . . , 𝑁 }
for 𝑁 ∈ N. Throughout the paper, we denote the security parameter

by 𝜆. We define Z𝑝 to be a cyclic group of integers modulo 𝑝 . We

say that x = (𝑥1, . . . , 𝑥𝑁) ∈ Z𝑁𝑝 is an 𝑁 -dimensional vector over

Z𝑁𝑝 , and for each 𝑖 ∈ [𝑁], we define 𝑢𝑖 to be the 𝑖 th 𝑁 -dimensional

unit vector, i.e., the 𝑖 th element of 𝑢𝑖 is 1, and all other elements

are 0 elsewhere. For simplicity, we let log(·) be a log with base 2,

i.e., log𝑥 := log
2
𝑥 . The notation←$ denotes a uniformly random

sampling, e.g., we say 𝑥 ←$ Z𝑝 when 𝑥 is sampled uniformly at

random from Z𝑝 .

Operations in Idealized Models. In the ROM, the only way for the

adversary to compute H(𝑥) is querying 𝑥 to H as an oracle. If 𝑥

has not been queried before, then the value of H(𝑥) is uniformly at

random.

As the name suggests, the GGM only allows the adversary to

have access to a random representation of a group which is done

by a randomly chosen encoding (labeling) so that the adversary

can only make the group operations in a black-box manner. More

precisely, given a cyclic group 𝐺 = ⟨𝑔⟩ of prime order 𝑝 , a random

injective encoding (labeling) map 𝜏 : Z𝑝 → G, where G is the set of

bit strings of length ℓ ≥ ⌈log 𝑝⌉, and we encode the discrete log of a
group element instead of the group element itself for simplicity. In

the GGM, the adversary is only given access to oracles Mult(·, ·) and
Inv(·) which computes the group operation indirectly in𝐺 , as well

as the encoding of the generator of𝐺 , i.e., 𝔤 = 𝜏 (1). In particular, for
(𝔞, 𝔟) ∈ G×G, the oracles work as Mult(𝔞, 𝔟) = 𝜏 (𝜏−1 (𝔞) +𝜏−1 (𝔟))
and Inv(𝔞) = 𝜏 (−𝜏−1 (𝔞)) if 𝔞, 𝔟 ∈ 𝜏 (𝐺).3

In the RPM, all parties have oracle access to a uniform permuta-

tion 𝑃 and its inverse 𝑃−1, i.e., 𝑃−1 (𝑃 (𝑥)) = 𝑥 . The RPM has been

used as a framework to analyze key-alternating ciphers (e.g., AES

[36]), Even-Mansour cipher [20], and sponge-based constructions

such as SHA-3 [19, 35]. In the ICM which goes back to Shannon

[40], we assume that the block cipher is a random permutation

for every key 𝐾 . In particular, for any fixed key 𝐾 , the function

𝐸𝐾 (𝑥) := 𝐸 (𝐾, 𝑥) is a truly random permutations with inverse

𝐸−1
𝐾
(𝑦) ≔ 𝐸−1 (𝐾,𝑦), i.e., 𝐸−1

𝐾
(𝐸𝐾 (𝑥)) = 𝑥 . In the ICM, all parties

(honest parties and adversaries included) have oracle access to the

block cipher 𝐸 (·, ·) and its inverse 𝐸−1 (·, ·). If Alice and Bob share

a secret key 𝐾 then they can both evaluate the permutation 𝐸𝐾 (·)
and its inverse 𝐸−1

𝐾
(·), but a party who does not have 𝐾 will not

be able to perform this computation using the block cipher oracles

𝐸 (·, ·) or 𝐸−1 (·, ·).

3 Background: Bit-Fixing/Auxiliary-Input
ROM+GGM and Extension to Multiple
Idealized Models

Coretti et al. [11, 12] introduced a breakthrough technique that

generically translates the lower bound in the Bit-Fixing idealized

model (e.g., ROM, GGM, ICM, or RPM) to the lower bound in the

corresponding Auxiliary-Input model with optimal additive secu-

rity loss. Bit-Fixing model was first introduced by Unruh [44] and

formalized by Coretti et al. [12]. In the Bit-Fixing model with a

parameter 𝑃 ∈ N, 𝑃 arbitrary input/output pairs can be fixed in

advance and the rest of the coordinates are chosen at random in

3
We can also define an oracle Pow(𝔞, 𝑛) := 𝜏 (𝑛𝜏−1 (𝔞)) for convenience, which can

be computed by making 𝑂 (log𝑛) oracle calls to Mult using the standard modular

exponentiation algorithm.

4

Preprocessing Security in Multiple Idealized Models with Applications to Schnorr Signatures and PSEC-KEM

the preprocessing phase, which is independent of the fixed pairs.

Furthermore, the 𝑆-bit hint of the preprocessing attacker in the

Bit-Fixing model can only depend on those 𝑃 fixed points. On the

other hand, in the Auxiliary-Input model, the preprocessing-phase

attacker is unbounded and outputs an 𝑆-bit hint for the online at-

tacker after viewing the entire truth table of the corresponding

oracle, which characterizes preprocessing attacks in a more feasible

way.

Even though the Bit-Fixing model is not a compelling model

for capturing preprocessing attacks, it happens to be much eas-

ier to prove lower bounds in the Bit-Fixing model instead of the

Auxiliary-Input model which often times uses a complicated com-

pression argument, e.g., see [14]. Furthermore, since there exists a

generic translation of the lower bound in the Bit-Fixingmodel to the

Auxiliary-Input model [11, 12], we can conduct a simpler analysis

in the Bit-Fixing model and make a transition to the Auxiliary-Input

model.

While prior work focused on a single idealized model, there are

several cryptographic primitives that rely on multiple idealized

models; for instance, the security analysis of short Schnorr sig-

natures and PSEC-KEM relies on both the Random Oracle Model

plus the Generic Group Model [6], and the security of a simple

oblivious transfer protocol [10] even relies on three different ideal-

ized models — Random Oracle Model, Generic Group Model, and

Ideal Cipher Model. Hence, it is crucial to have a generic trans-

lation from a Bit-Fixing model with multiple idealized models to

an Auxiliary-Input model with the corresponding idealized mod-

els. As a warmup, we consider the ROM+GGM which can be used

to analyze the multi-user security of Schnorr signatures against

preprocessing attacks and the security of an El-Gamal-based key

encapsulation mechanism.

Informal Definition of the Bit-Fixing (BF) ROM+GGM. We use

the notation BF-RO+GG(𝑃1, 𝑃2,𝑚, 𝜆, 𝑝, ℓ) to denote the Bit-Fixing

model with a random oracle H : {0, 1}𝑚 → {0, 1}𝜆 and a generic

group of size 𝑝 with group elements encoded as ℓ-bit strings using

a random injective map 𝜏 : Z𝑝 → {0, 1}ℓ where ℓ ≥ ⌈log2 𝑝⌉. In
this model, the preprocessing attacker Apre may fix 𝑃1 (resp. 𝑃2)

input/output pairs for the random oracle H (resp. injective map 𝜏)

and then output an 𝑆-bit hint for the online attacker Aon to use.

However, the remaining input/output pairs are picked randomly

(resp. randomly subject to the constraint that 𝜏 is still an injective

map) and entirely uncorrelated with the 𝑆-bit hint output by the

preprocessing attacker. We say that an application is (𝑆,𝑇1,𝑇2, 𝜖)-
secure in the BF-RO+GG(𝑃1, 𝑃2,𝑚, 𝜆, 𝑝, ℓ)-model if any attacker

A =
(
𝐴pre, 𝐴on

)
wins the security game for our application with

probability at most 𝜖 . Here, we constrain the online attacker to

make at most 𝑇1 (resp. 𝑇2) random oracle queries (resp. generic

group queries). As before, we constrain the preprocessing attacker

Apre to fix at most 𝑃1 (resp. 𝑃2) points in the random oracle (resp.

injective map 𝜏) and to output a hint of length at most 𝑆 bits. While

the Bit-Fixing model is not a particularly compelling model of

preprocessing attacks, it is a useful tool to simplify security anal-

ysis in more realistic settings such as the Auxiliary-Input model

(AI). See Section A.2 for a more formal definition of the Bit-Fixing

ROM+GGM.

Informal Definition of the Auxiliary-Input (AI) ROM+GGM. We

use the notation AI-RO+GG(𝑚, 𝜆, 𝑝, ℓ) to denote the Auxiliary-

Input model with a random oracle H : {0, 1}𝑚 → {0, 1}𝜆 and

a generic group of size 𝑝 with group elements encoded as ℓ-bit

strings using a random injective map 𝜏 : Z𝑝 → {0, 1}ℓ where
ℓ ≥ ⌈log

2
𝑝⌉. In this model, the preprocessing attacker Apre may

examine the entire input/output tables of the random oracle H
and the injective map 𝜏 and then output an 𝑆-bit hint for the on-

line attacker Aon. We say that an application is (𝑆,𝑇1,𝑇2, 𝜖)-secure
in the AI-RO+GG(𝑚, 𝜆, 𝑝, ℓ)-model if any preprocessing attacker

A = (Apre,Aon) wins the security game for our application with

probability at most 𝜖 . Here, we constrain the online attacker to

make at most 𝑇1 (resp. 𝑇2) random oracle queries (resp. generic

group queries) and, as before, we constrain the offline attacker

Apre to output an 𝑆-bit hint. See Section A.2 for a more formal

definition of the Auxiliary-Input ROM+GGM.

Additive Error for Arbitrary Applications in the ROM+GGM. The
main result considering BF-ROM+GGM to AI-ROM+GGM transi-

tion is stated in Theorem 3.1 below. The security bound references

the combined query complexity of our application 𝐺 . Intuitively,

(𝑇1)comb
𝐺

(resp. (𝑇2)comb
𝐺

) denotes the total number of random or-

acle (resp. generic group) queries made by our online attacker

Aon as well as by the challenger in the security game for 𝐺 . In

all of our applications, combined query complexity is not substan-

tially larger than the query complexity of the online attacker, i.e.,

(𝑇𝑖)comb
𝐺

= 𝑂 (𝑇𝑖) for 𝑖 = 1, 2.

Theorem 3.1. For every 𝛾 > 0, if an application𝐺 is (𝑆,𝑇1,𝑇2, 𝜀′)-
secure in the BF-RO+GG(𝑃1, 𝑃2,𝑚, 𝜆, 𝑝, ℓ)-model for any 𝑃1, 𝑃2 ∈ N
such that 𝑃1𝜆 + 𝑃2 log(𝑝/𝑒) ≤ 𝜂, then it is (𝑆,𝑇1,𝑇2, 𝜀)-secure in the
AI-RO+GG(𝑚, 𝜆, 𝑝, ℓ)-model, for

𝜀 ≤ 𝜀′ +
2(𝑆 + log𝛾−1)

(
(𝑇1)comb

𝐺
𝜆 + 3(𝑇2)comb

𝐺
log𝑝

)
𝜂

+ 2𝛾,

where 𝑒 is the Euler constant, and (𝑇1)comb
𝐺

and (𝑇2)comb
𝐺

are the
combined query complexity corresponding to 𝐺 that corresponds to
the random oracle and the generic group oracle, respectively.

Proof Intuition. Our proof of Theorem 3.1 follows a similar

approach to Coretti et al. [11, 12]. We first introduce the notion of a

(𝑃1, 𝑃2, 1− 𝛿)-dense source as a slight generalization of a (𝑃, 1− 𝛿)-
dense source [11, 12]. Intuitively, a (𝑃1, 𝑃2, 1 − 𝛿)-dense source is
a pair of random variables (𝑋,𝑌) where 𝑋 (resp. 𝑌) corresponds

to a function H (resp. injective map 𝜏) that is fixed on at most

𝑃1 (resp. 𝑃2) coordinates and for any subsets (𝐼1, 𝐼2) of non-fixed
inputs, the minimum entropy of the pair (𝑋𝐼1 , 𝑌𝐼2) is (1 − 𝛿)-close
to the minimum entropy that we would have had if, on all of the

remaining non-fixed points, H was a truly random function and 𝜏

was truly random injective function. Formally, we require

𝐻∞ (𝑋𝐼1 , 𝑌𝐼2) ≥ (1 − 𝛿)
[
|𝐼1 |𝜆 + log(𝑝 − 𝑃2) |𝐼2 |

]
,

where 𝑎𝑏 := 𝑎!/(𝑎 − 𝑏)!. See Definition A.1 for a formal definition

of dense sources. Following the strategy of Coretti et al. [11, 12],

we then show (see Claim 1) that for every leaky source (i.e., the

random oracle H and injective map 𝜏 after the preprocessing at-

tacker provides an 𝑆-bit hint) is 𝛾-close to a convex combination

5

Jeremiah Blocki and Seunghoon Lee

of sources such that each source in the convex combination is

(𝑃 ′
1
, 𝑃 ′

2
, 1 − 𝛿)-dense for some 𝑃 ′

1
and 𝑃 ′

2
which satisfies

𝑃 ′
1
𝜆 + 𝑃 ′

2
log(𝑝/𝑒) ≤ 𝑆𝑧 + log𝛾

−1

𝛿
.

In Claim 2, we then upper bound the probability that a distin-

guisher can differentiate between a (𝑃 ′
1
, 𝑃 ′

2
, 1 − 𝛿)-dense source

and the corresponding (𝑃 ′
1
, 𝑃 ′

2
)-Bit-Fixing source. Taken in combi-

nation, this allows us to prove Theorem 3.1. See more details in

Appendix A. □

Multiplicative Error for Unpredictability Applications in the ROM+
GGM. Coretti et al. [12, Theorem 6] further proved that for any

unpredictability application, the security bound from the BF-ROM

translates into the AI-ROM at the cost of a multiplicative factor of

2. Here, we verify that a similar translation can be applied from

the BF-ROM+GGM to the AI-ROM+GGM, which is formalized in

the following Theorem. The proof of Theorem 3.2 can be found in

Appendix A.

Theorem 3.2. For every 𝛾 > 0, if an unpredictability application
𝐺 is (𝑆,𝑇1,𝑇2, 𝜀′)-secure in the BF-RO+GG(𝑃1, 𝑃2,𝑚, 𝜆, 𝑝, ℓ)-model
for any 𝑃1, 𝑃2 ∈ N satisfying

(𝑆 + log𝛾−1)
(
(𝑇1)comb

𝐺 𝜆 + 3(𝑇2)comb
𝐺 log 𝑝

)
≤ 𝑃1𝜆 + 𝑃2 log(𝑝/𝑒),

then it is (𝑆,𝑇1,𝑇2, 𝜀)-secure in the AI-RO+GG(𝑚, 𝜆, 𝑝, ℓ)-model, for

𝜀 ≤ 2𝜀′ + 2𝛾,
where 𝑒 is the Euler’s number.

Generalization to Additional Idealized Models. The applications
we consider in this paper only utilize the ROM+GGM, but other

cryptographic constructions and protocols may utilize other primi-

tives such as block ciphers or random permutations. For example,

instantiations of protocols like TLS may utilize multiple hash func-

tions (modeled as random oracles), elliptic curve groups (modeled as

generic groups), and block ciphers (modeled as ideal ciphers). Thus,

we generalize the results Theorem 3.1 and Theorem 3.2 to the setting

where we have multiple different random oracles, generic groups,

ideal ciphers, and ideal random permutations. Intuitively, we gener-

alize the BF-ROM+GGM BF-RO+GG(𝑃1, 𝑃2,𝑚, 𝜆, 𝑝, ℓ) to obtain a

Bit-Fixing ROM+GGM+ICM BF-RO+GG+IC(P,Q,R, {𝑀𝑖 , 𝑁𝑖 }𝑛1𝑖=1,
{𝑝 𝑗 , ℓ𝑗 }𝑛2𝑗=1, {𝐾𝑘 ,𝐶𝑘 }

𝑛3
𝑘=1
)wherewe have𝑛1 randomoraclesH1, . . . ,H𝑛1

with varying domains/ranges (H𝑖 : [𝑀𝑖] → [𝑁𝑖]), 𝑛2 Generic

Groups of varying sizes with associated mappings 𝜏1, . . . 𝜏𝑛2 (𝜏𝑖 :

Z𝑝𝑖 → {0, 1}ℓ𝑖 for ℓ𝑖 = ⌈log2 𝑝𝑖 ⌉) and 𝑛3 ideal ciphers 𝐹1, . . . , 𝐹𝑛3
with varying keyspace [𝐾𝑖] and ciphertext space [𝐶𝑖]4. The pre-
processing attacker Apre may fix at most P[𝑖] (resp. Q[𝑖]/R[𝑖])
input/output pairs for the random oracle H𝑖 (resp. injective map-

ping 𝜏𝑖 /ideal cipher 𝐹𝑖). The online attacker Aon is restricted to

make at most S[𝑖] (resp. L[𝑖] and T[𝑖]) queries to the random oracle

H𝑖 (resp. to ideal cipher 𝐹𝑖 and to the 𝑖 th generic group).

Our results indicate that if the total number of fixed points is

bounded by𝑊 , i.e., ∥P∥1 + ∥Q∥1 + ∥R∥1 =
∑
𝑖 P[𝑖] +

∑
𝑖 Q[𝑖] +∑

𝑖

∑
𝑗 R[𝑖] [𝑗] ≤ 𝑊 then we can translate the security bound in

4
We do note separately model ideal permutations in our analysis as one can trivially

obtain an ideal permutation from an ideal cipher e.g., fix 𝐾 = 0 to obtain the ideal

permutation 𝑃 (𝑥) = 𝐸0 (𝑥) and its inverse 𝑃−1 (𝑦) = 𝐸−1
0
(𝑦) .

the BF-ROM+GGM+ICM into the AI-ROM+GGM+ICM with an

additive error 𝑂 ((𝑆 + log𝛾−1)𝑄/𝑊) + 2𝛾 for any 𝛾 > 0, where 𝑄

denotes the total combined query complexity corresponding to an

application𝐺 and𝑂 is hiding polylogarithmic factors. Furthermore,

for unpredictability applications, we can obtain a similar result if

(𝑆 + log𝛾−1)𝑄 ≤ 𝐶 (∥P∥1 + ∥Q∥1 + ∥R∥1) for a certain constant

𝐶 > 0. See Theorem 3.3 and Theorem 3.4 for simplified statements,

and see Theorem B.4 and Theorem B.5 for the formal statements

with tighter bounds. The proof of Theorem B.4 (resp. Theorem B.5)

is similar to Theorem 3.1 (resp. Theorem 3.2) and can be found in

Appendix B.

Theorem 3.3 (Informal Version of Theorem B.4). For every
𝛾 > 0, if an application𝐺 is (𝑆, S, T, L, 𝜀′)-secure in theBF-RO+GG+IC
(P,Q,R, {𝑀𝑖 , 𝑁𝑖 }𝑛1𝑖=1, {𝑝𝑖 , ℓ𝑖 }

𝑛2
𝑖=1
, {𝐾𝑖 ,𝐶𝑖 }𝑛3𝑖=1)-model for any P,Q,R

as introduced in Definition B.1 such that the total number of fixed
points is bounded by𝑊 , i.e., ∥P∥1 + ∥Q∥1 + ∥R∥1 ≤ 𝑊 . Then 𝐺 is
(𝑆, S,T, L, 𝜀)-secure in the AI-RO+GG+IC({𝑀𝑖 , 𝑁𝑖 }𝑛1𝑖=1, {𝑝𝑖 , ℓ𝑖 }

𝑛2
𝑖=1
,

{𝐾𝑖 ,𝐶𝑖 }𝑛3𝑖=1)-model, for 𝜀 ≤ 𝜀′ +𝑂
(
(𝑆+log𝛾−1)𝑄

𝑊

)
+ 2𝛾 , where 𝑄 de-

notes the total combined query complexity corresponding to 𝐺 .

Theorem 3.4 (Informal Version of Theorem B.5). For every
𝛾 > 0, if an unpredictability application 𝐺 is (𝑆, S,T, L, 𝜀′)-secure
in the BF-RO+GG+IC(P,Q,R, {𝑀𝑖 , 𝑁𝑖 }𝑛1𝑖=1, {𝑝𝑖 , ℓ𝑖 }

𝑛2
𝑖=1
, {𝐾𝑖 ,𝐶𝑖 }𝑛3𝑖=1)-

model for any P,Q,R as introduced in Definition B.1 satisfying

(𝑆 + log𝛾−1)𝑄 ≤ log(min𝑖 {𝑁𝑖 , 𝑝𝑖/𝑒,𝐶𝑖/𝑒})
log(max𝑖 {𝑁𝑖 , 𝑝𝑖 ,𝐶𝑖 })

(∥P∥1 + ∥Q∥1 + ∥R∥1),

where 𝑒 is the Euler’s number and𝑄 denotes the total combined query
complexity corresponding to 𝐺 . Then it is (𝑆, S,T, L, 𝜀)-secure in the
AI-RO+GG+IC({𝑀𝑖 , 𝑁𝑖 }𝑛1𝑖=1, {𝑝𝑖 , ℓ𝑖 }

𝑛2
𝑖=1
, {𝐾𝑖 ,𝐶𝑖 }𝑛3𝑖=1)-model, for

𝜀 ≤ 2𝜀′ + 2𝛾 .

4 Multi-User Security of Short Schnorr
Signatures without Key-Prefixing against
Preprocessing Attacks

We present the first application of our result (Theorem 3.1 and

Theorem 3.2) from Section 3 to analyze the preprocessing security

of short Schnorr signatures utilizing multiple idealized models. As

Blocki and Lee [6] pointed out, Schnorr signatures (without key-

prefixing) are vulnerable against a preprocessing attack by finding

a pre-image of 0 for a hash function H, i.e., if a message𝑚 and an

integer 𝑟 are found during the preprocessing phase which satisfies

H(𝜏 (𝑟)∥𝑚) = 0, then the tuple (𝑚, 𝑟) can simply be included in the

𝑆-bit hint. Then the signature 𝜎′ = (𝑠, 𝑒) = (𝑟, 0) becomes valid for

any public key pk which trivially breaks the signature scheme. To

address this issue, Blocki and Lee considered the key-prefixed short

Schnorr signatures by including the public key when computing

𝑒 , i.e., 𝑒 = H(pk∥𝜏 (𝑟)∥𝑚). Since the preprocessing attacker does

not have knowledge of the public key pk during the preprocessing

phase, it becomes hard for the attacker to find a tuple (pk, 𝑟 ,𝑚) such
that H(pk∥𝜏 (𝑟)∥𝑚) = 0. Then they showed the multi-user secu-

rity of key-prefixed short Schnorr signatures against preprocessing

attacks.

On the other hand, instead of key-prefixing, several standardized

implementations of Schnorr signatures, e.g., BSI-TR-03111 [21] and

6

Preprocessing Security in Multiple Idealized Models with Applications to Schnorr Signatures and PSEC-KEM

ISO/IEC 14888-3 [23], resolved this issue by explicitly disallowing

𝑒 = 0 signatures (which we call nonzero Schnorr signatures, see
Definition 4.1) as that is the point where the vulnerability of Schnorr

signatures to preprocessing attacks comes from. In this section, we

analyze the multi-user security of nonzero Schnorr signatures.

Kg(1𝜆):
1 : sk←$ Z𝑝

2 : pk← 𝑔sk

3 : return (pk, sk)

Sign(sk,𝑚):
1 : 𝑟 ←$ Z𝑝

2 : 𝐼 ← 𝑔𝑟

3 : 𝑒 ← H(𝐼 ∥𝑚)
4 : while 𝑒 = 0 do

5 : Resample 𝑟 ←$ Z𝑝

6 : 𝐼 ← 𝑔𝑟

7 : 𝑒 ← H(𝐼 ∥𝑚)
8 : 𝑠 ← 𝑟 + sk · 𝑒 mod 𝑝

9 : return 𝜎 = (𝑠, 𝑒)

Vfy(pk,𝑚, 𝜎):
1 : Parse 𝜎 = (𝑠, 𝑒)
2 : if 𝑒 = 0 then

3 : return 0

4 : 𝑅 ← 𝑔𝑠 · pk−𝑒

5 : if H(𝑅 ∥𝑚) = 𝑒 then
6 : return 1

7 : else return 0

Figure 1: The nonzero Schnorr signature scheme.

Definition 4.1. Given a cyclic group 𝐺 = ⟨𝑔⟩ and a prime 𝑝 , the

nonzero Schnorr signature scheme is a signature scheme that consists

of a tuple of probabilistic polynomial-time algorithms Π\{0} =

(Kg, Sign,Vfy), where each algorithm works as follows:

• Kg(1𝜆): a key-generation algorithm that takes 1
𝜆
as input

where 𝜆 is a security parameter and outputs a random secret

key sk ∈ Z𝑝 and a public key pk = 𝑔sk.

• Sign(sk,𝑚): a signing algorithm that takes the secret key

sk and a message 𝑚 ∈ {0, 1}∗ as input and generates a

signature 𝜎 = (𝑠, 𝑒) on the message𝑚. When generating a

signature, if 𝑒 = 0 then the signing procedure regenerates

the signature until we have 𝑒 ≠ 0. The signing procedure is

described formally in Figure 1.

• Vfy(pk,𝑚, 𝜎): a verification algorithm that outputs 1 if the

generated signature is valid, and 0 otherwise. Here, we re-

mark that in addition to the original verification algorithm

that was proposed in Schnorr’s original work [38], the al-

gorithm also returns 0 if 𝜎 = (𝑠, 𝑒) is of the form 𝑒 = 0. The

verification procedure is described formally in Figure 1.

One could alternatively remove the loop in the signing procedure

from Figure 1 and simply terminate and output ⊥ with negligible

probability. On the other hand, a more efficient way to generate

a nonzero Schnorr signature is by outputting 𝑒 ← H(𝐼 ∥𝑚) + 1 on
line 3 of Sign(sk,𝑚) in Figure 1. By doing this, the range of 𝑒 lies

in {1, . . . , 2𝜆1 } and we have zero chance of 𝑒 = 0. Then we do not

even need to check if 𝑒 = 0 in the verification procedure. And since

𝑝 > 2
2𝜆 ≫ 2

𝜆1
, we do not need to worry about the overflow when

adding 1 to H(𝐼 ∥𝑚).

1-out-of-𝑁 Generic Signature Forgery Game. To define the multi-

user security of a signature scheme, recall the security game that

was introduced by Blocki and Lee [6] for a signature scheme Π =

(Kg, Sign,Vfy) when we fix the injective mapping 𝜏 : Z𝑝 → G, a
random oracle H, and an adversary A:

The 1-out-of-𝑁 Generic Signature Forgery Game

SigForge𝜏,H,𝑁A,Π (𝑘):

1. Kg(1𝑘) is run𝑁 times to obtain the public and the secret

keys (pk𝑖 , sk𝑖) for each 𝑖 ∈ [𝑁]. Here, for each 𝑖 ∈ [𝑁],
sk𝑖 is chosen randomly from the group Z𝑝 , where 𝑝 is

a 2𝑘-bit prime, and pk𝑖 = 𝜏 (sk𝑖).
2. Adversary A is given (𝔤 = 𝜏 (1), pk

1
, · · · , pk𝑁 , 𝑝), and

access to the generic group oracles GO = (Mult(·, ·),
Inv(·)), the random oracle H(·), and the signing ora-

cles Sign(sk1, ·), . . . , Sign(sk𝑁 , ·). The experiment ends

when the adversary outputs (𝑚,𝜎 = (𝑠, 𝑒)).
3. A succeeds to forge a signature if and only if there ex-

ists some 𝑗 ∈ [𝑁] such that Vfy(pk𝑗 ,𝑚, 𝜎) = 1 and the

query𝑚 was never submitted to the oracle Sign(sk𝑗 , ·).
The output of the experiment is SigForge𝜏,H,𝑁A,Π (𝑘) = 1

when A succeeds; otherwise SigForge𝜏,H,𝑁A,Π (𝑘) = 0.

Definition 4.2. Consider the generic group model with a label-

ing map 𝜏 : Z𝑝 → G. A signature scheme Π = (Kg, Sign,Vfy) is
(𝑁,𝑞H, 𝑞G, 𝑞S, 𝜀)-MU-UF-CMA secure (multi-user unforgeable against
chosen message attack) if for every adversary A making at most

𝑞H (resp. 𝑞G, 𝑞S) queries to the random oracle (resp. generic group,

signing oracles), the following bound holds:

Pr

[
SigForge𝜏,H,𝑁A,Π (𝑘) = 1

]
≤ 𝜀,

where the randomness is taken over the selection of 𝜏 , the random

coins of A, the random coins of Kg, and the selection of random

oracle H.

When it comes to the preprocessing security, we say that a signa-

ture scheme Π achieves the multi-user security against prepro-

cessing attacks if for every adversary A = (Apre,Aon), Π is

(𝑁,𝑞H, 𝑞G, 𝑞S, 𝜀)-MU-UF-CMA secure against the online attacker
Aon. In the Bit-Fixing model, Aon will receive the information of

𝑃 pre-fixed points from Apre, and in the Auxiliary-Input model,

Aon will receive an 𝑆-bit hint from Apre. Hence, to prove the pre-

processing security, it is sufficient to upper bound the probability

of the event SigForge𝜏,H,𝑁Aon,Π
(𝑘) = 1 for the online attacker Aon.

Multi-User Bridge-Finding Game in the BF-GGM. Blocki and Lee [6]
established the multi-user security of short Schnorr signatures

against preprocessing attackers by providing a reduction from a

game called the 1-out-of-𝑁 generic BRIDGE𝑁 -finding game. Given
𝑁 inputs 𝜏 (𝑥1), . . . , 𝜏 (𝑥𝑁), the goal of the game is to find a non-

trivial linear dependence among those inputs, i.e., find 𝑎1, . . . , 𝑎𝑁 , 𝑏

such that

∑𝑁
𝑖=1 𝑎𝑖𝑥𝑖 = 𝑏, and 𝑎𝑖 ≠ 0 for at least one 𝑖 ∈ [𝑁]. The

intuition here is that the probability that the attacker wins the

1-out-of-𝑁 discrete log game with (approximately) the same prob-

ability to win the 1-out-of-𝑁 generic BRIDGE𝑁 -finding game [6,

Corollary 1]. Since the odds to win the 1-out-of-𝑁 discrete log

game is crucial to analyze the multi-user security of short Schnorr

signatures, it is significant to analyze the probability to win the

multi-user bridge-finding game.

In particular, analyzing the probability of winning the 1-out-of-

𝑁 generic BRIDGE𝑁 -finding game in the bit-fixing generic group

7

Jeremiah Blocki and Seunghoon Lee

model is essential when we do the reduction in analyzing the multi-

user security of short Schnorr signatures in the Bit-Fixing model.

Hence, we consider the 1-out-of-𝑁 generic BRIDGE𝑁 -finding game

in the BF-GGM which is described formally below.

The 1-out-of-𝑁 Generic BRIDGE𝑁 -Finding Game

BridgeChal𝜏,𝑁A (𝜆, x) with a Bit-Fixing Preprocessing

Attacker A =

(
ABF-GG(𝑃)

pre ,ABF-GG(𝑃)
on

)
:

Preprocessing Phase:

1. ABF-GG(𝑃)
pre takes as input 𝔤 = 𝜏 (1).

2. ABF-GG(𝑃)
pre fixes 𝑃 input/output pairs of the map 𝜏 :

Z𝑝 → G, i.e., (𝑡1, 𝜏 (𝑡1)), . . . , (𝑡𝑃 , 𝜏 (𝑡𝑃)). (Note: the rest
of the map 𝜏 is chosen uniformly at random as long as

it remains to be injective.)

Online Phase:
3. The challenger initializes the list L = {(𝜏 (1), 0, 1),
(𝜏 (𝑥1), 𝑢1, 0), . . . , (𝜏 (𝑥𝑁), 𝑢𝑁 , 0), (𝜏 (𝑡1), 0, 𝑡1), . . . ,
(𝜏 (𝑡𝑃), 0, 𝑡𝑃)}, and x = (𝑥1, · · · , 𝑥𝑁).

4. The adversary ABF-GG(𝑃)
on is given 𝔤 = 𝜏 (1) and 𝜏 (𝑥𝑖)

for each 𝑖 ∈ [𝑁].
5. ABF-GG(𝑃)

on is allowed to query the usual generic group

oracles (Mult, Inv).
(a) If ABF-GG(𝑃)

on ever submits any fresh element 𝔶

which does not appear in L as input to a generic

group oracle, then the challenger immediately

queries 𝑏𝑦 = DLog(𝔶), and adds the tuple (𝔶, 0, 𝑏𝑦)
to the list L.

(b) Whenever ABF-GG(𝑃)
on submits a query 𝔶1, 𝔶2 to

Mult(·, ·), we are ensured that there exist tuples

(𝔶1, a1, 𝑏1), (𝔶2, a2, 𝑏2) ∈ L. The challenger adds
the tuple (Mult(𝔶1, 𝔶2), a1 + a2, 𝑏1 + 𝑏2) to the list

L.
(c) WheneverABF-GG(𝑃)

on submits a query 𝔶 to Inv(·),
we are ensured that some tuple (𝔶, a𝑦, 𝑏𝑦) ∈ L.
The challenger adds the tuple (Inv(𝔶),−a𝑦,−𝑏𝑦)
to L.

6. If at any point in time we have a collision, i.e., two dis-

tinct tuples (𝔶, a1, 𝑏1), (𝔶, a2, 𝑏2) ∈ L with (a1, 𝑏1) ≠
(a2, 𝑏2), then the event BRIDGE𝑁 occurs, and the out-

put of the game is 1. If BRIDGE𝑁 never occurs, then

the output of the game is 0.

Lemma 4.3 gives the upper bound of the probability of winning

the BRIDGE𝑁 -finding game for a bit-fixing preprocessing attacker.

One big advantage to analyzing the multi-user bridge game with
preprocessing in the BF-GGM is that we can avoid the complicated

compression argument as shown in prior work [6, Theorem 7]

and follow a similar proof technique that was used in the analysis

without preprocessing [6, Theorem 5] which is much simpler. One

notable difference is that in the online phase, there are 𝑃 extra tu-

ples (𝜏 (𝑡1), 0, 𝑡1), . . . , (𝜏 (𝑡𝑃), 0, 𝑡𝑃) in the list L when the challenger

initializes it
5
. The bit-fixing attacker can only pre-fix 𝑃 input/output

pairs in the preprocessing phase and the hint for the online phase

can only be dependent to those pairs, which means that after adding

𝑃 extra tuples in the initialization of the online phase, it works iden-

tical to the bridge-finding game without preprocessing.

While we can largely utilize the same proof technique described

in [6, Theorem 5], it is important to emphasize that it cannot be

applied in a black-box manner. If we follow exactly the same proof

technique in [6, Theorem 5] except for the modification that the

initial size of the list L becomes 𝑁 + 𝑃 + 1 (instead of 𝑁 + 1 in

the prior case [6, Theorem 5]) due to 𝑃 pre-fixed points, then we

would obtain the following bound of the probability of winning the

multi-user bridge game with preprocessing in the bit-fixing model:

Pr

[
BridgeChal𝜏,𝑁

ABF-GG(𝑃)
on

(𝜆) = 1

]
≤
𝑞onG (𝑁 + 𝑃) + 3𝑞

on
G (𝑞

on
G + 1)/2

𝑝 − (𝑁 + 𝑃 + 3𝑞onG + 1)2 − 𝑁
.

(1)

However, an immediate concern arises as the group size 𝑝 becomes

larger compared to the prior work [6], resulting in longer signature

lengths. Notably, there is a 𝑃2 term in the denominator, indicating

that the group size 𝑝 should be at least 𝑃2. Considering the security

loss of𝑂

(
(𝑆 + log𝛾−1)𝑞onG)/𝑃

)
[11, Theorem 1] that appears in the

transition from the Bit-Fixing to the Auxiliary-Input model, we find

that 𝑃 must be Ω(2𝜆𝑆) to achieve 𝜆 bits of security. Consequently,

𝑝 = Ω(𝑃2) = Ω(22𝜆𝑆2). Hence, we come up with a longer signature

length of log𝑝 +𝜆 ≥ 3𝜆+2 log 𝑆 if we use the bound in Equation (1),

when compared to the prior work that achieves 𝜆 bits of security

with a Schnorr signature length of 3𝜆 + log 𝑆 bits [6].

Consequently, a more sophisticated analysis is required to main-

tain the same signature length as demonstrated in [6] while ensur-

ing the same security level. Recall that the bridge event occurs if we

find two distinct tuples (𝔶1, a1, 𝑏1), (𝔶2, a2, 𝑏2) such that 𝔶1 = 𝔶2 but

(a1, 𝑏1) ≠ (a2, 𝑏2) which yields a non-trivial linear dependency on

x. Intuitively, we exploit the observation that if we pick two distinct

tuples (𝔶1, a1, 𝑏1), (𝔶2, a2, 𝑏2) such that a1 = a2 = 0 then we cannot

produce the bridge event since otherwise we have a contradiction
6
.

Since all the pre-fixed 𝑃 tuples (𝑡1, 0, 𝜏 (𝑡1)), . . . , (𝑡𝑃 , 0, 𝜏 (𝑡𝑃)) are of
the form (·, 0, ·), we can get a tighter bound by splitting the list set

L into two subsets L0 and L1 where L0
:= {(𝔶, a, 𝑏) ∈ L : a = 0}

and L1
:= {(𝔶, a, 𝑏) ∈ L : a ≠ 0} when analyzing the probability

of the bridge event in the BF-GGM.

Intuitively, the proof works by considering the event BRIDGE
𝑁
<𝑖

that the event BRIDGE𝑁 has not occurred until the (𝑖 − 1)th query.
Conditioning on BRIDGE

𝑁
<𝑖 , we can essentially view x selected

uniformly at random subject to the restriction that for any distinct

tuples (𝔶, a, 𝑏) and (𝔶′, a′, 𝑏′) we have a · x +𝑏 ≠ a′ · x +𝑏′. This al-
lows us to upper bound the probability Pr

[
BRIDGE𝑁

𝑖

��BRIDGE𝑁<𝑖]
where BRIDGE𝑁

𝑖
denotes the event where BRIDGE𝑁 occurs at the

𝑖 th query. The result follows by union bounding over 𝑖 ∈ [𝑞onG]. The
full proof of Lemma 4.3 can be found in Appendix G.

5
Here, we note that the challenger picks (𝑥1, . . . , 𝑥𝑁) ∈ Z𝑁𝑝 after such 𝑃 pairs are

fixed.

6
In particular, suppose that (𝔶1, 0, 𝑏1) and (𝔶2, 0, 𝑏2) cause a bridge event. Then it

should be the case that 𝔶1 = 𝔶2 but (0, 𝑏1) ≠ (0, 𝑏2) . But this is a contradiction

because 𝔶1 = 𝔶2 implies that 0 · x+𝑏1 = 0 · x+𝑏2 which tells us that𝑏1 = 𝑏2 , resulting

that (0, 𝑏1) = (0, 𝑏2) .
8

Preprocessing Security in Multiple Idealized Models with Applications to Schnorr Signatures and PSEC-KEM

Lemma 4.3. Let 𝑝 > 2
2𝜆 be a prime number and 𝑁 ∈ N be

a parameter. Let A :=

(
ABF-GG(𝑃)

pre ,ABF-GG(𝑃)
on

)
be a pair of bit-

fixing generic algorithms with a labeling map 𝜏 : Z𝑝 → G such

that ABF-GG(𝑃)
pre fixes 𝑃 input/output pairs of the labeling map 𝜏 and

ABF-GG(𝑃)
on makes at most 𝑞onG := 𝑞onG (𝜆) queries to the generic group

oracles. Then

Pr

[
BridgeChal𝜏,𝑁A (𝜆) = 1

]
≤

𝑞onG (𝑁 + 𝑃) + 3𝑞
on
G (𝑞

on
G + 1)/2

𝑝 − 2𝑃 (𝑁 + 3𝑞onG + 1) − (𝑁 + 3𝑞
on
G + 1)2 − 𝑁

,

in the GGM of prime order 𝑝 , where the randomness is taken over the
selection of 𝑥1, . . . , 𝑥𝑁 , 𝜏 as well as any random coins of ABF-GG(𝑃)

on .

4.1 Multi-User Security of Nonzero Schnorr
Signatures in the BF-ROM+GGM

Theorem 4.4. Let Π\{0} = (Kg, Sign,Vfy) be a nonzero Schnorr
signature scheme and 𝑝 > 2

2𝜆 be a prime number. Let 𝑁 ∈ N be

a parameter and
(
ABF-RO+GG(𝑃1,𝑃2)

Sig.pre ,ABF-RO+GG(𝑃1,𝑃2)
Sig.on

)
be a pair

of bit-fixing generic algorithms with a labeling map 𝜏 : Z𝑝 → G

such thatABF-RO+GG(𝑃1,𝑃2)
Sig.pre fixes 𝑃1 input/output pairs of a random

oracle H : {0, 1}∗ → {0, 1}𝜆1 and 𝑃2 input/output pairs of the map
𝜏 : Z𝑝 → G such that 2𝑃1 + 𝑃2 = 𝑃 , and the hint str𝜏,H is only

dependent on those 𝑃 points. If ABF-RO+GG(𝑃1,𝑃2)
Sig.on makes at most

𝑞onG := 𝑞onG (𝜆) queries to the generic group oracles, 𝑞
on
H queries to the

random oracle, and 𝑞onS queries to the signing oracle, then

Pr

[
SigForge𝜏,H,𝑁

ABF-RO+GG(𝑃
1
,𝑃
2
)

Sig.on,str𝜏,H
,Πshort
\{0}
(𝜆) = 1

]
≤ 𝜀,

with

𝜀 =
𝑞onG (𝑁 + 𝑃) + 3𝑞

on
G (𝑞

on
G + 1)/2

𝑝 − 2𝑃 (𝑁 + 3𝑞onG + 1) − (𝑁 + 3𝑞
on
G + 1)2 − 𝑁

+
𝑞onS (𝑞

on
H + 𝑞

on
S + 𝑃)

𝑝

+
𝑞onH + 𝑞

on
S + 𝑃

𝑝 − (𝑁 + 𝑃 + 3𝑞onG + 1)
+
2𝑞onH + 1

2
𝜆1

,

where the randomness is taken over the selection of 𝜏 and the random
coins of ABF-RO+GG(𝑃1,𝑃2)

Sig.on .

Proof Sketch. Given a bit-fixing adversary A = (Apre,Aon)
attacking Π\{0} , we build an efficient algorithm B = (Bpre,Bon)
which tries to win the 1-out-of-𝑁 generic BRIDGE𝑁 -finding game

BridgeChal𝜏,𝑁B (𝜆) in the Bit-Fixing model. Here, Bpre can simply

run Apre and outputs the same 𝑃1 input/output pairs of H and 𝑃2
input/output pairs of 𝜏 being fixed by Apre. It is noteworthy to

mention that for each fixed RO input/output pair (ℎ𝑖 ,H(ℎ𝑖)) for
𝑖 ∈ [𝑃1],Apre can parse ℎ𝑖 = 𝐼

′
𝑖
∥𝑚′

𝑖
where 𝐼 ′

𝑖
is a bitstring of length

ℓ . If 𝐼 ′
𝑖
is a fresh ℓ-bit string (i.e., 𝐼 ′

𝑖
≠ 𝜏 (𝑡 𝑗) for all 𝑗 ∈ [𝑃2]), then

Apre picks a value for 𝜏
−1 (𝐼 ′

𝑖
) =: 𝑟 ′

𝑖
since the labeling map 𝜏 has

not been sampled yet in the preprocessing phase. Then Apre also

outputs the fixed input/output pairs of 𝜏 for those values. Then

𝑃1 + (𝑃1 + 𝑃2) = 𝑃 points have been fixed by Apre in total. Now

the challenger initializes the list L that consists of tuples of the

form (𝜏 (𝑦), a, 𝑏) ∈ G × Z𝑁𝑝 × Z𝑝 including the initial 𝑁 tuples of

unknowns and incorporating the information about 𝑃 fixed points.

Now the online attacker Bon receives this information as hint

and runAon with access to the random oracle H, the generic group

oracles (Mult, Inv), and the signing oracle. L is updated as Aon
makes queries to those oracles. WheneverAon submits a query𝑚𝑖
to the signing oracle Sign(𝑥 𝑗 , ·), the attacker simulates the signing

oracle without knowledge of the secret key 𝑥 𝑗 using the programma-

bility of the random oracle, i.e., to sign a message𝑚𝑖 , we can pick

𝑠𝑖 and 𝑒𝑖 randomly, compute 𝐼𝑖 = 𝜏 (𝑠𝑖 − 𝑥 𝑗𝑒𝑖) and see if the random
oracle has previously queried at H(𝐼𝑖 ∥𝑚𝑖). If not, then we can pro-

gram the random oracle as H(𝐼𝑖 ∥𝑚𝑖) = 𝑒𝑖 and output the signature

(𝑠𝑖 , 𝑒𝑖). Otherwise, the reduction simply outputs ⊥ for failure. Since

𝑠𝑖 and 𝑒𝑖 are selected randomly, we can argue that the probability

for outputting ⊥ here is small, i.e., ≤ 𝑞onS (𝑞onH +𝑞
on
S +𝑃1)

𝑝 .

After Aon outputs a forged signature 𝜎𝑖∗ = (𝑠𝑖∗, 𝑒𝑖∗) and the

message𝑚𝑖∗, we compute 𝜏 (−𝑒𝑖∗𝑥𝑖∗), 𝔰𝑖∗ = Pow(𝔤, 𝑠𝑖∗), and 𝐼𝑖∗ =
Mult(𝔰𝑖∗, 𝜏 (−𝑒𝑖∗𝑥𝑖∗)), which ensures that (𝐼𝑖∗,−𝑒𝑖∗𝑢𝑖∗, 𝑠𝑖∗) ∈ L and

see if we have a bridge event. One failure event is that 𝐼𝑖∗ was
not previously recorded in L so that we cannot find the bridge

event. Another failure event is that 𝐼𝑖∗ was previously recorded

in L but the exact same tuple (𝐼𝑖∗,−𝑒𝑖∗𝑢𝑖∗, 𝑠𝑖∗) was in L. We can

prove that the probability of both failure events is also small, i.e.,

≤ 𝑞onH +𝑞
on
S +𝑃

𝑝−(𝑁+𝑃+3𝑞onG +1)
+ 2𝑞onH +1

2
𝜆
1

.

If those failure events do not occur, then BRIDGE𝑁 occurs and

B wins the multi-user bridge-finding game. By applying Lemma 4.3,

we get the desired result (see Appendix G for the full proof). □

4.2 From Bit-Fixing Model to Auxiliary-Input
Model

By applying Theorem 3.2, we can address the multi-user security

of nonzero Schnorr signatures against preprocessing attacks in the

AI-ROM+GGM.

Theorem 4.5. Let Π\{0} = (Kg, Sign,Vfy) be a nonzero Schnorr
signature scheme, 𝑝 > 2

2𝜆 be a prime number, and 𝛾 > 0 be a param-

eter. Let 𝑁 ∈ N be a parameter and
(
AAI-RO+GG

Sig.pre ,AAI-RO+GG
Sig.on

)
be

a pair of generic algorithms with a labeling map 𝜏 : Z𝑝 → G such
that AAI-RO+GG

Sig.pre outputs an 𝑆-bit hint strH,𝜏 . If AAI-RO+GG
Sig.on takes

strH,𝜏 as input and makes at most 𝑞onG := 𝑞onG (𝜆) queries to the generic
group oracles, 𝑞onH queries to the random oracle, and 𝑞onS queries to the

signing oracle, then Pr

[
SigForge𝜏,H,𝑁

AAI-RO+GG
Sig.on,str𝜏,H

,Πshort
\{0}
(𝜆) = 1

]
≤ 𝜀, with

𝜀 =
2𝑞onG (𝑁 + 𝑆𝑞) + 3𝑞

on
G (𝑞

on
G + 1)

𝑝 − 2𝑆𝑞(𝑁 + 3𝑞onG + 1) − (𝑁 + 3𝑞
on
G + 1)2 − 𝑁

+
2𝑞onS (𝑞

on
H + 𝑞

on
S + 𝑆𝑞)

𝑝

+
2𝑞onH + 2𝑞

on
S + 2𝑆𝑞

𝑝 − (𝑁 + 𝑆𝑞 + 3𝑞onG + 1)
+
2𝑞onH + 1
2
𝜆1−1

+ 2−2𝜆+1,

where 𝑞 := 𝑞onH + 𝑞
on
G + 𝑞

on
S and the randomness is taken over the

selection of 𝜏 and the random coins of AAI-RO+GG
Sig.on .

Proof. This is straightforward by combining Theorem 4.4 with

Theorem 3.2 with setting 𝑃 ≈ 𝑆𝑞 and 𝛾 = 2
−2𝜆

. □

4.3 Discussion
Tightness of the Bound. We emphasize that the upper bound

in Theorem 4.5 is tight. Under the reasonable assumption that

𝑁 ≪ 𝑞 and 6𝑆𝑞2 ≪ 𝑝 , the dominating terms are 𝑂
(
𝑆𝑞2/𝑝

)
and

9

Jeremiah Blocki and Seunghoon Lee

𝑂 (𝑞onH /2
𝜆1). Blocki and Lee [6] observed that a preprocessing at-

tacker can solve one of the 𝑁 discrete-log challenges with prob-

ability at least Ω(𝑆 (𝑞onG)
2/𝑝) which enables recovery of a secret

key and trivial signature forgery. This matches the 𝑂
(
𝑆𝑞2/𝑝

)
term

from our bounds. Furthermore, one could also consider the follow-

ing attack: pick random nonzero values of 𝑠, 𝑒 then search for a

message𝑚 for which (𝑠, 𝑒) is a valid forgery, i.e., fix 𝑠, 𝑒 , compute

𝑅 = 𝑔𝑠 · pk−𝑒 , and search for𝑚 such that H(𝑅∥𝑚) = 𝑒 . This attack
succeeds with probability Ω(𝑞onH /2

𝜆1) showing that the𝑂
(
𝑞onH /2

𝜆1
)

term is necessary.

Practical Parameters for Fixed Implementations. Consider a fixed
implementation of a nonzero Schnorr signature with an elliptic

group of size 𝑝 ≈ 2
384

, e.g., P-384. Suppose that a preprocessing

attacker utilizes a hint of size 𝑆 ≈ 2
72
. We remark that 2

72
plausibly

exceeds the storage capacity of Meta’s data warehouse which was

300 petabytes in 2014
7
and has now reached the exabytes scale

8
. If

an online attacker makes ≤ 𝑞 ≈ 2
80

queries, Theorem 4.5 tells us

that the success probability of forging a signature will be ≈ 2𝑆𝑞2/𝑝
≈ 2
−151

. Table 2 in Appendix H shows the (approximate) upper

bound on the probability that a preprocessing attacker wins the

1-out-of-𝑁 signature forgery game for nonzero Schnorr signatures.

Elliptic Curve Groups for Desired Security Levels. To achieve 𝜆

bits of security for nonzero short Schnorr signatures against pre-

processing attackers, we need to instantiate with bigger elliptic

curve groups than against attackers without preprocessing. While

NIST recommends using elliptic curve groups with size 2𝜆 bits

(i.e., 𝑝 ≈ 2
2𝜆
) to achieve 𝜆 bits of security, one would need to fix

the group size 𝑝 such that 𝑝 ≈ 2
2𝜆𝑆 for 𝜆 bits of security against

preprocessing attackers. For example, to achieve 192 bits of security,

NIST recommends to use elliptic curves of size ≥ 384 bits; for pre-

processing security against an attacker with an 𝑆 ≤ 2
64
-bit hint,

we suggest instantiate with an elliptic curve group of size ≥ 448

bits, e.g., use W-448, Curve448, Edwards448, E448, or P-521 (using a

prime field F𝔭 with prime 𝔭 of size 521 bits), based on the NIST SP

800-186 [8]. If we further aim to achieve 224 bits of preprocessing
security against an attacker with a 𝑆 ≤ 2

72
-bit hint, we recommend

using an elliptic curve of size ≥ 520 bits, such as P-521. If we aim to

achieve 256 bit bits of preprocessing preprocessing security against

an attacker with a 𝑆 ≤ 2
80
-bit hint, then it will be necessary to

standardize new elliptic curve groups with larger sizes. Table 1 pro-

vides a summary of suggested elliptic curve group sizes for various

NIST security levels to ensure preprocessing security for nonzero

Schnorr signatures.

Signature Length for Nonzero Short Schnorr Signatures. To achieve
𝜆 bits of multi-user security for short Schnorr signatures with pre-

processing, we can fix 𝑝 such that 𝑝 ≈ 2
2𝜆𝑆 , and set the length of our

hash output to be 𝜆1 = 𝜆 + 2. With these parameters, Theorem 4.5

tells us that a preprocessing attacker in the AI-ROM+GGM wins the

signature forgery game with probability at most 𝜀 = 𝑂 (𝑞/2𝜆). The
length of the signatures we obtain will be 𝜆+2+log 𝑝 = 3𝜆+2+log 𝑆 .
7
See the link: https://engineering.fb.com/2014/04/10/core-data/scaling-the-facebook-

data-warehouse-to-300-pb/

8
See the link: https://medium.com/@AnalyticsAtMeta/data-engineering-at-meta-

high-level-overview-of-the-internal-tech-stack-a200460a44fe

NIST Security Level Current ECG Suggested ECG for Preprocessing Security

(bits) (min. key size) 𝑆 = 2
64 𝑆 = 2

72 𝑆 = 2
80

112 224 ≤ 288 ≤ 296 ≤ 304 ≤
128 256 ≤ 320 ≤ 328 ≤ 336 ≤
192 384 ≤ 448 ≤ 456 ≤ 464 ≤
224 448 ≤ 512 ≤ 520 ≤ 528 ≤
256 512 ≤ 576 ≤ 584 ≤ 592 ≤

Table 1: Suggested minimum elliptic curve group (ECG) sizes
for nonzero Schnorr signatures to achieve various NIST se-
curity levels against preprocessing attacks.

As a concrete example, if 𝑆 ≤ 2
9𝜆/16

, then we obtain signatures

of length ≈ 3.5625𝜆 while regular Schnorr signatures are 4𝜆 bits.

If we want to have 𝜆 ≥ 128 bits of security, then the assumption

that 𝑆 ≤ 2
9𝜆/16

seems quite reasonable since 2
72

bits exceeds the

current storage capacity of Meta’s data warehouse. As a second

example, if we take 𝑆 ≤ 2
80

as an even more conservative upper

bound on the storage capacity of any nation-state attacker, then

we obtain signatures of length ≈ 3𝜆 + 80.

5 Security of PSEC-KEM with Preprocessing
As the second application, we analyze the preprocessing security of

a key encapsulation mechanism called PSEC-KEM (Provably Secure

Elliptic Curve-Key Encapsulation Mechanism). PSEC-KEM [41, 43]

is an El-Gamal-based key encapsulation mechanism first proposed

by NTT. PSEC-KEM has several standardized implementation such

as NESSIE [41] and ISO/IEC 18033-2 [22]. PSEC-KEM was also

certified by IETF (Internet Engineering Task Force) for the XML

security of URIs [1]. PSEC-KEM has provable security in the ROM

and under the hardness assumption of the elliptic curve discrete

logarithm [7, 32, 41], but the preprocessing security of PSEC-KEM

has never been established. To the best of our knowledge, our work

is the first to prove preprocessing security of PSEC-KEM in the

ROM+GGM. We first formally define the PSEC-KEM scheme in the

ROM+GGM below. Here, we stress that in the scheme, three sepa-

rate random oracles H0 : {0, 1}∗ → Z𝑝 , H1 : {0, 1}∗ → {0, 1}𝜆 , and
H2 : {0, 1}∗ → {0, 1}𝜆1 (where 𝜆1 is a parameter which will be set

later) are used that is consistent with the PSEC-KEM specification.

The PSEC-KEM Scheme.

Consider the GGM with labeling map 𝜏 : Z𝑝 → G for a

prime 𝑝 and the set of bitstrings G = {0, 1}⌈log𝑝 ⌉ . The
PSEC-KEM scheme consists of three algorithms (Gen,
Encaps,Decaps), where each algorithm works as follows:

• Gen(1𝜆): the key-generation algorithm taking as input

the security parameter 1
𝜆
and outputs a public/secret-

key pair (pk, sk) := (𝜏 (𝑥), 𝑥) for a random 𝑥 ∈ Z𝑝 .
• Encaps(pk, 1𝜆): the encapsulation algorithm taking as

input 𝔤 = 𝜏 (1), pk = 𝜏 (𝑥), and 1
𝜆
and outputs a key 𝑘

and a ciphertext 𝑐 as follows:

◦ Pick a random 𝑟 ∈ {0, 1}𝜆1 .
◦ Compute H0 (𝑟) = 𝛼 and H1 (𝑟) = 𝑘 .

10

https://engineering.fb.com/2014/04/10/core-data/scaling-the-facebook-data-warehouse-to-300-pb/
https://engineering.fb.com/2014/04/10/core-data/scaling-the-facebook-data-warehouse-to-300-pb/
https://medium.com/@AnalyticsAtMeta/data-engineering-at-meta-high-level-overview-of-the-internal-tech-stack-a200460a44fe
https://medium.com/@AnalyticsAtMeta/data-engineering-at-meta-high-level-overview-of-the-internal-tech-stack-a200460a44fe

Preprocessing Security in Multiple Idealized Models with Applications to Schnorr Signatures and PSEC-KEM

◦ Compute 𝑐1 = 𝑟 ⊕ H2 (𝜏 (𝛼)∥𝜏 (𝛼𝑥)) and 𝑐 :=

(𝜏 (𝛼), 𝑐1).
(Note: 𝜏 (𝛼) ← Pow(𝔤, 𝛼) and 𝜏 (𝛼𝑥) ← Pow(pk, 𝛼))
◦ Output a key-ciphertext pair (𝑘, 𝑐). We write 𝑘 ←

Encaps(pk, 1𝜆).key and 𝑐 ← Encaps(pk, 1𝜆).ctxt.
• Decaps(sk, 𝑐): the deterministic decapsulation algo-

rithm taking as input a secret key sk = 𝑥 and a ciphertext

𝑐 , and outputs a key 𝑘 or ⊥ denoting failure as follows:

◦ Parse 𝑐 = (𝔥, 𝑐1).
◦ Compute 𝑟 = 𝑐1 ⊕ H2 (𝔥∥Pow(𝔥, 𝑥)).
◦ Compute H0 (𝑟) = 𝛼 and H1 (𝑟) = 𝑘 .
◦ Verify that 𝔥 = 𝜏 (𝛼). If verified, output𝑘 ; otherwise,

output ⊥.

We then define the CPA (Chosen Plaintext Attack) security

of a KEM Π = (Gen, Encaps,Decaps) in the ROM+GGM via the

CPA indistinguishability game KEM𝜏,H,cpa
A,Π (𝜆). Intuitively, the game

works as follows: the attacker is given the public key pk and a

key-ciphertext pair (ˆ𝑘, 𝑐). Ultimately, the attacker is asked to dis-

tinguish whether
ˆ𝑘 is the challenger’s real encapsulated key 𝑘 ←

Encaps(pk, 1𝜆).key or a randomly selected string. The challenger

picks a uniform bit 𝑏 ∈ {0, 1} and selects the real encapsulated key

if 𝑏 = 0 and selects a random key if 𝑏 = 1. The attacker is given ac-

cess to the “encapsulation” oracle Encaps𝑏 (·), where Encaps𝑏 (pk)
first runs (𝑘, 𝑐) ← Encaps(pk, 1𝜆) and then outputs (𝑘𝑏 , 𝑐) where
𝑘0 = 𝑘 and 𝑘1 ←$ {0, 1}𝜆 is a uniformly random key unrelated to

the ciphertext 𝑐 . The attacker is also given access to the random

oracles and the generic group oracle (Mult(·, ·), Inv(·)). After mul-

tiple queries to the oracles above, the attacker finally outputs a

bit 𝑏′, and wins the security game if 𝑏′ = 𝑏. The KEM is said to

be CPA-secure if distinguishing between the two is not more effi-

cient than a random guess, i.e., the distinguishing probability is not

greater than 1/2+negl(𝜆) for some negligible function negl(𝜆). See
Appendix E.1 for the formal description of the game KEM𝜏,H,cpa

A,Π (𝜆).

Definition 5.1. Consider the generic group model with the label-

ing map 𝜏 : Z𝑝 → G. A KEM Π = (Gen, Encaps,Decaps) is said to

be (𝑞H, 𝑞G, 𝑞E, 𝜀)-CPA secure (secure against chosen-plaintext attack)
if for every adversary A making at most 𝑞H, 𝑞G, and 𝑞E queries to

the random oracles, generic group oracles, and Encaps𝑏 (·), respec-
tively, the following bound holds:

Pr

[
KEM𝜏,H,cpa

A,Π (𝜆) = 1

]
≤ 1

2

+ 𝜀,

where the randomness is taken over the selection of 𝜏 , the random

coins of A, the random coins of Gen, the selection of random

oracles H0,H1,H2, and the random coins of Encaps𝑏 .

When it comes to the preprocessing security, we say that a KEM

Π is CPA-secure against preprocessing attacks if for every adver-

sary A = (Apre,Aon), Π is (𝑞H, 𝑞G, 𝑞E, 𝜀)-CPA secure against the

online attacker Aon. In the Bit-Fixing model, Aon will receive the

information of 𝑃 pre-fixed points from Apre, and in the Auxiliary-

Input model, Aon will receive an 𝑆-bit hint from Apre. Hence, to

prove the preprocessing security, it is sufficient to upper bound the

probability of the event KEM𝜏,H,cpa
Aon,Π

(𝜆) = 1 for Aon.

As a warmup, we first analyze the CPA security of PSEC-KEM

in the ROM+GGM without preprocessing in Appendix D. For the

rest of the paper, we will focus on the preprocessing security of

PSEC-KEM in the ROM+GGM.

5.1 The CPA Security of PSEC-KEM in the
BF-ROM+GGM

We first establish the CPA preprocessing security of PSEC-KEM

in the BF-ROM+GGM via reduction from a new game called the

quadratic bridge-finding game.

The Quadratic Bridge-Finding Game in the BF-GGM. We define

the quadratic bridge-finding game QDBridgeChal𝜏A (𝜆) in the BF-

GGM. The game is run by a challenger and an attacker A =

(Apre,Aon). In a preprocessing phase, the preprocessing attacker

fixes 𝑃 input/output pairs of a labeling map 𝜏 : Z𝑝 → G, i.e.,
(𝑡1, 𝜏 (𝑡1)), . . . , (𝑡𝑃 , 𝜏 (𝑡𝑃)). Then the rest of the map 𝜏 is chosen uni-

formly at random subject to the constraint that the map remains

injective. In an online phase, the challenger receives 𝑃 pre-fixed

points, picks a secret 𝑥 ←$ Z𝑝 , and sends 𝜏 (1) and 𝜏 (𝑥) to the

online attacker Aon. Aon is also given 𝑃 pre-fixed points of the

map 𝜏 as a hint from Apre, and has access to the generic group

oracle (Mult(·, ·), Inv(·)) and a generic oracle O which selects a

new random unknown variable 𝑥 𝑗 ←$ Z𝑝 and outputs 𝜏 (𝑥 𝑗).
The attacker’s goal is to find a quadratic relationship between the

unknown variables; it is not required for the attacker to solve for

those unknown variables. In particular, the attacker needs to output

a tuple (𝑖, 𝑗, a, 𝑏) which satisfies 𝑥𝑖𝑥 𝑗 = a · x + 𝑏 to win the game,

denoted by QDBridgeChal𝜏A (𝜆) = 1, where the first two elements

in the tuple denote the indices of the unknown variables that create

a quadratic term, and the vector a and the scalar 𝑏 create the linear

relationship between the unknowns.
9

There are two important things to note. (1) As the attacker makes

query to the oracles, the challenger maintains the list L that con-

sists of tuples of the form (𝔶, a, 𝑏) which indicates the relation-

ship 𝔶 = 𝜏 (a · x + 𝑏) where x is the vector of unknowns. Initially,

L = {(𝜏 (1), 0, 1), (𝜏 (𝑥), 1, 0), (𝜏 (𝑡1), 0, 𝑡1), . . . , (𝜏 (𝑡𝑃), 0, 𝑡𝑃)} since
there is only one unknown variable 𝑥 and the challenger has the

information of 𝑃 pre-fixed points. (2) We allow the unknown vari-

ables to expand as the game progresses. There are several occasions

when this happens (suppose dim(x) = 𝑗). A few examples are:

• When the attacker makes a query to the oracle O, then
the oracle picks a new random unknown 𝑥 𝑗+1 ←$ Z𝑝 and

outputs 𝜏 (𝑥 𝑗+1). The challenger updates x← x ◦ 𝑥 𝑗+1 and
updates all the entries of the listL from (𝔰, a, 𝑏) to (𝔰, a◦0, 𝑏)
as the number of unknowns is increased by 1. Finally, the

challenger adds (𝜏 (𝑥 𝑗+1), 0 ◦ 1, 0) to the list L.
• When the attacker queries Mult(𝔶1, 𝔶2), and if (𝔶1, a1, 𝑏1) ∈
L but 𝔶2 does not appear in L, then the challenger updates

x← x◦𝑥 𝑗+1 where 𝑥 𝑗+1 denotes a new unknown satisfying

𝜏 (𝑥 𝑗+1) = 𝔶2. Similarly, the challenger also updates all the

9
For example, suppose there are 3 unknown variables 𝑥1, 𝑥2, 𝑥3 . The attacker wins

the quadratic bridge-finding game if s/he outputs a tuple (2, 3, (5, −3, 2), −1) , which
indicates the quadratic relationship 𝑥2𝑥3 = (5, −3, 2) · (𝑥1, 𝑥2, 𝑥3) − 1 = 5𝑥1 − 3𝑥2 +
2𝑥3 − 1. Note that we can always make the coefficient of the quadratic term 1 as 𝑝 is

prime, e.g., if the attacker ever found the quadratic relationship 𝑐𝑥𝑖𝑥 𝑗 = a · x + 𝑏 for

𝑐 ≠ 0 then s/he can output (𝑖, 𝑗, 𝑐−1a, 𝑐−1𝑏) since 𝑐−1 always exists in Z𝑝 if 𝑐 ≠ 0.

11

Jeremiah Blocki and Seunghoon Lee

entries of the list L from (𝔰, a, 𝑏) to (𝔰, a ◦ 0, 𝑏), and adds

(𝔶2, 0 ◦ 1, 0) and (Mult(𝔶1, 𝔶2), a1 ◦ 0 + 0 ◦ 1, 𝑏1) to L.
See Appendix E.2 for the formal description of the quadratic bridge-

finding game, which handles all the possible cases when the attacker

queries Mult(𝔶1, 𝔶2) or Inv(𝔶).
Lemma 5.2 upper bounds the probability of winning the quadratic

bridge-finding game for a bit-fixing preprocessing attacker. The

proof works largely the same as the proof of Lemma D.1 in Appen-

dix D, which upper bounds the odds of winning the quadratic bridge-

finding game without preprocessing. Intuitively, the proof works by

maintaining a list L of tuples (𝜏 (𝑦), a, 𝑏) ∈ G×Zdim(x)𝑝 ×Z𝑝 which

satisfies the constraint 𝑦 = a · x +𝑏. We consider the event BRIDGE
which denotes the event that the attacker finds some linear depen-

dency on x. Conditioning on BRIDGE, we can essentially view x
selected uniformly at random subject to the restriction that for any

distinct tuples (𝔶, a, 𝑏) and (𝔶′, a′, 𝑏′) we have a·x+𝑏 ≠ a′ ·x+𝑏′. For
𝑥𝑟 = x[𝑟] such that a[𝑟] − a′ [𝑟] ≠ 0, if the attacker outputs a tuple

(𝑖1, 𝑖2, a, 𝑏) such that 𝑥𝑖1𝑥𝑖2 = a·x+𝑏 then there are at most 2 roots in

Z𝑝 since this is a quadratic equation at the worst. This allows us to

upper bound the probability Pr[QDBridgeChal𝜏A (𝜆) = 1|BRIDGE].
The analysis of Pr[BRIDGE] follows a similar approach to the proof

of Lemma 4.3. Nowwe obtain our result by upper bounding the prob-

ability Pr[BRIDGE] +Pr[QDBridgeChal𝜏A (𝜆) = 1|BRIDGE] which
upper bounds the desired probability Pr[QDBridgeChal𝜏A (𝜆) = 1].
The full proof of Lemma 5.2 can be found in Appendix G.

Lemma 5.2. Let 𝑝 > 2
2𝜆 is a prime number. LetA :=

(
ABF-GG(𝑃)

pre ,

ABF-GG(𝑃)
on

)
be a pair of bit-fixing generic algorithms with a labeling

map 𝜏 : Z𝑝 → G such that ABF-GG(𝑃)
pre fixes 𝑃 input/output pairs

of the labeling map 𝜏 and ABF-GG(𝑃)
on makes at most 𝑞onG := 𝑞onG (𝜆)

queries to the generic group oracles and 𝑞onO := 𝑞onO (𝜆) queries to the
oracle O. Then Pr

[
QDBridgeChal𝜏A (𝜆) = 1

]
≤ 𝜀, where

𝜀 :=
3(𝑞onG + 𝑞

on
O)

2 + (5 + 2𝑃) (𝑞onG + 𝑞
on
O) + 4

2𝑝 − 4𝑃 (3𝑞onG + 𝑞
on
O + 1) − 2(3𝑞

on
G + 𝑞

on
O + 1)

2 − 2(2𝑞onG + 𝑞
on
O)

,

in the GGM of prime order 𝑝 , where the randomness is taken over the
selection of 𝑥1, . . . , 𝑥𝑁 , 𝜏 as well as any random coins of ABF-GG(𝑃)

on .

We are now ready to prove the CPA security of PSEC-KEM

against preprocessing attacks in the BF-ROM+GGM.

Theorem 5.3. Let Π = (Gen, Encaps,Decaps) be PSEC-KEM

and 𝑝 > 2
2𝜆 be a prime number. Let A =

(
ABF-RO+GG(𝑃1,𝑃2)

pre ,

ABF-RO+GG(𝑃1,𝑃2)
on

)
be a pair of bit-fixing generic algorithms with

a labeling map 𝜏 : Z𝑝 → G such that ABF-RO+GG(𝑃1,𝑃2)
pre fixes 𝑃1,1

(resp. 𝑃1,2, 𝑃1,3) input/output pairs of a random oracle H0 : {0, 1}∗ →
Z𝑝 (resp. H1 : {0, 1}∗ → {0, 1}𝜆 , H2 : {0, 1}∗ → {0, 1}𝜆1), and 𝑃2
input/output pairs of the map 𝜏 such that 𝑃1,1 + 𝑃1,2 + 𝑃1,3 = 𝑃1 and
2𝑃1 + 𝑃2 = 𝑃 , and the hint str𝜏,H0,H1,H2

is only dependent on those
𝑃 points. If ABF-RO+GG(𝑃1,𝑃2)

on makes at most 𝑞onH (resp. 𝑞onG , 𝑞
on
E)

queries to the random oracle (resp. generic group oracle, encapsulation

oracle), then Pr

[
KEM𝜏,(H0,H1,H2),cpa

ABF-RO+GG(𝑃
1
,𝑃
2
)

on,str𝜏,H
0
,H
1
,H
2

,Π
(𝜆) = 1

]
≤ 1

2
+ 𝜀, with

𝜀 =
3(𝑞onG + 2𝑞

on
E)

2 + (5 + 2𝑃) (𝑞onG + 2𝑞
on
E) + 4

𝑝 − 2𝑃 (3𝑞onG + 2𝑞
on
E + 1) − (3𝑞

on
G + 2𝑞

on
E + 1)2 − 2(𝑞

on
G + 𝑞

on
E)

+
3(𝑞onH + 𝑃)𝑞

on
E

2
𝜆1

+
(𝑞onH + 𝑃)𝑞

on
E

𝑝
,

where the randomness is taken over the selection of 𝜏 and the random
coins of ABF-RO+GG(𝑃1,𝑃2)

on .

Proof Sketch. We use a hybrid argument. In the first hybrid

(hybrid 𝐻0), the distinguisher D is given the CPA indistinguisha-

bility game for PSEC-KEM with the challenge bit 𝑏 = 0, and in the

last hybrid (hybrid 𝐻3), D is given the CPA indistinguishability

game with 𝑏 = 1. The intermediate hybrids are defined as follows.

Hybrid 𝐻1 is the same as 𝐻0 except that the encapsulation oracle is

modified so that 𝜏 (𝛼) and 𝜏 (𝛼𝑥) are replaced with random elements

in 𝜏 (Z𝑝) by querying the oracle O twice. Hybrid 𝐻2 is the same as

𝐻1 except that the encapsulation oracle is further modified so that

the key 𝑘 is sampled uniformly at random from {0, 1}𝜆 .
We show that 𝐻0, 𝐻1 (resp. 𝐻2, 𝐻3) are perfectly indistinguish-

able unless (1) the random oracle query H2 (𝜏 (𝛼)∥𝜏 (𝛼𝑥)) has been
made, or (2) the adversary makes query 𝑟 to H0 (which is not one

of the fixed points of H0) but has not queried H2 (𝜏 (𝛼)∥𝜏 (𝛼𝑥)), or
(3) 𝑟 is one of the fixed points of H0. We show that Case (1) reduces

to winning the quadratic bridge-finding game so that we can apply

Lemma 5.2 with 𝑞onO ≤ 2𝑞onE . Since there are at most 𝑃 fixed points,

by union bound we can show that Case (2) has probability ≤ 𝑞onH ·𝑞
on
E

2
𝜆
1

and Case (3) has probability ≤ 𝑃𝑞onE
2
𝜆
1

. We also prove that the distin-

guishing probability between𝐻1, 𝐻2 is at most 𝑞onE

(
𝑞onH +𝑃
𝑝 + 𝑞

on
H +𝑃
2
𝜆
1

)
since two hybrids are perfectly indistinguishable unless H1 (𝑟) is
queried (which is not one of the fixed points) or 𝑟 is one of the fixed

points. Taken together, we can conclude the proof. The full proof

can be found in Appendix G. □

5.2 The CPA Security of PSEC-KEM in the
AI-ROM+GGM

By applying Theorem 3.2, we can address the CPA security of PSEC-

KEM against preprocessing attacks in the AI-ROM+GGM.

Theorem 5.4. Let Π = (Gen, Encaps,Decaps) be PSEC-KEM and

𝑝 > 2
2𝜆 be a prime number. Let A =

(
AAI-RO+GG

pre ,AAI-RO+GG
on

)
be

a pair of (auxiliary-input) generic algorithms with a labeling map 𝜏 :

Z𝑝 → G such thatAAI-RO+GG
pre outputs an 𝑆-bit hint str𝜏,H0,H1,H2

. If
AAI-RO+GG

on makes at most 𝑞onH (resp. 𝑞onG , 𝑞
on
E) queries to the random

oracles H0 : {0, 1}∗ → Z𝑝 and H1 : {0, 1}∗ → {0, 1}𝜆 and H2 :

{0, 1}∗ → {0, 1}𝜆1 in total (resp. generic group oracle, encapsulation

oracle), then Pr

[
KEM𝜏,(H0,H1,H2)cpa

AAI-RO+GG
on,str𝜏,H

0
,H
1
,H
2

,Π
(𝜆) = 1

]
≤ 1

2
+ 𝜀, with

𝜀 =
6(𝑞onG + 2𝑞

on
E)

2 + 2(5 + 2𝑆𝑞) (𝑞onG + 2𝑞
on
E) + 8

𝑝 − 2𝑆𝑞(3𝑞onG + 2𝑞
on
E + 1) − (3𝑞

on
G + 2𝑞

on
E + 1)2 − 2(𝑞

on
G + 𝑞

on
E)

+
6(𝑞onH + 𝑆𝑞)𝑞

on
E

2
𝜆1

+
2(𝑞onH + 𝑆𝑞)𝑞

on
E

𝑝
+ 2−2𝜆+1,

12

Preprocessing Security in Multiple Idealized Models with Applications to Schnorr Signatures and PSEC-KEM

where 𝑞 := 𝑞onH +𝑞
on
G +𝑞

on
E denotes the total number of online queries

made by a preprocessing attacker and the randomness is taken over
the selection of 𝜏 and the random coins of AAI-RO+GG

on .

Proof. This is straightforward by combining Theorem 5.3 with

Theorem 3.2 with setting 𝑃 = 𝑆𝑞 and 𝛾 = 2
−2𝜆

. □

Instantiation with Parameters. We would like to have the distin-

guishing probability in Theorem 5.4 bounded by (1/2) +𝑂
(
𝑞/2𝜆

)
for any 𝑞 ≤ 2

𝜆
. To achieve 𝜆 bits of security for PSEC-KEM with

preprocessing, we can fix 𝑝 such that 𝑝 ≈ 2
2𝜆𝑆 and set the length of

the output of H2 to be 𝜆1 = 2𝜆 + log
2
(6𝑆). Then Theorem 5.4 tells

us that a preprocessing attacker in the AI-ROM+GGM wins the CPA

indistinguishability game with probability at most (1/2) +𝑂
(
𝑞/2𝜆

)
.

References
[1] Donald E. Eastlake 3rd. 2005. Additional XML Security Uniform Resource Identi-

fiers (URIs). RFC 4051. https://doi.org/10.17487/RFC4051

[2] Akshima, David Cash, Andrew Drucker, and Hoeteck Wee. 2020. Time-

Space Tradeoffs and Short Collisions in Merkle-Damgård Hash Functions. In

CRYPTO 2020, Part I (LNCS, Vol. 12170), Daniele Micciancio and Thomas Risten-

part (Eds.). Springer, Cham, 157–186. https://doi.org/10.1007/978-3-030-56784-

2_6

[3] Akshima, Siyao Guo, and Qipeng Liu. 2022. Time-Space Lower Bounds for

Finding Collisions in Merkle-Damgård Hash Functions. In CRYPTO 2022, Part III
(LNCS, Vol. 13509), Yevgeniy Dodis and Thomas Shrimpton (Eds.). Springer, Cham,

192–221. https://doi.org/10.1007/978-3-031-15982-4_7

[4] Mihir Bellare and Phillip Rogaway. 1993. Random Oracles are Practical: A

Paradigm for Designing Efficient Protocols. In ACM CCS 93, Dorothy E. Denning,
Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby (Eds.). ACM

Press, 62–73. https://doi.org/10.1145/168588.168596

[5] Daniel J. Bernstein and Tanja Lange. 2013. Non-uniform Cracks in the Concrete:

The Power of Free Precomputation. In ASIACRYPT 2013, Part II (LNCS, Vol. 8270),
Kazue Sako and Palash Sarkar (Eds.). Springer, Berlin, Heidelberg, 321–340.

https://doi.org/10.1007/978-3-642-42045-0_17

[6] Jeremiah Blocki and Seunghoon Lee. 2022. On the Multi-user Security of Short

Schnorr Signatures with Preprocessing. In EUROCRYPT 2022, Part II (LNCS,
Vol. 13276), Orr Dunkelman and Stefan Dziembowski (Eds.). Springer, Cham,

614–643. https://doi.org/10.1007/978-3-031-07085-3_21

[7] D. Galindo Chacon, Sébastien Martin, and Jorge Luis Villar. 2005. The security

of PSEC-KEM versus ECIES-KEM. https://api.semanticscholar.org/CorpusID:

15798138

[8] Lily Chen, Dustin Moody, Karen Randall, Andrew Regenscheid, and Angela

Robinson. 2023. Recommendations for Discrete Logarithm-based Cryptography:

Elliptic Curve Domain Parameters. https://doi.org/10.6028/NIST.SP.800-186

[9] Jung Hee Cheon. 2010. Discrete Logarithm Problems with Auxiliary Inputs.

Journal of Cryptology 23, 3 (July 2010), 457–476. https://doi.org/10.1007/s00145-

009-9047-0

[10] Tung Chou and Claudio Orlandi. 2015. The Simplest Protocol for Oblivious

Transfer. In Proceedings of the 4th International Conference on Progress in Cryp-
tology – LATINCRYPT 2015 - Volume 9230. Springer-Verlag, Berlin, Heidelberg,
40–58. https://doi.org/10.1007/978-3-319-22174-8_3

[11] Sandro Coretti, Yevgeniy Dodis, and Siyao Guo. 2018. Non-Uniform Bounds in the

Random-Permutation, Ideal-Cipher, and Generic-Group Models. In CRYPTO 2018,
Part I (LNCS, Vol. 10991), Hovav Shacham and Alexandra Boldyreva (Eds.).

Springer, Cham, 693–721. https://doi.org/10.1007/978-3-319-96884-1_23

[12] Sandro Coretti, Yevgeniy Dodis, Siyao Guo, and John P. Steinberger. 2018. Ran-

dom Oracles and Non-uniformity. In EUROCRYPT 2018, Part I (LNCS, Vol. 10820),
Jesper Buus Nielsen and Vincent Rijmen (Eds.). Springer, Cham, 227–258.

https://doi.org/10.1007/978-3-319-78381-9_9

[13] Jean-Sébastien Coron, Jacques Patarin, and Yannick Seurin. 2008. The Random

Oracle Model and the Ideal Cipher Model Are Equivalent. In CRYPTO 2008
(LNCS, Vol. 5157), David Wagner (Ed.). Springer, Berlin, Heidelberg, 1–20. https:

//doi.org/10.1007/978-3-540-85174-5_1

[14] Henry Corrigan-Gibbs andDmitry Kogan. 2018. TheDiscrete-LogarithmProblem

with Preprocessing. In EUROCRYPT 2018, Part II (LNCS, Vol. 10821), Jesper Buus
Nielsen and Vincent Rijmen (Eds.). Springer, Cham, 415–447. https://doi.org/10.

1007/978-3-319-78375-8_14

[15] Henry Corrigan-Gibbs and Dmitry Kogan. 2019. The Function-Inversion

Problem: Barriers and Opportunities. In TCC 2019, Part I (LNCS, Vol. 11891),
Dennis Hofheinz and Alon Rosen (Eds.). Springer, Cham, 393–421. https:

//doi.org/10.1007/978-3-030-36030-6_16

[16] Yuanxi Dai and John P. Steinberger. 2016. Indifferentiability of 8-Round Feistel

Networks. In CRYPTO 2016, Part I (LNCS, Vol. 9814), Matthew Robshaw and

Jonathan Katz (Eds.). Springer, Berlin, Heidelberg, 95–120. https://doi.org/10.

1007/978-3-662-53018-4_4

[17] Anindya De, Luca Trevisan, and Madhur Tulsiani. 2010. Time Space Tradeoffs for

Attacks against One-Way Functions and PRGs. In CRYPTO 2010 (LNCS, Vol. 6223),
Tal Rabin (Ed.). Springer, Berlin, Heidelberg, 649–665. https://doi.org/10.1007/

978-3-642-14623-7_35

[18] Peter de Rooij. 1997. On Schnorr’s Preprocessing for Digital Signature Schemes.

J. Cryptol. 10, 1 (dec 1997), 1–16. https://doi.org/10.1007/s001459900016

[19] Morris Dworkin. 2015. SHA-3 Standard: Permutation-Based Hash and

Extendable-Output Functions. https://doi.org/10.6028/NIST.FIPS.202

[20] Shimon Even and Yishay Mansour. 1993. A Construction of a Cipher From a Sin-

gle Pseudorandom Permutation. In ASIACRYPT’91 (LNCS, Vol. 739), Hideki Imai,

Ronald L. Rivest, and Tsutomu Matsumoto (Eds.). Springer, Berlin, Heidelberg,

210–224. https://doi.org/10.1007/3-540-57332-1_17

[21] Federal Office for Information Security. 2018. Elliptic Curve Cryptography,

Version 2.1. Technical Guideline BSI TR-03111 (Jun 2018). https://www.bsi.bund.

de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03111/BSI-

TR-03111_V-2-1_pdf.pdf?__blob=publicationFile&v=1

[22] International Organization for Standardization and International Electrotechnical

Commission. 2006. IT Security techniques – Encryption algorithms – Part 2:

Asymmetric ciphers. ISO/IEC 18033-2 (2006).
[23] International Organization for Standardization and International Electrotechnical

Commission. 2018. IT Security techniques – Digital signatures with appendix

– Part 3: Discrete logarithm based mechanisms. ISO/IEC 14888-3 (Nov 2018).

https://www.iso.org/standard/76382.html

[24] Cody Freitag, Ashrujit Ghoshal, and Ilan Komargodski. 2022. Time-Space

Tradeoffs for Sponge Hashing: Attacks and Limitations for Short Collisions. In

CRYPTO 2022, Part III (LNCS, Vol. 13509), Yevgeniy Dodis and Thomas Shrimpton

(Eds.). Springer, Cham, 131–160. https://doi.org/10.1007/978-3-031-15982-4_5

[25] Ashrujit Ghoshal and Ilan Komargodski. 2022. On Time-Space Tradeoffs for

Bounded-Length Collisions inMerkle-Damgård Hashing. InCRYPTO 2022, Part III
(LNCS, Vol. 13509), Yevgeniy Dodis and Thomas Shrimpton (Eds.). Springer, Cham,

161–191. https://doi.org/10.1007/978-3-031-15982-4_6

[26] Ashrujit Ghoshal and Stefano Tessaro. 2023. The Query-Complexity of Prepro-

cessing Attacks. In CRYPTO 2023, Part II (LNCS, Vol. 14082), Helena Handschuh
and Anna Lysyanskaya (Eds.). Springer, Cham, 482–513. https://doi.org/10.1007/

978-3-031-38545-2_16

[27] M. Hellman. 1980. A cryptanalytic time-memory trade-off. IEEE Transactions
on Information Theory 26, 4 (1980), 401–406. https://doi.org/10.1109/TIT.1980.

1056220

[28] Pavel Hubáček, Ľubica Jančová, and Veronika Králová. 2022. On The Distributed

Discrete Logarithm Problem with Preprocessing. Cryptology ePrint Archive,

Report 2022/521. https://eprint.iacr.org/2022/521

[29] Eike Kiltz, Daniel Masny, and Jiaxin Pan. 2016. Optimal Security Proofs for

Signatures from Identification Schemes. In CRYPTO 2016, Part II (LNCS, Vol. 9815),
Matthew Robshaw and Jonathan Katz (Eds.). Springer, Berlin, Heidelberg, 33–61.

https://doi.org/10.1007/978-3-662-53008-5_2

[30] Hyung Tae Lee, Jung Hee Cheon, and Jin Hong. 2011. Accelerating ID-based

Encryption based on Trapdoor DL using Pre-computation. Cryptology ePrint

Archive, Report 2011/187. https://eprint.iacr.org/2011/187

[31] Ueli Maurer. 2005. Abstract Models of Computation in Cryptography. In

Proceedings of the 10th International Conference on Cryptography and Coding
(Cirencester, UK) (IMA’05). Springer-Verlag, Berlin, Heidelberg, 1–12. https:

//doi.org/10.1007/11586821_1

[32] A. Menezes. 2001. Evaluation of security level of cryptography: The revised

version of PSEC-2 (PSEC-KEM). Technical report, CRYPTREC. http://www.

shiba.tao.go.jp/kenkyu/CRYPTREC/fy15/cryptrec20030424outrep.html

[33] V. I. Nechaev. 1994. Complexity of a Determinate Algorithm for the Discrete

Logarithm. Math Notes 55 (1994), 165. https://doi.org/10.1007/BF02113297

[34] Gregory Neven, Nigel Smart, and Bogdan Warinschi. 2009. Hash function re-

quirements for Schnorr signatures. Journal of Mathematical Cryptology 3 (05

2009). https://doi.org/10.1515/JMC.2009.004

[35] National Institute of Standards and Technology (NIST). 2014. FIPS 202. sha-3

standard: Permutation-based hash and extendable-output functions. Technical

report, US Department of Commerce.

[36] National Institute of Standards and Technology. 2001. Advanced Encryption

Standard. NIST FIPS PUB 197 (2001).

[37] Lior Rotem and Gil Segev. 2022. A Fully-Constructive Discrete-Logarithm Pre-

processing Algorithm with an Optimal Time-Space Tradeoff. Cryptology ePrint

Archive, Report 2022/583. https://eprint.iacr.org/2022/583

[38] Claus-Peter Schnorr. 1990. Efficient Identification and Signatures for Smart

Cards. In CRYPTO’89 (LNCS, Vol. 435), Gilles Brassard (Ed.). Springer, New York,

239–252. https://doi.org/10.1007/0-387-34805-0_22

[39] Claus-Peter Schnorr andMarkus Jakobsson. 2000. Security of Signed ElGamal En-

cryption. In ASIACRYPT 2000 (LNCS, Vol. 1976), Tatsuaki Okamoto (Ed.). Springer,

Berlin, Heidelberg, 73–89. https://doi.org/10.1007/3-540-44448-3_7

13

https://doi.org/10.17487/RFC4051
https://doi.org/10.1007/978-3-030-56784-2_6
https://doi.org/10.1007/978-3-030-56784-2_6
https://doi.org/10.1007/978-3-031-15982-4_7
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/978-3-642-42045-0_17
https://doi.org/10.1007/978-3-031-07085-3_21
https://api.semanticscholar.org/CorpusID:15798138
https://api.semanticscholar.org/CorpusID:15798138
https://doi.org/10.6028/NIST.SP.800-186
https://doi.org/10.1007/s00145-009-9047-0
https://doi.org/10.1007/s00145-009-9047-0
https://doi.org/10.1007/978-3-319-22174-8_3
https://doi.org/10.1007/978-3-319-96884-1_23
https://doi.org/10.1007/978-3-319-78381-9_9
https://doi.org/10.1007/978-3-540-85174-5_1
https://doi.org/10.1007/978-3-540-85174-5_1
https://doi.org/10.1007/978-3-319-78375-8_14
https://doi.org/10.1007/978-3-319-78375-8_14
https://doi.org/10.1007/978-3-030-36030-6_16
https://doi.org/10.1007/978-3-030-36030-6_16
https://doi.org/10.1007/978-3-662-53018-4_4
https://doi.org/10.1007/978-3-662-53018-4_4
https://doi.org/10.1007/978-3-642-14623-7_35
https://doi.org/10.1007/978-3-642-14623-7_35
https://doi.org/10.1007/s001459900016
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.1007/3-540-57332-1_17
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03111/BSI-TR-03111_V-2-1_pdf.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03111/BSI-TR-03111_V-2-1_pdf.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03111/BSI-TR-03111_V-2-1_pdf.pdf?__blob=publicationFile&v=1
https://www.iso.org/standard/76382.html
https://doi.org/10.1007/978-3-031-15982-4_5
https://doi.org/10.1007/978-3-031-15982-4_6
https://doi.org/10.1007/978-3-031-38545-2_16
https://doi.org/10.1007/978-3-031-38545-2_16
https://doi.org/10.1109/TIT.1980.1056220
https://doi.org/10.1109/TIT.1980.1056220
https://eprint.iacr.org/2022/521
https://doi.org/10.1007/978-3-662-53008-5_2
https://eprint.iacr.org/2011/187
https://doi.org/10.1007/11586821_1
https://doi.org/10.1007/11586821_1
http://www.shiba.tao.go.jp/kenkyu/CRYPTREC/fy15/cryptrec20030424 outrep.html
http://www.shiba.tao.go.jp/kenkyu/CRYPTREC/fy15/cryptrec20030424 outrep.html
https://doi.org/10.1007/BF02113297
https://doi.org/10.1515/JMC.2009.004
https://eprint.iacr.org/2022/583
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/3-540-44448-3_7

Jeremiah Blocki and Seunghoon Lee

[40] Claude E. Shannon. 1949. Communication theory of secrecy systems. Bell
Systems Technical Journal 28, 4 (1949), 656–715.

[41] R. Shipsey. 2001. PSEC-KEM. Technical Report NES/DOC/EHU/WP5/001/a,
NESSIE.

[42] Victor Shoup. 1997. Lower Bounds for Discrete Logarithms and Related Prob-

lems. In EUROCRYPT’97 (LNCS, Vol. 1233), Walter Fumy (Ed.). Springer, Berlin,

Heidelberg, 256–266. https://doi.org/10.1007/3-540-69053-0_18

[43] Victor Shoup. 2001. A Proposal for an ISO Standard for Public Key Encryption.

Cryptology ePrint Archive, Report 2001/112. https://eprint.iacr.org/2001/112

[44] Dominique Unruh. 2007. Random Oracles and Auxiliary Input. In CRYPTO 2007
(LNCS, Vol. 4622), Alfred Menezes (Ed.). Springer, Berlin, Heidelberg, 205–223.

https://doi.org/10.1007/978-3-540-74143-5_12

[45] A. C.-C. Yao. 1990. Coherent Functions and Program Checkers. In Proceedings of
the Twenty-Second Annual ACM Symposium on Theory of Computing (Baltimore,

Maryland, USA) (STOC ’90). Association for Computing Machinery, New York,

NY, USA, 84–94. https://doi.org/10.1145/100216.100226

[46] Mark Zhandry. 2022. To Label, or Not To Label (in Generic Groups). In

CRYPTO 2022, Part III (LNCS, Vol. 13509), Yevgeniy Dodis and Thomas Shrimpton

(Eds.). Springer, Cham, 66–96. https://doi.org/10.1007/978-3-031-15982-4_3

A Formal Definition of
Bit-Fixing/Auxiliary-Input ROM+GGM

A.1 Replacing Auxiliary Information by
Bit-Fixing in the ROM+GGM

We first define an (H, 𝜏)-source for a random oracleH and a generic-

group random encoding map 𝜏 as follows.

Definition A.1. An (H, 𝜏)-source is a pair of random variables

(𝑋,𝑌) where𝑋 corresponds to the function table of a random oracle

H : {0, 1}𝑚 → {0, 1}𝜆 , with range ({0, 1}𝜆)2𝑚 , and 𝑌 corresponds

to the function table of an injection 𝜏 : Z𝑝 → G. A source (𝑋,𝑌) is
called

• (𝑃1, 𝑃2, 1−𝛿)-dense if for (𝑃1, 𝑃2) ∈ Z2𝑚 ×Z𝑝 ifH is fixed on

at most 𝑃1 coordinates, 𝜏 is fixed on at most 𝑃2 coordinates,

and if for all pairs of subsets (𝐼1, 𝐼2) ⊆ {0, 1}𝑚 × Z𝑝 of

non-fixed coordinates,

𝐻∞ (𝑋𝐼1 , 𝑌𝐼2) ≥ (1 − 𝛿)
[
|𝐼1 |𝜆 + log(𝑝 − 𝑃2) |𝐼2 |

]
,

where 𝑎𝑏 := 𝑎!/(𝑎 −𝑏)! and 𝑋𝐼 is 𝑋 restricted to the coordi-

nates in 𝐼 .

• (1 − 𝛿)-dense if it is (0, 0, 1 − 𝛿)-dense, and
• (𝑃1, 𝑃2)-Bit-Fixing if it is fixed on at most 𝑃1 coordinates

on H and 𝑃2 coordinates on 𝜏 and uniform on the rest.

Lemma A.2. Let (𝑋1, 𝑋2) be a pair of random variables such
that 𝑋1 is distributed uniformly over ({0, 1}𝜆)2𝑚 and 𝑋2 is a uni-
formly random injection that takes on as value function tables cor-
responding to an injection 𝜏 : Z𝑝 → G. Let 𝑍 := 𝑓 (𝑋1, 𝑋2), where
𝑓 : ({0, 1}𝜆)2𝑚 × G𝑝 → {0, 1}𝑆 is an arbitrary function. For any
𝛾 > 0, there exists a family {(𝑌1, 𝑌2)𝑍,Y }, indexed by𝑍 ∈ {0, 1}𝑆 and
size-𝑝 subsets Y of G, of convex combinations of (𝑃1, 𝑃2)-Bit-Fixing
(H, 𝜏)-sources satisfying 𝑃1𝜆 + 𝑃2 log(𝑝/𝑒) ≤ 𝑊 such that for any
distinguisher D taking an 𝑆-bit input and querying at most 𝑇1 < 𝑃1
coordinates and 𝑇2 < 𝑃2 coordinates of each oracle,���Pr [

D𝑋1,𝑋2 (𝑓 (𝑋1, 𝑋2)) = 1

]
− Pr

[
D (𝑌1,𝑌2)

𝑓 (𝑋
1
,𝑋

2
),im(𝑋

2
)
(𝑓 (𝑋1, 𝑋2)) = 1

] ���
≤ (𝑆 + log𝛾

−1) (𝑇1𝜆 +𝑇2 log𝑝)
𝑊

+ 𝛾,

and
Pr

[
D𝑋1,𝑋2 (𝑓 (𝑋1, 𝑋2)) = 1

]
≤ 2
(𝑆+log𝛾−1) (𝑇1𝜆+𝑇2 log𝑝)/𝑊 · Pr

[
D (𝑌1,𝑌2)

𝑓 (𝑋
1
,𝑋

2
),im(𝑋

2
)
(𝑓 (𝑋1, 𝑋2)) = 1

]
+ 2𝛾,

where 𝑒 is the Euler’s number.

Proof. Fix an arbitrary 𝑧 ∈ {0, 1}𝑆 and let (𝑋𝑧
1
, 𝑋𝑧

2
) be the

distribution of (𝑋1, 𝑋2) conditioned on 𝑓 (𝑋1, 𝑋2) = 𝑧. Let 𝑆𝑧 =

2
𝑚𝜆+log𝑝!−𝐻∞ (𝑋1, 𝑋2) be themin-entropy deficiency of (𝑋𝑧

1
, 𝑋𝑧

2
).

Let 𝛾 > 0 be arbitrary.

Claim 1. For every 𝛿 > 0, any leaky source (𝑋𝑧
1
, 𝑋𝑧

2
) is 𝛾-close to

a source (𝑌𝑧
1
, 𝑌𝑧

2
) which is a convex combination of sources such that

each source in the convex combination is (𝑃 ′
1
, 𝑃 ′

2
, 1 − 𝛿)-dense sources

for some 𝑃 ′
1
and 𝑃 ′

2
which satisfy

𝑃 ′
1
𝜆 + 𝑃 ′

2
log(𝑝/𝑒) ≤ 𝑆𝑧 + log𝛾

−1

𝛿
.

Proof of Claim 1. Without loss of generality, we can assume

that (𝑋𝑧
1
, 𝑋𝑧

2
) is not (1−𝛿)-dense since if it is (1−𝛿)-dense then we

14

https://doi.org/10.1007/3-540-69053-0_18
https://eprint.iacr.org/2001/112
https://doi.org/10.1007/978-3-540-74143-5_12
https://doi.org/10.1145/100216.100226
https://doi.org/10.1007/978-3-031-15982-4_3

Preprocessing Security in Multiple Idealized Models with Applications to Schnorr Signatures and PSEC-KEM

can trivially find such (𝑃 ′
1
, 𝑃 ′

2
, 1 − 𝛿)-dense sources. Let (𝑌𝑧

1
, 𝑌𝑧

2
) :=

(𝑋𝑧
1
, 𝑋𝑧

2
) and 𝐼1 ⊆ {0, 1}𝑚 and 𝐼2 ⊆ Z𝑝 be the largest subset for

which there exists a violation, i.e., there exists 𝑦
𝐼1
1
∈

(
{0, 1}𝜆

) |𝐼1 |
and 𝑦

𝐼2
2
∈ G |𝐼2 | such that

Pr

[
(𝑌𝑧

1
)𝐼1 = 𝑦

𝐼1
1
∧ (𝑌𝑧

2
)𝐼2 = 𝑦

𝐼2
2

]
> 2

−(1−𝛿)
[
|𝐼1 |𝜆+log𝑝 |𝐼2 |

]
.

Let (𝑌𝑧
1
, 𝑌𝑧

2
) be the distribution of (𝑌𝑧

1
, 𝑌𝑧

2
) conditioned on the event

(𝑌𝑧
1
)𝐼1 = 𝑦

𝐼1
1
∧ (𝑌𝑧

2
)𝐼2 = 𝑦

𝐼2
2
.

(1) Nowwe claim that (𝑌𝑧
1
, 𝑌𝑧

2
) is (𝑃 ′

1
, 𝑃 ′

2
, 1−𝛿)-dense with 𝑃 ′

1
=

|𝐼1 | and 𝑃 ′
2
= |𝐼2 |. Suppose that (𝑌𝑧

1
, 𝑌𝑧

2
) is not (𝑃 ′

1
, 𝑃 ′

2
, 1−𝛿)-

dense. Then there exists a pair of non-empty sets 𝐽1 ⊆ 𝐼1
and 𝐽2 ⊆ 𝐼2 and (𝑦 𝐽1

1
, 𝑦
𝐽2
2
) such that

Pr

[
(𝑌𝑧

1
)𝐽1 = 𝑦

𝐽1
1
∧ (𝑌𝑧

2
)𝐽2 = 𝑦

𝐽2
2

]
= Pr

[
(𝑌𝑧

1
)𝐽1 = 𝑦

𝐽1
1
∧ (𝑌𝑧

2
)𝐽2 = 𝑦

𝐽2
2

��� (𝑌𝑧
1
)𝐼1 = 𝑦

𝐼1
1
∧ (𝑌𝑧

2
)𝐼2 = 𝑦

𝐼2
2

]
> 2

−(1−𝛿)
[
| 𝐽1 |𝜆+log𝑝 | 𝐽2 |

]
.

The set 𝐼1 ∪ 𝐽1 and 𝐼2 ∪ 𝐽2 now form subsets for which

Pr

[
(𝑌𝑧

1
)𝐼1∪𝐽1 = 𝑦

𝐼1∪𝐽1
1
∧ (𝑌𝑧

2
)𝐼2∪𝐽2 = 𝑦

𝐼2∪𝐽2
2

]
= Pr

[
(𝑌𝑧

1
)𝐼1 = 𝑦

𝐼1
1
∧ (𝑌𝑧

1
)𝐽1 = 𝑦

𝐽1
1
∧ (𝑌𝑧

2
)𝐼2 = 𝑦

𝐼2
2
∧ (𝑌𝑧

2
)𝐽2 = 𝑦

𝐽2
2

]
= Pr

[
(𝑌𝑧

1
)𝐼1 = 𝑦

𝐼1
1
∧ (𝑌𝑧

2
)𝐼2 = 𝑦

𝐼2
2

]
· Pr

[
(𝑌𝑧

1
)𝐽1 = 𝑦

𝐽1
1
∧ (𝑌𝑧

2
)𝐽2 = 𝑦

𝐽2
2

��� (𝑌𝑧
1
)𝐼1 = 𝑦

𝐼1
1
∧ (𝑌𝑧

2
)𝐼2 = 𝑦

𝐼2
2

]
> 2

−(1−𝛿)
[
|𝐼1 |𝜆+log𝑝 |𝐼2 |

]
· 2−(1−𝛿)

[
| 𝐽1 |𝜆+log𝑝 | 𝐽2 |

]
= 2

−(1−𝛿)
[
|𝐼1∪𝐽1 |𝜆+log𝑝 |𝐼2∪𝐽2 |

]
,

since 𝐼𝑖 ’s and 𝐽𝑖 ’s are disjoint for 𝑖 = 1, 2. However, this

contradicts the maximality of 𝐼1 and 𝐼2.

(2) Next, we claim that |𝐼1 |𝜆 + |𝐼2 | log(𝑝/𝑒) ≤ 𝑆𝑧/𝛿 . Let B𝑦𝐼2
2

be the set of vectors 𝑦
𝐼2
2
such that 𝑦

𝐼2
2
and 𝑦

𝐼2
2
are a valid

injection. Since𝐻∞ (𝑌𝑧
1
, 𝑌𝑧

2
) ≥ 2

𝑚𝜆+ log𝑝!−𝑆𝑧 , we observe
that for any 𝑦

𝐼1
1
and 𝑦

𝐼2
2
,

Pr

[
(𝑌𝑧

1
)𝐼1 = 𝑦

𝐼1
1
∧ (𝑌𝑧

2
)𝐼2 = 𝑦

𝐼2
2

]
=

∑︁
𝑦
𝐼
1

1
∈
(
{0,1}𝜆

)
2
𝑚−|𝐼

1
|
,

𝑦
𝐼
2

2
∈B

𝑦
𝐼
2

2

Pr

[
(𝑌𝑧

1
)𝐼1 = 𝑦

𝐼1
1
∧ (𝑌𝑧

2
)𝐼2 = 𝑦

𝐼2
2
∧ (𝑌𝑧

1
)
𝐼1
= 𝑦

𝐼1
1
∧ (𝑌𝑧

2
)
𝐼2
= 𝑦

𝐼2
2

]

≤ 2
(2𝑚−|𝐼1 |)𝜆 · 2log(𝑝−|𝐼2 |)! · 2−(2

𝑚𝜆+log𝑝!−𝑆𝑧)

= 2
−(|𝐼1 |𝜆+log𝑝 |𝐼2 |−𝑆𝑧) ,

and, hence,

𝐻∞ ((𝑌𝑧1)𝐼1 , (𝑌
𝑧
2
)𝐼2) ≥ |𝐼1 |𝜆 + log 𝑝

|𝐼2 | − 𝑆𝑧 . (2)

On the other hand, because ((𝑌𝑧
1
)𝐼1 , (𝑌𝑧2)𝐼2) is not (1 − 𝛿)-

dense, we have

𝐻∞ ((𝑌𝑧1)𝐼1 , (𝑌
𝑧
2
)𝐼2) < (1 − 𝛿)

[
|𝐼1 |𝜆 + log𝑝 |𝐼2 |

]
. (3)

Combining equation (2) and (3) together, we have

𝑆𝑧 ≥ 𝛿
[
|𝐼1 |𝜆 + log 𝑝 |𝐼2 |

]

≥ 𝛿 [|𝐼1 |𝜆 + |𝐼2 | log(𝑝/𝑒)] ,

where the last inequality comes from [11, Proposition 38]
10
.

Divided by𝛿 > 0, we get the result that |𝐼1 |𝜆+|𝐼2 | log(𝑝/𝑒) ≤
𝑆𝑧/𝛿 .

Hence, (𝑌𝑧
1
, 𝑌𝑧

2
) is a (𝑃 ′

1
, 𝑃 ′

2
, 1 − 𝛿)-dense source such that 𝑃 ′

1
𝜆 +

𝑃 ′
2
log(𝑝/𝑒) ≤ 𝑆𝑧/𝛿 . Set (𝑌𝑧

1
, 𝑌𝑧

2
) now to be (𝑌𝑧

1
, 𝑌𝑧

2
) conditioned on

(𝑌𝑧
1
)𝐼1 ≠ 𝑦

𝐼1
1
and (𝑌𝑧

2
)𝐼2 ≠ 𝑦

𝐼2
2
and recursively decompose (𝑌𝑧

1
, 𝑌𝑧

2
)

as long as

Pr

[
𝑋𝑧
1
∈ supp(𝑌𝑧

1
) ∧ 𝑋𝑧

2
∈ supp(𝑌𝑧

2
)
]
> 𝛾 .

Observe that 𝐻∞ (𝑌𝑧
1
, 𝑌𝑧

2
) ≥ 2

𝑚𝜆 + log𝑝! − (𝑆𝑧 + log𝛾−1) at any
point in this decomposition process since

Pr

[
𝑌𝑧
1
= 𝑦1 ∧ 𝑌𝑧2 = 𝑦2

]
= Pr

[
𝑋𝑧
1
= 𝑦1 ∧ 𝑋𝑧2 = 𝑦2 |𝑋𝑧1 ∈ supp(𝑌

𝑧
1
) ∧ 𝑋𝑧

2
∈ supp(𝑌𝑧

2
)
]

≤
Pr[𝑋𝑧

1
= 𝑦1 ∧ 𝑋𝑧

2
= 𝑦2]

Pr[supp(𝑌𝑧
1
) ∧ 𝑋𝑧

2
∈ supp(𝑌𝑧

2
)]

≤ 2
−(2𝑚𝜆+log𝑝!−𝑆𝑧)

𝛾

= 2
−(2𝑚𝜆+log𝑝!−(𝑆𝑧+log𝛾−1)) .

Note that |supp(𝑌𝑧
1
) | and |supp(𝑌𝑧

2
) | decreases in every step, and

since supp(𝑋𝑧
1
) and supp(𝑋𝑧

2
) are finite, after finitely many steps,

this process ends with (𝑌𝑧
1,final, 𝑌

𝑧
2,final) with

Pr

[
𝑋𝑧
1
∈ supp(𝑌𝑧

1,final) ∧ 𝑋
𝑧
2,final ∈ supp(𝑌

𝑧
2
)
]
> 𝛾 .

Hence, (𝑋𝑧
1
, 𝑋𝑧

2
) is a convex combination of finitelymany (𝑃 ′

1
, 𝑃 ′

2
, 1−

𝛿)-dense sources and (𝑌𝑧
1,final, 𝑌

𝑧
2,final), where 𝑃

′
1
and 𝑃 ′

2
satisfy the

inequality

𝑃 ′
1
𝜆 + 𝑃 ′

2
log(𝑝/𝑒) ≤ (𝑆𝑧 + log𝛾−1)/𝛿.

This implies that (𝑋𝑧
1
, 𝑋𝑧

2
) is 𝛾-close to a convex combination of

(𝑃 ′
1
, 𝑃 ′

2
, 1 − 𝛿)-dense sources where 𝑃 ′

1
𝜆 + 𝑃 ′

2
log(𝑝/𝑒) ≤ (𝑆𝑧 +

log𝛾−1)/𝛿 . □

Let (𝑋𝑧
1
, 𝑋𝑧

2
) be the convex combination of (𝑃 ′

1
, 𝑃 ′

2
, 1 − 𝛿)-dense

sources that is𝛾-close to (𝑋𝑧
1
, 𝑋𝑧

2
) for a 𝛿 = 𝛿𝑧 to be determined later.

For every (𝑃 ′
1
, 𝑃 ′

2
, 1 − 𝛿) source (𝑋1, 𝑋2) in said convex combina-

tion, let (𝑌1, 𝑌2) be the corresponding (𝑃 ′
1
, 𝑃 ′

2
)-Bit-Fixing source, i.e.,

(𝑋1, 𝑋2) and (𝑌1, 𝑌2) are fixed on the same coordinates to the same

values. The following claim bounds the distinguishing advantage

between (𝑋1, 𝑋2) and (𝑌1, 𝑌2) for any (𝑇1,𝑇2)-query distinguisher.

Claim 2. For any (𝑃 ′
1
, 𝑃 ′

2
, 1 − 𝛿)-dense source (𝑋1, 𝑋2) and its

corresponding (𝑃 ′
1
, 𝑃 ′

2
)-Bit-Fixing source (𝑌1, 𝑌2), it holds that for any

(adaptive) distinguisher D that queries at most 𝑇1 coordinates of the
random oracle H and makes at most 𝑇2 forward or inverse queries to
the injection map 𝜏 ,���Pr [

D𝑋1,𝑋2 = 1

]
− Pr

[
D𝑌1,𝑌2 = 1

] ��� ≤ 𝛿 (𝑇1𝜆 +𝑇2 log 𝑝),
and

Pr

[
D𝑋1,𝑋2 = 1

]
≤ 2

𝛿 (𝑇1𝜆+𝑇2 log𝑝) · Pr
[
D𝑌1,𝑌2 = 1

]
.

10
[11, Proposition 38] says that 𝑁

𝑗 ≥ (𝑁 /𝑒) 𝑗 , where 𝑎𝑏 := 𝑎!/(𝑎 − 𝑏)!.

15

Jeremiah Blocki and Seunghoon Lee

Proof of Claim 2. Without loss of generality, assume that D
is deterministic and does not query any of the fixed positions, make

the same query twice, or make an inverse query after making the

corresponding forward query or vice-versa. Let𝑇
𝑋1,𝑋2

and𝑇
𝑌1,𝑌2

be

the random variables corresponding to the transcripts containing

the query/answer pairs resulting fromD’s interactionwith (𝑋1, 𝑋2)
and (𝑌1, 𝑌2), respectively.

For a fixed transcript 𝑡 , denote by p
𝑋1,𝑋2

(𝑡) and p
𝑌1,𝑌2
(𝑡) the

probabilities that (𝑋1, 𝑋2) and (𝑌1, 𝑌2), respectively, produce the
answers in 𝑡 if the queries in 𝑡 are asked. Since D is determinis-

tic, Pr

[
𝑇
𝑋1,𝑋2

= 𝑡

]
∈

{
0, p

𝑋1,𝑋2

(𝑡)
}
, and similarly, Pr

[
𝑇
𝑌1,𝑌2

= 𝑡

]
∈{

0, p
𝑌1,𝑌2
(𝑡)

}
. Denote by T𝑋1,𝑋2

the set of all transcripts 𝑡 for which

Pr

[
𝑇
𝑋1,𝑋2

= 𝑡

]
> 0. For such 𝑡 , Pr

[
𝑇
𝑋1,𝑋2

= 𝑡

]
= p

𝑋1,𝑋2

(𝑡) and also

Pr

[
𝑇
𝑌1,𝑌2

= 𝑡

]
= p

𝑌1,𝑌2
(𝑡). Observe that for every transcript 𝑡 ,

p
𝑋1,𝑋2

(𝑡) ≤ 2

−(1−𝛿)
[
𝑇1𝜆+log(𝑝−𝑃 ′

2
)𝑇2

]
and p

𝑌1,𝑌2
(𝑡) ≤ 2

−
[
𝑇1𝜆+log(𝑝−𝑃 ′

2
)𝑇2

]
,

(4)

as (𝑋1, 𝑋2) is (𝑃 ′
1
, 𝑃 ′

2
, 1 − 𝛿)-dense and (𝑌1, 𝑌2) is (𝑃 ′

1
, 𝑃 ′

2
)-fixed.

Towards proving the first part of the claim, observe that D’s

output can be computed from the transcript (including whether a

query was a forward for an inverse query) by just running D and

providing the answers to its queries from the transcript. Hence,���Pr [
D𝑋1,𝑋2 = 1

]
− Pr

[
D𝑌1,𝑌2 = 1

] ��� ≤ SD
(
𝑇
𝑋1,𝑋2

,𝑇
𝑌1,𝑌2

)
=

∑︁
𝑡

max

{
0, Pr

[
𝑇
𝑋1,𝑋2

= 𝑡

]
− Pr

[
𝑇
𝑌1,𝑌2

= 𝑡

]}
=

∑︁
𝑡 ∈T𝑋

1
,𝑋

2

max

{
0, p

𝑋1,𝑋2

(𝑡) − p
𝑌1,𝑌2
(𝑡)

}
=

∑︁
𝑡 ∈T𝑋

1
,𝑋

2

p
𝑋1,𝑋2

(𝑡) ·max

{
0, 1 −

p
𝑌1,𝑌2
(𝑡)

p
𝑋1,𝑋2

(𝑡)

}
≤ 1 − 2−𝛿

[
𝑇1𝜆+log(𝑝−𝑃 ′

2
)𝑇2

]
≤ 1 − 2−𝛿 (𝑇1𝜆+𝑇2 log𝑝) ≤ 𝛿 (𝑇1𝜆 +𝑇2 log 𝑝),

where the first sum is over all possible transcripts and where the

last inequality uses 2
−𝑥 ≥ 1 − 𝑥 for 𝑥 ≥ 0 and 𝑎𝑏 ≤ 𝑎𝑏 for 𝑎, 𝑏 ∈ N.

As for the second part of the claim, observe that due to the

equation (4) and the support of 𝑇
𝑋1,𝑋2

being a subset of 𝑇
𝑌1,𝑌2

,

Pr

[
𝑇
𝑋1,𝑋2

= 𝑡

]
≤ 2

𝛿

[
𝑇1𝜆+log(𝑝−𝑃 ′

2
)𝑇2

]
· Pr

[
𝑇
𝑌1,𝑌2

= 𝑡

]
≤ 2

𝛿 (𝑇1𝜆+𝑇2 log𝑝) · Pr
[
𝑇
𝑌1,𝑌2

= 𝑡

]
,

for any transcript 𝑡 . Let TD be the set of transcripts where D
outputs 1. Then we have

Pr

[
D𝑋1,𝑋2 = 1

]
=

∑︁
𝑡 ∈TD

Pr

[
𝑇
𝑋1,𝑋2

= 𝑡

]
≤ 2

𝛿 (𝑇1𝜆+𝑇2 log𝑝) ·
∑︁
𝑡 ∈TD

Pr

[
𝑇
𝑌1,𝑌2

= 𝑡

]
= 2

𝛿 (𝑇1𝜆+𝑇2 log𝑝) · Pr
[
D𝑌1,𝑌2 = 1

]
,

which concludes the proof. □

Let (𝑌𝑧
1
, 𝑌𝑧

2
) be obtained by replacing (𝑋1, 𝑋2) by (𝑌1, 𝑌2) in

(𝑋𝑧
1
, 𝑋𝑧

2
). Setting

𝛿𝑧 =
𝑆𝑧 + log𝛾−1

𝑃1𝑘 + 𝑃2 log(𝑝/𝑒)
,

Claim 1 and Claim 2 imply���Pr [
D𝑋

𝑧
1
,𝑋𝑧

2 (𝑧) = 1

]
− Pr

[
D𝑌

𝑧
1
,𝑌𝑧

2 (𝑧) = 1

] ���
≤ (𝑆𝑧 + log𝛾

−1) (𝑇1𝜆 +𝑇2 log𝑝)
(𝑃1𝜆 + 𝑃2 log(𝑝/𝑒))

+ 𝛾, (5)

as well as

Pr

[
D𝑋

𝑧
1
,𝑋𝑧

2 (𝑧) = 1

]
≤ 2

(𝑆𝑧+log𝛾−1) (𝑇1𝜆+𝑇2 log𝑝)
(𝑃

1
𝜆+𝑃

2
log(𝑝/𝑒)) · Pr

[
D𝑌

𝑧
1
,𝑌𝑧

2 (𝑧) = 1

]
+ 𝛾 . (6)

Moreover, note that for the above choice of 𝛿𝑧 , we have 𝑃
′
1
= 𝑃1

and 𝑃 ′
2
= 𝑃2, i.e., the sources (𝑌𝑧

1
, 𝑌𝑧

2
) are (𝑃1, 𝑃2)-fixed, as desired.

Claim 3. E𝑧 [𝑆𝑧] ≤ 𝑆 and Pr[𝑆𝑓 (𝑋1,𝑋2) > 𝑆 + log𝛾−1] ≤ 𝛾 .

Proof of Claim 3. Observe that𝐻∞ (𝑋𝑧
1
, 𝑋𝑧

2
) = 𝐻∞ ((𝑋1, 𝑋2) |𝑍 =

𝑧) = 𝐻 ((𝑋1, 𝑋2) |𝑍 = 𝑧) since, conditioned on 𝑍 = 𝑧, (𝑋1, 𝑋2) is
distributed uniformly over all values (𝑥1, 𝑥2) with 𝑓 (𝑥1, 𝑥2) = 𝑧.

Hence,

E𝑧 [𝑆𝑧] = 2
𝑚𝜆 + log 𝑝! − E𝑧 [𝐻∞ ((𝑋1, 𝑋2) |𝑍 = 𝑧)]

= 2
𝑚𝜆 + log 𝑝! − E𝑧 [𝐻 ((𝑋1, 𝑋2) |𝑍 = 𝑧)]

= 2
𝑚𝜆 + log 𝑝! − 𝐻 ((𝑋1, 𝑋2) |𝑍 = 𝑧) ≤ 𝑆.

Again, due to the uniformity of (𝑋1, 𝑋2), Pr[𝑓 (𝑋1, 𝑋2) = 𝑧] = 2
−𝑆𝑧

.

Hence,

Pr[𝑆𝑓 (𝑋1,𝑋2) > 𝑆 + log𝛾
−1] =

∑︁
𝑧∈{0,1}𝑆 :𝑆𝑧>𝑆+log𝛾−1

Pr[𝑓 (𝑋1, 𝑋2) = 𝑧]

≤ 2
𝑆 · 2−(𝑆+log𝛾

−1) ≤ 𝛾 . □

Now the first part of the lemma follows (using (𝑌𝑧
1
, 𝑌𝑧

2
) := (𝑌𝑧

1
, 𝑌𝑧

2
))

by taking expectations over 𝑧 of the equation (5) and applying the

first part of Claim 3. The second part of the lemma is proved as

follows:

Pr

[
D𝑋1,𝑋2 (𝑓 (𝑋1, 𝑋2)) = 1

]
≤ Pr

[
D𝑋1,𝑋2 (𝑓 (𝑋1, 𝑋2)) = 1, 𝑆𝑓 (𝑋1,𝑋2) ≤ 𝑆 + log𝛾

−1
]

+ Pr
[
𝑆𝑓 (𝑋1,𝑋2) > 𝑆 + log𝛾

−1]
≤

(
2
(𝑆+log𝛾−1) (𝑇1𝜆+𝑇2 log𝑝)/𝑊 · Pr

[
D𝑋1,𝑋2 (𝑓 (𝑋1, 𝑋2)) = 1,

𝑆𝑓 (𝑋1,𝑋2) ≤ 𝑆 + log𝛾
−1

]
+ 𝛾

)
+ 𝛾

≤ 2
(𝑆+log𝛾−1) (𝑇1𝜆+𝑇2 log𝑝)/𝑊 · Pr

[
D𝑋1,𝑋2 (𝑓 (𝑋1, 𝑋2)) = 1,

𝑆𝑓 (𝑋1,𝑋2) ≤ 𝑆 + log𝛾
−1

]
+ 2𝛾,

where the second inequality follows by taking expectations over 𝑧

of the equation (6) (together with the condition 𝑆𝑧 ≤ 𝑆 + log𝛾−1)
and the second part of Claim 3. □

16

Preprocessing Security in Multiple Idealized Models with Applications to Schnorr Signatures and PSEC-KEM

A.2 From the BF-ROM+GGM to the
AI-ROM+GGM

Capturing the Models. An oracle pair (O1,O2) has two interfaces
(O1 .pre,O2 .pre) and (O1 .on,O2 .on), where (O1 .pre,O2 .pre) is ac-
cessible only once before any calls to (O1 .on,O2 .on) are made. We

consider the oracles in this work as follows:

• RandomOracle +GenericGroupOracleRO+GG(𝑚, 𝜆, 𝑝, ℓ):
Samples a random oracle function table H←H𝑚,𝜆 , where
H𝑚,𝜆 is the set of all functions from {0, 1}𝑚 → {0, 1}𝜆 ,
and samples a random injection 𝜏 ← I𝑝,ℓ , where I𝑝,ℓ is
the set of all injections from Z𝑝 → G where G is the set

of bitstrings of length ℓ ≥ log 𝑝; offers no functionality

at (O1 .pre,O2 .pre); answers queries 𝑥 ∈ {0, 1}𝑚 to H at

O1 .on by the corresponding value H(𝑥) ∈ {0, 1}𝜆 ; answers
forward queries 𝑥 ′ ∈ Z𝑝 to 𝜏 at O2 .on by the corresponding

value 𝜏 (𝑥 ′) ∈ G; answers group-operation queries (𝑠, 𝑠′) at
O2 .on as follows: if 𝑠 = 𝜏 (𝑥) and 𝑠′ = 𝜏 (𝑥 ′) for some 𝑥, 𝑥 ′,
the oracle replies by 𝜏 (𝑥 +𝑥 ′) and by ⊥ otherwise; answers

inverse queries 𝑠 at O2 .on by returning 𝜏−1 (𝑠) if 𝑠 is in the

range of 𝜏 and ⊥ otherwise.

• Auxiliary-Input Random Oracle + Generic Group Or-
acle AI-RO+GG(𝑚, 𝜆, 𝑝, ℓ): Samples a random oracle func-

tion table H ← H𝑚,𝜆 and samples a random injection

𝜏 ← I𝑝,ℓ as explained in RO+GG(𝑚, 𝜆, 𝑝, ℓ); outputs all
of H at O1 .pre and all of 𝜏 at O2 .pre; (O1 .on,O2 .on) be-
haves the same as RO+GG(𝑚, 𝜆, 𝑝, ℓ). When the parame-

ters (𝑚, 𝜆, 𝑝, ℓ) are clear in context, we sometimes abuse

the notation and simply say AI-RO+GG.
• Bit-Fixing Random Oracle + Generic Group Oracle

BF-RO+GG(𝑃1, 𝑃2,𝑚, 𝜆, 𝑝, ℓ): Samples a randomoracle func-

tion table H ← H𝑚,𝜆 at O1 .pre and samples a random

size-𝑝 subset Y of G and outputs Y at O2 .pre; takes a list
at (O1 .pre,O2 .pre) of at most 𝑃1 query/answer pairs that

override H in the corresponding positions and at most 𝑃2
query/answer pairs without collisions and all answers in

Y; samples a random injection 𝜏 ← I𝑝,ℓ with range Y and

consistent with said list; (O1 .on,O2 .on) behaves the same

as RO+GG(𝑚, 𝜆, 𝑝, ℓ). When the parameters (𝑚, 𝜆, 𝑝, ℓ) are
clear in context, we sometimes abuse the notation and sim-

ply say BF-RO+GG(𝑃1, 𝑃2).

Attackers with Oracle-Dependent Advice. We define the attackers

A = (Apre,Aon) similar to that of prior work [11, 12], which

consist of a preprocessing attacker Apre and an online attacker

Aon, which carries out the actual attack using the output of Apre.

The difference is that we consider a pair of oracles instead of a single

oracle. More precisely, in the presence of an oracle pair (O1,O2),
Apre interacts with (O1 .pre,O2 .pre) andAon with (O1 .on,O2 .on).

Definition A.3. An (𝑆,𝑇1,𝑇2)-attacker A = (Apre,Aon) in the
(O1,O2)-model consists of two procedures

• Apre, which is computationally unbounded, interacts with

(O1 .pre,O2 .pre), and outputs an 𝑆-bit string as hint, and

• Aon, which takes an 𝑆-bit auxiliary input and makes at

most 𝑇1 queries to O1 .on and 𝑇2 queries to O2 .on.

For an arbitrary oracle O, Coretti et al. [11, 12] defined an ap-
plication 𝐺 in the O-model by specifying a challenger C that has

access to O .on, interacts with the online attackerAon of an attacker

A = (Apre,Aon), and outputs a bit at the end of the interaction.

Then they defined the success ofA on𝐺 in the O-model as follows:

Succ𝐺,O (A) := Pr

[
AO.onon

(
AO.prepre

)
↔ CO.on = 1

]
,

where AO.onon

(
AO.prepre

)
↔ CO.on denotes the bit output by the

challenger C after its interaction with A. It can be extended to

the oracle pair setting in the same manner when O = (O1,O2), by
defining O .pre := (O1 .pre,O2 .pre) and O .on := (O1 .on,O2 .on).

Definition A.4. For an indistinguishability application𝐺 in the

(O1,O2)-model, the advantage of an attacker A is defined as

Adv𝐺,(O1,O2) (A) := 2

����Succ𝐺,(O1,O2) (A) − 1

2

���� .
In the case of an unpredictability application 𝐺 , the advantage is

defined as Adv𝐺,(O1,O2) (A) := Succ𝐺,(O1,O2) (A). An application

𝐺 is said to be (𝑆,𝑇1,𝑇2, 𝜀)-secure in the (O1,O2)-model if for every

(𝑆,𝑇1,𝑇2)-attacker A,

Adv𝐺,(O1,O2) (A) ≤ 𝜀.

Additive Error for Arbitrary Applications in the ROM+GGM.. Us-
ing Lemma A.2, one can extend [12, Theorem 5] and [11, Theorem

1] to the translation from the Bit-Fixing model with multiple ide-

alized models (ROM+GGM) to the corresponding Auxiliary-Input

model at the cost of an additive term which is similar to those from

[12, Theorem 5] and [11, Theorem 1].

Reminder of Theorem 3.1. For every 𝛾 > 0, if an application 𝐺
is (𝑆,𝑇1,𝑇2, 𝜀′)-secure in the BF-RO+GG(𝑃1, 𝑃2,𝑚, 𝜆, 𝑝, ℓ)-model for
any 𝑃1, 𝑃2 ∈ N such that 𝑃1𝜆+𝑃2 log(𝑝/𝑒) ≤ 𝜂, then it is (𝑆,𝑇1,𝑇2, 𝜀)-
secure in the AI-RO+GG(𝑚, 𝜆, 𝑝, ℓ)-model, for

𝜀 ≤ 𝜀′ +
2(𝑆 + log𝛾−1)

(
(𝑇1)comb

𝐺
𝜆 + 3(𝑇2)comb

𝐺
log𝑝

)
𝜂

+ 2𝛾,

where 𝑒 is the Euler constant, and (𝑇1)comb
𝐺

and (𝑇2)comb
𝐺

are the
combined query complexity corresponding to 𝐺 that corresponds to
the random oracle and the generic group oracle, respectively.

Proof. Fix 𝑃1, 𝑃2 as well as 𝛾 . Let 𝐺 be an arbitrary application

in the (BF-RO,BF-GG)-model (or in the (AI-RO,AI-GG)-model)

and C be the corresponding challenger. Moreover, fix an (𝑆,𝑇1,𝑇2)-
attacker A = (Apre,Aon), and let {(𝑌1, 𝑌2)𝑧,Y }, indexed by 𝑧 ∈
{0, 1}𝑆 and size-𝑝 subsetsY ⊆ G, be the family of distributions guar-

anteed to exist by Lemma A.2. Consider the following (𝑆,𝑇1,𝑇2)-
attackerA′ = (A′pre,A′on) (expecting to interact withBF-RO+GG):

• A′pre obtains the setY from BF-GG.pre and internally sim-

ulatesApre on a uniformly random input 𝑋1 ∈ {0, 1}𝑚 and

a uniformly random injection 𝑋2 ∈ Z𝑝 with range Y to

obtain 𝑧 ← AAI-RO+GG.pre
pre . Then, it samples one of the

(𝑃1, 𝑃2)-bit-fixing sources (𝑌 ′
1
, 𝑌 ′

2
) making up (𝑌1, 𝑌2)𝑧,Y

and presets BF-RO+GG to match (𝑌 ′
1
, 𝑌 ′

2
) on the at most

𝑃1 (resp. 𝑃2) points where 𝑌
′
1
(resp. 𝑌 ′

2
) is fixed. The output

of A′pre is 𝑧.
• A′on works exactly the same as Aon.

17

Jeremiah Blocki and Seunghoon Lee

Let D be a distinguisher — making forward, group-operation, and

inverse queries to a (H, 𝜏)-source — that internally runs the combi-

nation of Aon = A′on and C. It answers their queries as follows:
(1) It passes forward queries to and back from its own oracle.

(2) It answers group-operation queries (𝑠, 𝑠′) (to the generic

group oracle) by making two backward queries to its own

oracle for 𝑠 and 𝑠′, obtaining 𝑖 and 𝑗 , respectively, making

a forward query 𝑖 + 𝑗 , and passing the answer to Aon or C
(unless one of the answers to the backward queries was ⊥,
in which case ⊥ is returned).

Note that D𝑋1,𝑋2 (𝑓 (𝑋1, 𝑋2)) is identical to

AAI-RO+GG.on
on (AAI-RO+GG.pre

pre) ↔ CAI-RO+GG.on,

and D (𝑌1,𝑌2) 𝑓 (𝑋1,𝑋2),im(𝑋2) (𝑓 (𝑋1, 𝑋2)) is identical to

A
′BF-RO+GG.on
on (A

′BF-RO+GG.pre
pre) ↔ CBF-RO+GG.on .

Furthermore,D is a distinguisher taking an 𝑆-bit input and making

at most (𝑇1)comb
𝐺

to its random oracle and 3(𝑇2)comb
𝐺

to its generic

group oracle. Therefore, by Lemma A.2,

Succ𝐺,AI-RO+GG (A) ≤ Succ𝐺,BF-RO+GG (A′)

+
(𝑆 + log𝛾−1)

(
(𝑇1)comb

𝐺
𝜆 + 3(𝑇2)comb

𝐺
log𝑝

)
𝜂

+ 𝛾,

for any 𝑃1, 𝑃2 satisfying 𝑃1𝜆 + 𝑃2 log(𝑝/𝑒). Since there is only an

additive term between the two success probabilities, the above

inequality implies

Adv𝐺,AI-RO+GG (A) ≤ Adv𝐺,BF-RO+GG (A′)

+
2(𝑆 + log𝛾−1)

(
(𝑇1)comb

𝐺
𝜆 + 3(𝑇2)comb

𝐺
log𝑝

)
𝜂

+ 2𝛾,

for both indistinguishability and unpredictability applications. Note

that the extra factor of 2 is technically only necessary for indistin-

guishability applications [12]. □

Reminder of Theorem 3.2. For every 𝛾 > 0, if an unpredictabil-

ity application𝐺 is (𝑆,𝑇1,𝑇2, 𝜀′)-secure in theBF-RO+GG(𝑃1, 𝑃2,𝑚, 𝜆, 𝑝, ℓ)-
model for any 𝑃1, 𝑃2 ∈ N satisfying

(𝑆 + log𝛾−1)
(
(𝑇1)comb

𝐺 𝜆 + 3(𝑇2)comb
𝐺 log 𝑝

)
≤ 𝑃1𝜆 + 𝑃2 log(𝑝/𝑒),

then it is (𝑆,𝑇1,𝑇2, 𝜀)-secure in the AI-RO+GG(𝑚, 𝜆, 𝑝, ℓ)-model, for

𝜀 ≤ 2𝜀′ + 2𝛾,
where 𝑒 is the Euler’s number.

Proof. Using the same attacker A′ as in the proof of The-

orem 3.1 and applying the second part of Lemma A.2, for any

𝑃1, 𝑃2 ∈ N such that (𝑆 + log𝛾−1)
(
(𝑇1)comb

𝐺
𝜆 + 3(𝑇2)comb

𝐺
log𝑝

)
≤

𝑃1𝜆 + 𝑃2 log(𝑝/𝑒) ≤ 𝜂, we have
Succ𝐺,AI-RO+GG (A)

≤ 2

(𝑆+log𝛾−1) ((𝑇1)comb
𝐺

𝜆+3(𝑇
2
)comb
𝐺

log𝑝)
𝜂 · Succ𝐺,BF-RO+GG (A′) + 2𝛾

≤ 2 · Succ𝐺,BF-RO+GG (A′) + 2𝛾,
which translates into

Adv𝐺,AI-RO+GG (A) ≤ 2 · Adv𝐺,BF-RO+GG (A′) + 2𝛾
for unpredictability applications. □

B Bit-Fixing/Auxiliary-Input Multiple Idealized
Models

In Section 3, we studied the Bit-Fixing to Auxiliary-Input transition

with two idealized models at once — the Random Oracle Model plus

the Generic Group Model. We can further extend this approach

and consider multiple idealized models, including the Ideal Cipher

Model and the Random Permutation Model as well.

B.1 Replacing Auxiliary Information by
Bit-Fixing

Definition B.1. A (𝑛1, 𝑛2, 𝑛3)-source is a tuple of vector random
variables (X,Y,Z), where

• X = (𝑋1, . . . , 𝑋𝑛1) is an 𝑛1-dimensional vector where for

each 𝑖 ∈ [𝑛1], an element 𝑋𝑖 is a random variable that

corresponds to the function table of a random oracle H𝑖 :
[𝑀𝑖] → [𝑁𝑖] with range [𝑁𝑖]𝑀𝑖 ,

• Y = (𝑌1, . . . , 𝑌𝑛2) is an 𝑛2-dimensional vector where for

each 𝑖 ∈ [𝑛2], an element 𝑌𝑖 is a random variable that

corresponds to the function table of an injection 𝜏𝑖 : Z𝑝𝑖 →
G𝑖 , where G𝑖 is the set of bitstrings of length ℓ𝑖 (with ℓ𝑖 ≥
log𝑝𝑖), and

• Z = (𝑍1, . . . , 𝑍𝑛3) is an 𝑛3-dimensional vector where for

each 𝑖 ∈ [𝑛3], an element 𝑍𝑖 is a random variable that

corresponds to the function table of a cipher 𝐹𝑖 : [𝐾𝑖] ×
[𝐶𝑖] → [𝐶𝑖].

Further, a (𝑛1, 𝑛2, 𝑛3)-source is called:
• (P,Q,R, 1−𝛿)-dense if for vectors P = (𝑃1, . . . , 𝑃𝑛1) ∈ Z𝑀1

×
· · · × Z𝑀𝑛

1

, Q = (𝑄1, . . . , 𝑄𝑛2) ∈ Z𝑝1 × · · · × Z𝑝𝑛
1

, and

R = (R1, . . . ,R𝑛3) ∈ (Z𝐶1
)𝐾1 × · · · × (Z𝐶𝑛

3

)𝐾𝑛3 where R𝑘 =

(𝑅𝑘,1, . . . , 𝑅𝑘,𝐾𝑘) for each 𝑘 ∈ [𝑛3], if H𝑖 is fixed on at most

𝑃𝑖 coordinates for each 𝑖 ∈ [𝑛1], 𝜏 𝑗 is fixed on at most 𝑄 𝑗
coordinates for each 𝑗 ∈ [𝑛2], and for each cipher 𝐹𝑘 with

𝑘 ∈ [𝑛3], it is fixed on at most 𝑅𝑘,𝑠 coordinates for each

𝑠 ∈ [𝐾𝑘], and if for all tuples of vectors of subsets (U,V,W)
of non-fixed coordinates where U = (𝑈1, . . . ,𝑈𝑛1) ⊆ Z𝑀1

×
· · · × Z𝑀𝑛

1

, V = (𝑉1, . . . ,𝑉𝑛2) ⊆ Z𝑝1 × · · · × Z𝑝𝑛
1

, and

W = (W1, . . . ,W𝑛3) ⊆ (Z𝐶1
)𝐾1 × · · · × (Z𝐶𝑛

3

)𝐾𝑛3 where

W𝑘 = (𝑊𝑘,1, . . . ,𝑊𝑘,𝐾𝑘) for each 𝑘 ∈ [𝑛3],

𝐻∞ (XU,YV,ZW) ≥ (1 − 𝛿)
[
𝑛1∑︁
𝑖=1

|𝑈𝑖 | log𝑁𝑖 +
𝑛2∑︁
𝑗=1

log(𝑝 𝑗 −𝑄 𝑗)
|𝑉𝑗 |

+
𝑛3∑︁
𝑘=1

𝐾𝑘∑︁
𝑠=1

log(𝐶𝑘 − 𝑅𝑘,𝑠)
|𝑊𝑘,𝑠 |

]
,

where 𝑎𝑏 := 𝑎!/(𝑎 − 𝑏)! and XU is X restricted to the coor-

dinates in U,
• (1 − 𝛿)-dense if it is (0, 0, 0, 1 − 𝛿)-dense, and
• (P,Q,R)-bit-fixing if it is (P,Q,R, 1)-dense, i.e., (P,Q,R, 1−
𝛿)-dense with 𝛿 = 0.

In Definition B.1, we remark that X captures a source with mul-

tiple random oracles, Y captures a source with multiple generic

groups, and Z captures a source with multiple ideal ciphers. In

the case of Z, if 𝐾𝑖 = 1 for some 𝑖 ∈ [𝑛3], it can be considered as

a random permutation. Hence, Definition B.1 captures the usage

18

Preprocessing Security in Multiple Idealized Models with Applications to Schnorr Signatures and PSEC-KEM

of multiple idealized models at once, including the random ora-

cle model, generic group model, ideal cipher model, and random

permutation model.

Lemma B.2. Let (X,Y,Z) be a tuple of vector random variables
which satisfies the following.

• X = (𝑋1, . . . , 𝑋𝑛1) is an 𝑛1-dimensional vector where 𝑋𝑖 is
distributed uniformly over [𝑁𝑖]𝑀𝑖 for each 𝑖 ∈ [𝑛1],

• Y = (𝑌1, . . . , 𝑌𝑛2) is an 𝑛2-dimensional vector where 𝑌𝑖 is a
uniformly random injection that takes on as value function
tables corresponding to an injection 𝜏𝑖 : Z𝑝𝑖 → G𝑖 for each
𝑖 ∈ [𝑛2], and
• Z = (𝑍1, . . . , 𝑍𝑛3) is an 𝑛3-dimensional vector where 𝑍𝑖 takes

on as value function tables corresponding to a cipher 𝐹𝑖 :

[𝐾𝑖] × [𝐶𝑖] → [𝐶𝑖] for each 𝑖 ∈ [𝑛3].
Let𝑊 = 𝑓 (X,Y,Z), where

𝑓 :

(𝑛1∏
𝑖=1

[𝑀𝑖]
)
×

(𝑛2∏
𝑗=1

Z𝑝 𝑗
)
×

(𝑛3∏
𝑘=1

[𝐾𝑘] × [𝐶𝑘]
)
→ {0, 1}𝑆

is an arbitrary function. For any 𝛾 > 0 and P,Q,R that were defined
as in Definition B.1, there exists a family {(X′,Y′,Z′)}𝑊,Y , indexed
by𝑊 ∈ {0, 1}𝑆 and Y = (Y1, . . . ,Y𝑛2) where Y𝑖 is a size-𝑝𝑖 subset
of G𝑖 for each 𝑖 ∈ [𝑛2], of convex combinations of (P,Q,R)-bit-fixing
(𝑛1, 𝑛2, 𝑛3)-sources satisfying

𝑛1∑︁
𝑖=1

𝑃𝑖 log𝑁𝑖 +
𝑛2∑︁
𝑖=1

𝑄𝑖 log(𝑝𝑖/𝑒) +
𝑛3∑︁
𝑖=1

𝐾𝑖∑︁
𝑗=1

𝑅𝑖, 𝑗 log(𝐶𝑖/𝑒) ≤ 𝜂,

such that for any distinguisherD taking an 𝑆-bit input and querying
at most S = (𝑆1, . . . , 𝑆𝑛1) coordinates of each oracle that corresponds
to X where 𝑆𝑖 < 𝑃𝑖 for each 𝑖 ∈ [𝑛1], T = (𝑇1, . . . ,𝑇𝑛2) coordinates
of each oracle that corresponds to Y where 𝑇𝑖 < 𝑄𝑖 for each 𝑖 ∈ [𝑛2],
and L = (L1, . . . , L𝑛3) coordinates of each oracle that corresponds to
Z where L𝑘 = (𝐿𝑘,1, . . . , 𝐿𝑘,𝐾𝑘) and 𝐿𝑖, 𝑗 < 𝑅𝑖, 𝑗 for each 𝑗 ∈ [𝐾𝑖] and
𝑖 ∈ [𝑛3], we have (here, 𝑒 is the Euler’s number)���Pr [

DX,Y,Z (𝑓 (X,Y,Z)) = 1

]
− Pr

[
D (X

′,Y′,Z′)𝑓 (X,Y,Z),im(Y) (𝑓 (X,Y,Z)) = 1

] ���
≤

(
𝑆 + log𝛾−1

) (
𝑛1∑
𝑖=1

𝑆𝑖 log𝑁𝑖 +
𝑛2∑
𝑖=1
𝑇𝑖 log𝑝𝑖 +

𝑛3∑
𝑖=1

𝐾𝑖∑
𝑗=1

𝐿𝑖, 𝑗 log𝐶𝑖

)
𝜂

+ 𝛾 .

Proof. Fix an arbitrary 𝑤 ∈ {0, 1}𝑆 and let (X𝑤 ,Y𝑤 ,Z𝑤) be
the distribution of (X,Y,Z) conditioned on 𝑓 (X,Y,Z) = 𝑤 . Let

𝑆𝑧 =
∑𝑛1
𝑖=1

𝑀𝑖 log𝑁𝑖 +
∑𝑛2
𝑖=1

log𝑝𝑖 !+
∑𝑛3
𝑖=1

𝐾𝑖 log𝐶𝑖 !−𝐻∞ (X,Y,Z) be
the min-entropy deficiency of (X𝑤 ,Y𝑤 ,Z𝑤). Let 𝛾 > 0 be arbitrary.

Claim 4. For every 𝛿 > 0, any leaky source (X𝑤 ,Y𝑤 ,Z𝑤) is 𝛾-
close to a source (X′𝑤 ,Y′𝑤 ,Z′𝑤) which is a convex combination of
(P′,Q′,R′, 1 − 𝛿)-dense sources for
𝑛1∑︁
𝑖=1

𝑃 ′𝑖 log𝑁𝑖+
𝑛2∑︁
𝑖=1

𝑄 ′𝑖 log(𝑝𝑖/𝑒)+
𝑛3∑︁
𝑖=1

𝐾𝑖∑︁
𝑗=1

𝑅′𝑖, 𝑗 log(𝐶𝑖/𝑒) ≤
𝑆𝑧 + log𝛾−1

𝛿
.

Proof of Claim 4. Without loss of generality, we can assume

that (X𝑤 ,Y𝑤 ,Z𝑤) is not (1 − 𝛿)-dense since if it is (1 − 𝛿)-dense
then we can trivially find such (P′,Q′,R′, 1 − 𝛿)-dense sources.

Let (X′𝑤 ,Y′𝑤 ,Z′𝑤) := (X𝑤 ,Y𝑤 ,Z𝑤) and U = (𝑈1, . . . ,𝑈𝑛1) ∈
Z𝑀1
× · · · × Z𝑀𝑛

1

, V = (𝑉1, . . . ,𝑉𝑛2) ∈ Z𝑝1 × · · · × Z𝑝𝑛
1

, and

W = (W1, . . . ,W𝑛3) ∈ (Z𝐶1
)𝐾1 × · · · × (Z𝐶𝑛

3

)𝐾𝑛3 (where W𝑘 =

(𝑊𝑘,1, . . . ,𝑊𝑘,𝐾𝑘) for each 𝑘 ∈ [𝑛3]) be the largest subset for which
there exists a violation, i.e., there exists x′U, y′V, z

′
W such that

Pr

[
(X′𝑤)U = x′U ∧ (Y′𝑤)V = y′V ∧ (Z′

𝑤)W = z′W
]

> 2

−(1−𝛿)
[∑𝑛

1

𝑖=1
|𝑈𝑖 | log𝑁𝑖+

∑𝑛
2

𝑗=1
log𝑝

|𝑉𝑗 |
𝑗
+∑𝑛3

𝑘=1

∑𝐾𝑘
𝑗=1

log𝐶
|𝑊𝑘,𝑗 |

𝑘

]
.

Let (X̃′𝑤 , Ỹ′𝑤 , Z̃′𝑤) be the distribution of (X′𝑤 ,Y′𝑤 ,Z′𝑤) condi-
tioned on the event (X′𝑤)U = x′U∧(Y′𝑤)V = y′V∧(Z′𝑤)W = z′W.

(1) Now we claim that (X̃′𝑤 , Ỹ′𝑤 , Z̃′𝑤) is (P′,Q′,R′, 1 − 𝛿)-
dense with 𝑃 ′

𝑖
= |𝑈𝑖 | for 𝑖 ∈ [𝑛1], 𝑄 ′𝑗 = |𝑉𝑗 | for 𝑗 ∈ [𝑛2],

and 𝑅′
𝑘,𝑗

= |𝑊𝑘,𝑗 | for 𝑘 ∈ [𝑛3], 𝑗 ∈ [𝐾𝑘]. Suppose that

(X̃′𝑤 , Ỹ′𝑤 , Z̃′𝑤) is not (P′,Q′,R′, 1 − 𝛿)-dense. Then there

exists a pair of non-empty of sets U′ ⊆ U (here, ⊆ refers to

an pairwise subset notation), V′ ⊆ V, and W′ ⊆ W such

that

Pr

[
(X̃′𝑤)U′ = x′U′ ∧ (Ỹ′

𝑤)V′ = y′V′ ∧ (Z̃′
𝑤)W′ = z′W′

]
= Pr

[
(X′𝑤)U′ = x′U′ ∧ (Y′𝑤)V′ = y′V′ ∧ (Z′

𝑤)W′ = z′W′
���

(X′𝑤)U = x′U ∧ (Y′𝑤)V = y′V ∧ (Z′
𝑤)W = z′W

]
> 2

−(1−𝛿)
[∑𝑛

1

𝑖=1
|𝑈 ′𝑖 | log𝑁𝑖+

∑𝑛
2

𝑗=1
log𝑝

|𝑉 ′
𝑗
|

𝑗
+∑𝑛3

𝑘=1

∑𝐾𝑘
𝑗=1

log𝐶

|𝑊 ′
𝑘,𝑗
|

𝑘

]
.

The set U ∪ U′ (also pairwise), V ∪ V′, and W ∪W′ now
form subsets for which

Pr

[
(X′𝑤)U∪U′ = x′U∪U′ ∧ (Y′𝑤)V∪V′ = y′V∪V′ ∧ (Z′

𝑤)W∪W′ = z′W∪W′
]

= Pr

[
(X′𝑤)U = x′U ∧ (X′𝑤)U′ = x′U′ ∧ (Y′𝑤)V = y′V ∧ (Y′

𝑤)V′ = y′V′

∧ (Z′𝑤)W = z′W ∧ (Z′𝑤)W′ = z′W′
]

= Pr

[
(X′𝑤)U = x′U ∧ (Y′𝑤)V = y′V ∧ (Z′

𝑤)W = z′W
]

· Pr
[
(X′𝑤)U′ = x′U′ ∧ (Y′𝑤)V′ = y′V′ ∧ (Z′

𝑤)W′ = z′W′
���

(X′𝑤)U = x′U ∧ (Y′𝑤)V = y′V ∧ (Z′
𝑤)W = z′W

]
> 2

−(1−𝛿)
[∑𝑛

1

𝑖=1
|𝑈𝑖 | log𝑁𝑖+

∑𝑛
2

𝑗=1
log𝑝

|𝑉𝑗 |
𝑗
+∑𝑛3

𝑘=1

∑𝐾𝑘
𝑗=1

log𝐶
|𝑊𝑘,𝑗 |

𝑘

]

· 2
−(1−𝛿)

[∑𝑛
1

𝑖=1
|𝑈 ′𝑖 | log𝑁𝑖+

∑𝑛
2

𝑗=1
log𝑝

|𝑉 ′
𝑗
|

𝑗
+∑𝑛3

𝑘=1

∑𝐾𝑘
𝑗=1

log𝐶

|𝑊 ′
𝑘,𝑗
|

𝑘

]

= 2

−(1−𝛿)
[∑𝑛

1

𝑖=1
|𝑈𝑖∪𝑈 ′𝑖 | log𝑁𝑖+

∑𝑛
2

𝑗=1
log𝑝

|𝑉𝑗∪𝑉 ′𝑗 |

𝑗
+∑𝑛3

𝑘=1

∑𝐾𝑘
𝑗=1

log𝐶

|𝑊𝑘,𝑗∪𝑊 ′𝑘,𝑗 |

𝑘

]
,

since (U,V,W) and (U′,V′,W′) are pairwise disjoint. How-
ever, this contradicts the maximality of (U,V,W).

(2) Next, we claim that

𝑛1∑︁
𝑖=1

|𝑈𝑖 | log𝑁𝑖+
𝑛2∑︁
𝑗=1

|𝑉𝑗 | log(𝑝 𝑗/𝑒)+
𝑛3∑︁
𝑘=1

𝐾𝑘∑︁
𝑗=1

|𝑊𝑘,𝑗 | log(𝐶𝑘/𝑒) ≤ 𝑆𝑧/𝛿.

Let By′V be the set of vectors y′
V
such that y′V and y′

V
are a

valid injection. Similarly, let Cz′W be the set of vectors z′
W

such that z′W and z′
W

are a valid IC. Since𝐻∞ (X′𝑤 ,Y′𝑤 ,Z′𝑤) ≥∑𝑛1
𝑖=1

𝑀𝑖 log𝑁𝑖 +
∑𝑛2
𝑗=1

log𝑝 𝑗 ! +
∑𝑛3
𝑘=1

∑𝐾𝑘
𝑗=1

log𝐶𝑘 !− 𝑆𝑧 , we
observe that for any x′U, y′V, z

′
W,

Pr

[
(X′𝑤)U = x′U ∧ (Y′𝑤)V = y′V ∧ (Z′

𝑤)W = z′W
]

19

Jeremiah Blocki and Seunghoon Lee

=
∑︁

x′U∈
∏𝑛

1

𝑖=1
[𝑁𝑖]𝑀𝑖 −|𝑈𝑖 |

∑︁
y′V∈By′V

∑︁
z′W∈Cz′W

Pr

[
(X𝑤)U = x′U

∧ (Y𝑤)V = y′V ∧ (Z𝑤)W = z′W ∧ (X𝑤)U = x′U

∧ (Y𝑤)V = y′V ∧ (Z
𝑤)W = z′W

]
≤ 2

∑𝑛
1

𝑖=1
(𝑀𝑖−|𝑈𝑖 |) log𝑁𝑖 · 2

∑𝑛
2

𝑗=1
log(𝑝 𝑗−|𝑉𝑗 |)! · 2

∑𝑛
3

𝑘=1

∑𝐾𝑘
𝑗=1

log(𝐶𝑘−|𝑊𝑗,𝑘 |)!

· 2−(
∑𝑛

1

𝑖=1
𝑀𝑖 log𝑁𝑖+

∑𝑛
2

𝑗=1
log𝑝 𝑗 !+

∑𝑛
3

𝑘=1

∑𝐾𝑘
𝑗=1

log𝐶𝑘 !−𝑆𝑧)

= 2
−(∑𝑛1

𝑖=1
|𝑈𝑖 | log𝑁𝑖+

∑𝑛
2

𝑗=1
log𝑝

|𝑉𝑗 |
𝑗
+∑𝑛3

𝑘=1

∑𝐾𝑘
𝑗=1

log𝐶
|𝑊𝑘,𝑗 |

𝑘
−𝑆𝑧) ,

and hence,

𝐻∞ ((X′𝑤)U, (Y′𝑤)V, (Z′𝑤)W)

≥
𝑛1∑︁
𝑖=1

|𝑈𝑖 | log𝑁𝑖 +
𝑛2∑︁
𝑗=1

log 𝑝
|𝑉𝑗 |
𝑗
+
𝑛3∑︁
𝑘=1

𝐾𝑘∑︁
𝑗=1

log𝐶
|𝑊𝑘,𝑗 |
𝑘

− 𝑆𝑧 .

On the other hand, because ((X′𝑤)U, (Y′𝑤)V, (Z′𝑤)W) is
not (1 − 𝛿)-dense, we have

𝐻∞ ((X′𝑤)U, (Y′𝑤)V, (Z′𝑤)W)

≤ (1 − 𝛿)

𝑛1∑︁
𝑖=1

|𝑈𝑖 | log𝑁𝑖 +
𝑛2∑︁
𝑗=1

log𝑝
|𝑉𝑗 |
𝑗
+
𝑛3∑︁
𝑘=1

𝐾𝑘∑︁
𝑗=1

log𝐶
|𝑊𝑘,𝑗 |
𝑘

 .
Combining those two equations together, we have

𝑆𝑧 ≥ 𝛿

𝑛1∑︁
𝑖=1

|𝑈𝑖 | log𝑁𝑖 +
𝑛2∑︁
𝑗=1

log𝑝
|𝑉𝑗 |
𝑗
+
𝑛3∑︁
𝑘=1

𝐾𝑘∑︁
𝑗=1

log𝐶
|𝑊𝑘,𝑗 |
𝑘

≥ 𝛿

𝑛1∑︁
𝑖=1

|𝑈𝑖 | log𝑁𝑖 +
𝑛2∑︁
𝑗=1

|𝑉𝑗 | log(𝑝 𝑗/𝑒) +
𝑛3∑︁
𝑘=1

𝐾𝑘∑︁
𝑗=1

|𝑊𝑘,𝑗 | log(𝐶𝑘/𝑒)
 ,

where the last inequality comes from [11, Proposition 38]
11
.

Divided by 𝛿 > 0, we get the desired result.

Hence, (X̃′𝑤 , Ỹ′𝑤 , Z̃′𝑤) is a (P′,Q′,R′, 1 − 𝛿)-dense source such
that

𝑛1∑︁
𝑖=1

𝑃 ′𝑖 log𝑁𝑖 +
𝑛2∑︁
𝑗=1

𝑄 ′𝑗 log(𝑝 𝑗/𝑒) +
𝑛3∑︁
𝑘=1

𝐾𝑘∑︁
𝑗=1

𝑅′
𝑘,𝑗

log(𝐶𝑘/𝑒) ≤ 𝑆𝑧/𝛿.

Set (X′𝑤 ,Y′𝑤 ,Z′𝑤) now to be (X′𝑤 ,Y′𝑤 ,Z′𝑤) conditioned on

(X′𝑤)U ≠ x′U, (Y′𝑤)V ≠ y′V, and (Z′𝑤)W ≠ z′W and recursively

decompose (X′𝑤 ,Y′𝑤 ,Z′𝑤) as long as

Pr

[
X𝑤 ∈ supp(X′𝑤) ∧ Y𝑤 ∈ supp(Y′𝑤) ∧ Z𝑤 ∈ supp(Z′𝑤)

]
> 𝛾 .

Observe that

𝐻∞ (X′𝑤 ,Y′𝑤 ,Z′𝑤)

≥
𝑛1∑︁
𝑖=1

𝑀𝑖 log𝑁𝑖 +
𝑛2∑︁
𝑗=1

log𝑝 𝑗 ! +
𝑛3∑︁
𝑘=1

𝐾𝑘∑︁
𝑗=1

log𝐶𝑘 ! − (𝑆𝑧 + log𝛾−1)

at any point in this decomposition process since

Pr

[
X′𝑤 = x′ ∧ Y′𝑤 = y′ ∧ Z′𝑤 = z′

]
= Pr

[
X𝑤 = x′ ∧ Y𝑤 = y′ ∧ Z𝑤 = z′

���
11
[11, Proposition 38] says that 𝑁

𝑗 ≥ (𝑁 /𝑒) 𝑗 , where 𝑎𝑏 := 𝑎!/(𝑎 − 𝑏)!.

X𝑤 ∈ supp(X′𝑤) ∧ Y𝑤 ∈ supp(Y′𝑤) ∧ Z𝑤 ∈ supp(Z′𝑤)
]

≤ Pr [X𝑤 = x′ ∧ Y𝑤 = y′ ∧ Z𝑤 = z′]
Pr [X𝑤 ∈ supp(X′𝑤) ∧ Y𝑤 ∈ supp(Y′𝑤) ∧ Z𝑤 ∈ supp(Z′𝑤)]

≤ 2
−(∑𝑛1

𝑖=1
𝑀𝑖 log𝑁𝑖+

∑𝑛
2

𝑗=1
log𝑝 𝑗 !+

∑𝑛
3

𝑘=1

∑𝐾𝑘
𝑗=1

log𝐶𝑘 !−𝑆𝑧)

𝛾

= 2
−(∑𝑛1

𝑖=1
𝑀𝑖 log𝑁𝑖+

∑𝑛
2

𝑗=1
log𝑝 𝑗 !+

∑𝑛
3

𝑘=1

∑𝐾𝑘
𝑗=1

log𝐶𝑘 !−(𝑆𝑧+log𝛾−1)) .

Note that supp(X′𝑤), supp(Y′𝑤), supp(Z′𝑤) decreases in every

step, and since supp(X𝑤), supp(Y𝑤), supp(Z𝑤) are finite, after finitely
many steps, this process ends with (X′𝑤final,Y

′𝑤
final,Z

′𝑤
final) with

Pr

[
X𝑤 ∈ supp(X′𝑤final) ∧ Y

𝑤 ∈ supp(Y′𝑤final) ∧ Z
𝑤 ∈ supp(Z′𝑤final)

]
> 𝛾 .

Hence, (X𝑤 ,Y𝑤 ,Z𝑤) is a convex combination of finitely many

(P′,Q′,R′, 1 − 𝛿)-dense sources and (X′𝑤final,Y
′𝑤
final,Z

′𝑤
final), where

P′,Q′,R′ satisfy the inequality

𝑛1∑︁
𝑖=1

𝑃 ′𝑖 log𝑁𝑖+
𝑛2∑︁
𝑖=1

𝑄 ′𝑖 log(𝑝𝑖/𝑒)+
𝑛3∑︁
𝑖=1

𝐾𝑖∑︁
𝑗=1

𝑅′𝑖, 𝑗 log(𝐶𝑖/𝑒) ≤
𝑆𝑧 + log𝛾−1

𝛿
.

This implies that (X𝑤 ,Y𝑤 ,Z𝑤) is 𝛾-close to a convex combina-

tion of (P′,Q′,R′, 1 − 𝛿)-dense sources where

∑𝑛1
𝑖=1

𝑃 ′
𝑖
log𝑁𝑖 +∑𝑛2

𝑖=1
𝑄 ′
𝑖
log(𝑝𝑖/𝑒) +

∑𝑛3
𝑖=1

∑𝐾𝑖
𝑗=1

𝑅′
𝑖, 𝑗

log(𝐶𝑖/𝑒) ≤ (𝑆𝑧 + log𝛾−1)/𝛿 .
□

Let (X̃𝑤 , Ỹ𝑤 , Z̃𝑤) be the convex combination of (P′,Q′,R′, 1−𝛿)-
dense sources that is 𝛾-close to (X𝑤 ,Y𝑤 ,Z𝑤) for a 𝛿 = 𝛿𝑧 to

be determined later. For every (P′,Q′,R′, 1 − 𝛿) source (X̃, Ỹ, Z̃)
in said convex combination, let (X̃′, Ỹ′, Z̃′) be the correspond-

ing (P′,Q′,R′)-bit-fixing source, i.e., (X̃, Ỹ, Z̃) and (X̃′, Ỹ′, Z̃′) are
fixed on the same coordinates to the same values. The following

claim bounds the distinguishing advantage between (X̃, Ỹ, Z̃) and
(X̃′, Ỹ′, Z̃′) for any (S,T, L)-query distinguisher.

Claim 5. For any (P′,Q′,R′, 1 − 𝛿)-dense source (X̃, Ỹ, Z̃) and
its corresponding (P′,Q′,R′)-bit-fixing source (X̃′, Ỹ′, Z̃′), it holds
that for any (adaptive) distinguisher D that queries at most S =

(𝑆1, . . . , 𝑆𝑛1) coordinates of each oracle that corresponds to X̃ where
𝑆𝑖 < 𝑃 ′

𝑖
for each 𝑖 ∈ [𝑛1], T = (𝑇1, . . . ,𝑇𝑛2) coordinates of each

oracle that corresponds to Ỹ where 𝑇𝑖 < 𝑄 ′
𝑖
for each 𝑖 ∈ [𝑛2], and

L = (L1, . . . , L𝑛3) coordinates of each oracle that corresponds to Z̃
where L𝑘 = (𝐿𝑘,1, . . . , 𝐿𝑘,𝐾𝑘) and 𝐿𝑖, 𝑗 < 𝑅′

𝑖, 𝑗
for each 𝑗 ∈ [𝐾𝑖] and

𝑖 ∈ [𝑛3],���Pr [
DX̃,Ỹ,Z̃ = 1

]
− Pr

[
DX̃′,Ỹ′,Z̃′ = 1

] ���
≤ 𝛿 ©«

𝑛1∑︁
𝑖=1

𝑆𝑖 log𝑁𝑖 +
𝑛2∑︁
𝑖=1

𝑇𝑖 log 𝑝𝑖 +
𝑛3∑︁
𝑖=1

𝐾𝑖∑︁
𝑗=1

𝐿𝑖, 𝑗 log𝐶𝑖
ª®¬ ,

and

Pr

[
DX̃,Ỹ,Z̃ = 1

]
≤ 2

𝛿

(∑𝑛
1

𝑖=1
𝑆𝑖 log𝑁𝑖+

∑𝑛
2

𝑖=1
𝑇𝑖 log𝑝𝑖+

∑𝑛
3

𝑖=1

∑𝐾𝑖
𝑗=1
𝐿𝑖,𝑗 log𝐶𝑖

)
· Pr

[
DX̃′,Ỹ′,Z̃′ = 1

]
.

20

Preprocessing Security in Multiple Idealized Models with Applications to Schnorr Signatures and PSEC-KEM

Proof of Claim 5. Without loss of generality, assume that D
is deterministic and does not query any of the fixed positions, make

the same query twice, or make an inverse query after making the

corresponding forward query or vice-versa. Let𝑇X̃,Ỹ,Z̃ and𝑇X̃′,Ỹ′,Z̃′
be the random variables corresponding to the transcripts contain-

ing the query/answer pairs resulting from D’s interaction with

(X̃, Ỹ, Z̃) and (X̃′, Ỹ′, Z̃′), respectively.
For a fixed transcript 𝑡 , denote by pX̃,Ỹ,Z̃ (𝑡) and pX̃′,Ỹ′,Z̃′ (𝑡) the

probabilities that (X̃, Ỹ, Z̃) and (X̃′, Ỹ′, Z̃′), respectively, produce
the answers in 𝑡 if the queries in 𝑡 are asked. SinceD is deterministic,

Pr

[
𝑇X̃,Ỹ,Z̃ = 𝑡

]
∈

{
0, pX̃,Ỹ,Z̃ (𝑡)

}
, and similarly, Pr

[
𝑇X̃′,Ỹ′,Z̃′ = 𝑡

]
∈{

0, pX̃′,Ỹ′,Z̃′ (𝑡)
}
. Denote by TX,Y,Z the set of all transcripts 𝑡 for

which Pr

[
𝑇X̃,Ỹ,Z̃ = 𝑡

]
> 0. For such 𝑡 , Pr

[
𝑇X̃,Ỹ,Z̃ = 𝑡

]
= pX̃,Ỹ,Z̃ (𝑡)

and also Pr

[
𝑇X̃′,Ỹ′,Z̃′ = 𝑡

]
= pX̃′,Ỹ′,Z̃′ (𝑡). Observe that for every

transcript 𝑡 ,

pX̃,Ỹ,Z̃ (𝑡)

≤ 2

−(1−𝛿)
[∑𝑛

1

𝑖=1
𝑆𝑖 log𝑁𝑖+

∑𝑛
2

𝑖=1
log(𝑝𝑖−𝑄 ′𝑖)

𝑇𝑖 +∑𝑛3
𝑖=1

∑𝐾𝑖
𝑗=1

log(𝐶𝑖−𝑅′𝑖,𝑗)
𝐿𝑖,𝑗

]
,

(7)

and

pX̃′,Ỹ′,Z̃′ (𝑡)

≤ 2

−
[∑𝑛

1

𝑖=1
𝑆𝑖 log𝑁𝑖+

∑𝑛
2

𝑖=1
log(𝑝𝑖−𝑄 ′𝑖)

𝑇𝑖 +∑𝑛3
𝑖=1

∑𝐾𝑖
𝑗=1

log(𝐶𝑖−𝑅′𝑖,𝑗)
𝐿𝑖,𝑗

]
, (8)

as (X̃, Ỹ, Z̃) is (P′,Q′,R′, 1−𝛿)-dense and (X̃′, Ỹ′, Z̃′) is (P′,Q′,R′)-
fixed.

Towards proving the first part of the claim, observe that D’s

output can be computed from the transcript (including whether a

query was a forward for an inverse query) by just running D and

providing the answers to its queries from the transcript. Hence,���Pr [
DX̃,Ỹ,Z̃ = 1

]
− Pr

[
DX̃′,Ỹ′,Z̃′ = 1

] ��� ≤ SD
(
𝑇X̃,Ỹ,Z̃,𝑇X̃′,Ỹ′,Z̃′

)
=

∑︁
𝑡

max

{
0, Pr

[
𝑇X̃,Ỹ,Z̃ = 𝑡

]
− Pr

[
𝑇X̃′,Ỹ′,Z̃′ = 𝑡

]}
=

∑︁
𝑡 ∈ T̃X,Ỹ,Z̃

max

{
0, pX̃,Ỹ,Z̃ (𝑡) − pX̃′,Ỹ′,Z̃′ (𝑡)

}
=

∑︁
𝑡 ∈ T̃X,Ỹ,Z̃

pX̃,Ỹ,Z̃ (𝑡) ·max

{
0, 1 −

pX̃′,Ỹ′,Z̃′ (𝑡)
pX̃,Ỹ,Z̃ (𝑡)

}
≤ 1 − 2−𝛿

[∑𝑛
1

𝑖=1
𝑆𝑖 log𝑁𝑖+

∑𝑛
2

𝑖=1
log(𝑝𝑖−𝑄 ′𝑖)

𝑇𝑖 +∑𝑛3
𝑖=1

∑𝐾𝑖
𝑗=1

log(𝐶𝑖−𝑅′𝑖,𝑗)
𝐿𝑖,𝑗

]
≤ 1 − 2−𝛿

[∑𝑛
1

𝑖=1
𝑆𝑖 log𝑁𝑖+

∑𝑛
2

𝑖=1
𝑇𝑖 log𝑝𝑖+

∑𝑛
3

𝑖=1

∑𝐾𝑖
𝑗=1
𝐿𝑖,𝑗 log𝐶𝑖

]
≤ −𝛿

𝑛1∑︁
𝑖=1

𝑆𝑖 log𝑁𝑖 +
𝑛2∑︁
𝑖=1

𝑇𝑖 log 𝑝𝑖 +
𝑛3∑︁
𝑖=1

𝐾𝑖∑︁
𝑗=1

𝐿𝑖, 𝑗 log𝐶𝑖

 ,
where the first sum is over all possible transcripts and where the

last inequality uses 2
−𝑥 ≥ 1 − 𝑥 for 𝑥 ≥ 0 and 𝑎𝑏 ≤ 𝑎𝑏 for 𝑎, 𝑏 ∈ N.

As for the second part of the claim, observe that due to the

equation (7),(8), and the support of𝑇X̃,Ỹ,Z̃ being a subset of𝑇X̃′,Ỹ′,Z̃′ ,

Pr

[
𝑇X̃,Ỹ,Z̃ = 𝑡

]

≤ 2

𝛿

[∑𝑛
1

𝑖=1
𝑆𝑖 log𝑁𝑖+

∑𝑛
2

𝑖=1
log(𝑝𝑖−𝑄 ′𝑖)

𝑇𝑖 +∑𝑛3
𝑖=1

∑𝐾𝑖
𝑗=1

log(𝐶𝑖−𝑅′𝑖,𝑗)
𝐿𝑖,𝑗

]
· Pr

[
𝑇X̃′,Ỹ′,Z̃′ = 𝑡

]
≤ 2

𝛿

[∑𝑛
1

𝑖=1
𝑆𝑖 log𝑁𝑖+

∑𝑛
2

𝑖=1
𝑇𝑖 log𝑝𝑖+

∑𝑛
3

𝑖=1

∑𝐾𝑖
𝑗=1
𝐿𝑖,𝑗 log𝐶𝑖

]
· Pr

[
𝑇X̃′,Ỹ′,Z̃′ = 𝑡

]
,

for any transcript 𝑡 . Let TD be the set of transcripts where D
outputs 1. Then we have

Pr

[
DX̃,Ỹ,Z̃ = 1

]
=

∑︁
𝑡 ∈TD

Pr

[
𝑇X̃,Ỹ,Z̃ = 𝑡

]
≤ 2

𝛿

[∑𝑛
1

𝑖=1
𝑆𝑖 log𝑁𝑖+

∑𝑛
2

𝑖=1
𝑇𝑖 log𝑝𝑖+

∑𝑛
3

𝑖=1

∑𝐾𝑖
𝑗=1
𝐿𝑖,𝑗 log𝐶𝑖

]
·

∑︁
𝑡 ∈TD

Pr

[
𝑇X̃′,Ỹ′,Z̃′ = 𝑡

]
= 2

𝛿

[∑𝑛
1

𝑖=1
𝑆𝑖 log𝑁𝑖+

∑𝑛
2

𝑖=1
𝑇𝑖 log𝑝𝑖+

∑𝑛
3

𝑖=1

∑𝐾𝑖
𝑗=1
𝐿𝑖,𝑗 log𝐶𝑖

]
· Pr

[
DX̃′,Ỹ′,Z̃′ = 1

]
,

which concludes the proof. □

Let (X̃′𝑤 , Ỹ′𝑤 , Z̃′𝑤) be obtained by replacing (X̃, Ỹ, Z̃) by (X̃′, Ỹ′, Z̃′)
in (X̃𝑤 , Ỹ𝑤 , Z̃𝑤). Setting

𝛿𝑧 =
𝑆𝑧 + log𝛾−1∑𝑛1

𝑖=1
𝑆𝑖 log𝑁𝑖 +

∑𝑛2
𝑖=1

𝑇𝑖 log𝑝𝑖 +
∑𝑛3
𝑖=1

∑𝐾𝑖
𝑗=1

𝐿𝑖, 𝑗 log𝐶𝑖

,

Claim 4 and Claim 5 imply���Pr [
DX𝑤 ,Y𝑤 ,Z𝑤 (𝑧) = 1

]
− Pr

[
DX̃′

𝑤
,Ỹ′

𝑤
,Z̃′

𝑤

(𝑧) = 1

] ��� ≤ Λ+𝛾, (9)

as well as

Pr

[
DX𝑤 ,Y𝑤 ,Z𝑤 (𝑧) = 1

]
≤ 2

Λ · Pr
[
DX̃′

𝑤
,Ỹ′

𝑤
,Z̃′

𝑤

(𝑧) = 1

]
+ 𝛾,

where

Λ =

(
𝑆 + log𝛾−1

) (∑𝑛1
𝑖=1

𝑆𝑖 log𝑁𝑖 +
∑𝑛2
𝑖=1

𝑇𝑖 log𝑝𝑖 +
∑𝑛3
𝑖=1

∑𝐾𝑖
𝑗=1

𝐿𝑖, 𝑗 log𝐶𝑖

)
∑𝑛1
𝑖=1

𝑃𝑖 log𝑁𝑖 +
∑𝑛2
𝑖=1

𝑄𝑖 log(𝑝𝑖/𝑒) +
∑𝑛3
𝑖=1

∑𝐾𝑖
𝑗=1

𝑅𝑖, 𝑗 log(𝐶𝑖/𝑒)
.

Moreover, note that for the above choice of𝛿𝑧 , we have (P′,Q′,R′) =
(P,Q,R), i.e., the sources (X̃′𝑤 , Ỹ′𝑤 , Z̃′𝑤) are (P,Q,R)-fixed, as de-
sired.

Claim 6. E𝑧 [𝑆𝑧] ≤ 𝑆 and Pr[𝑆𝑓 (X,Y,Z) > 𝑆 + log𝛾−1] ≤ 𝛾 .

Proof of Claim 6. Observe that𝐻∞ (X𝑤 ,Y𝑤 ,Z𝑤) = 𝐻∞ ((X,Y,Z) |
𝑊 = 𝑤) = 𝐻 ((X,Y,Z) |𝑊 = 𝑤) since, conditioned on 𝑊 =

𝑤 , (X,Y,Z) is distributed uniformly over all values (x, y, z) with
𝑓 (x, y, z) = 𝑤 . Hence,

E𝑧 [𝑆𝑧] =
𝑛1∑︁
𝑖=1

𝑀𝑖 log𝑁𝑖 +
𝑛2∑︁
𝑖=1

log𝑝𝑖 ! +
𝑛3∑︁
𝑖=1

𝐾𝑖 log𝐶𝑖 ! − E𝑧 [𝐻∞ ((X,Y,Z) |𝑊 = 𝑤)]

=

𝑛1∑︁
𝑖=1

𝑀𝑖 log𝑁𝑖 +
𝑛2∑︁
𝑖=1

log𝑝𝑖 ! +
𝑛3∑︁
𝑖=1

𝐾𝑖 log𝐶𝑖 ! − E𝑧 [𝐻 ((X,Y,Z) |𝑊 = 𝑤)]

=

𝑛1∑︁
𝑖=1

𝑀𝑖 log𝑁𝑖 +
𝑛2∑︁
𝑖=1

log𝑝𝑖 ! +
𝑛3∑︁
𝑖=1

𝐾𝑖 log𝐶𝑖 ! − 𝐻 ((X,Y,Z) |𝑊 = 𝑤) ≤ 𝑆.

Again, due to the uniformity of (X,Y,Z), Pr[𝑓 (X,Y,Z) = 𝑧] =
2
−𝑆𝑧

. Hence,

Pr[𝑆𝑓 (X,Y,Z) > 𝑆 + log𝛾−1]

=
∑︁

𝑤∈{0,1}𝑆 :𝑆𝑧>𝑆+log𝛾−1
Pr[𝑓 (X,Y,Z) = 𝑤]

21

Jeremiah Blocki and Seunghoon Lee

≤ 2
𝑆 · 2−(𝑆+log𝛾

−1) ≤ 𝛾 . □

Now the lemma follows (using (X′𝑤 ,Y′𝑤 ,Z′𝑤) := (X̃′𝑤 , Ỹ′𝑤 , Z̃′𝑤))
by taking expectations over𝑤 of the equation (9) and applying the

first part of Claim 6. □

B.2 From the Bit-Fixing Model to the
Auxiliary-Input Model

Capturing theModels. A tuple of oracles

(
{O1,𝑖 }𝑛1𝑖=1, {O2, 𝑗 }

𝑛2
𝑗=1
, {O

3,𝑘 }𝑛3𝑘=1
)

has two interfaces ({O1,𝑖 .pre}𝑛1𝑖=1, {O2, 𝑗 .pre}
𝑛2
𝑗=1
, {O

3,𝑘 .pre}𝑛3𝑘=1) that
is accessible during a preprocessing phase, and ({O1,𝑖 .on}𝑛1𝑖=1, {O2, 𝑗 .on}

𝑛2
𝑗=1
,

{O
3,𝑘 .on}𝑛3𝑘=1) that is accessible during an online phase, where(
{O1,𝑖 .pre}𝑛1𝑖=1, {O2, 𝑗 .pre}

𝑛2
𝑗=1
, {O

3,𝑘 .pre}𝑛3𝑘=1
)
is accessible only once

before any calls to

(
{O1,𝑖 .on}𝑛1𝑖=1, {O2, 𝑗 .on}

𝑛2
𝑗=1
, {O

3,𝑘 .on}𝑛3𝑘=1
)
are

made. We consider the oracles as follows:

• RandomOracle + Generic GroupOracle + Ideal Cipher
RO+GG+IC({𝑀𝑖 , 𝑁𝑖 }𝑛1𝑖=1, {𝑝 𝑗 , ℓ𝑗 }

𝑛2
𝑗=1
, {𝐾𝑘 ,𝐶𝑘 }𝑛3𝑘=1): Samples

random oracle function tables H𝑖 ← H𝑀𝑖 ,𝑁𝑖 for each 𝑖 ∈
[𝑛1], whereH𝑀𝑖 ,𝑁𝑖 is the set of all functions from [𝑀𝑖] →
[𝑁𝑖], samples random injections 𝜏 𝑗 ← I𝑝 𝑗 ,ℓ𝑗 for each 𝑗 ∈
[𝑛2], where I𝑝 𝑗 ,ℓ𝑗 is the set of all injections from Z𝑝 𝑗 → G𝑗
where G𝑗 is the set of bitstrings of length ℓ𝑗 ≥ log𝑝 𝑗 ,

and samples random permutations 𝜋𝑠 ← P𝐶𝑘 for each

𝑠 ∈ [𝐾𝑘], where P𝐶𝑘 is the set of all permutations from

[𝐶𝑘] → [𝐶𝑘]; offers no functionality at ({O1,𝑖 .pre}𝑛1𝑖=1,
{O2, 𝑗 .pre}𝑛2𝑗=1, {O3,𝑘 .pre}

𝑛3
𝑘=1
); for the online queries,

◦ for each 𝑖 ∈ [𝑛1], answers queries 𝑥 ∈ [𝑀𝑖] to H𝑖 at
O1,𝑖 .on by the corresponding value H𝑖 (𝑥) ∈ [𝑁𝑖],

◦ for each 𝑗 ∈ [𝑛2], answers forward queries 𝑥 ′ ∈ Z𝑝 𝑗 to
𝜏 𝑗 at O2, 𝑗 .on by the corresponding value 𝜏 𝑗 (𝑥 ′) ∈ G𝑗 ;
answers group-operation queries (𝑠, 𝑠′) at O2, 𝑗 .on as

follows: if 𝑠 = 𝜏 𝑗 (𝑥) and 𝑠′ = 𝜏 𝑗 (𝑥 ′) for some 𝑥, 𝑥 ′, the
oracle replies by 𝜏 𝑗 (𝑥+𝑥 ′) and by⊥ otherwise; answers

inverse queries 𝑠 at O2, 𝑗 .on by returning 𝜏−1
𝑗
(𝑠) if 𝑠 is

in the range of 𝜏 𝑗 and ⊥ otherwise, and

◦ for each 𝑘 ∈ [𝑛3], answers both forward and back-
ward queries (𝑠, 𝑥) ∈ [𝐾𝑘] × [𝐶𝑘] at O3,𝑘 .on by the

corresponding value 𝜋𝑠 (𝑥) ∈ [𝐶𝑘] or 𝜋−1𝑠 (𝑥) ∈ [𝐶𝑘],
respectively.

• Auxiliary-Input Random Oracle + Generic Group Ora-
cle + Ideal CipherAI-RO+GG+IC({𝑀𝑖 , 𝑁𝑖 }𝑛1𝑖=1, {𝑝 𝑗 , ℓ𝑗 }

𝑛2
𝑗=1
,

{𝐾𝑘 ,𝐶𝑘 }𝑛3𝑘=1): Samples H𝑖 , 𝜏 𝑗 , 𝜋𝑠 for each 𝑖 ∈ [𝑛1], 𝑗 ∈ [𝑛2],
and 𝑠 ∈ [𝐾𝑘] where 𝑘 ∈ [𝑛3] as explained in RO+GG+IC
({𝑀𝑖 , 𝑁𝑖 }𝑛1𝑖=1, {𝑝 𝑗 , ℓ𝑗 }

𝑛2
𝑗=1
, {𝐾𝑘 ,𝐶𝑘 }𝑛3𝑘=1) above; outputs all of

H𝑖 , 𝜏 𝑗 , and𝜋𝑠 at ({O1,𝑖 .pre}𝑛1𝑖=1, {O2, 𝑗 .pre}
𝑛2
𝑗=1
, {O

3,𝑘 .pre}𝑛3𝑘=1);
({O1,𝑖 .on}𝑛1𝑖=1, {O2, 𝑗 .on}

𝑛2
𝑗=1
, {O

3,𝑘 .on}𝑛3𝑘=1) behaves the same

asRO+GG+IC({𝑀𝑖 , 𝑁𝑖 }𝑛1𝑖=1, {𝑝 𝑗 , ℓ𝑗 }
𝑛2
𝑗=1
, {𝐾𝑘 ,𝐶𝑘 }𝑛3𝑘=1).When

the parameters ({𝑀𝑖 , 𝑁𝑖 }𝑛1𝑖=1, {𝑝 𝑗 , ℓ𝑗 }
𝑛2
𝑗=1
, {𝐾𝑘 ,𝐶𝑘 }𝑛3𝑘=1) are

clear in context, we sometimes abuse the notation and sim-

ply say AI-RO+GG+IC.
• Bit-Fixing Random Oracle + Generic Group Oracle +

Ideal CipherBF-RO+GG+IC(P,Q,R, {𝑀𝑖 , 𝑁𝑖 }𝑛1𝑖=1, {𝑝 𝑗 , ℓ𝑗 }
𝑛2
𝑗=1
,

{𝐾𝑘 ,𝐶𝑘 }𝑛3𝑘=1): Samples a randomoracle function tableH𝑖 ←
H𝑀𝑖 ,𝑁𝑖 at O1,𝑖 .pre for each 𝑖 ∈ [𝑛1], where H𝑀𝑖 ,𝑁𝑖 is the
set of all functions from [𝑀𝑖] → [𝑁𝑖], samples a random

size-𝑝 𝑗 subset Y𝑗 of G𝑗 for each 𝑗 ∈ [𝑛2] and outputs Y𝑗
at O2, 𝑗 .pre, and samples a random permutation 𝜋𝑠 ← P𝐶𝑘
at O

3,𝑘 .pre for each 𝑠 ∈ [𝐾𝑘], where P𝐶𝑘 is the set of all

permutations from [𝐶𝑘] → [𝐶𝑘].
◦ Given P = (𝑃1, . . . , 𝑃𝑛1) ∈ Z𝑀1

×· · ·×Z𝑀𝑛
1

, for each 𝑖 ∈
[𝑛1], takes a list at O1,𝑖 .pre of at most 𝑃𝑖 query/answer

pairs that override H𝑖 in the corresponding positions,

◦ givenQ = (𝑄1, . . . , 𝑄𝑛2) ∈ Z𝑝1×· · ·×Z𝑝𝑛
1

, for each 𝑗 ∈
[𝑛2], takes a list atO2, 𝑗 .pre of at most𝑄 𝑗 query/answer

pairs without collisions and all answers inY𝑗 ; samples

a random injection 𝜏 𝑗 ← I𝑝 𝑗 ,ℓ𝑗 with range Y𝑗 and
consistent with said list, and

◦ given R = (R1, . . . ,R𝑛3) ∈ (Z𝐶1
)𝐾1 × · · · × (Z𝐶𝑛

3

)𝐾𝑛3
where R𝑘 = (𝑅𝑘,1, . . . , 𝑅𝑘,𝐾𝑘) for each 𝑘 ∈ [𝑛3], takes
a list at O

3,𝑘 .pre of at most 𝑅𝑘,𝑠 query/answer pairs

(without collisions for each 𝑠 ∈ [𝐾𝑘]); samples a ran-

dom permutation 𝜋𝑠 ← P𝐶𝑘 consistent with said list

for each 𝑠 ∈ [𝐾𝑘].
◦ ({O1,𝑖 .on}𝑛1𝑖=1, {O2, 𝑗 .on}

𝑛2
𝑗=1
, {O

3,𝑘 .on}𝑛3𝑘=1) behaves the
same asRO+GG+IC({𝑀𝑖 , 𝑁𝑖 }𝑛1𝑖=1, {𝑝 𝑗 , ℓ𝑗 }

𝑛2
𝑗=1
, {𝐾𝑘 ,𝐶𝑘 }𝑛3𝑘=1).

When the parameters ({𝑀𝑖 , 𝑁𝑖 }𝑛1𝑖=1, {𝑝 𝑗 , ℓ𝑗 }
𝑛2
𝑗=1
, {𝐾𝑘 ,𝐶𝑘 }𝑛3𝑘=1)

are clear in context, we sometimes abuse the notation

and simply say BF-RO+GG+IC(P,Q,R).

Attackers with Oracle-Dependent Advice. We define the attack-

ers A = (Apre,Aon) similar to that of prior work [11, 12], which

consist of a preprocessing attacker Apre and an online attacker

Aon, which carries out the actual attack using the output of Apre.

The difference is that we consider a tuple of oracles instead of a

single oracle. More precisely, in the presence of a tuple of oracles(
{O1,𝑖 }𝑛1𝑖=1, {O2, 𝑗 }

𝑛2
𝑗=1
, {O

3,𝑘 }𝑛3𝑘=1
)
,Apre interacts with ({O1,𝑖 .pre}𝑛1𝑖=1,

{O2, 𝑗 .pre}𝑛2𝑗=1, {O3,𝑘 .pre}
𝑛3
𝑘=1
) and Aon with(

{O1,𝑖 .on}𝑛1𝑖=1, {O2, 𝑗 .on}
𝑛2
𝑗=1
, {O

3,𝑘 .on}𝑛3𝑘=1
)
.

Definition B.3. Given S = (𝑆1, . . . , 𝑆𝑛1),T = (𝑇1, . . . ,𝑇𝑛2), and
L = (L1, . . . , L𝑛3) where L𝑘 = (𝐿𝑘,1, . . . , 𝐿𝑘,𝐾𝑘) for 𝑘 ∈ [𝑛3], an
(𝑆, S,T, L)-attacker A = (Apre,Aon) in the

(
{O1,𝑖 }𝑛1𝑖=1, {O2, 𝑗 }

𝑛2
𝑗=1
,

{O
3,𝑘 }𝑛3𝑘=1

)
-model consists of two procedures

• Apre, which is computationally unbounded, interacts with

({O1,𝑖 .pre}𝑛1𝑖=1, {O2, 𝑗 .pre}
𝑛2
𝑗=1
, {O

3,𝑘 .pre}𝑛3𝑘=1), and outputs

an 𝑆-bit string as hint, and

• Aon, which takes an 𝑆-bit auxiliary input andmakes atmost

(S, T, L) queries to ({O1,𝑖 .on}𝑛1𝑖=1, {O2, 𝑗 .on}
𝑛2
𝑗=1
, {O

3,𝑘 .on}𝑛3𝑘=1).
That is, Aon makes at most 𝑆𝑖 queries to O1,𝑖 .on for each

𝑖 ∈ [𝑛1], 𝑇𝑗 queries to O2, 𝑗 .on for each 𝑗 ∈ [𝑛2], and 𝐿𝑘,𝑠
queries to O

3,𝑘 .on for each 𝑘 ∈ [𝑛3] and for each key

𝑠 ∈ [𝐾𝑘].

The definition of an application 𝐺 and the success of A on

𝐺 (see Definition A.3) can be easily extended by defining O :=(
{O1,𝑖 }𝑛1𝑖=1, {O2, 𝑗 }

𝑛2
𝑗=1
, {O

3,𝑘 }𝑛3𝑘=1
)
,O .pre :=

(
{O1,𝑖 .pre}𝑛1𝑖=1, {O2, 𝑗 .pre}

𝑛2
𝑗=1
,

22

Preprocessing Security in Multiple Idealized Models with Applications to Schnorr Signatures and PSEC-KEM

{O
3,𝑘 .pre}𝑛3𝑘=1

)
, andO .on := ({O1,𝑖 .on}𝑛1𝑖=1, {O2, 𝑗 .on}

𝑛2
𝑗=1
, {O

3,𝑘 .on}𝑛3𝑘=1).
The advantage of an attackerA for an indistinguishability/unpredictability

application𝐺 can also be defined accordingly forO =

(
{O1,𝑖 }𝑛1𝑖=1, {O2, 𝑗 }

𝑛2
𝑗=1
,

{O
3,𝑘 }𝑛3𝑘=1

)
as defined in Definition A.4.

Additive Error for Arbitrary Applications in the ROM+GGM+ICM.
Using Lemma B.2, one can extend [12, Theorem 5] and [11, Theorem

1] to the translation from bit-fixing model with multiple idealized

models (ROM+GGM+ICM) to the corresponding auxiliary-input

model at the cost of an additive term which is similar to those from

[12, Theorem 5] and [11, Theorem 1].

Theorem B.4. For every𝛾 > 0, if an application𝐺 is (𝑆, S, T, L, 𝜀′)-
secure in theBF-RO+GG+IC(P,Q,R, {𝑀𝑖 , 𝑁𝑖 }𝑛1𝑖=1, {𝑝𝑖 , ℓ𝑖 }

𝑛2
𝑖=1
, {𝐾𝑖 ,𝐶𝑖 }𝑛3𝑖=1)-

model for any P,Q,R as introduced in Definition B.1 which satisfies
𝑛1∑︁
𝑖=1

𝑃𝑖 log𝑁𝑖 +
𝑛2∑︁
𝑖=1

𝑄𝑖 log(𝑝𝑖/𝑒) +
𝑛3∑︁
𝑖=1

𝐾𝑖∑︁
𝑗=1

𝑅𝑖, 𝑗 log(𝐶𝑖/𝑒) ≤ 𝜂,

then it is (𝑆, S,T, L, 𝜀)-secure in the AI-RO+GG+IC({𝑀𝑖 , 𝑁𝑖 }𝑛1𝑖=1,
{𝑝𝑖 , ℓ𝑖 }𝑛2𝑖=1, {𝐾𝑖 ,𝐶𝑖 }

𝑛3
𝑖=1
)-model, for 𝜀 ≤ 𝜀′ + Λ + 2𝛾 , where

Λ =

2(𝑆+log𝛾−1)
(
𝑛
1∑

𝑖=1
(𝑆𝑖)comb

𝐺
log𝑁𝑖+

𝑛
2∑

𝑖=1
3(𝑇𝑖)comb

𝐺
log𝑝𝑖+

𝑛
3∑

𝑖=1

𝐾𝑖∑
𝑗=1

2(𝐿𝑖,𝑗)comb
𝐺

log𝐶𝑖

)
𝜂 ,

𝑒 is the Euler constant, and (𝑆𝑖)comb
𝐺

, (𝑇𝑖)comb
𝐺

and (𝐿𝑖, 𝑗)comb
𝐺

are the
combined query complexity corresponding to 𝐺 that corresponds to
the random oracles, the generic group oracles, and the ideal ciphers,
respectively.

Proof. Fix P,Q,R as well as 𝛾 . Let𝐺 be an arbitrary application

and C be the corresponding challenger. Moreover, fix an (𝑆, S, T, L)-
attacker A = (Apre,Aon), and let {(X′,Y′,Z′)𝑤,Y }, indexed by

𝑤 ∈ {0, 1}𝑆 andY = (Y1, . . . ,Y𝑛2)whereY𝑖 is a size-𝑝𝑖 subset ofG𝑖
for each 𝑖 ∈ [𝑛2], be the family of distributions guaranteed to exist

by Lemma B.2. Consider the following (𝑆, S,T, L)-attacker A′ =
(A′pre,A′on) that is expected to interact with BF-RO+GG+IC:

• A′pre obtains the set Y from {BF-GG.pre}𝑛2
𝑖=1

and inter-

nally simulates Apre on a uniformly random input X ∈∏𝑛1
𝑖=1
[𝑀𝑖], a uniformly random injection Y ∈ ∏𝑛2

𝑗=1
Z𝑝 𝑗

with range Y, a uniformly random IC Z ∈ ∏𝑛3
𝑘=1
[𝐾𝑘] ×

[𝐶𝑘] to obtain 𝑤 ← AAI-RO+GG+IC.pre
pre . Then, it samples

one of the (P,Q,R)-bit-fixing sources (X′′,Y′′,Z′′) making

up (X′,Y′,Z′)𝑤,Y and presets BF-RO+GG+IC to match

(X′′,Y′′,Z′′) on the at most (P,Q,R) points (pairwise and
elementwise) where (X′′,Y′′,Z′′) is fixed. The output of
A′pre is𝑤 .

• A′on works exactly the same as Aon.

Let D be a distinguisher — making forward, group-operation, in-

verse, and backward queries to an (𝑛1, 𝑛2, 𝑛3)-source — that inter-

nally runs the combination of Aon = A′on and C. It answers their
queries as follows:

(1) It passes forward and backward queries to and back from

its own oracle.

(2) It answers group-operation queries (𝑠, 𝑠′) (to the generic

group oracle) by making two backward queries to its own

oracle for 𝑠 and 𝑠′, obtaining 𝑖 and 𝑗 , respectively, making

a forward query 𝑖 + 𝑗 , and passing the answer to Aon or C
(unless one of the answers to the backward queries was ⊥,
in which case ⊥ is returned).

Note that DX,Y,Z (𝑓 (X,Y,Z)) is identical to

AAI-RO+GG+IC.on
on (AAI-RO+GG+IC.pre

pre) ↔ CAI-RO+GG+IC.on,

and D (X′,Y′,Z′) 𝑓 (X,Y,Z),im(Y) (𝑓 (X,Y,Z)) is identical to

A
′BF-RO+GG+IC.on
on (A

′BF-RO+GG+IC.pre
pre) ↔ CBF-RO+GG+IC.on .

Furthermore,D is a distinguisher taking an 𝑆-bit input and making

at most (𝑆𝑖)comb
𝐺

queries to the 𝑖 th random oracle for 𝑖 ∈ [𝑛1],
3(𝑇𝑗)comb

𝐺
queries to the 𝑗 th generic group oracle for 𝑗 ∈ [𝑛2], and

2(𝐿𝑘,𝑗)comb
𝐺

queries to the 𝑘 th
ideal cipher for 𝑘 ∈ [𝑛3] and for each

key 𝑗 ∈ [𝐾𝑘]. Therefore, by Lemma B.2,

Succ𝐺,AI-RO+GG+IC (A)
≤ Succ𝐺,BF-RO+GG+IC (A′)

+

(
𝑆 + log𝛾−1

) (
𝑛1∑
𝑖=1
(𝑆𝑖)comb

𝐺
log𝑁𝑖 +

𝑛2∑
𝑖=1

3(𝑇𝑗)comb
𝐺

log𝑝𝑖 +
𝑛3∑
𝑖=1

𝐾𝑖∑
𝑗=1

2(𝐿𝑘,𝑗)comb
𝐺

log𝐶𝑖

)
𝜂

+ 𝛾,

for any P,Q,R satisfying

𝑛1∑︁
𝑖=1

𝑃𝑖 log𝑁𝑖 +
𝑛2∑︁
𝑖=1

𝑄𝑖 log(𝑝𝑖/𝑒) +
𝑛3∑︁
𝑖=1

𝐾𝑖∑︁
𝑗=1

𝑅𝑖, 𝑗 log(𝐶𝑖/𝑒) ≤ 𝜂.

Since there is only an additive term between the two success prob-

abilities, the above inequality implies

Adv𝐺,AI-RO+GG+IC (A)
≤ Adv𝐺,BF-RO+GG+IC (A′)

+

(
𝑆 + log𝛾−1

) (
𝑛1∑
𝑖=1
(𝑆𝑖)comb

𝐺
log𝑁𝑖 +

𝑛2∑
𝑖=1

3(𝑇𝑗)comb
𝐺

log𝑝𝑖 +
𝑛3∑
𝑖=1

𝐾𝑖∑
𝑗=1

2(𝐿𝑘,𝑗)comb
𝐺

log𝐶𝑖

)
𝜂

+ 2𝛾,

for both indistinguishability and unpredictability applications. Note

that the extra factor of 2 is technically only necessary for indistin-

guishability applications [12]. □

Multiplicative Error for Unpredictability Applications in the ROM+
GGM+ICM.

Theorem B.5. For every 𝛾 > 0, if an unpredictability application
𝐺 is (𝑆, S, T, L, 𝜀′)-secure in theBF-RO+GG+IC(P,Q,R, {𝑀𝑖 , 𝑁𝑖 }𝑛1𝑖=1,
{𝑝𝑖 , ℓ𝑖 }𝑛2𝑖=1, {𝐾𝑖 ,𝐶𝑖 }

𝑛3
𝑖=1
)-model for any P,Q,R as introduced in Defi-

nition B.1 satisfying

(𝑆 + log𝛾−1)
(𝑛1∑︁
𝑖=1

(𝑆𝑖)comb
𝐺 log𝑁𝑖 +

𝑛2∑︁
𝑖=1

3(𝑇𝑖)comb
𝐺 log 𝑝𝑖

+
𝑛3∑︁
𝑖=1

𝐾𝑖∑︁
𝑗=1

2(𝐿𝑖, 𝑗)comb
𝐺 log𝐶𝑖

)
≤

𝑛1∑︁
𝑖=1

𝑃𝑖 log𝑁𝑖 +
𝑛2∑︁
𝑖=1

𝑄𝑖 log(𝑝𝑖/𝑒) +
𝑛3∑︁
𝑖=1

𝐾𝑖∑︁
𝑗=1

𝑅𝑖, 𝑗 log(𝐶𝑖/𝑒),

23

Jeremiah Blocki and Seunghoon Lee

then it is (𝑆, S,T, L, 𝜀)-secure in the AI-RO+GG+IC({𝑀𝑖 , 𝑁𝑖 }𝑛1𝑖=1,
{𝑝𝑖 , ℓ𝑖 }𝑛2𝑖=1, {𝐾𝑖 ,𝐶𝑖 }

𝑛3
𝑖=1
)-model, for

𝜀 ≤ 2𝜀′ + 2𝛾,
where 𝑒 is the Euler’s number, and (𝑆𝑖)comb

𝐺
, (𝑇𝑖)comb

𝐺
and (𝐿𝑖, 𝑗)comb

𝐺
are the combined query complexity corresponding to 𝐺 that corre-
sponds to the random oracles, the generic group oracles, and the ideal
ciphers, respectively.

C Multi-User Security of Key-Prefixed Short
Schnorr Signatures

For completeness, we employ the bit-fixing-to-auxiliary-input tech-

nique utilized in Theorem 4.5 to examine the multi-user security

of a key-prefixed Schnorr signature scheme. We then compare our

findings with the prior work [6]. First, we analyze the multi-user

security of key-prefixed Schnorr signatures within the bit-fixing

ROM+GGM framework.

TheoremC.1. LetΠ∗ = (Kg, Sign,Vfy) be a key-prefixed Schnorr
signature scheme and 𝑝 > 2

2𝜆 be a prime number. Let 𝑁 ∈ N be
a parameter and

(
ABF-RO+GG(𝑃1,𝑃2)

Sig.pre ,ABF-RO+GG(𝑃1,𝑃2)
Sig.on

)
be a pair

of bit-fixing generic algorithms with a labeling map 𝜏 : Z𝑝 → G

such thatABF-RO+GG(𝑃1,𝑃2)
Sig.pre fixes 𝑃1 input/output pairs of a random

oracle H : {0, 1}∗ → {0, 1}𝜆1 and 𝑃2 input/output pairs of a generic
group oracle 𝜏 : Z𝑝 → G such that 𝑃1 +𝑃2 = 𝑃 . IfABF-RO+GG(𝑃1,𝑃2)

Sig.on
makes at most 𝑞onG := 𝑞onG (𝜆) queries to the generic group oracles, at
most 𝑞onH queries to the random oracle, and at most 𝑞onS queries to the
signing oracle, then

Pr

[
SigForge𝜏,𝑁

ABF-RO+GG(𝑃
1
,𝑃
2
)

Sig.on,str𝜏,H
,Π∗
(𝜆) = 1

]
≤ 𝜀,

with

𝜀 =
𝑞onG (𝑁 + 𝑃) + 3𝑞

on
G (𝑞

on
G + 1)/2

𝑝 − 2𝑃 (𝑁 + 3𝑞onG + 1) − (𝑁 + 3𝑞
on
G + 1)2 − 𝑁

+
𝑞onS (𝑞

on
H + 𝑞

on
S + 𝑃)

𝑝

+
𝑞onH + 𝑞

on
S + 𝑃

𝑝 − (𝑁 + 𝑃 + 3𝑞onG + 1)
+
𝑞onH + 1
2
𝜆1

,

where the randomness is taken over the selection of 𝜏 and the random
coins of ABF-RO+GG(𝑃1,𝑃2)

Sig.on .

Proof. Given a bit-fixing generic adversary

(
ABF-RO+GG(𝑃1,𝑃2)

Sig.pre ,

ABF-RO+GG(𝑃1,𝑃2)
Sig.on

)
that attacks the short Schnorr signature scheme,

we construct the following efficient generic algorithm Abridge =(
ABF-RO+GG(𝑃1,𝑃2)

bridge.pre ,ABF-RO+GG(𝑃1,𝑃2)
bridge.on

)
in the bit-fixingmodel which

tries to succeed in the 1-out-of-𝑁 generic BRIDGE𝑁 -finding game

BridgeChal𝜏,𝑁Abridge
(𝜆):

Algorithm

(
ABF-RO+GG(𝑃1,𝑃2)

bridge.pre ,ABF-RO+GG(𝑃1,𝑃2)
bridge.on

)
:

The algorithm is given 𝑝, 𝔤 = 𝜏 (1), pk𝑖 = 𝜏 (𝑥𝑖), 1 ≤ 𝑖 ≤ 𝑁
as input.

1. ABF-RO+GG(𝑃1,𝑃2)
bridge.pre simply runs ABF-RO+GG(𝑃1,𝑃2)

Sig.pre
and fixes the same 𝑃1 input/output pairs of H
({(ℎ1,H(ℎ1)), . . . , (ℎ𝑃1 ,H(ℎ𝑃1))}) and 𝑃2 input/output
pairs of 𝜏 ({(𝑡1, 𝜏 (𝑡1)), . . . , (𝑡𝑃2 , 𝜏 (𝑡𝑃2))}) as being fixed
by ABF-RO+GG(𝑃1,𝑃2)

Sig.pre .

2. Initialize the set Hresp = {} which stores the

random oracle input/output pairs observed dur-

ing online processing. It also maintains the set

HFixed = {(ℎ1,H(ℎ1)), . . . , (ℎ𝑃1 ,H(ℎ𝑃1))} that

ABF-RO+GG(𝑃1,𝑃2)
Sig.pre has already fixed in Step 1. Let

ℎ𝑖 = pk𝑗𝑖 ∥𝐼
′
𝑖
∥𝑚′

𝑖
for each 𝑖 ∈ [𝑃1] and for some

𝑗𝑖 ∈ [𝑁].
3. Initialize the list L = {(𝜏 (1), 0, 1), (pk𝑖 , 𝑢𝑖 , 0) for

𝑖 ∈ [𝑁], (𝜏 (𝑡 𝑗), 0, 𝑡 𝑗) for 𝑗 ∈ [𝑃2], (𝐼 ′𝑖 , 0, 𝑟
′
𝑖

:=

DLog(𝐼 ′
𝑖
)) for 𝑖 ∈ [𝑃1]} that contains 1 + 𝑁 + 𝑃 tuples,

and runs ABF-RO+GG(𝑃1,𝑃2)
Sig.on with a number of access

to the generic group oracles GO = (Mult(·, ·), Inv(·)),
DLog(·), Sign𝑖 (·) for 1 ≤ 𝑖 ≤ 𝑁 , and the random oracle

H(·). We maintain the invariant that every output of a

generic group query during the online phase appears

in the list L. We consider the following cases:

(a) Whenever ABF-RO+GG(𝑃1,𝑃2)
Sig.on submits a query 𝑤

to the random oracle H:
• If there is a pair (𝑤, 𝑅) ∈ Hresp for some string

𝑅 ∈ {0, 1}𝜆1 then return 𝑅.

• Otherwise, check if (𝑤,H(𝑤)) ∈ HFixed. If so,

then return H(𝑤).
• Otherwise, select 𝑅 ←$ {0, 1}𝜆1 and add (𝑤, 𝑅)

to Hresp.

• If 𝑤 has the form 𝑤 = (pk𝑗 ∥𝔞∥𝑚𝑖) where the
value 𝔞 has not been observed previously (i.e.,

is not in the list L then we query 𝑏 = DLog(𝔞)
and add (𝔞, 0, 𝑏) to L.

(b) WheneverABF-RO+GG(𝑃1,𝑃2)
Sig.on submits a query 𝔞 to

the generic group oracle Inv(·):
• If 𝔞 is not in L then we immediately query 𝑏 =

DLog(𝔞) and add (𝔞, 0, 𝑏) to L.
• Otherwise, (𝔞, a, 𝑏) ∈ L for some a and 𝑏. Then
we query Inv(𝔞) = 𝜏 (−a · x − 𝑏), output the
result and add (𝜏 (−a · x − 𝑏),−a,−𝑏) to L.

(c) WheneverABF-RO+GG(𝑃1,𝑃2)
Sig.on submits a query 𝔞, 𝔟

to the generic group oracle Mult(·, ·):
• If the element 𝔞 (resp. 𝔟) is not in L then query

𝑏0 = DLog(𝔞) (resp. 𝑏1 = DLog(𝔟)) and add the

element (𝔞, 0, 𝑏0) (resp. (𝔟, 0, 𝑏1)) to L.
• Otherwise both elements (𝔞, a0, 𝑏0), (𝔟, a1, 𝑏1) ∈
L. Then we return

Mult(𝔞, 𝔟) = 𝜏 ((a0 + a1) · x + 𝑏0 + 𝑏1) and add

(𝜏 ((a0 + a1) · x + 𝑏0 + 𝑏1), a0 + a1, 𝑏0 + 𝑏1) ∈ L.
(d) Whenever ABF-RO+GG(𝑃1,𝑃2)

Sig.on submits a query𝑚𝑖

to the signing oracle Sign(𝑥 𝑗 , ·):

24

Preprocessing Security in Multiple Idealized Models with Applications to Schnorr Signatures and PSEC-KEM

• The attacker tries to forge a signature without

knowledge of the secret key 𝑥 𝑗 , relying on the

ability to program the random oracle as follows:

(i) Pick 𝑠𝑖 , 𝑒𝑖 randomly and compute 𝐼𝑖 =

𝜏 (𝑠𝑖 − 𝑥 𝑗𝑒𝑖) = Mult(𝔰𝑖 , Pow(pk𝑗 ,−𝑒𝑖))
where 𝔰𝑖 = Pow(𝔤, 𝑠𝑖).

(ii) If H(pk𝑗 ∥𝐼𝑖 ∥𝑚𝑖) has been previously

queried or if it is in the set HFixed, then

return ⊥.
(iii) Otherwise, program H(pk𝑗 ∥𝐼𝑖 ∥𝑚𝑖) := 𝑒𝑖

and return 𝜎𝑖 = (𝑠𝑖 , 𝑒𝑖).
• We remark that a side effect of querying

the Sign𝑗 oracle is the addition of the tu-

ples (𝜏 (𝑠𝑖), 0, 𝑠𝑖), (𝜏 (𝑥 𝑗𝑒𝑖), 𝑒𝑖𝑢𝑖 , 0) and (𝜏 (𝑠𝑖 −
𝑥 𝑗𝑒𝑖),−𝑒𝑖𝑢𝑖 , 𝑠𝑖) to L, since these values are com-

puted using the generic group oracles Inv, Mult.
4. After Aon

sig outputs 𝜎𝑖∗ = (𝑠𝑖∗, 𝑒𝑖∗) and 𝑚𝑖∗, identify
the index 𝑖∗ ∈ [𝑁] such that Vf (pk𝑖∗,𝑚𝑖∗, 𝜎𝑖∗) = 1.

Without loss of generality, we can assume that 𝑚𝑖∗
is not a part of pre-fixed points HFixed in Step 2

since if the attacker forges a signature (𝑠𝑖∗, 𝑒𝑖∗) for
a message 𝑚𝑖∗ which involves the pre-fixed point

(pk𝑖∗∥𝐼𝑖∗∥𝑚𝑖∗,H(pk𝑖∗∥𝐼𝑖∗∥𝑚𝑖∗)) ∈ HFixed then we can

directly force the bridge event to occur, i.e., (𝐼𝑖∗, 0,
𝑟𝑖∗ = DLog(𝐼𝑖∗)) ∈ L and (𝐼𝑖∗,−𝑒𝑖∗𝑢𝑖∗, 𝑠𝑖∗) ∈ L (see

Step 7 below) since 0 ≠ −𝑒𝑖∗𝑢𝑖∗.
5. Compute 𝜏 (−𝑒𝑖∗𝑥𝑖∗) = Inv(Pow(𝜏 (𝑥𝑖∗), 𝑒𝑖∗)). This will

ensure that the elements (𝜏 (−𝑒𝑖∗𝑥𝑖∗),−𝑒𝑖∗𝑢𝑖∗, 0) and
(𝜏 (𝑒𝑖∗𝑥𝑖∗), 𝑒𝑖∗𝑢𝑖∗, 0) are both added to L.

6. Compute 𝔰𝑖∗ = Pow(𝔤, 𝑠𝑖∗) to ensure that (𝔰𝑖∗, 0, 𝑠𝑖∗) ∈
L .

7. Finally, compute 𝐼𝑖∗ = Mult(𝔰𝑖∗, 𝜏 (−𝑒𝑖∗𝑥𝑖∗)) = 𝜏 (𝑠𝑖∗ −
𝑥𝑖∗𝑒𝑖∗) which ensures that (𝐼𝑖∗,−𝑒𝑖∗𝑢𝑖∗, 𝑠𝑖∗) ∈ L and

check to see if we previously had any tuple of the form

(𝐼𝑖∗, a, 𝑏) ∈ L.

Analysis.We first remark that if the signature is valid then wemust

have 𝑒𝑖∗ = H(pk𝑖∗∥𝐼𝑖∗∥𝑚𝑖∗) and DLog(𝐼𝑖∗) = 𝑠𝑖∗ − 𝑥𝑖∗𝑒𝑖∗ = a · x + 𝑏.
Moreover, without loss of generality, we can assume that each string

𝔶 occurs at most once in the list L in Step 3 because if at any point

we have some string 𝔶 such that (𝔶, a, 𝑏) ∈ L and (𝔶, c, 𝑑) ∈ L for

(a, 𝑏) ≠ (c, 𝑑) then we can immediately have a BRIDGE𝑁 instance

(𝜏 ((a − c) · x), a − c, 0) ∈ L and (𝜏 (𝑑 − 𝑏), 0, 𝑑 − 𝑏) ∈ L since

𝜏 ((a − c) · x) = 𝜏 (𝑑 − 𝑏).
We now consider the failure events that our algorithm outputs

⊥ for failure, either before Aon
Sig outputs a signature or after A

on
Sig

outputs a valid signature.

(1) The first failure event we consider is when our algorithm

outputs ⊥ before Aon
Sig outputs a signature. This event is

called FailtoSignwhen our reduction outputs⊥ in Step 3.(d)

due to the signing oracle failure, i.e., since H(pk𝑗 ∥𝐼𝑖 ∥𝑚𝑖)
has been previously queried or it is contained in the set

HFixed. We observe that every time the attacker queries

the signing oracle, we would generate a query to the ran-

dom oracle H. Thus, we would have at most 𝑞onH + 𝑞
on
S + 𝑃1

input/output pairs recorded for the random oracle, includ-

ing the fixed points during the preprocessing phase. Since

𝐼𝑖 = 𝜏 (𝑠𝑖 −𝑥𝑖𝑒𝑖) represents a fresh/randomly selected group

element of size 𝑝 , the probability that (pk𝑗 , 𝐼𝑖 ,𝑚𝑖) is one of
the inputs is at most (𝑞onH + 𝑞

on
S + 𝑃1)/𝑝 . Applying union

bound over 𝑞onS queries to the signing oracle, we have that

Pr[FailtoSign] ≤
𝑞onS (𝑞

on
H + 𝑞

on
S + 𝑃1)

𝑝
.

(2) Our algorithm can also output ⊥ even after Aon
Sig outputs

a valid signature. We define the event FailtoFind(𝐼𝑖∗) that
we find that the signature is valid but 𝐼𝑖∗ was not previously
recorded in our listL beforewe computed Mult(𝔰𝑖∗, 𝜏 (−𝑒𝑖∗𝑥𝑖∗))
in the last step so that we cannot find the bridge event. We

observe that if 𝐼𝑖∗ ∉ L then we can view 𝐼𝑖∗ = 𝜏 (𝑠𝑖∗ −
𝑥𝑖∗𝑒𝑖∗) as a uniformly random binary string from a set of

size at least 𝑝 − |L| which had not yet been selected at

the time Aon
Sig outputs 𝜎𝑖∗. Thus, the probability that the

query H(pk𝑖∗∥𝐼𝑖∗∥𝑚𝑖∗) was previously recorded is at most

(𝑞onH +𝑞
on
S +𝑃1)/(𝑝−|L|). If the queryH(pk𝑖∗∥𝐼𝑖∗∥𝑚𝑖∗) was

not previously recorded then the probability of a successful

forgery H(pk𝑖∗∥𝐼𝑖∗∥𝑚𝑖∗) = 𝑒𝑖∗ is at most 2−𝑘1 since we can
view H(pk𝑖∗∥𝐼𝑖∗∥𝑚𝑖∗) chosen uniformly at random from

the possible 2
𝜆1

options. Hence, we have that

Pr[FailtoFind(𝐼𝑖∗)] ≤
𝑞onH + 𝑞

on
S + 𝑃1

𝑝 − |L| + 1

2
𝜆1
.

(3) Finally, there is another failure event called BadQuery after
Aon

Sig outputs a valid signature, which denotes the event that

the signature is valid but for the only prior tuple (𝐼𝑖∗, a, 𝑏) ∈
L we have that a = −𝑒𝑖∗𝑢𝑖∗ so that we still cannot find the

bridge event. We observe that by construction we ensure

that the tuple (𝐼 , a, 𝑏) will always be recorded in L before a

query of the form H(pk𝑖 ∥𝐼 ∥𝑚) is ever issued — if 𝐼 is new

then we call DLog(𝐼) before querying the random oracle.

Now define a subset L̂ ⊂ L as the set of tuples (𝔞, a, 𝑏) ∈
G × Z𝑁𝑝 × Z𝑝 such that a has exactly one nonzero element.

Now we call a random oracle query 𝑥 = (pk𝑖 ∥𝐼 ∥𝑚) “bad” if
H(𝑥) = −𝑎 where the tuple (𝐼 , a, 𝑏) ∈ L̂ has already been

recorded and the nonzero element of a is 𝑎 (Recall that if
there were two recorded tuples (𝐼 , a, 𝑏) and (𝐼 , c, 𝑑) then our
algorithm would have already found a BRIDGE𝑁 instance).

Thus, the probability each individual query is “bad” is at

most 1/2𝜆1 and we can use union bounds to upper bound

the probability of any “bad” query as

Pr[BadQuery] ≤
𝑞onH

2
𝜆1
.

Now we have shown that

Pr

[
BridgeChal𝜏,𝑁Abridge

(𝜆) = 1

]
≥ Pr

[
SigForge𝜏,𝑁

ABF-RO
Sig.on,str𝜏,H

,Πshort
\{0}
(𝜆) = 1

]
− Pr[FailtoSign]

− Pr[FailtoFind(𝐼𝑖∗)] − Pr[BadQuery]

25

Jeremiah Blocki and Seunghoon Lee

≥ Pr

[
SigForge𝜏,𝑁

ABF-RO
Sig.on,str𝜏,H

,Πshort
\{0}
(𝜆) = 1

]
−
𝑞onS (𝑞

on
H + 𝑞

on
S + 𝑃1)

𝑝

−
𝑞onH + 𝑞

on
S + 𝑃1

𝑝 − |L| −
𝑞onH + 1
2
𝜆1

.

Finally, by applying Lemma 4.3, we can conclude that

Pr

[
SigForge𝜏,𝑁

ABF-RO
Sig.on,str𝜏,H

,Πshort
\{0}
(𝜆) = 1

]
≤

[
BridgeChal𝜏,𝑁Abridge

(𝜆) = 1

]
+
𝑞onS (𝑞

on
H + 𝑞

on
S + 𝑃1)

𝑝
+
𝑞onH + 𝑞

on
S + 𝑃1

𝑝 − |L|

+
𝑞onH + 1
2
𝜆1

≤
𝑞onG (𝑁 + 𝑃) + 3𝑞

on
G (𝑞

on
G + 1)/2

𝑝 − 2𝑃 (𝑁 + 3𝑞onG + 1) − (𝑁 + 3𝑞
on
G + 1)2 − 𝑁

+
𝑞onS (𝑞

on
H + 𝑞

on
S + 𝑃)

𝑝

+
𝑞onH + 𝑞

on
S + 𝑃

𝑝 − (𝑁 + 𝑃 + 3𝑞onG + 1)
+
𝑞onH + 1
2
𝜆1

. □

Combining with Theorem 3.2, we get the following result in the

AI-ROM+GGM.

TheoremC.2. LetΠ∗ = (Kg, Sign,Vfy) be a key-prefixed Schnorr
signature scheme, 𝑝 > 2

2𝜆 be a prime number, and 𝛾 > 0 be a param-

eter. Let 𝑁 ∈ N be a parameter and
(
AAI-RO+GG

Sig.pre ,AAI-RO+GG
Sig.on

)
be a

pair of generic algorithms with a labeling map 𝜏 : Z𝑝 → G such that
AAI-RO+GG

Sig.pre outputs an 𝑆-bit hint strH,𝜏 . If AAI-RO+GG
Sig.on takes strH,𝜏

as input and makes at most 𝑞onG := 𝑞onG (𝜆) queries to the generic group
oracles, at most 𝑞onH queries to the random oracle, and at most 𝑞onS

queries to the signing oracle, then Pr

[
SigForge𝜏,𝑁

AAI-RO+GG
Sig.on,str𝜏,H

,Π∗
(𝜆) = 1

]
≤

𝜀, with

𝜀 =
2𝑞onG (𝑁 + 𝑆𝑞) + 3𝑞

on
G (𝑞

on
G + 1)

𝑝 − 2𝑆𝑞(𝑁 + 3𝑞onG + 1) − (𝑁 + 3𝑞
on
G + 1)2 − 𝑁

+
2𝑞onS (𝑞

on
H + 𝑞

on
S + 𝑆𝑞)

𝑝

+
2(𝑞onH + 𝑞

on
S + 𝑆𝑞)

𝑝 − (𝑁 + 𝑆𝑞 + 3𝑞onG + 1)
+
𝑞onH + 1
2
𝜆1−1

+ 2−2𝜆+1,

where 𝑞 = 𝑞onH + 3𝑞
on
G + 𝑞

on
S and the randomness is taken over the

selection of 𝜏 and the random coins of AAI-RO+GG
Sig.on .

Proof. This is straightforward by combining Theorem C.1 with

Theorem 3.1 and by setting an optimal 𝑃 ≈ 𝑆𝑞 and 𝛾 = 2
−2𝜆

. □

D Warmup: CPA Security of PSEC-KEM
without Preprocessing in the ROM+GGM

The Generic Quadratic Bridge-Finding Game. We establish the

CPA security of PSEC-KEM (without preprocessing) via reduction

from a new game called the generic quadratic bridge-finding game.
As the name suggests, we will consider the game in the GGM with

the labeling map 𝜏 : Z𝑝 → G. In this game, the attacker is given

𝜏 (1) and 𝜏 (𝑥) for a random unknown 𝑥 ∈ Z𝑝 . The attacker is

given access to the generic group oracle (Mult, Inv), along with

an additional oracle O which returns some 𝜏 (𝛼) where the value

𝛼 ∈ Z𝑝 is unknown to the attacker. In a nutshell, as the attacker

makes multiple queries to those oracles, the number of unknowns

can be increased by at most 2 per query, and the attacker’s goal

is to find a specific form of quadratic relationship between these

unknowns. One important note is that the attacker must output
the very quadratic relationship. It is not required for the attacker

to solve the equation for the unknowns, but the attacker should

specify which unknown values satisfy which quadratic relationship.

We formally define the game below.

The Generic Quadratic Bridge-Finding Game

QDBridgeChal𝜏A (𝜆):

1. The challenger picks a random 𝑥 ←$ Z𝑝 and initializes

the list L = {(𝜏 (1), 0, 1), (𝜏 (𝑥), 1, 0)}.
2. The adversary A is given 𝜏 (1) and 𝜏 (𝑥) as input. Here,
𝜏 : Z𝑝 → G is a labeling map where G is a set of

bitstrings of length ℓ ≥ log𝑝 , and 𝑝 is a 2𝜆-bit prime.

3. The challenger maintains a vector x = (𝑥1, . . . , 𝑥𝑛) ∈
Z𝑛𝑝 which is a vector of unknowns such that 𝑥1 = 𝑥 ,

where the dimension 𝑛 satisfies the following:

• initially, 𝑛 = 1 since the only unknown is 𝑥 , and

• the number of unknowns 𝑛 increases by at most

2 as A makes query to the generic group oracle

(Mult, Inv) or a generic oracle O that selects a new

random unknown variable 𝑥 𝑗 ←$ Z𝑝 and outputs

𝜏 (𝑥 𝑗)..
4. A is allowed to query the generic group oracle

(Mult(·, ·), Inv(·)) and the oracle O.
(a) If A submits a query to O, A gets some bitstring

𝔶 ∈ 𝜏 (Z𝑝). If 𝔶 does not appear in L and dim(x) =
𝑗 , then the challenger updates x← x◦𝑥 𝑗+1 (i.e., in-
crease the dimension of x by 1 and add the element

𝑥 𝑗+1 at the end), where 𝑥 𝑗+1 denotes an unknown

variable satisfying the constraint 𝜏 (𝑥 𝑗+1) = 𝔶, and

updates all of the entries of the list L from (𝔰, a, 𝑏)
to (𝔰, a◦ 0, 𝑏). Then the challenger adds (𝔶, 0◦ 1, 0)
to L.

(b) If A submits a query 𝔶1, 𝔶2 to Mult(·, ·):
• If there exist tuples (𝔶1, a1, 𝑏1), (𝔶2, a2, 𝑏2) ∈ L

for both 𝔶1 and 𝔶2, then the challenger adds the

tuple (Mult(𝔶1, 𝔶2), a1 + a2, 𝑏1 + 𝑏2) to the list

L.
• If (𝔶1, a1, 𝑏1) ∈ L but 𝔶2 does not appear in

L and if 𝔶2 ∈ 𝜏 (Z𝑝), and if dim(x) = 𝑗 , then

the challenger first updates x← x ◦ 𝑥 𝑗+1 where
𝑥 𝑗+1 denotes an unknown variable satisfying the
constraint 𝜏 (𝑥 𝑗+1) = 𝔶2 and updates all of the

entries of the list L from (𝔰, a, 𝑏) to (𝔰, a ◦ 0, 𝑏).
Then the challenger adds tuples (𝔶2, 0 ◦ 1, 0)
and (Mult(𝔶1, 𝔶2), a1 ◦ 0 + 0 ◦ 1, 𝑏1) to L. Do it

similarly if 𝔶2 appears in L and 𝔶1 does not.

• If both 𝔶1 and 𝔶2 does not appear in L, and if

both 𝔶1, 𝔶2 ∈ 𝜏 (Z𝑝), and if dim(x) = 𝑗 , then

the challenger first updates x← x ◦ 𝑥 𝑗+1 ◦ 𝑥 𝑗+2

26

Preprocessing Security in Multiple Idealized Models with Applications to Schnorr Signatures and PSEC-KEM

where 𝑥 𝑗+1 and 𝑥 𝑗+2 are unknown values such

that 𝜏 (𝑥 𝑗+𝑖) = 𝔶𝑖 for 𝑖 = 1, 2, and updates all

the entries of the list L from (𝔰, a, 𝑏) to (𝔰, a ◦
0
2, 𝑏). Then the challenger adds tuples (𝔶1, 0◦1◦
0, 0), (𝔶2, 0◦0◦1, 0), and (Mult(𝔶1, 𝔶2), 0◦1◦1, 0)
to L.

(c) If A submits a query 𝔶 to Inv(·):
• If there exists a tuple (𝔶, a, 𝑏) ∈ L, then the

challenger adds the tuple (Inv(𝔶),−a,−𝑏) to the
list L.

• If 𝔶 does not appear in L and 𝔶 ∈ 𝜏 (Z𝑝), and
if dim(x) = 𝑗 , then the challenger first updates

x← x ◦ 𝑥 𝑗+1 where 𝑥 𝑗+1 is an unknown value

that satisfies 𝜏 (𝑥 𝑗+1) = 𝔶 and updates all of the

entries of the list L from (𝔰, a, 𝑏) to (𝔰, a ◦ 0, 𝑏).
Then the challenger adds tuples (𝔶, 0 ◦ 1, 0) and
(Inv(𝔶), 0 ◦ (−1), 0) to L.

5. If at any point in timeA outputs a tuple (𝑖1, 𝑖2, a, 𝑏) such
that (1) 1 ≤ 𝑖1, 𝑖2 ≤ dim(x), (2) (a, 𝑏) ∈ Zdim(x)𝑝 × Z𝑝 ,
and (3) 𝑥𝑖1𝑥𝑖2 = a · x + 𝑏 mod 𝑝 , then we say that the

event QDBridge occurs. In this case, the output of the

game is 1 and we write QDBridgeChal𝜏A (𝜆) = 1. If

QDBridge never occurs, then the output of the game is

0.

Lemma D.1 upper bounds the probability to win the generic

quadratic bridge-finding game QDBridgeChal𝜏A (𝜆).

Lemma D.1. For any attacker A making at most 𝑞G generic group
oracle queries and 𝑞O queries to the oracle O,

Pr

[
QDBridgeChal𝜏A (𝜆) = 1

]
≤ 3(𝑞G+𝑞O)2+5(𝑞G+𝑞O)+4

2𝑝−2(3𝑞G+𝑞O+1)2−2(2𝑞G+𝑞O)
,

in the generic group model of prime order 𝑝 where the randomness is
taken over the selection of 𝑥 and 𝜏 , as well as any random coins ofA.

Proof. The proofworks bymaintaining a listL of tuples (𝜏 (𝑦), a, 𝑏)
where 𝜏 (𝑦) ∈ G, a ∈ Zdim(x)𝑝 , and 𝑏 ∈ Z𝑝 such that 𝑦 = a · x + 𝑏
for every oracle output 𝜏 (𝑦). To bound the probability that the

attacker wins the quadratic bridge-finding game, we consider the

case where the event QDBridge occurs after the attacker makes 𝑞G
generic group queries and𝑞O queries toO. Suppose that dim(x) = 𝑗

at the point in time when QDBridge occurs. We observe that 𝑗 ≤
2𝑞G + 𝑞O + 1 since dim(x) can be increased by at most 2 whenever

A makes a generic group query and at most 1wheneverA makes a

query to O. We further observe that in this case, |L| ≤ 3𝑞G +𝑞O + 1
since for each query to O, at most 1 item can be added toL whereas

each generic group oracle query can add at most 3 itmes to L (ex-

actly three in the case when A queries Mult(𝔶1, 𝔶2) on two fresh

elements).

Now consider the event BRIDGE where the list L contains two

distinct tuples (𝔶, a, 𝑏) and (𝔶′, a′, 𝑏′) such that a · x + 𝑏 = a′ · x +
𝑏′. To upper bound Pr[BRIDGE], consider the event BRIDGE<𝑖
that the event BRIDGE has not occurred until the (𝑖 − 1)th query.
Conditioning on the event BRIDGE<𝑖 , we are now interested in the

event BRIDGE𝑖 where the 𝑖 th query makes the event BRIDGE occur,

i.e., a tuple (𝔶𝑖 , a𝑖 , 𝑏𝑖) has been recorded to L and there exists a

tuple of the form (·, a, 𝑏) such that a𝑖 · x + 𝑏𝑖 = a · x + 𝑏. We can

essentially view x sampled uniformly at random subject to some

restrictions due to BRIDGE<𝑖 , from which we know that for any

distinct pair (𝔶, a, 𝑏) and (𝔶′, a′, 𝑏′) we have a · x + 𝑏 ≠ a′ · x + 𝑏′.
Let 𝑟 ≤ dim(x) = 𝑗 be an index such that a[𝑟] − a′ [𝑟] ≠ 0 and

suppose that 𝑥𝑟 = x[𝑟] is the last value sampled. At this point, we

can view 𝑥𝑟 as being drawn uniformly at random from a set of at

least 𝑝 − |L|2 − (𝑗 − 1) remaining values. To see this, we observe

that 𝑥𝑟 must be distinct from {𝑥1, . . . , 𝑥 𝑗 } \ {𝑥𝑟 } since otherwise we
would have had the event BRIDGE<𝑖 , and for each pair of distinct

elements (𝔶, a, 𝑏) and (𝔶′, a′, 𝑏′), we can eliminate one possible

value of 𝑥𝑟 due to the fact that a ·x+𝑏 ≠ a′ ·x+𝑏′ and a[𝑟] ≠ a′ [𝑟],
which implies 𝑥𝑟 ≠

[
(𝑏′ − 𝑏) +∑

𝑖≠𝑟 𝑥𝑖 (a′ [𝑖] − a[𝑖])
]
· (a[𝑟] −

a′ [𝑟])−1. Thus, the probability that a𝑖 · x + 𝑏𝑖 = a · x + 𝑏 is at

most
1

𝑝−(3𝑞G+𝑞O+1)2−(2𝑞G+2𝑞O)
. Union bounding over all tuples in

L, we have
Pr[BRIDGE] =

∑︁
𝑖≤𝑞G+𝑞O

Pr

[
BRIDGE𝑖 | BRIDGE<𝑖

]
≤

∑︁
𝑖≤𝑞G+𝑞O

1 + 3𝑖
𝑝 − (3𝑞G + 𝑞O + 1)2 − (2𝑞G + 2𝑞O)

≤ 3(𝑞G + 𝑞O)2 + 5(𝑞G + 𝑞O)
2𝑝 − 2(3𝑞G + 𝑞O + 1)2 − 2(2𝑞G + 2𝑞O)

.

Now, consider the case where the event BRIDGE never occurs.

Then we would like to upper bound the probability

Pr

[
QDBridgeChal𝜏A (𝜆) = 1

��BRIDGE] .
The argument works similarly; conditioning on the event BRIDGE,
we know that for any distinct pair (𝔶, a, 𝑏) and (𝔶′, a′, 𝑏′) we have
a ·x+𝑏 ≠ a′ ·x+𝑏′. Let 𝑟 ≤ dim(x) ≤ 2𝑞G +𝑞O +1 be an index such

that a[𝑟] − a′ [𝑟] ≠ 0 and suppose that 𝑥𝑟 = x[𝑟] is the last value
sampled. At this point, we can view 𝑥𝑟 as being drawn uniformly

at random from a set of at least 𝑝 − |L|2 − (2𝑞G + 𝑞O) remaining

values as before. Now, the attacker wins if and only if s/he outputs

a tuple (𝑖1, 𝑖2, a, 𝑏) such that 𝑥𝑖1𝑥𝑖2 = a · x + 𝑏. Since this equation
is at most degree 2 in terms of 𝑥𝑟 (in case 𝑖1 = 𝑖2 = 𝑟), there are at

most 2 roots in Z𝑝 . Thus, we have that

Pr

[
QDBridgeChal𝜏A (𝜆) = 1

��BRIDGE]
≤ 2

𝑝 − |L|2 − (2𝑞G + 𝑞O)

≤ 2

𝑝 − (3𝑞G + 𝑞O + 1)2 − (2𝑞G + 𝑞O)
.

Taken together, we have

Pr

[
QDBridgeChal𝜏A (𝜆) = 1

]
≤ Pr [BRIDGE] + Pr

[
QDBridgeChal𝜏A (𝜆) = 1

��BRIDGE]
≤ (3/2) (𝑞G + 𝑞O)

2 + (5/2) (𝑞G + 𝑞O)
𝑝 − (3𝑞G + 𝑞O + 1)2 − (2𝑞G + 𝑞O)

+ 2

𝑝 − (3𝑞G + 𝑞O + 1)2 − (2𝑞G + 𝑞O)

=
3(𝑞G + 𝑞O)2 + 5(𝑞G + 𝑞O) + 4

2𝑝 − 2(3𝑞G + 𝑞O + 1)2 − 2(2𝑞G + 𝑞O)
. □

27

Jeremiah Blocki and Seunghoon Lee

Security Reduction. Now we are ready to prove the CPA security

of PSEC-KEM in the ROM+GGM by reduction from the quadratic

bridge-finding game.

TheoremD.2. The PSEC-KEM schemeΠ = (Gen, Encaps,Decaps)
is (𝑞H, 𝑞G, 𝑞E, 𝜀)-CPA secure with

𝜀 =
3(𝑞G + 2𝑞E)2 + 5(𝑞G + 2𝑞E) + 4
𝑝 − (3𝑞G + 2𝑞E + 1)2 − 2(𝑞G + 𝑞E)

+ 3𝑞H𝑞E

2
𝜆1
+ 𝑞H𝑞E

𝑝
,

in the generic group model of order 𝑝 ≈ 2
2𝜆 and the programmable

random oracle model.

Proof. To prove Theorem D.2, we use a hybrid argument to

prove the CPA security of PSEC-KEM. In the first hybrid (hybrid

𝐻0), the distinguisherD is given the CPA indistinguishability game

for PSEC-KEM with the challenge bit 𝑏 = 0, and in the last hybrid

(hybrid 𝐻3), D is given the CPA indistinguishability game with

𝑏 = 1. Each hybrid is defined as follows:

Hybrid 𝐻0. This is the original CPA indistinguishability game

KEM𝜏,H,cpa
A,Π (𝜆) for PSEC-KEM with the challenge bit 𝑏 = 0. In

particular, D has access to the encapsulation oracle Encaps′
0
(·) :=

Encaps(·, 1𝜆), i.e., whenever D submits a query Encaps′
0
(pk), D

always gets the output Encaps(pk, 1𝜆).

Hybrid 𝐻1. This is the same security game with 𝐻0 except that

the encapsulation oracle Encaps′
0
(·) is replaced with a modified

oracle Encaps′
1
(·). In Encaps′

1
(·), 𝜏 (𝛼) and 𝜏 (𝛼𝑥) (where 𝑥 is the

secret key) are replaced with random elements in 𝜏 (Z𝑝) by querying
the oracle O twice. See Figure 2 for the details.

Hybrid 𝐻2. This is the same security game with 𝐻1 except that

the encapsulation oracle Encaps′
1
(·) is further replaced with a modi-

fied oracle Encaps′
2
(·). Encaps′

2
(·) is exactly the same as Encaps′

1
(·)

except that the key 𝑘 is sampled uniformly at random from {0, 1}𝜆 .

Hybrid 𝐻3. This is the same security game with 𝐻2 except that

the encapsulation oracle Encaps′
2
(·) is replaced with a modified ora-

cle Encaps′
3
(·) := Encaps

1
(·), which leads to the original CPA indis-

tinguishability game KEM𝜏,H,cpa
A,Π (𝜆) for PSEC-KEM with the chal-

lenge bit 𝑏 = 1. In particular, Encaps′
3
(·) is the same as Encaps′

2
(·)

but the random elements in 𝜏 (Z𝑝) are reverted back to the honest

computation 𝜏 (𝛼) and 𝜏 (𝛼𝑥). This can also be interpreted as replac-

ing an honest key 𝑘 in Encaps′
0
(·) with a uniformly random key of

length 𝜆. See Figure 2 for the details.

Indistinguishability of 𝐻0 and 𝐻1. We observe that two hybrids

are perfectly indistinguishable unless one of the two events occurs:

for some round 𝑖 ≤ 𝑞E,
(1) the random oracle query H2 (𝜏 (𝛼𝑖)∥𝜏 (𝛼𝑖𝑥)) has been made

from the adversary, or

(2) the adversary makes query 𝑟𝑖 to H0 but has not queried

(𝜏 (𝛼𝑖)∥𝜏 (𝛼𝑖𝑥)) to H2.

In Case (1), we argue thatD can win the quadratic bridge-finding

game. Once D ever makes a query of the form H2 (𝜏 (𝛼𝑖)∥𝜏 (𝛼𝑖𝑥)),
D can win the quadratic bridge-finding game as follows:

• We observe that D can maintain the list L as follows.

Encaps′0 (pk)
1 : 𝑟 ←$ {0, 1}𝜆1
2 : 𝛼 ← H0 (𝑟), 𝑘 ← H1 (𝑟)
3 : 𝑐1 ← 𝑟 ⊕ H2 (𝜏 (𝛼) ∥𝜏 (𝛼𝑥))
4 : 𝑐 ← (𝜏 (𝛼), 𝑐1)
5 : Return (𝑘, 𝑐)

Encaps′1 (pk)
1 : 𝑟 ←$ {0, 1}𝜆1
2 : 𝔶1 ← O(·), 𝔶2 ← O(·) , 𝑘 ← H1 (𝑟)
3 : 𝑐1 ← 𝑟 ⊕ H2 (𝔶1 ∥𝔶2)
4 : 𝑐 ← (𝔶1, 𝑐1)
5 : Return (𝑘, 𝑐)

Encaps′2 (pk)
1 : 𝑟 ←$ {0, 1}𝜆1

2 : 𝔶1 ← O(·), 𝔶2 ← O(·), 𝑘 ←$ {0, 1}𝜆

3 : 𝑐1 ← 𝑟 ⊕ H2 (𝔶1 ∥𝔶2)
4 : 𝑐 ← (𝔶1, 𝑐1)
5 : Return (𝑘, 𝑐)

Encaps′3 (pk)
1 : 𝑟 ←$ {0, 1}𝜆1

2 : 𝛼 ← H0 (𝑟), 𝑘 ←$ {0, 1}𝜆

3 : 𝑐1 ← 𝑟 ⊕ H2 (𝜏 (𝛼) ∥𝜏 (𝛼𝑥))
4 : 𝑐 ← (𝜏 (𝛼), 𝑐1)
5 : Return (𝑘, 𝑐)

Figure 2: Comparison between the oracles Encaps′
𝑖
for PSEC-

KEM, which is used in Hybrid𝐻𝑖 for each 𝑖 ∈ {0, 1, 2, 3}, where
the highlighted parts denote the difference from the previous
hybrid.

◦ Initialize the list L = {(𝜏 (1), 0, 1), (pk = 𝜏 (𝑥), 1, 0)}
and the vector of unknowns x := (𝑥1) (for now, dim x =

1) where 𝑥0 is the unknown (secret key) that maps to

pk, i.e., 𝜏 (𝑥1) = pk. (Note: 𝑥1 = 𝑥 butD does not know

sk and simply name it as 𝑥1 as an unknown.) D also

initializes Hresp
𝑖

= {} for 𝑖 = 0, 1, 2, where Hresp
𝑖

stores

the random oracle queries of H𝑖 .
◦ Whenever D submits a query𝑤 to the RO H𝑖 for 𝑖 =

0, 1, 2:

♠ If there is a pair (𝑤, 𝑅) ∈ Hresp
𝑖

for some string

𝑅, then return 𝑅.

♠ Otherwise, select a uniformly random 𝑅 ←$

codomain(𝐻𝑖) and add (𝑤, 𝑅) to the set Hresp
𝑖

.

♠ If𝑤 has the form𝑤 = (𝜏 (𝛼)∥·) for some 𝛼 and

if 𝜏 (𝛼) does not appear in L, then update the

vector x ← x ◦ 𝛼 and update all of the entries

in L from (𝔶, a, 𝑏) to (𝔶, a ◦ 0, 𝑏). Finally, add a

new tuple (𝜏 (𝛼), 0 ◦ 1, 0) to L.
◦ Whenever D submits a query 𝔶1, 𝔶2 to Mult(·, ·):

♠ If there exist tuples (𝔶1, a1, 𝑏1), (𝔶2, a2, 𝑏2) ∈ L
for both𝔶1 and𝔶2, then add the tuple (Mult(𝔶1, 𝔶2), a1+
a2, 𝑏1 + 𝑏2) to the list L.

♠ If (𝔶1, a1, 𝑏1) ∈ L but 𝔶2 does not appear in

L and if 𝔶2 ∈ 𝜏 (Z𝑝), then first update x ←
x◦𝑦2 where𝑦2 is an unknown value that satisfies
𝜏 (𝑦2) = 𝔶2 and update all of the entries of the list

L from (𝔶, a, 𝑏) to (𝔶, a ◦ 0, 𝑏). Then add tuples

(𝔶2, 0 ◦ 1, 0) and (Mult(𝔶1, 𝔶2), a1 ◦ 0 + 0 ◦ 1, 𝑏1)
to L. Do it similarly if 𝔶2 appears in L and 𝔶1
does not.

♠ If both 𝔶1, 𝔶2 does not appear in L, and if both

𝔶1, 𝔶2 ∈ 𝜏 (Z𝑝), then first update x← x ◦𝑦1 ◦𝑦2
where 𝑦1 and 𝑦2 are unknown values such that

𝜏 (𝑦𝑖) = 𝔶𝑖 for 𝑖 = 1, 2, and update all the entries

of the list L from (𝔶, a, 𝑏) to (𝔶, a ◦ 02, 𝑏). Then
add tuples (𝔶1, 0 ◦ 1 ◦ 0, 0), (𝔶2, 0 ◦ 0 ◦ 1, 0), and
(Mult(𝔶1, 𝔶2), 0 ◦ 1 ◦ 1, 0) to L.

28

Preprocessing Security in Multiple Idealized Models with Applications to Schnorr Signatures and PSEC-KEM

◦ Whenever D submits a query 𝔶 to Inv(·):
♠ If there exists a tuple (𝔶, a, 𝑏) ∈ L, then we adds

the tuple (Inv(𝔶),−a,−𝑏) to the list L.
♠ If 𝔶 does not appear in L and 𝔶 ∈ 𝜏 (Z𝑝), then
first update x← x ◦ 𝑦 where 𝑦 is an unknown

value that satisfies 𝜏 (𝑦) = 𝔶 and update all of the

entries of the list L from (𝔶, a, 𝑏) to (𝔶, a ◦ 02, 𝑏).
Then add tuples (𝔶, 0 ◦ 1, 0) and (Inv(𝔶), 0 ◦
(−1), 0) to L.

◦ Whenever D makes a query to O, D gets some bit-

string𝔶 ∈ 𝜏 (Z𝑝). If𝔶 does not appear inL and dim(x) =
𝑗 , then the challenger updates x ← x ◦ 𝑥 𝑗+1 (i.e., in-
crease the dimension of x by 1 and add the element

𝑥 𝑗+1 at the end), where 𝑥 𝑗+1 denotes an unknown vari-

able satisfying the constraint 𝜏 (𝑥 𝑗+1) = 𝔶, and updates

all of the entries of the listL from (𝔰, a, 𝑏) to (𝔰, a◦0, 𝑏).
Then the challenger adds (𝔶, 0 ◦ 1, 0) to L.
◦ Whenever D makes a query to Encaps′

0
or Encaps′

1
,

simulating those oracles include queries to random

oracles and the oracle O. Then D maintains the list L
and the vector of unknowns x as described before per

each oracle.

• Once D makes a query of the form (𝜏 (𝛼𝑖)∥𝜏 (𝛼𝑖𝑥)) to H2,

parse 𝜏 (𝛼) and 𝜏 (𝛼𝑥). Look up the list L and find 𝑗 such

that 𝑥 𝑗 = 𝛼𝑖 (this is possible since D has been maintaining

both the list L and the vector x = (𝑥1, 𝑥2, . . . , 𝑥 𝑗 , . . .)). We

now have two cases:

◦ If (𝜏 (𝛼𝑖), 𝑢 𝑗 , 0) ∈ L where 𝑢 𝑗 denotes a unit vector

with 𝑗 th element 1, and (𝜏 (𝛼𝑖𝑥), a, 𝑏) ∈ L for some

a, 𝑏, then D wins the quadratic bridge-finding game

by outputting (1, 𝑗, a, 𝑏), and
◦ If (𝜏 (𝛼𝑖), 𝑢 𝑗 , 0) ∈ L but 𝜏 (𝛼𝑖𝑥) does not appear in L,

then this implies that 𝛼𝑖𝑥 is a fresh unknown value.

Increase dim x by 1 and update all the entries inL from

(𝔶, a, 𝑏) to (𝔶, a◦0, 𝑏). Add a new tuple (𝜏 (𝛼𝑖𝑥), 0◦1, 0)
toL andD can win the quadratic bridge-finding game

by outputting (1, 𝑗, 0 ◦ 1, 0).
This proves that D can always win the quadratic bridge-finding

game once D makes a query H2 (𝜏 (𝛼𝑖)∥𝜏 (𝛼𝑖𝑥)).
In Case (2), let this event Lucky. Since H2 (𝜏 (𝛼𝑖)∥𝜏 (𝛼𝑖𝑥)) was

not queried, 𝑐1,𝑖 is basically random and unrelated to 𝑟𝑖 . Hence,

the adversary cannot have extra information to guess 𝑟𝑖 from the

information of (𝑘𝑖 , 𝑐𝑖) for 1 ≤ 𝑖 ≤ 𝑞E. Since there are 𝑞E different

index 𝑖 and every random oracle query is matched withH0 (𝑟𝑖) with
probability at most 1/2𝜆1 , we observe that

Pr[Lucky] ≤ 𝑞H · 𝑞E
2
𝜆1

.

Combining both cases with Lemma D.1, we have���Pr[D𝐻0 = 1] − Pr[D𝐻1 = 1]
���

≤ Pr[QDBridgeChal𝜏D (𝜆) = 1] + Pr[Lucky]

≤ 3(𝑞G + 𝑞O)2 + 5(𝑞G + 𝑞O) + 4
2𝑝 − 2(3𝑞G + 𝑞O + 1)2 − 2(2𝑞G + 𝑞O)

+ 𝑞H · 𝑞E
2
𝜆1

≤ 3(𝑞G + 2𝑞E)2 + 5(𝑞G + 2𝑞E) + 4
2𝑝 − 2(3𝑞G + 2𝑞E + 1)2 − 4(𝑞G + 𝑞E)

+ 𝑞H · 𝑞E
2
𝜆1

,

since 𝑞O ≤ 2𝑞E.

Indistinguishability of 𝐻1 and 𝐻2. We first observe that two hy-

brids are perfectly indistinguishable unless the random oracle query

H1 (𝑟𝑖) is queried for some round 𝑖 ≤ 𝑞E. Let bad𝑖 be the event that
the random oracle query H1 (𝑟𝑖) is queried in round 𝑖 . Unless the

random oracle query H2 (𝔶1,𝑖 ∥𝔶2,𝑖) was made, we can view 𝑟𝑖 as

chosen uniformly at random from {0, 1}𝜆1 (since otherwise, one
can retrieve 𝑟𝑖 ← 𝑐1,𝑖 ⊕ H2 (𝔶1,𝑖 ∥𝔶2,𝑖)). Let 𝑍 be the event that the

random oracle query H2 (𝔶1,𝑖 ∥𝔶2,𝑖) was made. Then we have���Pr[D𝐻1 = 1] − Pr[D𝐻2 = 1]
��� ≤ 𝑞E∑︁

𝑖=1

Pr[bad𝑖]

≤
𝑞E∑︁
𝑖=1

{
Pr[𝑍] + Pr[bad𝑖 |𝑍]

}
≤ 𝑞E

(
𝑞H

𝑝
+ 𝑞H
2
𝜆1

)
.

Indistinguishability of 𝐻2 and 𝐻3. Analyzing the distinguishing

probability between the hybrid𝐻2 and𝐻3 works similar as the indis-

tinguishability of 𝐻0 and 𝐻1 since the difference between Encaps′
2

and Encaps′
3
is the same as the difference between Encaps′

1
and

Encaps′
0
. Hence,���Pr[D𝐻2 = 1] − Pr[D𝐻3 = 1]

���
≤ 3(𝑞G + 2𝑞E)2 + 5(𝑞G + 2𝑞E) + 4

2𝑝 − 2(3𝑞G + 2𝑞E + 1)2 − 4(𝑞G + 𝑞E)
+ 𝑞H · 𝑞E

2
𝜆1

.

Putting everything together, we have

Pr

[
KEM𝜏,H,cpa

A,Π (𝜆) = 1

]
≤ 1

2

+
���Pr[D𝐻0 = 1] − Pr[D𝐻3 = 1]

���
≤ 1

2

+
2∑︁
𝑖=0

���Pr[D𝐻𝑖 = 1] − Pr[D𝐻𝑖+1 = 1]
���

≤ 1

2

+ 3(𝑞G + 2𝑞E)2 + 5(𝑞G + 2𝑞E) + 4
𝑝 − (3𝑞G + 2𝑞E + 1)2 − 2(𝑞G + 𝑞E)

+ 3𝑞H𝑞E

2
𝜆1
+ 𝑞H𝑞E

𝑝
. □

E Formal Description of Several Security Games
E.1 Formal Description of the CPA

Indistinguishability Game for a KEM
The Generic CPA Indistinguishability Game for a KEM. Let Π =

(Gen, Encaps,Decaps) be a KEM and A be an adversary attacking

Π. We define the following CPA indistinguishability game in the

ROM+GGM, in which the attacker tries to distinguish between the

real key 𝑘 and a random key.

The Generic CPA Indistinguishability Game

KEM𝜏,H,cpa/cca
A,Π (𝜆):

1. The challenger runs Gen(1𝜆) to obtain a public key pk
and a secret key sk. Here, sk is chosen randomly from

the group Z𝑝 where 𝑝 is a 2𝜆-bit prime, and pk = 𝜏 (sk).
2. The challenger invokes Encaps(pk, 1𝜆) to obtain a key-

ciphertext pair (𝑘, 𝑐).

29

Jeremiah Blocki and Seunghoon Lee

3. The challenger chooses a uniform bit 𝑏 ∈ {0, 1}. If 𝑏 = 0,

set
ˆ𝑘 := 𝑘 ; if 𝑏 = 1, choose a random

ˆ𝑘 ←$ {0, 1}𝜆 .
4. A gets a tuple (pk, ˆ𝑘, 𝑐). The adversary is given ac-

cess to the oracle Encaps𝑏 (·), the random oracles H,
and the generic group oracle (Mult(·, ·), Inv(·)). Here,
Encaps𝑏 (pk) works as follows:

Encaps𝑏 (pk) :=
{

Encaps(pk, 1𝜆) if 𝑏 = 0,

(𝑅 ←$ {0, 1}𝜆, Encaps(pk, 1𝜆).ctxt) if 𝑏 = 1.

After multiple queries, A outputs a bit 𝑏′.
5. A wins if 𝑏′ = 𝑏, which we write KEM𝜏,H,cpa

A,Π (𝜆) = 1,

and the output of the game is 0 if A fails to guess 𝑏

correctly.

E.2 Formal Description of the Quadratic
Bridge-Finding Game

The Generic Quadratic Bridge-Finding Game

QDBridgeChal𝜏A (𝜆) with a Bit-Fixing Attacker A =(
ABF-GG(𝑃)

pre ,ABF-GG(𝑃)
on

)
:

Preprocessing Phase:

1. ABF-GG(𝑃)
pre takes as input 𝜏 (1). Here, 𝜏 : Z𝑝 → G is a

labeling map where G is a set of bitstrings of length

ℓ ≥ log𝑝 , and 𝑝 > 2
2𝜆

is a prime.

2. ABF-GG(𝑃)
pre fixes 𝑃 input/output pairs of the map 𝜏 :

Z𝑝 → G, i.e., (𝑡1, 𝜏 (𝑡1)), . . . , (𝑡𝑃 , 𝜏 (𝑡𝑃)). (Note: the rest
of the map 𝜏 is chosen uniformly at random as long as

it remains to be injective.)

Online Phase:
1. The challenger receives 𝑃 pre-fixed points,

pick 𝑥 ←$ Z𝑝 and initializes the list L =

{(𝜏 (1), 0, 1), (𝜏 (𝑥), 1, 0), (𝜏 (𝑡1), 0, 𝑡1), . . . , (𝜏 (𝑡𝑃), 0, 𝑡𝑃)}.
2. The adversary ABF-GG(𝑃)

on is given 𝜏 (1) and 𝜏 (𝑥) as
input. AndABF-GG(𝑃)

on is additionally given 𝑃 pre-fixed

points of the map 𝜏 from ABF-GG(𝑃)
pre .

3. The challenger maintains a vector x = (𝑥1, . . . , 𝑥𝑛) ∈
Z𝑛𝑝 which is a vector of unknowns such that 𝑥1 = 𝑥 ,

where the dimension 𝑛 satisfies the following:

• initially, 𝑛 = 1 since the only unknown is 𝑥 , and

• the number of unknowns 𝑛 increases by at most 2 as

ABF-GG(𝑃)
on makes query to the generic group oracle

(Mult, Inv) or a generic oracle O that selects a new

random unknown variable 𝑥 𝑗 ←$ Z𝑝 and outputs

𝜏 (𝑥 𝑗).
4. ABF-GG(𝑃)

on is allowed to query the generic group oracle

(Mult(·, ·), Inv(·)) and the oracle O.
(a) If ABF-GG(𝑃)

on submits a query to O, A gets some

bitstring 𝔶 ∈ 𝜏 (Z𝑝). If 𝔶 does not appear in L
and dim(x) = 𝑗 , then the challenger updates

x ← x ◦ 𝑥 𝑗+1 (i.e., increase the dimension of x
by 1 and add the element 𝑥 𝑗+1 at the end), where

𝑥 𝑗+1 denotes an unknown variable satisfying the

constraint 𝜏 (𝑥 𝑗+1) = 𝔶, and updates all of the en-

tries of the list L from (𝔰, a, 𝑏) to (𝔰, a ◦ 0, 𝑏). Then
the challenger adds (𝔶, 0 ◦ 1, 0) to L.

(b) If ABF-GG(𝑃)
on submits a query 𝔶1, 𝔶2 to Mult(·, ·):

• If there exist tuples (𝔶1, a1, 𝑏1), (𝔶2, a2, 𝑏2) ∈ L
for both 𝔶1 and 𝔶2, then the challenger adds the

tuple (Mult(𝔶1, 𝔶2), a1 + a2, 𝑏1 + 𝑏2) to the list

L.
• If (𝔶1, a1, 𝑏1) ∈ L but 𝔶2 does not appear in

L and if 𝔶2 ∈ 𝜏 (Z𝑝), and if dim(x) = 𝑗 , then

the challenger first updates x← x ◦ 𝑥 𝑗+1 where
𝑥 𝑗+1 denotes an unknown variable satisfying the
constraint 𝜏 (𝑥 𝑗+1) = 𝔶2 and updates all of the

entries of the list L from (𝔰, a, 𝑏) to (𝔰, a ◦ 0, 𝑏).
Then the challenger adds tuples (𝔶2, 0 ◦ 1, 0)
and (Mult(𝔶1, 𝔶2), a1 ◦ 0 + 0 ◦ 1, 𝑏1) to L. Do it

similarly if 𝔶2 appears in L and 𝔶1 does not.

• If both 𝔶1 and 𝔶2 does not appear in L, and if

both 𝔶1, 𝔶2 ∈ 𝜏 (Z𝑝), and if dim(x) = 𝑗 , then

the challenger first updates x← x ◦ 𝑥 𝑗+1 ◦ 𝑥 𝑗+2
where 𝑥 𝑗+1 and 𝑥 𝑗+2 are unknown values such

that 𝜏 (𝑥 𝑗+𝑖) = 𝔶𝑖 for 𝑖 = 1, 2, and updates all

the entries of the list L from (𝔰, a, 𝑏) to (𝔰, a ◦
0
2, 𝑏). Then the challenger adds tuples (𝔶1, 0◦1◦
0, 0), (𝔶2, 0◦0◦1, 0), and (Mult(𝔶1, 𝔶2), 0◦1◦1, 0)
to L.

(c) If A submits a query 𝔶 to Inv(·):
• If there exists a tuple (𝔶, a, 𝑏) ∈ L, then the

challenger adds the tuple (Inv(𝔶),−a,−𝑏) to the
list L.

• If 𝔶 does not appear in L and 𝔶 ∈ 𝜏 (Z𝑝), and
if dim(x) = 𝑗 , then the challenger first updates

x← x ◦ 𝑥 𝑗+1 where 𝑥 𝑗+1 is an unknown value

that satisfies 𝜏 (𝑥 𝑗+1) = 𝔶 and updates all of the

entries of the list L from (𝔰, a, 𝑏) to (𝔰, a ◦ 0, 𝑏).
Then the challenger adds tuples (𝔶, 0 ◦ 1, 0) and
(Inv(𝔶), 0 ◦ (−1), 0) to L.

5. If at any point in timeA outputs a tuple (𝑖1, 𝑖2, a, 𝑏) such
that (1) 1 ≤ 𝑖1, 𝑖2 ≤ dim(x), (2) (a, 𝑏) ∈ Zdim(x)𝑝 × Z𝑝 ,
and (3) 𝑥𝑖1𝑥𝑖2 = a · x + 𝑏 mod 𝑝 , then we say that the

event QDBridge occurs. In this case, the output of the

game is 1 and we write QDBridgeChal𝜏A (𝜆) = 1. If

QDBridge never occurs, then the output of the game is

0.

F The Quadratic Discrete-Log Game
The Quadratic Discrete-Log Game. We define a variant of the

discrete-log game called the quadratic discrete-log gamewhichmight

be crucial in analyzing the security of various cryptographic primi-

tives or protocols.

30

Preprocessing Security in Multiple Idealized Models with Applications to Schnorr Signatures and PSEC-KEM

The Generic Quadratic Discrete-Log Game

QDLogChal𝜏A (𝜆):

1. The adversaryA is given (𝔤 = 𝜏 (1), 𝜏 (𝑥)) for a random
value of 𝑥 ∈ Z𝑝 . Here, 𝜏 : Z𝑝 → G is a labeling map

where G is a set of bitstrings of length ℓ ≥ log 𝑝 . Here,

𝑝 is a 2𝜆-bit prime.

2. A is allowed to query the usual generic group ora-

cles (Mult, Inv) and is additionally allowed to query

DLog(𝜏 (𝑦)), but only if 𝜏 (𝑦) is “fresh", i.e., 𝜏 (𝑦) is not
𝜏 (𝑥), and 𝜏 (𝑦) has not been the output of a previous

random generic group query.

3. After multiple queries,A outputs a tuple (𝑎, 𝑏, 𝔶) where
𝑎, 𝑏 ∈ Z𝑝 with 𝑎 ≠ 0 and 𝔶 ∈ G.

4. The output of the game is defined to be

QDLogChal𝜏A (𝜆) = 1 if 𝔶 = 𝜏 (𝑎𝑥2 + 𝑏𝑥), and 0 other-

wise.

Lemma F.1. The probability the attacker making at most𝑞G generic
group oracle queries wins the generic quadratic discrete-log game
QDLogChal𝜏A (𝜆) (even with access to the restricted DLog oracle) is
at most

Pr[QDLogChal𝜏A (𝜆) = 1] ≤
3𝑞2G + 7𝑞G + 4

2𝑝 − 2(3𝑞G + 2)2
,

in the generic group model of prime order 𝑝 , where the randomness
is taken over the selection of the labeling map 𝜏 , the challenge 𝑥 , as
well as any random coins of A.

Proof. The proof largely borrows the same idea from the prior

work [6, Lemma 1]. Intuitively, the proof works by maintaining

a list L of tuples (𝜏 (𝑦), 𝑎, 𝑏) where 𝜏 (𝑦) ∈ G and 𝑎, 𝑏 ∈ Z𝑝 such

that 𝑦 = 𝑎𝑥 + 𝑏 for every oracle output 𝜏 (𝑦). Initially, the list L
contains two items (𝜏 (1), 0, 1) and (𝜏 (𝑥), 1, 0). L is updated after

every query to the generic group oracles as follows:

• if (𝜏 (𝑦1), 𝑎1, 𝑏1) ∈ L and (𝜏 (𝑦2), 𝑎2, 𝑏2) ∈ L, then query-

ing Mult(𝜏 (𝑦1), 𝜏 (𝑦2)) will result in adding a tuple (𝜏 (𝑦1 +
𝑦2), 𝑎1 + 𝑎2, 𝑏1 + 𝑏2) to L, and
• if (𝜏 (𝑦), 𝑎, 𝑏) ∈ L then querying Inv(𝜏 (𝑦)) will result in

adding a tuple (−𝜏 (𝑦),−𝑎,−𝑏) to L.
We say that the event BRIDGE occurs if L contains two tuples

(𝜏 (𝑦1), 𝑎1, 𝑏1) and (𝜏 (𝑦2), 𝑎2, 𝑏2) such that𝜏 (𝑦1) = 𝜏 (𝑦2) but (𝑎1, 𝑏1) ≠
(𝑎2, 𝑏2). We can further use the restricted discrete-log oracle DLog
to maintain the invariant that every output of the generic group

oracles Mult and Inv can be added to L. In particular, if we ever

encounter an input 𝔶 = 𝜏 (𝑏) that does not already appear in L,
then 𝔶 is considered fresh and we can simply query DLog to extract

𝑏 = DLog(𝔶), ensuring that the tuple (𝔶, 0, 𝑏) is added to L before

the generic group query is processed.

If the event BRIDGE occurs, it becomes trivial for the attacker to

find 𝔶 that satisfies 𝔶 = 𝑎𝑥2 + 𝑏𝑥 for some 𝑎, 𝑏 ∈ Z𝑝 with 𝑎 ≠ 0 be-

cause the attacker can indeed extract the secret 𝑥 , i.e., if L contains

two tuples (𝜏 (𝑦1), 𝑎1, 𝑏1) and (𝜏 (𝑦2), 𝑎2, 𝑏2) such that 𝜏 (𝑦1) = 𝜏 (𝑦2)
but (𝑎1, 𝑏1) ≠ (𝑎2, 𝑏2), then we know that 𝑎1𝑥 + 𝑏1 = 𝑎2𝑥 + 𝑏2
with 𝑎1 ≠ 𝑎2 (since otherwise we have 𝑏1 = 𝑏2 which contra-

dicts the fact that (𝑎1, 𝑏1) ≠ (𝑎2, 𝑏2)) which allows us to solve for

𝑥 = (𝑏2 − 𝑏1) (𝑎1 − 𝑎2)−1.

If the event BRIDGE does not occur then after all queries have

finished the attacker can still view 𝑥 as an element yet to be sampled

from a uniform distribution over a set of size at least 𝑝 − |L|2. To
see this, note that each tuple of distinct elements (𝜏 (𝑦1), 𝑎1, 𝑏1)
and (𝜏 (𝑦2), 𝑎2, 𝑏2) eliminates at most one possible value of 𝑥 , i.e.,

since 𝜏 (𝑦1) and 𝜏 (𝑦2) are distinct we have 𝑥 ≠ (𝑏2 −𝑏1) (𝑎1 −𝑎2)−1.
We further observe that |L| ≤ 3𝑞G + 2 since each query to the

generic group oracles adds at most 3 elements to L — equality

holds when both inputs to Mult(·, ·) are fresh. Now, the attacker
wins if and only if s/he outputs a tuple (𝑎, 𝑏, 𝔶) with nonzero 𝑎 and

𝔶 = 𝜏 (𝑎𝑥2 + 𝑏𝑥). Since we ensured that 𝔶 appears in L, we have
that 𝔶 = 𝜏 (𝑎′𝑥 + 𝑏′) for some known 𝑎′, 𝑏′ ∈ Z𝑝 , which implies

that 𝑎𝑥2 + 𝑏𝑥 = 𝑎′𝑥 + 𝑏′ mod 𝑝 where 𝑎 ≠ 0. Since this quadratic

equation has at most 2 roots in Z𝑝 there are at most 2 out of at least

𝑝 − (3𝑞G + 2)2 remaining choices of 𝑥 which satisfy the equation

𝑎𝑥2 + 𝑏𝑥 = 𝑎′𝑥 + 𝑏′ mod 𝑝 . Thus, we have that

Pr

[
QDLogChal𝜏A (𝜆) = 1 | BRIDGE

]
≤ 2

𝑝 − |L|2

≤ 2

𝑝 − (3𝑞G + 2)2
.

Next, we have that Pr[BRIDGE] ≤ 3𝑞2G+7𝑞G
2𝑝−2(3𝑞G+2)2 from [6, Lemma

1]. Hence, the probability the attacker succeeds is at most

Pr[QDLogChal𝜏A (𝜆) = 1]

≤ Pr[BRIDGE] + Pr[QDLogChal𝜏A (𝜆) = 1 | BRIDGE]

≤
3𝑞2G + 7𝑞G

2𝑝 − 2(3𝑞G + 2)2
+ 2

𝑝 − (3𝑞G + 2)2

=
3𝑞2G + 7𝑞G + 4

2𝑝 − 2(3𝑞G + 2)2
. □

The Quadratic Discrete-Log Game with Preprocessing. Now we

consider a preprocessing setting in a similar manner. We first define

the quadratic discrete-log game in the bit-fixing generic group

model which is described formally below.

The Generic Quadratic Discrete-Log Game

QDLogChal𝜏A (𝜆) with a Bit-Fixing Preprocessing Attacker
A := (ABF-GG(𝑃)

pre ,ABF-GG(𝑃)
on):

Preprocessing Phase:

1. ABF-GG(𝑃)
pre takes as input 𝔤 = 𝜏 (1).

2. ABF-GG(𝑃)
pre fixes 𝑃 input/output pairs of the map 𝜏 :

Z𝑝 → G, i.e., (𝑡1, 𝜏 (𝑡1)), . . . , (𝑡𝑃 , 𝜏 (𝑡𝑃)). (Note: the rest
of the map 𝜏 is chosen uniformly at random as long as

it remains to be injective.)

Online Phase:

1. The adversary ABF-GG(𝑃)
on is given 𝔤 = 𝜏 (1) and 𝜏 (𝑥)

for a random value of 𝑥 ∈ Z𝑝 .
2. ABF-GG(𝑃)

on is allowed to query the usual generic group

oracles (Mult, Inv) and is additionally allowed to query
DLog(𝜏 (𝑦)), but only if 𝜏 (𝑦) is “fresh", i.e., 𝜏 (𝑦) is not

31

Jeremiah Blocki and Seunghoon Lee

𝜏 (𝑥), and 𝜏 (𝑦) has not been the output of a previous

random generic group query.

3. After multiple queries, ABF-GG(𝑃)
on outputs a tuple

(𝑎, 𝑏, 𝔶) where 𝑎, 𝑏 ∈ Z𝑝 with 𝑎 ≠ 0 and 𝔶 ∈ G.
4. The output of the game is defined to be

QDLogChal𝜏A (𝜆) = 1 if 𝔶 = 𝜏 (𝑎𝑥2 + 𝑏𝑥), and 0

otherwise.

Lemma F.2. Let𝑝 > 2
2𝜆 be a prime number and letA :=

(
ABF-GG(𝑃)

pre ,

ABF-GG(𝑃)
on

)
be a pair of bit-fixing generic algorithms with a labeling

map 𝜏 : Z𝑝 → G such that ABF-GG(𝑃)
pre fixes 𝑃 input/output pairs

of the labeling map and ABF-GG(𝑃)
on makes at most 𝑞onG := 𝑞onG (𝜆)

queries to the generic group oracles. Then

Pr[QDLogChal𝜏A (𝜆) = 1] ≤
3(𝑞onG)

2 + 5𝑞onG + 2𝑞
on
G 𝑃 + 4

2𝑝 − 4𝑃 (3𝑞onG + 2) − 2(3𝑞
on
G + 2)2

,

in the generic group model of prime order 𝑝 , where the randomness
is taken over the selection of the labeling map 𝜏 , the challenge 𝑥 , as
well as any random coins of ABF-GG(𝑃)

on .

Proof. The proof works largely the same as Lemma F.1, except

for the fact that

• the upper bound of the size of the list is increased by 𝑃 :

|L| ≤ 𝑃 + 3𝑞onG + 2,
• if the event BRIDGE does not occur then after all queries

have finished the attacker can still view 𝑥 as an element

yet to be sampled from a uniform distribution over a set of

size at least 𝑝 − (|L|2 − 𝑃2), and
• the probability of the event BRIDGE becomes higher, i.e.,

Pr[BRIDGE] ≤ 1.5(𝑞onG)2+2.5𝑞onG +𝑞onG 𝑃
𝑝−2𝑃 (3𝑞onG +2)−(3𝑞onG +2)2

(see Lemma 4.3).

Hence, we have

Pr

[
QDLogChal𝜏A (𝜆) = 1 | BRIDGE

]
≤ 2

𝑝 − (|L|2 − 𝑃2)

≤ 2

𝑝 − 2𝑃 (3𝑞onG + 2) − (3𝑞
on
G + 2)2

,

and

Pr[QDLogChal𝜏A (𝜆) = 1]

≤ Pr[BRIDGE] + Pr[QDLogChal𝜏A (𝜆) = 1 | BRIDGE]

≤
1.5(𝑞onG)

2 + 2.5𝑞onG + 𝑞
on
G 𝑃

𝑝 − 2𝑃 (3𝑞onG + 2) − (3𝑞
on
G + 2)2

+ 2

𝑝 − 2𝑃 (3𝑞onG + 2) − (3𝑞
on
G + 2)2

=
3(𝑞onG)

2 + 5𝑞onG + 2𝑞
on
G 𝑃 + 4

2𝑝 − 4𝑃 (3𝑞onG + 2) − 2(3𝑞
on
G + 2)2

. □

An immediate corollary of Lemma F.2 can be obtained by apply-

ing [11, Theorem 1] and by setting an optimal value of 𝑃 ≈ 𝑆𝑞onG
and 𝛾 = 2

−2𝜆
.

Corollary F.3. Let 𝑝 > 2
2𝜆 be a prime number and 𝑁 ∈ N be

a parameter. Let A :=

(
AAI-GG

pre ,AAI-GG
on

)
be a pair of auxiliary-

input generic algorithms with a labeling map 𝜏 : Z𝑝 → G such that
AAI-GG

pre outputs an 𝑆-bit hint after looking at the entire map 𝜏 and
AAI-GG

on makes at most 𝑞onG := 𝑞onG (𝜆) queries to the generic group
oracles. Then

Pr

[
QDLogChal𝜏A (𝜆) = 1

]
≤

3(𝑞onG)
2 + 5𝑞onG + 2𝑆 (𝑞

on
G)

2 + 4
𝑝 − 2𝑆𝑞onG (3𝑞

on
G + 2) − (3𝑞

on
G + 2)2

+ 2−2𝜆+1 .

G Missing Proofs

Reminder of Lemma 4.3. Let 𝑝 > 2
2𝜆 be a prime number and

𝑁 ∈ N be a parameter. LetA :=

(
ABF-GG(𝑃)

pre ,ABF-GG(𝑃)
on

)
be a pair

of bit-fixing generic algorithms with a labeling map 𝜏 : Z𝑝 → G such

that ABF-GG(𝑃)
pre fixes 𝑃 input/output pairs of the labeling map 𝜏 and

ABF-GG(𝑃)
on makes at most 𝑞onG := 𝑞onG (𝜆) queries to the generic group

oracles. Then

Pr

[
BridgeChal𝜏,𝑁A (𝜆) = 1

]
≤

𝑞onG (𝑁 + 𝑃) + 3𝑞
on
G (𝑞

on
G + 1)/2

𝑝 − 2𝑃 (𝑁 + 3𝑞onG + 1) − (𝑁 + 3𝑞
on
G + 1)2 − 𝑁

,

in the GGM of prime order 𝑝 , where the randomness is taken over the
selection of 𝑥1, . . . , 𝑥𝑁 , 𝜏 as well as any random coins ofABF-GG(𝑃)

on .

Proof of Lemma 4.3. The proof is similar to the proof of [6,

Theorem 5]. Intuitively, we first consider the probability that the

bridge event occurs conditioning on the event that the bridge event

has not yet occurred until the previous query, i.e., let BRIDGE
𝑁
<𝑖

be the event that the event BRIDGE𝑁 has not occurred until the

(𝑖 − 1)th query.
Before we even receive the output 𝔶𝑖 , we already know the

values a𝑖 , 𝑏𝑖 such that the tuple (𝔶𝑖 , a𝑖 , 𝑏𝑖) will be added to L. If L
does already contain this exact tuple, then outputting 𝔶𝑖 will not

produce the event BRIDGE𝑁 . If L does not already contain this

tuple (𝔶𝑖 , a𝑖 , 𝑏𝑖), then we are interested in the event 𝐵𝑖 that some

other tuple (𝔶𝑖 , a′𝑖 , 𝑏
′
𝑖
) has been recorded with (a′

𝑖
, 𝑏′
𝑖
) ≠ (a𝑖 , 𝑏𝑖).

Observe that 𝐵𝑖 occurs if and only if there exists a tuple of the form

(·, a, 𝑏) with (a − a𝑖) · x = 𝑏𝑖 − 𝑏 and (a, 𝑏) ≠ (a𝑖 , 𝑏𝑖). If we pick x
randomly, the probability that (a − a𝑖) · x = 𝑏𝑖 − 𝑏 would be 1/𝑝 .
However, we cannot quite view x as random due to the restrictions,

i.e., because we condition on the event BRIDGE
𝑁
<𝑖 we know that

for any distinct tuples (𝔶𝑗 , a𝑗 , 𝑏 𝑗) and (𝔶𝑘 , a𝑘 , 𝑏𝑘) we know that

a𝑗 · x + 𝑏 𝑗 ≠ a𝑘 · x + 𝑏𝑘 , i.e., 𝔶𝑗 ≠ 𝔶𝑘 .

Consider sampling x uniformly at random subject to this re-

striction. Let 𝑟 ≤ 𝑁 be an index such that a[𝑟] − a𝑖 [𝑟] ≠ 0 and

suppose that 𝑥𝑟 = x[𝑟] is the last value sampled. We also define

two subsets L0,L1 ⊆ L where L0
:= {(𝔶, a, 𝑏) ∈ L : a = 0} and

L1
:= {(𝔶, a, 𝑏) ∈ L : a ≠ 0}. Now we observe that L0 ∪ L1 = L

and if we pick two distinct pairs (𝔶1, a1, 𝑏1) and (𝔶2, a2, 𝑏2) both
from L0 we are guaranteed to have that a1 · x + 𝑏1 ≠ a2 · x + 𝑏2
since a1 = a2 = 0, which implies that we are guaranteed to not

cause any bridge event.

At this point, we can view 𝑥𝑟 as being drawn uniformly at ran-

dom from a set of at least 𝑝 − (|L|2 − |L0 |2) − (𝑁 − 1) remaining

32

Preprocessing Security in Multiple Idealized Models with Applications to Schnorr Signatures and PSEC-KEM

values, subject to all of the restrictions. To see this, we observe the

following:

• 𝑥𝑟 must be distinct from 𝑥1, . . . , 𝑥𝑟−1 since otherwise we
would have had a bridge event, and

• each pair of distinct elements (𝔶𝑗 , a𝑗 , 𝑏 𝑗) ∈ L and (𝔶𝑘 , a𝑘 , 𝑏𝑘) ∈
L, we have the following cases:
◦ if (𝔶𝑗 , a𝑗 , 𝑏 𝑗) ∈ L1 and (𝔶𝑘 , a𝑘 , 𝑏𝑘) ∈ L1, then this pair

eliminates at most one possible value of 𝑥𝑟 , i.e., since

𝔶𝑗 and 𝔶𝑘 are distinct, we have a𝑗 · x +𝑏 𝑗 ≠ a𝑘 · x +𝑏𝑘 ,
which implies that

𝑥𝑟 ≠

(
(𝑏𝑘 − 𝑏 𝑗) −

∑𝑁
𝑖=1,𝑖≠𝑗 (a𝑘 [𝑖] − a𝑗 [𝑖])𝑥𝑖

)
(a𝑗 [𝑟] −

a𝑘 [𝑟])−1,
◦ if (𝔶𝑗 , a𝑗 , 𝑏 𝑗) ∈ L1 and (𝔶𝑘 , a𝑘 , 𝑏𝑘) ∈ L0, then this pair

eliminates at most one possible value of 𝑥𝑟 , i.e., since

𝔶𝑗 and 𝔶𝑘 are distinct, we have a𝑗 · x + 𝑏 𝑗 ≠ 0 · x + 𝑏𝑘 ,
which implies that

𝑥𝑟 ≠

(
(𝑏𝑘 − 𝑏 𝑗) +

∑𝑁
𝑖=1,𝑖≠𝑗 a𝑗 [𝑖]𝑥𝑖

)
a𝑗 [𝑟]−1,

◦ (𝔶𝑗 , a𝑗 , 𝑏 𝑗) ∈ L0 and (𝔶𝑘 , a𝑘 , 𝑏𝑘) ∈ L1, then this pair

eliminates at most one possible value of 𝑥𝑟 , i.e., since

𝔶𝑗 and 𝔶𝑘 are distinct, we have 0 · x + 𝑏 𝑗 ≠ a𝑘 · x + 𝑏𝑘 ,
which implies that

𝑥𝑟 ≠

(
(𝑏𝑘 − 𝑏 𝑗) −

∑𝑁
𝑖=1,𝑖≠𝑗 a𝑘 [𝑖]𝑥𝑖

)
(−a𝑘 [𝑟])−1, and

◦ if both (𝔶𝑗 , a𝑗 , 𝑏 𝑗) ∈ L0 and (𝔶𝑘 , a𝑘 , 𝑏𝑘) ∈ L0, then

since both a𝑗 = a𝑘 = 0, it is a contradiction that a𝑗 [𝑟]−
a𝑘 [𝑟] ≠ 0 and therefore we do not eliminate any value

of 𝑥𝑟 .

• Hence, the total number of values that we remove when

we draw 𝑥𝑟 is at most (𝑟 − 1) + |L1 |2 + 2|L0 | |L1 | ≤ (𝑁 −
1) + (|L|2 − |L0 |2).

We also observe that |L| ≤ 𝑁 + 𝑃 + 3𝑞onG + 1 and |L0 | ≥ 𝑃 since the

list already contains 𝑃 additional pre-fixed pairs and each generic

group oracle query adds at most three new tuples to L — ex-

actly three in the case that we query Mult(𝔶1, 𝔶2) on two fresh

elements. Thus, the probability that (a − a𝑖) · x = 𝑏𝑖 − 𝑏 is at

most
1

𝑝−(𝑁+𝑃+3𝑞onG +1)2+𝑃2−(𝑁−1) . Union bounding over all tuples

(·, a, 𝑏) ∈ L, we have

Pr

[
𝐵𝑖 : BRIDGE

𝑁
<𝑖

]
≤ 𝑁 + 𝑃 + 3𝑖
𝑝 − (𝑁 + 𝑃 + 3𝑞onG + 1)2 + 𝑃2 − 𝑁

=
𝑁 + 𝑃 + 3𝑖

𝑝 − 2𝑃 (𝑁 + 3𝑞onG + 1) − (𝑁 + 3𝑞
on
G + 1)2 − 𝑁

.

To complete the proof, we observe that

Pr

[
BridgeChal𝜏,𝑁A (𝜆) = 1

]
=

∑︁
𝑖≤𝑞onG

Pr

[
𝐵𝑖 : BRIDGE

𝑁
<𝑖

]
≤

∑︁
𝑖≤𝑞onG

𝑁 + 𝑃 + 3𝑖
𝑝 − 2𝑃 (𝑁 + 3𝑞onG + 1) − (𝑁 + 3𝑞

on
G + 1)2 − 𝑁

=
𝑞onG (𝑁 + 𝑃) + 3𝑞

on
G (𝑞

on
G + 1)/2

𝑝 − 2𝑃 (𝑁 + 3𝑞onG + 1) − (𝑁 + 3𝑞
on
G + 1)2 − 𝑁

. □

Reminder of Theorem 4.4. Let Π\{0} = (Kg, Sign,Vfy) be a
nonzero Schnorr signature scheme and 𝑝 > 2

2𝜆 be a prime number. Let

𝑁 ∈ N be a parameter and
(
ABF-RO+GG(𝑃1,𝑃2)

Sig.pre ,ABF-RO+GG(𝑃1,𝑃2)
Sig.on

)

be a pair of bit-fixing generic algorithms with a labeling map 𝜏 :

Z𝑝 → G such that ABF-RO+GG(𝑃1,𝑃2)
Sig.pre fixes 𝑃1 input/output pairs of

a random oracle H : {0, 1}∗ → {0, 1}𝜆1 and 𝑃2 input/output pairs
of the map 𝜏 : Z𝑝 → G such that 2𝑃1 + 𝑃2 = 𝑃 , and the hint str𝜏,H
is only dependent on those 𝑃 points. If ABF-RO+GG(𝑃1,𝑃2)

Sig.on makes at
most 𝑞onG := 𝑞onG (𝜆) queries to the generic group oracles, 𝑞

on
H queries

to the random oracle, and 𝑞onS queries to the signing oracle, then

Pr

[
SigForge𝜏,H,𝑁

ABF-RO+GG(𝑃
1
,𝑃
2
)

Sig.on,str𝜏,H
,Πshort
\{0}
(𝜆) = 1

]
≤ 𝜀,

with

𝜀 =
𝑞onG (𝑁 + 𝑃) + 3𝑞

on
G (𝑞

on
G + 1)/2

𝑝 − 2𝑃 (𝑁 + 3𝑞onG + 1) − (𝑁 + 3𝑞
on
G + 1)2 − 𝑁

+
𝑞onS (𝑞

on
H + 𝑞

on
S + 𝑃)

𝑝

+
𝑞onH + 𝑞

on
S + 𝑃

𝑝 − (𝑁 + 𝑃 + 3𝑞onG + 1)
+
2𝑞onH + 1

2
𝜆1

,

where the randomness is taken over the selection of 𝜏 and the random
coins of ABF-RO+GG(𝑃1,𝑃2)

Sig.on .

Proof of Theorem 4.4. Given a bit-fixing generic adversary(
ABF-RO+GG(𝑃1,𝑃2)

Sig.pre ,ABF-RO+GG(𝑃1,𝑃2)
Sig.on

)
that attacks the short nonzero

Schnorr signature scheme, we construct the following efficient

generic algorithmAbridge =
(
ABF-RO+GG(𝑃1,𝑃2)

bridge.pre ,ABF-RO+GG(𝑃1,𝑃2)
bridge.on

)
in the bit-fixing model which tries to succeed in the 1-out-of-𝑁

generic BRIDGE𝑁 -finding game BridgeChal𝜏,𝑁Abridge
(𝜆):

Algorithm

(
ABF-RO+GG(𝑃1,𝑃2)

bridge.pre ,ABF-RO+GG(𝑃1,𝑃2)
bridge.on

)
:

Preprocessing Phase:
The algorithm is given 𝑝, 𝔤 = 𝜏 (1) as input.
1. ABF-RO+GG(𝑃1,𝑃2)

bridge.pre simply runs ABF-RO+GG(𝑃1,𝑃2)
Sig.pre

and outputs the same 𝑃1 input/output pairs of H
({(ℎ1,H(ℎ1)), . . . , (ℎ𝑃1 ,H(ℎ𝑃1))}) and 𝑃2 input/ output
pairs of 𝜏 ({(𝑡1, 𝜏 (𝑡1)), . . . , (𝑡𝑃2 , 𝜏 (𝑡𝑃2))}) as being fixed
by ABF-RO+GG(𝑃1,𝑃2)

Sig.pre .

2. For each fixed RO input/output pair (ℎ𝑖 ,H(ℎ𝑖)) where
𝑖 ∈ [𝑃1],
ABF-RO+GG(𝑃1,𝑃2)

bridge.pre first parses ℎ𝑖 = 𝐼
′
𝑖
∥𝑚′

𝑖
where 𝐼 ′

𝑖
is a

bitstring of length ℓ while𝑚′
𝑖
represents the remaining

part of the bitstring. If 𝐼 ′
𝑖
is a fresh ℓ-bit string, i.e.,

𝐼 ′
𝑖
≠ 𝜏 (𝑡 𝑗) for all 𝑗 ∈ [𝑃2], thenABF-RO+GG(𝑃1,𝑃2)

bridge.pre picks

a value for 𝜏−1 (𝐼 ′
𝑖
) =: 𝑟 ′

𝑖
where the labeling map 𝜏 will

be sampled later. (Note: this is because the attacker can

query a restricted discrete-log oracle for a fresh bitstring

but the labeling map 𝜏 has not been sampled.) Finally,

ABF-RO+GG(𝑃1,𝑃2)
bridge.pre also outputs the fixed input/output

pairs of 𝜏 {(𝑟 ′
1
, 𝐼 ′
1
), . . . , (𝑟 ′

𝑃1
, 𝐼 ′
𝑃1
)}.

3. Now the challenger initializes the listL = L1∪L2∪L3,

where

• L1 = {(𝜏 (1), 0, 1), (pk𝑖 , 𝑢𝑖 , 0) : 𝑖 ∈ [𝑁]},
• L2 = {(𝐼 ′𝑖 , 0, 𝑟

′
𝑖
= DLog(𝐼 ′

𝑖
)) : 𝑖 ∈ [𝑃1]}, and

33

Jeremiah Blocki and Seunghoon Lee

• L3 = {(𝜏 (𝑡 𝑗), 0, 𝑡 𝑗) : 𝑗 ∈ [𝑃2]}.
(Note that |L| ≤ |L1 | + |L2 | + |L3 | ≤ 1 +𝑁 + 𝑃1 + 𝑃2 =
𝑁 + 𝑃 + 1.)

Online Phase:
The algorithm is given 𝑝, 𝔤 = 𝜏 (1), pk𝑖 = 𝜏 (𝑥𝑖), 1 ≤ 𝑖 ≤ 𝑁
as input.

4. Initialize the set Hresp = {} which stores the

random oracle input/output pairs observed dur-

ing online processing. It also maintains the set

HFixed = {(ℎ1,H(ℎ1)), . . . , (ℎ𝑃1 ,H(ℎ𝑃1))} that

ABF-RO+GG(𝑃1,𝑃2)
Sig.pre has already fixed in Step 1.

5. ABF-RO+GG(𝑃1,𝑃2)
bridge.on runsABF-RO+GG(𝑃1,𝑃2)

Sig.on with a num-

ber of access to the generic group oracles GO =

(Mult(·, ·), Inv(·)), the restricted discrete-log oracles

DLog(·), the signing oracles Sign𝑖 (·) for 1 ≤ 𝑖 ≤ 𝑁 , and

the random oracle H(·). We maintain the invariant that

every output of a generic group query during the online

phase appears in the list L that is kept in track on the

challenger’s side. We consider the following cases:

(a) Whenever ABF-RO+GG(𝑃1,𝑃2)
Sig.on submits a query 𝑤

to the random oracle H:
• If there is a pair (𝑤, 𝑅) ∈ Hresp for some string

𝑅 ∈ {0, 1}𝜆1 then return 𝑅.

• Otherwise, check if (𝑤,H(𝑤)) ∈ HFixed. If so,

then return H(𝑤).
• Otherwise, select 𝑅 ←$ {0, 1}𝜆1 and add (𝑤, 𝑅)

to Hresp.

• If𝑤 has the form𝑤 = (𝔞∥𝑚𝑖) where the value
𝔞 has not been observed previously (i.e., is not

in L) then we query 𝑏 = DLog(𝔞) which results

in the challenger adding (𝔞, 0, 𝑏) to L.
(b) WheneverABF-RO+GG(𝑃1,𝑃2)

Sig.on submits a query 𝔞 to

the generic group oracle Inv(·):
• If 𝔞 is not in L then we immediately query 𝑏 =

DLog(𝔞) which results in the challenger adding

(𝔞, 0, 𝑏) to L.
• Otherwise, (𝔞, a, 𝑏) ∈ L for some a and 𝑏. Then
we query Inv(𝔞) = 𝜏 (−a · x − 𝑏), output the
result, which results in the challenger adding

(𝜏 (−a · x − 𝑏),−a,−𝑏) to L.
(c) WheneverABF-RO+GG(𝑃1,𝑃2)

Sig.on submits a query 𝔞, 𝔟

to the generic group oracle Mult(·, ·):
• If the element 𝔞 (resp. 𝔟) is not in L then query

𝑏0 = DLog(𝔞) (resp.𝑏1 = DLog(𝔟)) which results
in the challenger adding the element (𝔞, 0, 𝑏0)
(resp. (𝔟, 0, 𝑏1)) to L.
• Otherwise both elements (𝔞, a0, 𝑏0), (𝔟, a1, 𝑏1) ∈
L. Then we return

Mult(𝔞, 𝔟) = 𝜏 ((a0 + a1) · x + 𝑏0 + 𝑏1) which
results in the challenger adding (𝜏 ((a0 + a1) ·
x + 𝑏0 + 𝑏1), a0 + a1, 𝑏0 + 𝑏1) ∈ L.

(d) Whenever ABF-RO+GG(𝑃1,𝑃2)
Sig.on submits a query𝑚𝑖

to the signing oracle Sign(𝑥 𝑗 , ·):
• The attacker tries to forge a signature without

knowledge of the secret key 𝑥 𝑗 , relying on the

ability to program the random oracle as follows:

(i) Pick 𝑠𝑖 , 𝑒𝑖 randomly and compute 𝐼𝑖 =

𝜏 (𝑠𝑖 − 𝑥 𝑗𝑒𝑖) = Mult(𝔰𝑖 , Pow(pk𝑗 ,−𝑒𝑖))
where 𝔰𝑖 = Pow(𝔤, 𝑠𝑖).

(ii) If H(𝐼𝑖 ∥𝑚𝑖) has been previously queried

or if it is in the set HFixed, then return ⊥.
(iii) Otherwise, program H(𝐼𝑖 ∥𝑚𝑖) := 𝑒𝑖 and

return 𝜎𝑖 = (𝑠𝑖 , 𝑒𝑖).
• We remark that a side effect of querying

the Sign𝑗 oracle is the addition of the tu-

ples (𝜏 (𝑠𝑖), 0, 𝑠𝑖), (𝜏 (𝑥 𝑗𝑒𝑖), 𝑒𝑖𝑢𝑖 , 0) and (𝜏 (𝑠𝑖 −
𝑥 𝑗𝑒𝑖),−𝑒𝑖𝑢𝑖 , 𝑠𝑖) to L, since these values are com-

puted using the generic group oracles Inv, Mult.
6. After Aon

sig outputs 𝜎𝑖∗ = (𝑠𝑖∗, 𝑒𝑖∗) and 𝑚𝑖∗, identify
the index 𝑖∗ ∈ [𝑁] such that Vf (pk𝑖∗,𝑚𝑖∗, 𝜎𝑖∗) = 1.

Without loss of generality, we can assume that 𝑚𝑖∗
is not a part of pre-fixed points HFixed in Step 2

since if the attacker forges a signature (𝑠𝑖∗, 𝑒𝑖∗) for
a message 𝑚𝑖∗ which involves the pre-fixed point

(𝐼𝑖∗∥𝑚𝑖∗,H(𝐼𝑖∗∥𝑚𝑖∗)) ∈ HFixed then we can directly

force the bridge event to occur, i.e., (𝐼𝑖∗, 0, 𝑟𝑖∗ =

DLog(𝐼𝑖∗)) ∈ L and (𝐼𝑖∗,−𝑒𝑖∗𝑢𝑖∗, 𝑠𝑖∗) ∈ L (see Step

7 below) where 0 ≠ −𝑒𝑖∗𝑢𝑖∗.
7. Compute 𝜏 (−𝑒𝑖∗𝑥𝑖∗) = Inv(Pow(𝜏 (𝑥𝑖∗), 𝑒𝑖∗)). This will

ensure that the elements (𝜏 (−𝑒𝑖∗𝑥𝑖∗),−𝑒𝑖∗𝑢𝑖∗, 0) and
(𝜏 (𝑒𝑖∗𝑥𝑖∗), 𝑒𝑖∗𝑢𝑖∗, 0) are both added to L.

8. Compute 𝔰𝑖∗ = Pow(𝔤, 𝑠𝑖∗) to ensure that (𝔰𝑖∗, 0, 𝑠𝑖∗) ∈
L .

9. Finally, compute 𝐼𝑖∗ = Mult(𝔰𝑖∗, 𝜏 (−𝑒𝑖∗𝑥𝑖∗)) = 𝜏 (𝑠𝑖∗ −
𝑥𝑖∗𝑒𝑖∗) which ensures that (𝐼𝑖∗,−𝑒𝑖∗𝑢𝑖∗, 𝑠𝑖∗) ∈ L and

check to see if we previously had any tuple of the form

(𝐼𝑖∗, a, 𝑏) ∈ L.

Analysis. We first remark that if the signature is valid then we

must have 𝑒𝑖∗ = H(𝐼𝑖∗∥𝑚𝑖∗) and DLog(𝐼𝑖∗) = 𝑠𝑖∗ − 𝑥𝑖∗𝑒𝑖∗ = a · x + 𝑏.
Moreover, without loss of generality, we can assume that each string

𝔶 occurs at most once in the list L in Step 5 because if at any point

we have some string 𝔶 such that (𝔶, a, 𝑏) ∈ L and (𝔶, c, 𝑑) ∈ L for

(a, 𝑏) ≠ (c, 𝑑) then we can immediately have a BRIDGE𝑁 instance

(𝜏 ((a − c) · x), a − c, 0) ∈ L and (𝜏 (𝑑 − 𝑏), 0, 𝑑 − 𝑏) ∈ L since

𝜏 ((a − c) · x) = 𝜏 (𝑑 − 𝑏).
We now define the failure events FailtoSign, FailtoFind(𝐼𝑖∗), and

BadQuery. The event FailtoSign occurs when our reduction outputs
⊥ in Step 5.(d) due to the signing oracle failure, i.e., since H(𝐼𝑖 ∥𝑚𝑖)
has been previously queried or it is contained in the set HFixed.

FailtoFind(𝐼𝑖∗) denotes the event that we find that the signature is

valid but 𝐼𝑖∗ was not previously recorded in our list L before we

computed Mult(𝔰𝑖∗, 𝜏 (−𝑒𝑖∗𝑥𝑖∗)) in the last step so that we cannot

find the bridge event. BadQuery is the event that the signature

is valid but for the only prior tuple (𝐼𝑖∗, a, 𝑏) ∈ L we have that

a = −𝑒𝑖∗𝑢𝑖∗ so that we still cannot find the bridge event.

34

Preprocessing Security in Multiple Idealized Models with Applications to Schnorr Signatures and PSEC-KEM

Claim 7, Claim 8, and Claim 9 upper bound the probability of

our events FailtoSign, FailtoFind, and BadQuery respectively.

Claim 7. Pr[FailtoSign] ≤
𝑞onS (𝑞

on
H + 𝑞

on
S + 𝑃1)

𝑝
.

Proof of Claim 7. We observe that every time the attacker

queries the signing oracle, wewould generate a query to the random

oracle H. Thus, we would have at most 𝑞onH + 𝑞
on
S + 𝑃1 input/output

pairs recorded for the random oracle, including the fixed points

during the preprocessing phase. Since 𝐼𝑖 = 𝜏 (𝑠𝑖 − 𝑥𝑖𝑒𝑖) represents
a fresh/randomly selected group element of size 𝑝 , the probability

that (𝐼𝑖 ,𝑚𝑖) is one of the inputs is at most (𝑞onH + 𝑞
on
S + 𝑃1)/𝑝 . Ap-

plying union bound over 𝑞onS queries to the signing oracle, we have

that

Pr[FailtoSign] ≤
𝑞onS (𝑞

on
H + 𝑞

on
S + 𝑃1)

𝑝
. □

Claim 8. Pr[FailtoFind(𝐼𝑖∗)] ≤
𝑞onH + 𝑞

on
S + 𝑃1

𝑝 − |L| + 1

2
𝜆1
.

Proof of Claim 8. We observe that if 𝐼𝑖∗ ∉ L then we can view

𝐼𝑖∗ = 𝜏 (𝑠𝑖∗ − 𝑥𝑖∗𝑒𝑖∗) as a uniformly random binary string from a set

of size at least 𝑝 − |L| which had not yet been selected at the time

Aon
Sig outputs 𝜎𝑖∗. Thus, the probability that the query H(𝐼𝑖∗∥𝑚𝑖∗)

was previously recorded is at most (𝑞onH +𝑞
on
S +𝑃1)/(𝑝 − |L|). If the

query H(𝐼𝑖∗∥𝑚𝑖∗) was not previously recorded then the probability

of a successful forgery H(𝐼𝑖∗∥𝑚𝑖∗) = 𝑒𝑖∗ is at most 2−𝑘1 since we
can viewH(𝐼𝑖∗∥𝑚𝑖∗) chosen uniformly at random from the possible

2
𝜆1

options. Hence, we have that

Pr[FailtoFind(𝐼𝑖∗)] ≤
𝑞onH + 𝑞

on
S + 𝑃1

𝑝 − |L| + 1

2
𝜆1
. □

Claim 9. Pr[BadQuery] ≤
𝑞onH

2
𝜆1
.

Proof of Claim 9. We observe that by construction we ensure

that the tuple (𝐼 , a, 𝑏) will always be recorded in L before a query

of the form H(𝐼 ∥𝑚) is ever issued — if 𝐼 is new then we call DLog(𝐼)
before querying the random oracle. Now define a subset L̂ ⊂ L as

the set of tuples (𝔞, a, 𝑏) ∈ G×Z𝑁𝑝 ×Z𝑝 such that a has exactly one
nonzero element. Now we call a random oracle query 𝑥 = (𝐼 ∥𝑚)
“bad” if H(𝑥) = −𝑎 where the tuple (𝐼 , a, 𝑏) ∈ L̂ has already been

recorded and the nonzero element of a is 𝑎 (Recall that if there were
two recorded tuples (𝐼 , a, 𝑏) and (𝐼 , c, 𝑑) then our algorithm would

have already found a BRIDGE𝑁 instance). Thus, the probability

each individual query is “bad” is at most 2/2𝜆1 and we can use

union bounds to upper bound the probability of any “bad” query as

Pr[BadQuery] ≤
𝑞onH

2
𝜆1
. □

Now we have shown that

Pr

[
BridgeChal𝜏,𝑁Abridge

(𝜆) = 1

]
≥ Pr

[
SigForge𝜏,H,𝑁

ABF-RO
Sig.on,str𝜏,H

,Πshort
\{0}
(𝜆) = 1

]
− Pr[FailtoSign]

− Pr[FailtoFind(𝐼𝑖∗)] − Pr[BadQuery]

≥ Pr

[
SigForge𝜏,H,𝑁

ABF-RO
Sig.on,str𝜏,H

,Πshort
\{0}
(𝜆) = 1

]
−
𝑞onS (𝑞

on
H + 𝑞

on
S + 𝑃1)

𝑝

−
𝑞onH + 𝑞

on
S + 𝑃1

𝑝 − |L| −
𝑞onH + 1
2
𝜆1

.

Finally, by applying Lemma 4.3, we can conclude that

Pr

[
SigForge𝜏,H,𝑁

ABF-RO
Sig.on,str𝜏,H

,Πshort
\{0}
(𝜆) = 1

]
≤

[
BridgeChal𝜏,𝑁Abridge

(𝜆) = 1

]
+
𝑞onS (𝑞

on
H + 𝑞

on
S + 𝑃1)

𝑝

+
𝑞onH + 𝑞

on
S + 𝑃1

𝑝 − |L| +
𝑞onH + 1
2
𝜆1

≤
𝑞onG (𝑁 + 𝑃) + 3𝑞

on
G (𝑞

on
G + 1)/2

𝑝 − 2𝑃 (𝑁 + 3𝑞onG + 1) − (𝑁 + 3𝑞
on
G + 1)2 − 𝑁

+
𝑞onS (𝑞

on
H + 𝑞

on
S + 𝑃)

𝑝

+
𝑞onH + 𝑞

on
S + 𝑃

𝑝 − (𝑁 + 𝑃 + 3𝑞onG + 1)
+
𝑞onH + 1
2
𝜆1

. □

Reminder of Lemma 5.2. Let 𝑝 > 2
2𝜆 is a prime number. LetA :=(

ABF-GG(𝑃)
pre ,ABF-GG(𝑃)

on

)
be a pair of bit-fixing generic algorithms

with a labeling map 𝜏 : Z𝑝 → G such that ABF-GG(𝑃)
pre fixes 𝑃

input/output pairs of the labeling map 𝜏 and ABF-GG(𝑃)
on makes at

most 𝑞onG := 𝑞onG (𝜆) queries to the generic group oracles and 𝑞onO :=

𝑞onO (𝜆) queries to the oracleO. Then Pr
[
QDBridgeChal𝜏A (𝜆) = 1

]
≤

𝜀, where

𝜀 :=
3(𝑞onG + 𝑞

on
O)

2 + (5 + 2𝑃) (𝑞onG + 𝑞
on
O) + 4

2𝑝 − 4𝑃 (3𝑞onG + 𝑞
on
O + 1) − 2(3𝑞

on
G + 𝑞

on
O + 1)

2 − 2(2𝑞onG + 𝑞
on
O)

,

in the GGM of prime order 𝑝 , where the randomness is taken over the
selection of 𝑥1, . . . , 𝑥𝑁 , 𝜏 as well as any random coins ofABF-GG(𝑃)

on .

Proof of Lemma 5.2. The proof works by maintaining a list L
of tuples (𝜏 (𝑦), a, 𝑏) where 𝜏 (𝑦) ∈ G, a ∈ Zdim(x)𝑝 , and 𝑏 ∈ Z𝑝
such that 𝑦 = a · x + 𝑏 for every oracle output 𝜏 (𝑦). To bound

the probability that the attacker wins the quadratic bridge-finding

game, we consider the case where the event QDBridge occurs after
the attacker makes 𝑞G generic group queries and 𝑞O queries to

O. Suppose that dim(x) = 𝑗 at the point in time when QDBridge
occurs. We observe that 𝑗 ≤ 2𝑞G + 𝑞O + 1 since dim(x) can be

increased by at most 2 whenever A makes a generic group query

and at most 1 wheneverA makes a query to O. We further observe

that in this case, |L| ≤ 3𝑞G + 𝑞O + 1 since for each query to O, at
most 1 item can be added to L whereas each generic group oracle

query can add at most 3 times to L (exactly three in the case when

A queries Mult(𝔶1, 𝔶2) on two fresh elements).

Now consider the event BRIDGE where the list L contains two

distinct tuples (𝔶, a, 𝑏) and (𝔶′, a′, 𝑏′) such that a · x + 𝑏 = a′ · x +
𝑏′. To upper bound Pr[BRIDGE], consider the event BRIDGE<𝑖
that the event BRIDGE has not occurred until the (𝑖 − 1)th query.
Conditioning on the event BRIDGE<𝑖 , we are now interested in the

event BRIDGE𝑖 where the 𝑖 th query makes the event BRIDGE occur,

i.e., a tuple (𝔶𝑖 , a𝑖 , 𝑏𝑖) has been recorded to L and there exists a

tuple of the form (·, a, 𝑏) such that a𝑖 · x + 𝑏𝑖 = a · x + 𝑏. We can

35

Jeremiah Blocki and Seunghoon Lee

essentially view x sampled uniformly at random subject to some

restrictions due to BRIDGE<𝑖 , from which we know that for any

distinct pair (𝔶, a, 𝑏) and (𝔶′, a′, 𝑏′) we have a · x + 𝑏 ≠ a′ · x + 𝑏′.
Let 𝑟 ≤ dim(x) = 𝑗 be an index such that a[𝑟] − a′ [𝑟] ≠ 0 and

suppose that 𝑥𝑟 = x[𝑟] is the last value sampled. We also define

two subsets L0,L1 ⊆ L where L0
:= {(𝔶, a, 𝑏) ∈ L : a = 0} and

L1
:= {(𝔶, a, 𝑏) ∈ L : a ≠ 0}. Now we observe that L0 ∪ L1 = L

and if we pick two distinct pairs (𝔶1, a1, 𝑏1) and (𝔶2, a2, 𝑏2) both
from L0 we are guaranteed to have that a1 ·x+𝑏1 ≠ a2 ·x+𝑏2 since
a1 = a2 = 0, which implies that we are guaranteed to not cause

any bridge event. At this point, we can view 𝑥𝑟 as being drawn

uniformly at random from a set of at least 𝑝−(|L|2−|L0 |2)− (𝑗−1)
remaining values, subject to all of the restrictions. To see this, we

observe the following:

• 𝑥𝑟 must be distinct from 𝑥1, . . . , 𝑥𝑟−1 since otherwise we
would have had a bridge event, and

• each pair of distinct elements (𝔶𝑗 , a𝑗 , 𝑏 𝑗) ∈ L and (𝔶𝑘 , a𝑘 , 𝑏𝑘) ∈
L, we have the following cases:
◦ if (𝔶𝑗 , a𝑗 , 𝑏 𝑗) ∈ L1 and (𝔶𝑘 , a𝑘 , 𝑏𝑘) ∈ L1, then this pair

eliminates at most one possible value of 𝑥𝑟 , i.e., since

𝔶𝑗 and 𝔶𝑘 are distinct, we have a𝑗 · x +𝑏 𝑗 ≠ a𝑘 · x +𝑏𝑘 ,
which implies that

𝑥𝑟 ≠

(
(𝑏𝑘 − 𝑏 𝑗) −

∑𝑁
𝑖=1,𝑖≠𝑗 (a𝑘 [𝑖] − a𝑗 [𝑖])𝑥𝑖

)
(a𝑗 [𝑟] −

a𝑘 [𝑟])−1,
◦ if (𝔶𝑗 , a𝑗 , 𝑏 𝑗) ∈ L1 and (𝔶𝑘 , a𝑘 , 𝑏𝑘) ∈ L0, then this pair

eliminates at most one possible value of 𝑥𝑟 , i.e., since

𝔶𝑗 and 𝔶𝑘 are distinct, we have a𝑗 · x + 𝑏 𝑗 ≠ 0 · x + 𝑏𝑘 ,
which implies that

𝑥𝑟 ≠

(
(𝑏𝑘 − 𝑏 𝑗) +

∑𝑁
𝑖=1,𝑖≠𝑗 a𝑗 [𝑖]𝑥𝑖

)
a𝑗 [𝑟]−1,

◦ (𝔶𝑗 , a𝑗 , 𝑏 𝑗) ∈ L0 and (𝔶𝑘 , a𝑘 , 𝑏𝑘) ∈ L1, then this pair

eliminates at most one possible value of 𝑥𝑟 , i.e., since

𝔶𝑗 and 𝔶𝑘 are distinct, we have 0 · x + 𝑏 𝑗 ≠ a𝑘 · x + 𝑏𝑘 ,
which implies that

𝑥𝑟 ≠

(
(𝑏𝑘 − 𝑏 𝑗) −

∑𝑁
𝑖=1,𝑖≠𝑗 a𝑘 [𝑖]𝑥𝑖

)
(−a𝑘 [𝑟])−1, and

◦ if both (𝔶𝑗 , a𝑗 , 𝑏 𝑗) ∈ L0 and (𝔶𝑘 , a𝑘 , 𝑏𝑘) ∈ L0, then

since both a𝑗 = a𝑘 = 0, it is a contradiction that a𝑗 [𝑟]−
a𝑘 [𝑟] ≠ 0 and therefore we do not eliminate any value

of 𝑥𝑟 .

• Hence, the total number of values that we remove when

we draw 𝑥𝑟 is at most (𝑟 − 1) + |L1 |2 + 2|L0 | |L1 | ≤ (𝑗 −
1) + (|L|2 − |L0 |2).

We also observe that |L| ≤ 𝑃 +3𝑞onG +𝑞
on
O +1 and |L0 | ≥ 𝑃 since the

list already contains 𝑃 additional pre-fixed pairs and each generic

group oracle query adds at most three new tuples to L — exactly

three in the case that we query Mult(𝔶1, 𝔶2) on two fresh elements.

Thus, the probability that a𝑖 · x + 𝑏𝑖 = a · x + 𝑏 is at most

1

𝑝 − (𝑃 + 3𝑞onG + 𝑞
on
O + 1)

2 + 𝑃2 − (2𝑞onG + 2𝑞
on
O)

.

Union bounding over all tuples in L, we have
Pr[BRIDGE]

=
∑︁

𝑖≤𝑞onG +𝑞onO

Pr

[
BRIDGE𝑖 | BRIDGE<𝑖

]

≤
∑︁

𝑖≤𝑞onG +𝑞onO

1 + 𝑃 + 3𝑖
𝑝 − (𝑃 + 3𝑞onG + 𝑞

on
O + 1)

2 + 𝑃2 − (2𝑞onG + 2𝑞
on
O)

≤
3(𝑞onG + 𝑞

on
O)

2 + (5 + 2𝑃) (𝑞onG + 𝑞
on
O)

2𝑝 − 4𝑃 (3𝑞onG + 𝑞
on
O + 1)

2 − 2(2𝑞onG + 2𝑞
on
O)

.

Now, consider the case where the event BRIDGE never occurs.

Then we would like to upper bound the probability

Pr

[
QDBridgeChal𝜏,OA (𝜆) = 1

���BRIDGE] .
The argument works similarly; conditioning on the event BRIDGE,
we know that for any distinct pair (𝔶, a, 𝑏) and (𝔶′, a′, 𝑏′) we have
a ·x+𝑏 ≠ a′ ·x+𝑏′. Let 𝑟 ≤ dim(x) ≤ 2𝑞G +𝑞O +1 be an index such

that a[𝑟] − a′ [𝑟] ≠ 0 and suppose that 𝑥𝑟 = x[𝑟] is the last value
sampled. At this point, we can view 𝑥𝑟 as being drawn uniformly

at random from a set of at least 𝑝 − (|L|2 − |L0 |2) − (2𝑞onG + 𝑞
on
O)

remaining values as before. Now, the attacker wins if and only if

s/he outputs a tuple (𝑖1, 𝑖2, a, 𝑏) such that 𝑥𝑖1𝑥𝑖2 = a · x + 𝑏. Since
this equation is at most degree 2 in terms of 𝑥𝑟 (in case 𝑖1 = 𝑖2 = 𝑟),

there are at most 2 roots in Z𝑝 . Thus, we have that

Pr

[
QDBridgeChal𝜏,OA (𝜆) = 1

���BRIDGE]
≤ 2

𝑝 − (|L|2 − |L0 |2) − (2𝑞onG + 𝑞
on
O)

≤ 2

𝑝 − 2𝑃 (3𝑞onG + 𝑞
on
O + 1)

2 − (2𝑞onG + 2𝑞
on
O)

.

Taken together, we have

Pr

[
QDBridgeChal𝜏,OA (𝜆) = 1

]
≤ Pr [BRIDGE] + Pr

[
QDBridgeChal𝜏,OA (𝜆) = 1

���BRIDGE]
≤

3(𝑞onG + 𝑞
on
O)

2 + (5 + 2𝑃) (𝑞onG + 𝑞
on
O)

2𝑝 − 4𝑃 (3𝑞onG + 𝑞
on
O + 1)

2 − 2(2𝑞onG + 2𝑞
on
O)

+ 2

𝑝 − 2𝑃 (3𝑞onG + 𝑞
on
O + 1)

2 − (2𝑞onG + 2𝑞
on
O)

=
3(𝑞onG + 𝑞

on
O)

2 + (5 + 2𝑃) (𝑞onG + 𝑞
on
O) + 4

2𝑝 − 4𝑃 (3𝑞onG + 𝑞
on
O + 1) − 2(3𝑞

on
G + 𝑞

on
O + 1)

2 − 2(2𝑞onG + 𝑞
on
O)

,

which completes the proof. □

Reminder of Theorem 5.3. Let Π = (Gen, Encaps,Decaps) be
PSEC-KEMand 𝑝 > 2

2𝜆 be a prime number. LetA =

(
ABF-RO+GG(𝑃1,𝑃2)

pre ,

ABF-RO+GG(𝑃1,𝑃2)
on

)
be a pair of bit-fixing generic algorithms with

a labeling map 𝜏 : Z𝑝 → G such that ABF-RO+GG(𝑃1,𝑃2)
pre fixes 𝑃1,1

(resp. 𝑃1,2, 𝑃1,3) input/output pairs of a random oracle H0 : {0, 1}∗ →
Z𝑝 (resp. H1 : {0, 1}∗ → {0, 1}𝜆 , H2 : {0, 1}∗ → {0, 1}𝜆1), and 𝑃2
input/output pairs of the map 𝜏 such that 𝑃1,1 + 𝑃1,2 + 𝑃1,3 = 𝑃1 and
2𝑃1 + 𝑃2 = 𝑃 , and the hint str𝜏,H0,H1,H2

is only dependent on those
𝑃 points. If ABF-RO+GG(𝑃1,𝑃2)

on makes at most 𝑞onH (resp. 𝑞onG , 𝑞
on
E)

queries to the random oracle (resp. generic group oracle, encapsulation

oracle), then Pr

[
KEM𝜏,(H0,H1,H2),cpa

ABF-RO+GG(𝑃
1
,𝑃
2
)

on,str𝜏,H
0
,H
1
,H
2

,Π
(𝜆) = 1

]
≤ 1

2
+ 𝜀, with

36

Preprocessing Security in Multiple Idealized Models with Applications to Schnorr Signatures and PSEC-KEM

𝜀 =
3(𝑞onG + 2𝑞

on
E)

2 + (5 + 2𝑃) (𝑞onG + 2𝑞
on
E) + 4

𝑝 − 2𝑃 (3𝑞onG + 2𝑞
on
E + 1) − (3𝑞

on
G + 2𝑞

on
E + 1)2 − 2(𝑞

on
G + 𝑞

on
E)

+
3(𝑞onH + 𝑃)𝑞

on
E

2
𝜆1

+
(𝑞onH + 𝑃)𝑞

on
E

𝑝
,

where the randomness is taken over the selection of 𝜏 and the random
coins of ABF-RO+GG(𝑃1,𝑃2)

on .

Proof of Theorem 5.3. We use a hybrid argument to prove the

CPA security of PSEC-KEM in the BF-ROM+GGM. The hybrids

work the same as the proof of Theorem D.2 during the online phase,

except that the distinguisherD = (Dpre,Don) in the preprocessing
phase gets the hint generated fromABF-RO+GG(𝑃1,𝑃2)

pre . In particular,

ABF-RO+GG(𝑃1,𝑃2)
pre fixes

• 𝑃1,1 input/output pairs ({(ℎ1,1,H0 (ℎ1,1)), . . . , (ℎ1,𝑃1,1 ,H0 (ℎ1,𝑃1,1))})
of H0,

• 𝑃1,2 input/output pairs ({(ℎ2,1,H1 (ℎ2,1)), . . . , (ℎ2,𝑃1,2 ,H1 (ℎ2,𝑃1,2))})
of H1,

• 𝑃1,3 input/output pairs ({(ℎ3,1,H0 (ℎ3,1)), . . . , (ℎ3,𝑃1,3 ,H0 (ℎ3,𝑃1,3))})
of H2, and

• 𝑃2 input/output pairs ({(𝑡1, 𝜏 (𝑡1)), . . . , (𝑡𝑃2 , 𝜏 (𝑡𝑃2))}) of 𝜏 .
Furthermore, for each fixed RO input/output pair (ℎ 𝑗 ,H𝑖 (ℎ 𝑗)) for
𝑖 = 0, 1, 2, Dpre first parses ℎ 𝑗 = 𝐼 𝑗 ∥𝐼 ′𝑗 where 𝐼 𝑗 is a bitstring of

length ℓ . If 𝐼 𝑗 is a fresh ℓ-bit string, i.e., 𝐼 𝑗 ≠ 𝜏 (𝑡𝑘) for all 𝑘 ∈ [𝑃2],
then Dpre picks a value for 𝜏

−1 (𝐼 𝑗) = 𝑟 𝑗 where the labeling map 𝜏

will be sampled later. Note that this is possible because the labeling

map 𝜏 has not been sampled yet. Finally,Dpre additionally fixes the

input/output pairs of 𝜏 such as {(𝑟1, 𝐼1), . . . , (𝑟𝑃1 , 𝐼𝑃1)}. This leads
to having 𝑃1,1 + 𝑃1,2 + 𝑃1,3 = 𝑃1 fixed RO points and 𝑃1 + 𝑃2 fixed
points of 𝜏 for the distinguisher, having in total 𝑃1 + (𝑃1 + 𝑃2) = 𝑃
fixed points as the hint for the online phase. For completeness, we

restate the hybrids below.

Hybrid 𝐻0. This is the original CPA indistinguishability game

KEM𝜏,H,cpa
A,Π (𝜆) for PSEC-KEM with the challenge bit 𝑏 = 0. In

particular,Don has access to the encapsulation oracle Encaps′
0
(·) :=

Encaps(·, 1𝜆), i.e., whenever Don submits a query Encaps′
0
(pk),

Don always gets the output Encaps(pk, 1𝜆).

Hybrid 𝐻1. This is the same security game with 𝐻0 except that

the encapsulation oracle Encaps′
0
(·) is replaced with a modified

oracle Encaps′
1
(·). In Encaps′

1
(·), 𝜏 (𝛼) and 𝜏 (𝛼𝑥) (where 𝑥 is the

secret key) are replaced with random elements in 𝜏 (Z𝑝) by querying
the oracle O twice. See Figure 2 for the details.

Hybrid 𝐻2. This is the same security game with 𝐻1 except that

the encapsulation oracle Encaps′
1
(·) is further replaced with a modi-

fied oracle Encaps′
2
(·). Encaps′

2
(·) is exactly the same as Encaps′

1
(·)

except that the key 𝑘 is sampled uniformly at random from {0, 1}𝜆 .

Hybrid 𝐻3. This is the same security game with 𝐻2 except that

the encapsulation oracle Encaps′
2
(·) is replaced with a modified ora-

cle Encaps′
3
(·) := Encaps

1
(·), which leads to the original CPA indis-

tinguishability game KEM𝜏,H,cpa
A,Π (𝜆) for PSEC-KEM with the chal-

lenge bit 𝑏 = 1. In particular, Encaps′
3
(·) is the same as Encaps′

2
(·)

but the random elements in 𝜏 (Z𝑝) are reverted back to the honest

computation 𝜏 (𝛼) and 𝜏 (𝛼𝑥). This can also be interpreted as replac-

ing an honest key 𝑘 in Encaps′
0
(·) with a uniformly random key of

length 𝜆. See Figure 2 for the details.

Indistinguishability of 𝐻0 and 𝐻1. With a similar reasoning, we

can argue that two hybrids are perfectly indistinguishable unless

one of the three events occurs: for some round 𝑖 ≤ 𝑞onE ,

(1) the random oracle query H2 (𝜏 (𝛼𝑖)∥𝜏 (𝛼𝑖𝑥)) has been made,

(2) the adversary makes query 𝑟𝑖 to H0 (which is not one of

the fixed points of H0) but has not queried (𝜏 (𝛼𝑖)∥𝜏 (𝛼𝑖𝑥))
to H2, or

(3) 𝑟𝑖 is one of the fixed points of H0.

We can argue in the same way as Theorem D.2 that Case (1) leads

to winning the quadratic bridge-finding game with preprocessing.

Let Lucky
1
be the event that Case (2) occurs. If 𝑟 is not one of

the fixed points of H0, then it is essentially the same as Case (2) in

the proof of Theorem D.2. Hence,

Pr[Lucky
1
] ≤

𝑞onH · 𝑞
on
E

2
𝜆1

.

Let Lucky
2
be the event that Case (3) occurs. Since there are at

most 𝑃 fixed points, union bounding over 𝑞onE queries, we have

Pr[Lucky
2
] ≤

𝑃 · 𝑞onE
2
𝜆1

.

Taken all together with Lemma 5.2, we have���Pr[D𝐻0 = 1] − Pr[D𝐻1 = 1]
���

≤ Pr[QDBridgeChal𝜏D (𝜆) = 1] + Pr[Lucky
1
] + Pr[Lucky

2
]

≤
3(𝑞onG + 𝑞

on
O)

2 + (5 + 2𝑃) (𝑞onG + 𝑞
on
O) + 4

2𝑝 − 4𝑃 (3𝑞onG + 𝑞
on
O + 1) − 2(3𝑞

on
G + 𝑞

on
O + 1)

2 − 2(2𝑞onG + 𝑞
on
O)

+
𝑞onH · 𝑞

on
E

2
𝜆1

+
𝑃 · 𝑞onE
2
𝜆1

≤
3(𝑞onG + 2𝑞

on
E)

2 + (5 + 2𝑃) (𝑞onG + 2𝑞
on
E) + 4

2𝑝 − 4𝑃 (3𝑞onG + 2𝑞
on
E + 1) − 2(3𝑞

on
G + 2𝑞

on
E + 1)2 − 4(𝑞

on
G + 𝑞

on
E)

+
(𝑞onH + 𝑃) · 𝑞

on
E

2
𝜆1

,

since 𝑞onO ≤ 2𝑞onE .

Indistinguishability of 𝐻1 and 𝐻2. Again, we observe that two
hybrids are perfectly indistinguishable unless the random oracle

query H1 (𝑟𝑖) is queried (which is not one of the fixed points) or 𝑟𝑖
is one of the fixed points of H1 for some round 𝑖 . If 𝑟𝑖 was not one

of the fixed points of H1, there are still several ways to retrieve 𝑟𝑖 :

• if the random oracle query H2 (𝔶1,𝑖 ∥𝔶2,𝑖) was made that is

not one of the fixed points of H2, or

• 𝔶1,𝑖 ∥𝔶2,𝑖 is one of the fixed points of H2.

In either case, one can retrieve 𝑟𝑖 ← 𝑐1𝑖 ⊕ H2 (𝔶1,𝑖 ∥𝔶2,𝑖). Note that
since the attacker only gets (𝑘𝑖 , 𝑐𝑖 = (𝔶1,𝑖 , 𝑐1,𝑖)) as the output, s/he
can first check if 𝔶1,𝑖 is the prefix of one of the fixed points of H2

(let’s say this fixed point is �̃�) and check if H1 (𝑐1,𝑖 ⊕ H2 (�̃�))
?

= 𝑘𝑖 .

If it matches then the attacker would have known that the pair

(𝑘𝑖 , 𝑐𝑖) is from Encaps′
1
. Since there are at most 𝑃 fixed points,

37

Jeremiah Blocki and Seunghoon Lee

union bounding over 𝑞onE queries we have���Pr[D𝐻1 = 1] − Pr[D𝐻2 = 1]
��� ≤ 𝑞onE (

𝑞onH + 𝑃
𝑝

+
𝑞onH + 𝑃
2
𝜆1

)
.

Indistinguishability of 𝐻2 and 𝐻3. As we discussed in the proof

of Theorem D.2, the distinguishing probability is the same as the

distinguishing probability between 𝐻0 and 𝐻1, which is���Pr[D𝐻2 = 1] − Pr[D𝐻3 = 1]
���

≤
3(𝑞onG + 2𝑞

on
E)

2 + (5 + 2𝑃) (𝑞onG + 2𝑞
on
E) + 4

2𝑝 − 4𝑃 (3𝑞onG + 2𝑞
on
E + 1) − 2(3𝑞

on
G + 2𝑞

on
E + 1)2 − 4(𝑞

on
G + 𝑞

on
E)

+
(𝑞onH + 𝑃) · 𝑞

on
E

2
𝜆1

.

Putting all together, we have

Pr

[
KEM𝜏,H0,H1,cpa

ABF-RO+GG(𝑃
1
,𝑃
2
)

on,str𝜏,H
0
,H
1

,Π
(𝜆) = 1

]
≤ 1

2

+
���Pr[D𝐻0 = 1] − Pr[D𝐻3 = 1]

���
≤ 1

2

+
2∑︁
𝑖=0

���Pr[D𝐻𝑖 = 1] − Pr[D𝐻𝑖+1 = 1]
���

≤
3(𝑞onG + 2𝑞

on
E)

2 + (5 + 2𝑃) (𝑞onG + 2𝑞
on
E) + 4

𝑝 − 2𝑃 (3𝑞onG + 2𝑞
on
E + 1) − (3𝑞

on
G + 2𝑞

on
E + 1)2 − 4(𝑞

on
G + 𝑞

on
E)

+
3(𝑞onH + 𝑃)𝑞

on
E

2
𝜆1

+
(𝑞onH + 𝑃)𝑞

on
E

𝑝
+ 1

2

. □

H Missing Tables

𝑆 2
64

2
72

2
80

𝑞 2
80

2
85

2
90

2
80

2
85

2
90

2
80

2
85

2
90

Attacker Success Probability (Approximate)

𝑝 = 2
256

2
−31

2
−21

2
−11

2
−23

2
−13

2
−3

2
−15

2
−5 ≈ 1

𝑝 = 2
384

2
−159

2
−149

2
−139

2
−151

2
−141

2
−131

2
−143

2
−133

2
−123

𝑝 = 2
448

2
−223

2
−213

2
−203

2
−215

2
−205

2
−195

2
−207

2
−197

2
−187

𝑝 = 2
512

2
−287

2
−277

2
−267

2
−279

2
−269

2
−259

2
−271

2
−261

2
−251

Table 2: Security bounds of a nonzero Schnorr signature for
different values of 𝑆 (size of the hint), 𝑞 (total query complex-
ity), and 𝑝 (group size).

Table 2 highlights that to break 128-bit security for nonzero

Schnorr signatures, one would need to consider preprocessing at-

tacks with the hint size unreasonably large which grows to the

yottabyte scale (≈ 10
24 ≈ 2

80
) and making 2

90
online queries with

massive computational power. However, we could even prevent this

vulnerability by using larger group sizes (e.g., 𝑝 ≥ 2
384

) which en-

sures that even nation-state-level attackers with significant compu-

tational resources cannot compromise nonzero Schnorr signatures

except for negligibly small probability, even considering prepro-

cessing.

38

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	3 Background: Bit-Fixing/Auxiliary-Input ROM+GGM and Extension to Multiple Idealized Models
	4 Multi-User Security of Short Schnorr Signatures without Key-Prefixing against Preprocessing Attacks
	4.1 Multi-User Security of Nonzero Schnorr Signatures in the BF-ROM+GGM
	4.2 From Bit-Fixing Model to Auxiliary-Input Model
	4.3 Discussion

	5 Security of PSEC-KEM with Preprocessing
	5.1 The CPA Security of PSEC-KEM in the BF-ROM+GGM
	5.2 The CPA Security of PSEC-KEM in the AI-ROM+GGM

	References
	A Formal Definition of Bit-Fixing/Auxiliary-Input ROM+GGM
	A.1 Replacing Auxiliary Information by Bit-Fixing in the ROM+GGM
	A.2 From the BF-ROM+GGM to the AI-ROM+GGM

	B Bit-Fixing/Auxiliary-Input Multiple Idealized Models
	B.1 Replacing Auxiliary Information by Bit-Fixing
	B.2 From the Bit-Fixing Model to the Auxiliary-Input Model

	C Multi-User Security of Key-Prefixed Short Schnorr Signatures
	D Warmup: CPA Security of PSEC-KEM without Preprocessing in the ROM+GGM
	E Formal Description of Several Security Games
	E.1 Formal Description of the CPA Indistinguishability Game for a KEM
	E.2 Formal Description of the Quadratic Bridge-Finding Game

	F The Quadratic Discrete-Log Game
	G Missing Proofs
	H Missing Tables

